ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (213,155)
  • Copernicus  (139,901)
  • Oxford University Press  (43,416)
  • Geological Society of America  (29,838)
  • Geosciences  (208,482)
  • Geography  (35,073)
Collection
Years
  • 1
    Publication Date: 2020-08-26
    Description: The concept of cloud radiative forcing (CRF) is commonly applied to quantify the impact of clouds on the surface radiative energy budget (REB). In the Arctic, specific radiative interactions between microphysical and macrophysical properties of clouds and the surface strongly modify the warming or cooling effect of clouds, complicating the estimate of CRF obtained from observations or models. Clouds tend to increase the broadband surface albedo over snow or sea ice surfaces compared to cloud-free conditions. However, this effect is not adequately considered in the derivation of CRF in the Arctic so far. Therefore, we have quantified the effects caused by surface-albedo–cloud interactions over highly reflective snow or sea ice surfaces on the CRF using radiative transfer simulations and below-cloud airborne observations above the heterogeneous springtime marginal sea ice zone (MIZ) during the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign. The impact of a modified surface albedo in the presence of clouds, as compared to cloud-free conditions, and its dependence on cloud optical thickness is found to be relevant for the estimation of the shortwave CRF. A method is proposed to consider this surface albedo effect on CRF estimates by continuously retrieving the cloud-free surface albedo from observations under cloudy conditions, using an available snow and ice albedo parameterization. Using ACLOUD data reveals that the estimated average shortwave cooling by clouds almost doubles over snow- and ice-covered surfaces (−62 W m−2 instead of −32 W m−2), if surface-albedo–cloud interactions are considered. As a result, the observed total (shortwave plus longwave) CRF shifted from a warming effect to an almost neutral one. Concerning the seasonal cycle of the surface albedo, it is demonstrated that this effect enhances shortwave cooling in periods when snow dominates the surface and potentially weakens the cooling by optically thin clouds during the summertime melting season. These findings suggest that the surface-albedo–cloud interaction should be considered in global climate models and in long-term studies to obtain a realistic estimate of the shortwave CRF to quantify the role of clouds in Arctic amplification.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-26
    Description: The evaluation of potential landslides in mountain areas is a very complex process. Currently, event understanding is scarce due to information limitations. Identifying the whole chain of events is not a straightforward task, and the impacts of mass-wasting processes depend on the conditions downstream of the origin. In this paper, we present an example that illustrates the complexities in the evaluation of the chain of events that may lead to a natural disaster. On 16 December 2017, a landslide occurred in the Yelcho mountain range (southern Chile). In that event, 7 million m3 of rocks and soil fell on the Yelcho glacier, depositing 2 million m3 on the glacier terminal, and the rest continued downstream, triggering a mudflow that hit Villa Santa Lucía in Chilean Patagonia and killing 22 people. The complex event was anticipated in the region by the National Geological and Mining Survey (Sernageomin in Spanish). However, the effects of the terrain characteristics along the run-out area were more significant than anticipated. In this work, we evaluate the conditions that enabled the mudflow that hit Villa Santa Lucía. We used the information generated by Sernageomin's professionals after the mudflow. We carried out geotechnical tests to characterize the soil. We simulated the mudflow using two hydrodynamic programs (r.avaflow and Flo-2D) that can handle the rheology of the water–soil mixture. Our results indicate that the soil is classified as volcanic pumices. This type of soil can be susceptible to the collapse of the structure when subjected to shearing (molding), flowing as a viscous liquid. From the numerical modeling, we concluded that r.avaflow performs better than Flo-2D. The mudflow was satisfactorily simulated using a water content in the mixture ranging from 30 % to 40 %, which would have required a source of about 3 million m3 of water. Coupling the simulations and the soil tests that we performed, we estimated that in the area scoured by the mudflow, there were probably around 2 800 000 m3 of water within the soil. Therefore, the conditions of the valley were crucial to enhancing the impacts of the landslide. This result is relevant because it highlights the importance of evaluating the complete chain of events to map hazards. We suggest that in future hazard mapping, geotechnical studies in combination with hydrodynamic simulation should be included, in particular when human lives are at risk.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-26
    Description: Production and reduction of nitrous oxide (N2O) by soil denitrifiers influence atmospheric concentrations of this potent greenhouse gas. Accurate projections of the net N2O flux have three key uncertainties: (1) short- vs. long-term responses to warming, (2) interactions among soil horizons, and (3) temperature responses of different steps in the denitrification pathway. We addressed these uncertainties by sampling soil from a boreal forest climate transect encompassing a 5.2 ∘C difference in the mean annual temperature and incubating the soil horizons in isolation and together at three ecologically relevant temperatures in conditions that promote denitrification. Both short-term exposure to warmer temperatures and long-term exposure to a warmer climate increased N2O emissions from organic and mineral soils; an isotopic tracer suggested that an increase in N2O production was more important than a decline in N2O reduction. Short-term warming promoted the reduction of organic horizon-derived N2O by mineral soil when these horizons were incubated together. The abundance of nirS (a precursor gene for N2O production) was not sensitive to temperature, whereas that of nosZ clade I (a gene for N2O reduction) decreased with short-term warming in both horizons and was higher from a warmer climate. These results suggest a decoupling of gene abundance and process rates in these soils that differs across horizons and timescales. In spite of these variations, our results suggest a consistent, positive response of denitrifier-mediated net N2O efflux rates to temperature across timescales in these boreal forests. Our work also highlights the importance of understanding cross-horizon N2O fluxes for developing a predictive understanding of net N2O efflux from soils.
