ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2020-12-14
    Description: The Global Earthquake Model (GEM) aims to develop uniform, openly available, standards, datasets and tools for worldwide seismic risk assessment through global collaboration, transparent communication and adapting state-of-the-art science. GEM Faulted Earth (GFE) is one of GEM’s global hazard module projects. This paper describes GFE’s development of a modern neotectonic fault database and a unique graphical interface for the compilation of new fault data. A key design principle is that of an electronic field notebook for capturing observations a geologist would make about a fault. The database is designed to accommodate abundant as well as sparse fault obser- vations. It features two layers, one for capturing neotectonic faults and fold observations, and the other to calculate potential earthquake fault sources from the observations. In order to test the flexibility of the database structure and to start a global compilation, five preexisting databases have been uploaded to the first layer and two to the second. In addition, the GFE project has characterised the world’s approximately 55,000 km of subduction interfaces in a globally consistent manner as a basis for generating earthquake event sets for inclusion in earthquake hazard and risk modelling. Following the subduction interface fault schema and including the trace attributes of the GFE database schema, the 2500-km-long frontal thrust fault system of the Himalaya has also been characterised. We propose the database structure to be used widely, so that neotectonic fault data can make a more complete and beneficial contribution to seismic hazard and risk characterisation globally.
    Description: Published
    Description: 111–135
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: restricted
    Keywords: Global Earthquake Model ; Fault database ; Earthquake fault source ; GEM Faulted Earth ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Lake Poerua is a small, shallow lake that abuts the scarp of the Alpine Fault on the West Coast of New Zealand’s South Island. Radiocarbon dates from drowned podocarp trees on the lake floor, a sediment core from a rangefront alluvial fan, and living tree ring ages have been used to deduce the late Holocene history of the lake. Remnant drowned stumps of kahikatea (Dacrycarpus dacrydioides) at 1.7–1.9m water depth yield a preferred time-ofdeath age at 1766–1807 AD, while a dryland podocarp and kahikatea stumps at 2.4–2.6m yield preferred time-of-death ages of ca. 1459–1626 AD. These age ranges are matched to, but offset from, the timings of Alpine Fault rupture events at ca. 1717 AD, and either ca. 1615 or 1430 AD. Alluvial fan detritus dated from a core into the toe of a rangefront alluvial fan, at an equivalent depth to the maximum depth of the modern lake (6.7 m), yields a calibrated age of AD 1223–1413. This age is similar to the timing of an earlier Alpine Fault rupture event at ca. 1230AD±50 yr. Kahikatea trees growing on rangefront fans give ages of up to 270 yr, which is consistent with alluvial fan aggradation following the 1717AD earthquake. The elevation levels of the lake and fan imply a causal and chronological link between lake-level rise and Alpine Fault rupture. The results of this study suggest that the growth of large, coalescing alluvial fans (Dry and Evans Creek fans) originating from landslides within the rangefront of the Alpine Fault and the rise in the level of Lake Poerua may occur within a decade or so of large Alpine Fault earthquakes that rupture adjacent to this area. These rises have in turn drowned lowland forests that fringed the lake. Radiocarbon chronologies built using OxCal show that a series of massive landscape changes beginning with fault rupture, followed by landsliding, fan sedimentation and lake expansion. However, drowned Kahikatea trees may be poor candidates for intimately dating these events, as they may be able to tolerate water for several decades after metre-scale lake level rises have occurred.
    Description: FRST project Impacts of Plate Tectonics in New Zealand (PLT): Alpine Fault earthquake geology (PGST Contract CO5X0702).