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-26
    Description: Wetlands are the largest and most uncertain natural sources of atmospheric methane (CH4). Several process-based models have been developed to quantify the magnitude and estimate spatial and temporal variations in CH4 emissions from global wetlands. Reliable models are required to estimate global wetland CH4 emissions. This study aimed to test two process-based models, CH4MODwetland and Terrestrial Ecosystem Model (TEM), against the CH4 flux measurements of marsh, swamp, peatland and coastal wetland sites across the world; specifically, model accuracy and generality were evaluated for different wetland types and in different continents, and then the global CH4 emissions from 2000 to 2010 were estimated. Both models showed similar high correlations with the observed seasonal/annual total CH4 emissions, and the regression of the observed versus computed total seasonal/annual CH4 emissions resulted in R2 values of 0.81 and 0.68 for CH4MODwetland and TEM, respectively. The CH4MODwetland produced accurate predictions for marshes, peatlands, swamps and coastal wetlands, with model efficiency (EF) values of 0.22, 0.52, 0.13 and 0.72, respectively. TEM produced good predictions for peatlands and swamps, with EF values of 0.69 and 0.74, respectively, but it could not accurately simulate marshes and coastal wetlands (EF 
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-26
    Description: As knowledge about the cirrus clouds in the lower stratosphere is limited, reliable long-term measurements are needed to assess their characteristics, radiative impact and important role in upper troposphere and lower stratosphere (UTLS) chemistry. We used 6 years (2006–2012) of Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements to investigate the global and seasonal distribution of stratospheric cirrus clouds and compared the MIPAS results with results derived from the latest version (V4.x) of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. For the identification of stratospheric cirrus clouds, precise information on both the cloud top height (CTH) and the tropopause height is crucial. Here, we used lapse rate tropopause heights estimated from the ERA-Interim global reanalysis. Considering the uncertainties of the tropopause heights and the vertical sampling grid, we define CTHs more than 0.5 km above the tropopause as stratospheric for CALIPSO data. For MIPAS data, we took into account the coarser vertical sampling grid and the broad field of view so that we considered cirrus CTHs detected more than 0.75 km above the tropopause as stratospheric. Further sensitivity tests were conducted to rule out sampling artefacts in MIPAS data. The global distribution of stratospheric cirrus clouds was derived from night-time measurements because of the higher detection sensitivity of CALIPSO. In both data sets, MIPAS and CALIPSO, the stratospheric cirrus cloud occurrence frequencies are significantly higher in the tropics than in the extra-tropics. Tropical hotspots of stratospheric cirrus clouds associated with deep convection are located over equatorial Africa, South and Southeast Asia, the western Pacific, and South America. Stratospheric cirrus clouds were more often detected in December–February (15 %) than June–August (8 %) in the tropics (±20∘). At northern and southern middle latitudes (40–60∘), MIPAS observed about twice as many stratospheric cirrus clouds (occurrence frequencies of 4 %–5 % for MIPAS rather than about 2 % for CALIPSO). We attribute more frequent observations of stratospheric cirrus clouds with MIPAS to the higher detection sensitivity of the instrument to optically thin clouds. In contrast to the difference between daytime and night-time occurrence frequencies of stratospheric cirrus clouds by a factor of about 2 in zonal means in the tropics (4 % and 10 %, respectively) and at middle latitudes for CALIPSO data, there is little diurnal cycle in MIPAS data, in which the difference of occurrence frequencies in the tropics is about 1 percentage point in zonal mean and about 0.5 percentage point at middle latitudes. The difference between CALIPSO day and night measurements can also be attributed to their differences in detection sensitivity. Future work should focus on better understanding the origin of the stratospheric cirrus clouds and their impact on radiative forcing and climate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-26
    Description: Air quality on our planet has been changing in particular since the industrial revolution (1750s) because of anthropogenic emissions. It is becoming increasingly important to realize air cleanliness, since clean air is as valuable a resource as clean water. A global standard for quantifying the level of air cleanliness is swiftly required, and we defined a novel concept, namely the Clean aIr Index (CII). The CII is a simple index defined by the normalization of the amount of a set of individual air pollutants. A CII value of 1 indicates completely clean air (no air pollutants), and 0 indicates the presence of air pollutants that meet the numerical environmental criteria for the normalization. In this time, the air pollutants used in the CII were taken from the Air Quality Guidelines (AQG) set by the World Health Organization (WHO), namely O3, particulate matters, NO2, and SO2. We chose Japan as a study area to evaluate CII because of the following reasons: (i) accurate validation data, as the in situ observation sites of the Atmospheric Environmental Regional Observation System (AEROS) provide highly accurate values of air pollutant amounts, and (ii) fixed numerical criteria from the Japanese Environmental Quality Standards (JEQS) as directed by the Ministry of the Environment (MOE) of Japan. We quantified air cleanliness in terms of the CII for the all 1896 municipalities in Japan and used data from Seoul and Beijing to evaluate Japanese air cleanliness. The amount of each air pollutant was calculated using a model that combined the Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models for 1 April 2014 to 31 March 2017. The CII values calculated by the WRF–CMAQ model and the AEROS measurements showed good agreement. The mean of the correlation coefficient for the CII values of 498 municipalities where the AEROS measurements operated was 0.66±0.05, which was higher than that of the Air Quality Index (AQI) of 0.57±0.06. The CII values averaged for the study period were 0.67, 0.52, and 0.24 in Tokyo, Seoul, and Beijing, respectively; thus, the air in Tokyo was 1.5 and 2.3 times cleaner, i.e., lower amounts of air pollutants, than the air in Seoul and Beijing, respectively. The average CII value for the all Japanese municipalities was 0.72 over the study period. The extremely clean air, CII ≈0.90, occurred in the southern remote islands of Tokyo and to the west of the Pacific coast, i.e., Kochi, Mie, and Wakayama prefectures during summer, with the transport of clean air from the ocean. We presented the top 100 clean air cities in Japan as one example of an application of CII in society. We confirmed that the CII enabled the quantitative evaluation of air cleanliness. The CII can be useful and valuable in various scenarios such as encouraging sightseeing and migration, investment and insurance business, and city planning. The CII is a simple and fair index that can be applied to all nations.
    Print ISSN: 2569-7102
    Electronic ISSN: 2569-7110
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-26
    Description: Calculating a multi-model mean, a commonly used method for ensemble averaging, assumes model independence and equal model skill. Sharing of model components amongst families of models and research centres, conflated by growing ensemble size, means model independence cannot be assumed and is hard to quantify. We present a methodology to produce a weighted-model ensemble projection, accounting for model performance and model independence. Model weights are calculated by comparing model hindcasts to a selection of metrics chosen for their physical relevance to the process or phenomena of interest. This weighting methodology is applied to the Chemistry–Climate Model Initiative (CCMI) ensemble to investigate Antarctic ozone depletion and subsequent recovery. The weighted mean projects an ozone recovery to 1980 levels, by 2056 with a 95 % confidence interval (2052–2060), 4 years earlier than the most recent study. Perfect-model testing and out-of-sample testing validate the results and show a greater projective skill than a standard multi-model mean. Interestingly, the construction of a weighted mean also provides insight into model performance and dependence between the models. This weighting methodology is robust to both model and metric choices and therefore has potential applications throughout the climate and chemistry–climate modelling communities.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-26
    Description: Connections between vegetation and soil thermal dynamics are critical for estimating the vulnerability of permafrost to thaw with continued climate warming and vegetation changes. The interplay of complex biophysical processes results in a highly heterogeneous soil temperature distribution on small spatial scales. Moreover, the link between topsoil temperature and active layer thickness remains poorly constrained. Sixty-eight temperature loggers were installed at 1–3 cm depth to record the distribution of topsoil temperatures at the Trail Valley Creek study site in the northwestern Canadian Arctic. The measurements were distributed across six different vegetation types characteristic for this landscape. Two years of topsoil temperature data were analysed statistically to identify temporal and spatial characteristics and their relationship to vegetation, snow cover, and active layer thickness. The mean annual topsoil temperature varied between −3.7 and 0.1 ∘C within 0.5 km2. The observed variation can, to a large degree, be explained by variation in snow cover. Differences in snow depth are strongly related with vegetation type and show complex associations with late-summer thaw depth. While cold winter soil temperature is associated with deep active layers in the following summer for lichen and dwarf shrub tundra, we observed the opposite beneath tall shrubs and tussocks. In contrast to winter observations, summer topsoil temperature is similar below all vegetation types with an average summer topsoil temperature difference of less than 1 ∘C. Moreover, there is no significant relationship between summer soil temperature or cumulative positive degree days and active layer thickness. Altogether, our results demonstrate the high spatial variability of topsoil temperature and active layer thickness even within specific vegetation types. Given that vegetation type defines the direction of the relationship between topsoil temperature and active layer thickness in winter and summer, estimates of permafrost vulnerability based on remote sensing or model results will need to incorporate complex local feedback mechanisms of vegetation change and permafrost thaw.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-27
    Description: Evapotranspiration (ET) from tropical forests serves as a critical moisture source for regional and global climate cycles. However, the magnitude, seasonality, and interannual variability of ET in the Congo Basin remain poorly constrained due to a scarcity of direct observations, despite the Congo being the second-largest river basin in the world and containing a vast region of tropical forest. In this study, we applied a water balance model to an array of remotely sensed and in situ datasets to produce monthly, basin-wide ET estimates spanning April 2002 to November 2016. Data sources include water storage changes estimated from the Gravity Recovery and Climate Experiment (GRACE) satellites, in situ measurements of river discharge, and precipitation from several remotely sensed and gauge-based sources. An optimal precipitation dataset was determined as a weighted average of interpolated data by Nicholson et al. (2018), Climate Hazards InfraRed Precipitation with Station data version 2 (CHIRPS2) , and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record product (PERSIANN-CDR), with the relative weights based on the error magnitudes of each dataset as determined by triple collocation. The resulting water-balance-derived ET (ETwb) features a long-term average that is consistent with previous studies (117.2±3.5 cm yr−1) but displays greater seasonal and interannual variability than seven global ET products. The seasonal cycle of ETwb generally tracks that of precipitation over the basin, with the exception that ETwb is greater in March–April–May (MAM) than in the relatively wetter September–October–November (SON) periods. This pattern appears to be driven by seasonal variations in the diffuse photosynthetically active radiation (PAR) fraction, net radiation (Rn), and soil water availability. From 2002 to 2016, Rn, PAR, and vapor-pressure deficit (VPD) all increased significantly within the Congo Basin; however, no corresponding trend occurred in ETwb. We hypothesize that the stability of ETwb over the study period despite sunnier and less humid conditions may be due to increasing atmospheric CO2 concentrations that offset the impacts of rising VPD and irradiance on stomatal water use efficiency (WUE).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-27
    Description: A range of future climate scenarios are projected for high atmospheric CO2 concentrations, given uncertainties over future human actions as well as potential environmental and climatic feedbacks. The geological record offers an opportunity to understand climate system response to a range of forcings and feedbacks which operate over multiple temporal and spatial scales. Here, we examine a single interglacial during the late Pliocene (KM5c, ca. 3.205±0.01 Ma) when atmospheric CO2 exceeded pre-industrial concentrations, but were similar to today and to the lowest emission scenarios for this century. As orbital forcing and continental configurations were almost identical to today, we are able to focus on equilibrium climate system response to modern and near-future CO2. Using proxy data from 32 sites, we demonstrate that global mean sea-surface temperatures were warmer than pre-industrial values, by ∼2.3 ∘C for the combined proxy data (foraminifera Mg∕Ca and alkenones), or by ∼3.2–3.4 ∘C (alkenones only). Compared to the pre-industrial period, reduced meridional gradients and enhanced warming in the North Atlantic are consistently reconstructed. There is broad agreement between data and models at the global scale, with regional differences reflecting ocean circulation and/or proxy signals. An uneven distribution of proxy data in time and space does, however, add uncertainty to our anomaly calculations. The reconstructed global mean sea-surface temperature anomaly for KM5c is warmer than all but three of the PlioMIP2 model outputs, and the reconstructed North Atlantic data tend to align with the warmest KM5c model values. Our results demonstrate that even under low-CO2 emission scenarios, surface ocean warming may be expected to exceed model projections and will be accentuated in the higher latitudes.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-08-27