    Description: Published
    Description: 2051-2064
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Alpine fault ; drowned forest ; Lake Poerua ; New Zealand ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The northeast-striking, dextral-reverse Alpine fault transitions into the Marlborough Fault System near Inchbonnie in the central South Island, New Zealand. New slip-rate estimates for the Alpine fault are presented following a reassessment of the geomorphology and age of displaced late Holocene alluvial surfaces of the Taramakau River at Inchbonnie. Progressive avulsion and abandonment of the Taramakau floodplain, aided by fault movements during the late Holocene, have preserved a left-stepping fault scarp that grows in height to the northeast. Surveyed dextral (22.5 ± 2 m) and vertical (4.8 ± 0.5 m) displacements across a left stepover in the fault across an alluvial surface are combined with a precise maximum age from a remnant tree stump (≥1590–1730 yr) to yield dextral, vertical, and reverse-slip rates of 13.6 ± 1.8, 2.9 ± 0.4, and 3.4 ± 0.6 mm/yr, respectively. These values are larger (dextral) and smaller (dip slip) than previous estimates for this site, but they refl ect advances in the local chronology of surfaces and represent improved time-averaged results over 1.7 k.y. A geological kinematic circuit constructed for the central South Island demonstrates that (1) 69%–89% of the Australian-Pacific plate motion is accommodated by the major faults (Alpine-Hope-Kakapo) in this transitional area, (2) the 50% drop in slip rate on the Alpine fault between Hokitika and Inchbonnie is taken up by the Hope and Kakapo faults at the southwestern edge of the Marlborough Fault System, and (3) the new slip rates are more compatible with contemporary models of strain partitioning presented from geodesy.
    Description: Published
    Description: 139-152
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: reserved
    Keywords: Alpine fault ; plate boundary ; slip rate ; New Zealand ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-26
    Description: Liquefaction features and the geologic environment in which they formed were carefully studied at two sites near Lincoln in southwest Christchurch. We undertook geomorphic mapping, excavated trenches, and obtained hand cores in areas with surficial evidence for liquefaction and areas where no surficial evidence for liquefaction was present at two sites (Hardwick and Marchand). The liquefaction features identified include (1) sand blows (singular and aligned along linear fissures), (2) blisters or injections of subhorizontal dikes into the topsoil, (3) dikes related to the blows and blisters, and (4) a collapse structure. The spatial distribution of these surface liquefaction features correlates strongly with the ridges of scroll bars in meander settings. In addition, we discovered paleoliquefaction features, including several dikes and a sand blow, in excavations at the sites of modern liquefaction. The paleoliquefaction event at the Hardwick site is dated at A.D. 908–1336 , and the one at the Marchand site is dated at A.D. 1017–1840 (95% confidence intervals of probability density functions obtained by Bayesian analysis). If both events are the same, given proximity of the sites, the time of the event is A.D. 1019–1337. If they are not, the one at the Marchand site could have been much younger. Taking into account a preliminary liquefaction-triggering threshold of equivalent peak ground acceleration for an M w  7.5 event (PGA 7.5 ) of 0.07 g , existing magnitude-bounded relations for paleoliquefaction, and the timing of the paleoearthquakes and the potential PGA 7.5 estimated for regional faults, we propose that the Porters Pass fault, Alpine fault, or the subduction zone faults are the most likely sources that could have triggered liquefaction at the study sites. There are other nearby regional faults that may have been the source, but there is no paleoseismic data with which to make the temporal link. Online Material: Figures showing areas of liquefaction, trench logs, information on dike and sand-blow parameters, dike azimuths, core logs, radiocarbon samples, and OxCal analysis, and tables detailing units exposed in the trenches and stereonets.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-22
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-20