    Description: The meridional heat transport (MHT) in the North Atlantic is critically important to climate variability and the global overturning circulation. A wide range of ocean processes contribute to North Atlantic MHT, ranging from basin-scale overturning and gyre motions to mesoscale instabilities (such as eddies). However, previous analyses of “eddy” MHT in the region have mostly focused on the contributions of time-variable velocity and temperature, rather than considering the association of MHT with distinct spatial scales within the basin. In this study, a zonal spatial-scale decomposition separates large-scale from mesoscale velocity and temperature contributions to MHT, in order to characterize the physical processes driving MHT. Using this approach, we found that the mesoscale contributions to the time-mean and interannual/decadal (ID) variability of MHT in the latitude range 39–45∘ N are larger than large-scale horizontal contributions, though smaller than the overturning contributions. Considering the 40∘ N transect as a case study, large-scale ID variability is mostly generated close to the western boundary. In contrast, most ID MHT variability associated with mesoscales originates in two distinct regions: a western boundary region (70–60∘ W) associated with 1- to 4-year interannual variations and an interior region (50–35∘ W) associated with decadal variations. Surface eddy kinetic energy is not a reliable indicator of high MHT episodes, but the large-scale meridional temperature gradient is an important factor, by influencing the local temperature variance as well as the local correlation of velocity and temperature. Most of the mesoscale contribution to MHT at 40∘ N is associated with transient and propagating processes, but stationary mesoscale structures explain most of the mesoscale MHT south of the Gulf Stream separation, highlighting the differences between the temporal and spatial decomposition of meridional temperature fluxes.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-27
    Description: Accurate reference spectroscopic information for the water molecule from the microwave to the near-ultraviolet is of paramount importance in atmospheric research. A semi-empirical potential energy surface for the ground electronic state of H216O has been created by refining almost 4000 experimentally determined energy levels. These states extend into regions with large values of rotational and vibrational excitation. For all states considered in our refinement procedure, which extend to 37 000 cm−1 and J=20 (total angular momentum), the average root-mean-square deviation is approximately 0.05 cm−1. This potential energy surface offers significant improvements when compared to recent models by accurately predicting states possessing high values of J. This feature will offer significant improvements in calculated line positions for high-temperature spectra where transitions between high J states become more prominent. Combining this potential with the latest dipole moment surface for water vapour, a line list has been calculated which extends reliably to 37 000 cm−1. Obtaining reliable results in the ultraviolet is of special importance as it is a challenging spectral region for the water molecule both experimentally and theoretically. Comparisons are made against several experimental sources of cross sections in the near-ultraviolet and discrepancies are observed. In the near-ultraviolet our calculations are in agreement with recent atmospheric retrievals and the upper limit obtained using broadband spectroscopy by Wilson et al. (2016, p. 194), but they do not support recent suggestions of very strong absorption in this region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-08-27
    Description: Various studies investigated the fate of evaporation and the origin of precipitation. The more recent studies among them were often carried out with the help of numerical moisture tracking. Many research questions could be answered within this context, such as dependencies of atmospheric moisture transfers between different regions, impacts of land cover changes on the hydrological cycle, sustainability-related questions, and questions regarding the seasonal and interannual variability of precipitation. In order to facilitate future applications, global datasets on the fate of evaporation and the sources of precipitation are needed. Since most studies are on a regional level and focus more on the sources of precipitation, the goal of this study is to provide a readily available global dataset on the fate of evaporation for a fine-meshed grid of source and receptor cells. The dataset was created through a global run of the numerical moisture tracking model Water Accounting Model-2layers (WAM-2layers) and focused on the fate of land evaporation. The tracking was conducted on a 1.5∘×1.5∘ grid and was based on reanalysis data from the ERA-Interim database. Climatic input data were incorporated in 3- to 6-hourly time steps and represent the time period from 2001 to 2018. Atmospheric moisture was tracked forward in time and the geographical borders of the model were located at ±79.5∘ latitude. As a result of the model run, the annual, the monthly and the interannual average fate of evaporation were determined for 8684 land grid cells (all land cells except those located within Greenland and Antarctica) and provided via source–receptor matrices. The gained dataset was complemented via an aggregation to country and basin scales in order to highlight possible usages for areas of interest larger than grid cells. This resulted in data for 265 countries and 8223 basins. Finally, five types of source–receptor matrices for average moisture transfers were chosen to build the core of the dataset: land grid cell to grid cell, country to grid cell, basin to grid cell, country to country, basin to basin. The dataset is, to our knowledge, the first ready-to-download dataset providing the overall fate of evaporation for land cells of a global fine-meshed grid in monthly resolution. At the same time, information on the sources of precipitation can be extracted from it. It could be used for investigations into average annual, seasonal, and interannual sink and source regions of atmospheric moisture from land masses for most of the regions in the world and shows various application possibilities for studying interactions between people and water, such as land cover changes or human water consumption patterns. The dataset is accessible under https://doi.org/10.1594/PANGAEA.908705 (Link et al., 2019a) and comes along with example scripts for reading and plotting the data.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-08-26
    Description: A major topic of debate in earth science and climate science surrounds the timing of closure of the Central American Seaway. While it is clear that the gateway was closed by ca. 2.8 Ma, recent studies based on geological and marine molecular evidence have suggested an earlier closing time of early to mid-Miocene. In this study, we examined the influences of subduction and slab window formation on the time-varying paleoenvironments of the Isthmus of Panama region. We developed detailed reconstructions of the seafloor spreading history in the Panama Basin and incorporated previously published arc block rotations into a revised global plate model. Our reconstructions indicate that the Central American Seaway region has undergone multiple phases of slab window formation and migration, slab detachment, and flat slab subduction since the Oligocene, while kinematically mapped slab windows agree well with slab gaps imaged in seismic tomography. In particular, we found that from the early Miocene, when there is clear evidence for Isthmus of Panama emergence, the region was underlain by a slab window. During the late Miocene, when there is evidence for intermittent arc deepening, and decreased transcontinental migration, we found an increase in subducted slab volumes beneath the Panama arc. Numerical and analogue models and field observations argue that slab windows can induce 〉1 km of vertical uplift on the overriding plate. We therefore propose that this previously unexplored geodynamic mechanism can explain the variations in Isthmus of Panama emergence, and intermittent shallow-water connections, reconciling alternative lines of evidence for Central American Seaway closure.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-08-28
    Description: Optimum management of irrigated crops in regions with shallow saline groundwater requires a careful balance between application of irrigation water and upward movement of salinity from the groundwater. Few field-validated surrogate models are available to aid in the management of irrigation water under shallow groundwater conditions. The objective of this research is to develop a model that can aid in the management using a minimum of input data that are field validated. In this paper a 2-year field experiment was carried out in the Hetao irrigation district in Inner Mongolia, China, and a physically based integrated surrogate model for arid irrigated areas with shallow groundwater was developed and validated with the collected field data. The integrated model that links crop growth with available water and salinity in the vadose zone is called Evaluation of the Performance of Irrigated Crops and Soils (EPICS). EPICS recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table and thus not by a limiting hydraulic conductivity. In the field experiment, soil moisture contents and soil salt conductivity at five depths in the top 100 cm, groundwater depth, crop height, and leaf area index were measured in 2017 and 2018. The field results were used for calibration and validation of EPICS. Simulated and observed data fitted generally well during both calibration and validation. The EPICS model that can predict crop growth, soil water, groundwater depth, and soil salinity can aid in optimizing water management in irrigation districts with shallow aquifers.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-08-28
    Description: Recently, it has been established that interplanetary coronal mass ejections (ICMEs) can dramatically affect both trapped electron fluxes in the outer radiation belt and precipitating electron fluxes lost from the belt into the atmosphere. Precipitating electron fluxes and energies can vary over a range of timescales during these events. These variations depend on the initial energy and location of the electron population and the ICME characteristics and structures. One important factor controlling electron dynamics is the magnetic field orientation within the ejecta that is an integral part of the ICME. In this study, we examine Van Allen Probes (RBSPs) and Polar Orbiting Environmental Satellites (POESs) data to explore trapped and precipitating electron fluxes during two ICMEs. The ejecta in the selected ICMEs have magnetic cloud characteristics that exhibit the opposite sense of the rotation of the north–south magnetic field component (BZ). RBSP data are used to study trapped electron fluxes in situ, while POES data are used for electron fluxes precipitating into the upper atmosphere. The trapped and precipitating electron fluxes are qualitatively analysed to understand their variation in relation to each other and to the magnetic cloud rotation during these events. Inner magnetospheric wave activity was also estimated using RBSP and Geostationary Operational Environmental Satellite (GOES) data. In each event, the largest changes in the location and magnitude of both the trapped and precipitating electron fluxes occurred during the southward portion of the magnetic cloud. Significant changes also occurred during the end of the sheath and at the sheath–ejecta boundary for the cloud with south to north magnetic field rotation, while the ICME with north to south rotation had significant changes at the end boundary of the cloud. The sense of rotation of BZ and its profile also clearly affects the coherence of the trapped and/or precipitating flux changes, timing of variations with respect to the ICME structures, and flux magnitude of different electron populations. The differing electron responses could therefore imply partly different dominant acceleration mechanisms acting on the outer radiation belt electron populations as a result of opposite magnetic cloud rotation.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-08-28
    Description: In this paper, we quantify the CO2 and N2O emissions from denitrification over the Amazonian wetlands. The study concerns the entire Amazonian wetland ecosystem with a specific focus on three floodplain (FP) locations: the Branco FP, the Madeira FP and the FP alongside the Amazon River. We adapted a simple denitrification model to the case of tropical wetlands and forced it by open water surface extent products from the Soil Moisture and Ocean Salinity (SMOS) satellite. A priori model parameters were provided by in situ observations and gauging stations from the HYBAM Observatory. Our results show that the denitrification and the trace gas emissions present a strong cyclic pattern linked to the inundation processes that can be divided into three distinct phases: activation, stabilization and deactivation. We quantify the average yearly denitrification and associated emissions of CO2 and N2O over the entire watershed at 17.8 kgN ha−1 yr−1, 0.37 gC-CO2 m−2 yr−1 and 0.18 gN-N2O m−2 yr−1 respectively for the period 2011–2015. When compared to local observations, it was found that the CO2 emissions accounted for 0.01 % of the integrated ecosystem, which emphasizes the fact that minor changes to the land cover may induce strong impacts on the Amazonian carbon budget. Our results are consistent with the state of the art of global nitrogen models with a positive bias of 28 %. When compared to other wetlands in different pedoclimatic environments we found that the Amazonian wetlands have similar emissions of N2O with the Congo tropical wetlands and lower emissions than the temperate and tropical anthropogenic wetlands of the Garonne (France), the Rhine (Europe) and south-eastern Asia rice paddies. In summary our paper shows that a data-model-based approach can be successfully applied to quantify N2O and CO2 fluxes associated with denitrification over the Amazon basin. In the future, the use of higher-resolution remote sensing products from sensor fusion or new sensors like the Surface Water and Ocean Topography (SWOT) mission will permit the transposition of the approach to other large-scale watersheds in tropical environments.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-08-28
    Description: In the framework of the EU Copernicus programme, the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium-range ensemble prediction system. The use of weather forecasts in place of local observations can extend early warnings by up to 1–2 weeks, allowing for greater proactive coordination of resource-sharing and mobilization within and across countries. Using 1 year of pre-operational service in 2017 and the Fire Weather Index (FWI), here we assess the capability of the system globally and analyse in detail three major events in Chile, Portugal and California. The analysis shows that the skill provided by the ensemble forecast system extends to more than 10 d when compared to the use of mean climate, making a case for extending the forecast range to the sub-seasonal to seasonal timescale. However, accurate FWI prediction does not translate into accuracy in the forecast of fire activity globally. Indeed, when all fires detected in 2017 are considered, including agricultural- and human-induced burning, high FWI values only occur in 50 % of the cases and are limited to the Boreal regions. Nevertheless for very large events which were driven by weather conditions, FWI forecasts provide advance warning that could be instrumental in setting up management and containment strategies.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-08-28