    Description: Field mapping and lidar analysis of surface faulting patterns expressed in flights of geologically similar fluvial terraces at the well-known Branch River and Saxton River sites along the Wairau (Alpine) and Awatere strike-slip faults, South Island, New Zealand, reveal that fault-related deformation patterns expressed in the topography at these sites are markedly less structurally complex along the higher-displacement (hundreds of kilometers), structurally mature Wairau fault than along the Awatere fault (~13–20 km total slip). These differences, which are generally representative of the surface traces of these faults, provide direct evidence that surface faulting becomes structurally simpler with increasing cumulative fault offset. We also examine the degree to which off-fault deformation (OFD) is expressed in the landscape at the Saxton River site along the less structurally mature Awatere fault. Significantly greater amounts of OFD are discernible as a wide damage zone (~460 m fault-perpendicular width) in older (ca. 15 ka), more-displaced (64–74 m) fluvial terraces than in younger (ca. 1–7 ka), less-displaced (〈55 m) terraces; no OFD is discernible in the lidar data on the least-displaced (〈35 m) terraces. From this, we infer that OFD becomes progressively more geomorphically apparent with accumulating displacement. These observations imply that (1) the processes that accommodate OFD are active during each earthquake, but may not be evident in deposits that have experienced relatively small displacements; (2) structures accommodating OFD will become progressively geomorphically clearer with increasing displacement; (3) geomorphic measurements of overall fault zone width taken in deposits that have experienced small displacements will be underestimates; and (4) fault slip rates based on geomorphic surface offsets will be underestimates for immature faults if based solely on measurements along the high-strain fault core.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-30
    Description: The Alpine fault in south Westland, New Zealand, releases strains of Pacific–Australian relative plate motion in large earthquakes with an average interevent spacing of ~330 years. A new record of earthquake recurrence has been developed at Hokuri Creek, with evidence for 22 events. The youngest Hokuri Creek earthquake overlaps in time and is believed to be the same as the oldest of another site about 100 km to the northwest near Haast. The combined record spans the last 7900 years and includes 24 events. We study the recurrence rate and conditional probability of ground ruptures from this record using a new likelihood-based approach for estimation of recurrence model parameters. Paleoseismic parameter estimation includes both dating and natural recurrence uncertainties. Lognormal and Brownian passage time (BPT) models are considered. The likelihood surface has distribution location and width parameters as axes, the mean and standard deviation of the log recurrence for the lognormal, and the mean and coefficient of variation for the BPT. The maximum-likelihood (ML) point gives the parameters most likely to have given rise to the data. The ML point, 50-year conditional probabilities of a ground-rupturing earthquake are 26.8% and 26.1% for the lognormal and BPT models, respectively. Contours of equal likelihood track the parameter pairs that are equally probable to have given rise to the observed data. Conditional probabilities on the lognormal 95% boundary around the ML point range from 18.2% to 35.8%. An empirical distribution model completely based on past recurrence times gives a similar conditional probability of 27.1% (9.6%–50.2%). In contrast, the time-independent conditional probability estimate of 13.6% (8.8%–19.1%) is about half that of the time-dependent models. A nonparametric test of earthquake recurrence at Hokuri Creek indicates that time-dependent recurrence models best represent the southern Alpine fault of the South Island, New Zealand.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-09-01
    Description: The dextral-reverse Alpine fault is the major onshore plate-boundary structure between the Australian and Pacific plates in New Zealand. No previous study of the central portion of the 200-km-long central segment has provided on-fault evidence for the most recent event (MRE). Using lidar (light detection and ranging) data coupled with field mapping, we recognized the main trace of the Alpine fault north of Gaunt Creek (South Island) as a north-striking fault scarp. We enhanced a natural exposure that revealed evidence for repeated late Holocene thrust fault movement. The north-northwest–striking fault zone is characterized by a distinct 5–50-cm-thick clay fault-gouge layer juxtaposing hanging-wall bedrock (mylonites and cataclasites) over unconsolidated late Holocene footwall colluvium. The bedrock is cut by a strath terrace and overlain by mid-Holocene (ca. 5400 calibrated 14 C yr B.P.) alluvial terrace, which has been faulted repeatedly and is conformably overlain by undeformed late Holocene colluvium and alluvium. An unfaulted peat at the base of the scarp is buried by post-MRE alluvium and yields a calibrated 2 radiocarbon age of A.D. 1710–1930, which dates the MRE as post-1709. Our data are consistent with sparse on-fault data, and validate earlier off-fault records that suggest an A.D. 1717 MRE. The 1717 event had a moment magnitude of M w 8.1 ± 0.1, based on the 380-km-long surface rupture. Because the fault has not ruptured for ~300 yr, it is likely approaching the end of its seismic cycle and poses a significant seismic hazard to New Zealand.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-01-01