    Description: North African dust reaches the southeastern United States every summer. Size-resolved dust mass measurements taken in Miami, Florida, indicate that more than one-half of the surface dust mass concentrations reside in particles with geometric diameters less than 2.1 µm, while vertical profiles of micropulse lidar depolarization ratios show dust reaching above 4 km during pronounced events. These observations are compared to the representation of dust in the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) aerosol reanalysis and closely related Goddard Earth Observing System model version 5 (GEOS-5) Forward Processing (FP) aerosol product, both of which assimilate satellite-derived aerosol optical depths using a similar protocol and inputs. These capture the day-to-day variability in aerosol optical depth well, in a comparison to an independent sun-photometer-derived aerosol optical depth dataset. Most of the modeled dust mass resides in diameters between 2 and 6 µm, in contrast to the measurements. Model-specified mass extinction efficiencies equate light extinction with approximately 3 times as much aerosol mass, in this size range, compared to the measured dust sizes. GEOS-5 FP surface-layer sea salt mass concentrations greatly exceed observed values, despite realistic winds and relative humidities. In combination, these observations help explain why, despite realistic total aerosol optical depths, (1) free-tropospheric model volume extinction coefficients are lower than those retrieved from the micro-pulse lidar, suggesting too-low model dust loadings in the free troposphere, and (2) model dust mass concentrations near the surface can be higher than those measured. The modeled vertical distribution of dust, when captured, is reasonable. Large, aspherical particles exceeding the modeled dust sizes are also occasionally present, but dust particles with diameters exceeding 10 µm contribute little to the measured total dust mass concentrations after such long-range transport. Remaining uncertainties warrant a further integrated assessment to confirm this study's interpretations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-08-28
    Description: Anaerobic nitrate-dependent Fe(II) oxidation (NDFeO) is widespread in various aquatic environments and plays a major role in iron and nitrogen redox dynamics. However, evidence for truly enzymatic, autotrophic NDFeO remains limited, with alternative explanations involving the coupling of heterotrophic denitrification with the abiotic oxidation of structurally bound or aqueous Fe(II) by reactive intermediate nitrogen (N) species (chemodenitrification). The extent to which chemodenitrification is caused (or enhanced) by ex vivo surface catalytic effects has not been directly tested to date. To determine whether the presence of either an Fe(II)-bearing mineral or dead biomass (DB) catalyses chemodenitrification, two different sets of anoxic batch experiments were conducted: 2 mM Fe(II) was added to a low-phosphate medium, resulting in the precipitation of vivianite (Fe3(PO4)2), to which 2 mM nitrite (NO2-) was later added, with or without an autoclaved cell suspension (∼1.96×108 cells mL−1) of Shewanella oneidensis MR-1. Concentrations of nitrite (NO2-), nitrous oxide (N2O), and iron (Fe2+, Fetot) were monitored over time in both set-ups to assess the impact of Fe(II) minerals and/or DB as catalysts of chemodenitrification. In addition, the natural-abundance isotope ratios of NO2- and N2O (δ15N and δ18O) were analysed to constrain the associated isotope effects. Up to 90 % of the Fe(II) was oxidized in the presence of DB, whereas only ∼65 % of the Fe(II) was oxidized under mineral-only conditions, suggesting an overall lower reactivity of the mineral-only set-up. Similarly, the average NO2- reduction rate in the mineral-only experiments (0.004±0.003 mmol L−1 d−1) was much lower than in the experiments with both mineral and DB (0.053±0.013 mmol L−1 d−1), as was N2O production (204.02±60.29 nmol L−1 d−1). The N2O yield per mole NO2- reduced was higher in the mineral-only set-ups (4 %) than in the experiments with DB (1 %), suggesting the catalysis-dependent differential formation of NO. N-NO2- isotope ratio measurements indicated a clear difference between both experimental conditions: in contrast to the marked 15N isotope enrichment during active NO2- reduction (15εNO2=+10.3 ‰) observed in the presence of DB, NO2- loss in the mineral-only experiments exhibited only a small N isotope effect (
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-08-31
    Description: Summary On 24th August 2016 at 01:36 UTC a ML6.0 earthquake struck several villages in central Italy, among which Accumoli, Amatrice and Arquata del Tronto. The earthquake was recorded by about 350 seismic stations, causing 299 fatalities and damage with macroseismic intensities up to 11. The maximum acceleration was observed at Amatrice station (AMT) reaching 916 cm/s2 on E-W component, with epicentral distance of 15 km and Joyner and Boore distance to the fault surface (RJB) of less than a kilometre. Motivated by the high levels of observed ground motion and damage, we generate broadband seismograms for engineering purposes by adopting a hybrid method. To infer the low frequency seismograms, we considered the kinematic slip model by Tinti et al. (2016). The high frequency seismograms were produced using a stochastic finite-fault model approach based on dynamic corner-frequency. Broadband synthetic time series were therefore obtained by merging the low and high frequency seismograms. Simulated hybrid ground motions were compared both with the observed ground motions and the ground-motion prediction equations (GMPEs), to explore their performance and to retrieve the region-specific parameters endorsed for the simulations. In the near-fault area we observed that hybrid simulations have a higher capability to detect near source effects and to reproduce the source complexity than the use of GMPEs. Indeed, the general good consistency found between synthetic and observed ground motion (both in the time and frequency domain), suggests that the use of regional-specific source scaling and attenuation parameters together with the source complexity in hybrid simulations improves ground motion estimations. To include the site effect in stochastic simulations at selected stations, we tested the use of amplification curves derived from HVRSs (horizontal-to-vertical response spectra) and from HVSRs (horizontal-to-vertical spectral ratios) rather than the use of generic curves according to NTC-18 Italian seismic design code. We generally found a further reduction of residuals between observed and simulated both in terms of time histories and spectra.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-28
    Description: The Mediterranean (MED) Basin is a climate change hotspot that has seen drying and a pronounced increase in heatwaves over the last century. At the same time, it is experiencing increased heavy precipitation during wintertime cold spells. Understanding and quantifying the risks from compound events over the MED is paramount for present and future disaster risk reduction measures. Here, we apply a novel method to study compound events based on dynamical systems theory and analyse compound temperature and precipitation events over the MED from 1979 to 2018. The dynamical systems analysis quantifies the strength of the coupling between different atmospheric variables over the MED. Further, we consider compound warm–dry anomalies in summer and cold–wet anomalies in winter. Our results show that these warm–dry and cold–wet compound days are associated with large values of the temperature–precipitation coupling parameter of the dynamical systems analysis. This indicates that there is a strong interaction between temperature and precipitation during compound events. In winter, we find no significant trend in the coupling between temperature and precipitation. However in summer, we find a significant upward trend which is likely driven by a stronger coupling during warm and dry days. Thermodynamic processes associated with long-term MED warming can best explain the trend, which intensifies compound warm–dry events.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-08-27
    Description: Large slope collapses have been known to trigger extreme rushes of air loaded with projectiles (airblasts) capable of causing destruction and fatalities far beyond run-out of the rock mass. An appraisal of the likelihood of a destructive airblast should be a component of landslide risk assessments. Yet there is an absence of risk studies directly examining landslide-related airblasts. In this work we back-analyze an unreported airblast in the Sikkim Himalayas (India) and several other airblasts documented around the world. We explore the conditions a large slope collapse should meet to trigger a significant airblast, and we establish a semi-empirical relationship linking the potential energy in a collapse with airborne trajectory and the extent of the related airblast. The collapse of thousands or millions of cubic meters falling from a significant height results in a sudden release of energy (1011J to 1013J) and a high degree of comminution of rocks, causing a violent displacement of air. Average wind speeds of airblasts following impacts with airborne trajectory can be double the speed of rock avalanches. The size of the damage zone depends on the potential energy of the falling rock mass and can be amplified or reduced depending on how confined the valley is where the airblast occurs.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-08-28
    Description: Anhand von sedimentologischen und geländemorphologischen Untersuchungen wird die Abschmelzgeschichte des südöstlichen Chiemsee-Gletschers beschrieben. Mit dem Trockenfallen der Bad Adelholzen-Erlstätter Rinne im Verlaufe des Spätwürm entwickelt sich aus dem Abschmelzen des Eislappens in der Grabenstätter Bucht eine sich ständig tiefer legende konzentrische Abfolge von zunächst peripheren Entwässerungsrinnen, wobei die ältesten Rinnen dieser Phase bei Chieming, die jüngeren dann entsprechend weiter im Süden, in die zentripetale Richtung umschwenken. Die Entstehung des Tüttensee-Komplexes ist im Kontext dieser Entwicklung zu sehen. Er ist das Ergebnis der glazifluvialen und glazilakustrinen Sedimentation im Einflussbereich des sukzessiven Eisabbaus in der Grabenstätter Bucht in Kombination mit einer Toteisbildung im Bereich des heutigen Tüttensees. Dafür sprechen die stufenartige Abfolge der beschriebenen peripheren Abflussrinnen mit ihren immer tiefer liegenden Abflussniveaus, die Höhengleichheit von drei dieser Rinnen mit den Tüttensee-Terrassen sowie die für die jeweilige Terrassenentstehung typische glazifluviale bzw. delta-artige Sedimentstruktur und -reife. Dieses Ergebnis stellt ein Korrektiv zur Hypothese des Chiemgau-Impakts dar, wonach der Tüttensee ein Impaktkrater sein soll. Da diese nun falsifizierte Annahme vor allem im deutschsprachigen Raum von zahlreichen Medien propagiert wird, ist der folgende Artikel auf Deutsch verfasst, um einer breiten Leserschaft zugänglich zu sein.
    Print ISSN: 0424-7116
    Electronic ISSN: 2199-9090
    Topics: Geosciences , History
    Published by Copernicus on behalf of Deutsche Quartärvereinigung.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-09-01
    Description: Summary We explore here the benefits of using constraints from seismic tomography in gravity data inversion and how inverted density distributions can be improved by doing so. The methodology is applied to a real field case in which we reconstruct the density structure of the Pyrenees along a southwest-northeast transect going from the Ebro basin in Spain to the Arzacq basin in France. We recover the distribution of densities by inverting gravity anomalies under constraints coming from seismic tomography. We initiate the inversion from a prior density model obtained by scaling a pre-existing compressional seismic velocity Vp model using a Nafe-Drake relationship : the Vp model resulting from a full-waveform inversion of teleseismic data. Gravity data inversions enforce structural similarities between Vp and density by minimizing the norm of the cross-gradient between the density and Vp models. We also compare models obtained from 2.5D and 3D inversions. Our results demonstrate that structural constraints allow us to better recover the density contrasts close to the surface and at depth, without degrading the gravity data misfit. The final density model provides valuable information on the geological structures and on the thermal state and composition of the western region of the Pyrenean lithosphere.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-08-28
    Description: Temperature appears to be the best predictor of species composition of planktonic foraminifera communities, making it possible to use their fossil assemblages to reconstruct sea surface temperature (SST) variation in the past. However, the role of other environmental factors potentially modulating the spatial and vertical distribution of planktonic foraminifera species is poorly understood. This is especially relevant for environmental factors affecting the subsurface habitat. If such factors play a role, changes in the abundance of subsurface-dwelling species may not solely reflect SST variation. In order to constrain the effect of subsurface parameters on species composition, we here characterize the vertical distribution of living planktonic foraminifera community across an east–west transect through the subtropical South Atlantic Ocean, where SST variability was small, but the subsurface water mass structure changed dramatically. Four planktonic foraminifera communities could be identified across the top 700 m of the transect. Gyre and Agulhas Leakage surface faunas were predominantly composed of Globigerinoides ruber, Globigerinoides tenellus, Trilobatus sacculifer, Globoturborotalita rubescens, Globigerinella calida, Tenuitella iota, and Globigerinita glutinata, and these only differed in terms of relative abundances (community composition). Upwelling fauna was dominated by Neogloboquadrina pachyderma, Neogloboquadrina incompta, Globorotalia crassaformis, and Globorotalia inflata. Thermocline fauna was dominated by Tenuitella fleisheri, Globorotalia truncatulinoides, and Globorotalia scitula in the west and by G. scitula only in the east. The largest part of the standing stock was consistently found in the surface layer, but SST was not the main predictor of species composition either for the depth-integrated fauna across the stations or at individual depth layers. Instead, we identified a pattern of vertical stacking of different parameters controlling species composition, reflecting different aspects of the pelagic habitat. Whereas productivity appears to dominate in the mixed layer (0–60 m), physical properties (temperature, salinity) become important at intermediate depths and in the subsurface, a complex combination of factors including oxygen concentration is required to explain the assemblage composition. These results indicate that the seemingly straightforward relationship between assemblage composition and SST in sedimentary assemblages reflects vertically and seasonally integrated processes that are only indirectly linked to SST. It also implies that fossil assemblages of planktonic foraminifera should also contain a signature of subsurface processes, which could be used for paleoceanographic reconstructions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-09-18