    Description: Previous high-resolution seismic reflection investigations of active faults have been based on 2D profiles. Unfortunately, 2D data may be contaminated by out-of-the-plane reflections and diffractions that may be difficult to identify and eliminate. Although full 3D seismic reflection methods allow out-of-the-plane events to be recognized and provide superior resolution to 2D methods, they are only rarely applied in environmental and engineering studies because of high costs. A narrow-azimuth 3D acquisition and processing strategy is introduced to produce a high-resolution seismic reflection volume centered on the Alpine Fault Zone (New Zealand). The shallow 3D images reveal late Quaternary deformation structures associated with this major transpressional plate-boundary fault. The relatively inexpensive narrow-azimuth 3D acquisition pattern consisting of inline source and receiver lines was easily implemented in the field to provide 2- by 4-m CMP coverage over an approximately 500- by 200-m area. The narrow-azimuth acquisition strategy was well suited for resolving complex structures within the fault zone. Challenges in processing the data were amplified by the effects of strong velocity heterogeneity in the near surface and the presence of complex dipping, diffracted, and truncated events. A carefully tailored processing scheme including surface-consistent deconvolution, refraction static corrections, noise reduction, dip moveout (DMO) corrections, and 3D depth migration greatly improved the appearance of the final stacks. The 3D images reveal strong reflections from the faulted and folded late Pleistocene erosional basement surface. A steeply dipping planar main (dominant) fault strand can be inferred from the geometry and truncations of the overlying postglacial sediments. The 3D images reveal that the average apparent vertical displacement (20–30 m) of the basement surface across the dominant fault strand at this location is somewhat less than that estimated from a pilot 2D seismic reflection profile, suggesting that the provisional dip-slip rate based on the 2D data is a maximum.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-05-03
    Description: The Hurunui segment of the dextral-slip Hope fault extends for ~42 km between the Hope and Hurunui River catchments and westward to Harper Pass at the Main Divide of South Island. We conducted paleoseismic, soil, and landscape dating studies in the upper Hurunui valley to determine the timing of past earthquake ruptures along this geometric fault segment. On a late Holocene alluvial surface at Matagouri Flat, a young channel system is displaced dextrally by ~4.5 ± 0.6 m, which is attributed to the most recent faulting event. A trench and soil pits excavated nearby yield evidence for the timing of the last two surface-faulting events. These events, dated from a combination of radiocarbon dates, relative soil, tree, and historical constraints, modified within an OxCal analysis, occurred at ca. A.D. 1655–1835 and 1425–1625. The occurrence of two rupture events during the last ~600 yr is consistent with previous estimates stating a short recurrence interval for the Hurunui segment. The most recent faulting event in our trenches predates the historic 1888 North Canterbury (Amuri) earthquake, which ruptured the Hope River segment to the east. A comparison of the record from the Hurunui segment with paleoseismic records from other segments along the Hope fault zone indicates evidence for two or three rupture events within the last 700–900 yr. Within the age resolution of the current dates, the data suggest that along-strike rupture occurred along the majority of the Hope fault zone between 120 and 360 yr ago (i.e., A.D. 1650–1888), and may all postdate the most recent rupture of the Alpine fault in ca. A.D. 1717. In addition, the timings of penultimate faulting events along the Hurunui, Hope River, and Conway segments and the Hanmer fault all fall in the range ~400–700 yr ago. These preliminary observations indicate that rupture of segments of the Hope fault, and indeed the Alpine fault, could occur as clusters that are years to decades apart. Rupture of the major plate boundary faults in the northern South Island may therefore occur in sequences that are enhanced, or even retarded, by stress triggering and fault interactions.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...