    Description: Summary The relatively short duration of the early stages of subduction results in a poor geological record, limiting our understanding of this critical stage. Here, we utilize a 2D numerical model of incipient subduction, that is the stage after a plate margin has formed with a slab tip that extends to a shallow depth and address the conditions under which subduction continues or fails. We assess energy budgets during the evolution from incipient subduction to either a failed or successful state, showing how the growth of potential energy, and slab pull, is resisted by the viscous dissipation within the lithosphere and the mantle. The role of rheology is also investigated, as deformation mechanisms operating in the crust and mantle facilitate subduction. In all models, the onset of subduction is characterized by high lithospheric viscous dissipation and low convergence velocities, whilst successful subduction sees the mantle become the main area of viscous dissipation. In contrast, failed subduction is defined by the lithospheric viscous dissipation exceeding the lithospheric potential energy release rate and velocities tend towards zero. We show that development of a subduction zone depends on the convergence rate, required to overcome thermal diffusion and to localise deformation along the margin. The results propose a minimum convergence rate of ∼ 0.5 cm yr−1 is required to reach a successful state, with 100 km of convergence over 20 Myr, emphasizing the critical role of the incipient stage.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-09-22
    Description: Summary Although many studies have revealed that the atmospheric effects of electromagnetic wave propagation (including ionospheric and tropospheric water vapor) have serious impacts on Interferometric Synthetic Aperture Radar (InSAR) measurement results, atmospheric corrections have not been thoroughly and comprehensively investigated in many well-known cases of InSAR focal mechanism solutions, which means there is no consensus on whether atmospheric effects will affect the InSAR focal mechanism solution. Moreover, there is a lack of quantitative assessment on how much the atmospheric effect affects the InSAR focal mechanism solution. In this paper, we emphasized that it was particularly important to assess the impact of InSAR ionospheric and tropospheric corrections on the underground nuclear explosion modeling quantitatively. Therefore, we investigated the 4th North Korea (NKT-4) underground nuclear test using ALOS-2 liters-band SAR images. Because the process of the underground nuclear explosion was similar to the volcanic magma source activity, we modeled the ground displacement using the Mogi model. Both the ionospheric and tropospheric phase delays in the interferograms were investigated. Furthermore, we studied how the ionosphere and troposphere phase delays could bias the estimation of Mogi source parameters. The following conclusions were drawn from our case study: The ionospheric delay correction effectively mitigated the long-scale phase ramp in the full-frame interferogram, the standard deviation decreased from 1.83 cm to 0.85 cm compared to the uncorrected interferogram. The uncorrected estimations of yield and depth were 8.44 kt and 370.33 m, respectively. Compared to the uncorrected estimations, the ionospheric correction increased the estimation of yield and depth to 9.43 kt and 385.48 m while the tropospheric correction slightly raised them to 8.78 kt and 377.24 m. There were no obvious differences in the location estimations among the four interferograms. When both corrections were applied, the overall standard deviation was 1.16 cm, which was even larger than the ionospheric corrected interferogram. We reported the source characteristics of NKT-4 based on the modeling results derived from the ionospheric corrected interferogram. The preferred estimation of NKT-4 was a Mogi source located at 129°04′22.35‘E, 41°17′54.57″N buried at 385.48 m depth. The cavity radius caused by the underground explosion was 22.02 m. We reported the yield estimation to be 9.43 kt. This study showed that for large-scale natural deformation sources such as volcanoes and earthquakes, atmospheric corrections would be more significant, but even if the atmospheric signal did not have much complexity, the corrections should not be ignored.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-08-28
    Description: Light-use efficiency defines the ability of primary producers to convert sunlight energy to primary production and is computed as the ratio between the gross primary production and the intercepted photosynthetic active radiation. While this measure has been applied broadly within terrestrial ecology to investigate habitat resource-use efficiency, it remains underused within the aquatic realm. This report provides a conceptual framework to compute hourly and daily light-use efficiency using underwater O2 eddy covariance, a recent technological development that produces habitat-scale rates of primary production under unaltered in situ conditions. The analysis, tested on two benthic flux datasets, documents that hourly light-use efficiency may approach the theoretical limit of 0.125 O2 per photon under low-light conditions, but it decreases rapidly towards the middle of the day and is typically 10-fold lower on a 24 h basis. Overall, light-use efficiency provides a useful measure of habitat functioning and facilitates site comparison in time and space.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-09-01
    Description: SUMMARY Self-consistent modelling of magmatic systems is challenging as the melt continuously changes its chemical composition upon crystallization, which may affect the mechanical behaviour of the system. Melt extraction and subsequent crystallization create new rocks while depleting the source region. As the chemistry of the source rocks changes locally due to melt extraction, new calculations of the stable phase assemblages are required to track the rock evolution and the accompanied change in density. As a consequence, a large number of isochemical sections of stable phase assemblages are required to study the evolution of magmatic systems in detail. As the state-of-the-art melting diagrams may depend on nine oxides as well as pressure and temperature, this is a 10-D computational problem. Since computing a single isochemical section (as a function of pressure and temperature) may take several hours, computing new sections of stable phase assemblages during an ongoing geodynamic simulation is currently computationally intractable. One strategy to avoid this problem is to pre-compute these stable phase assemblages and to create a comprehensive database as a hyperdimensional phase diagram, which contains all bulk compositions that may emerge during petro-thermomechanical simulations. Establishing such a database would require repeating geodynamic simulations many times while collecting all requested compositions that may occur during a typical simulation and continuously updating the database until no additional compositions are required. Here, we describe an alternative method that is better suited for implementation on large-scale parallel computers. Our method uses the entries of an existing preliminary database to estimate future required chemical compositions. Bulk compositions are determined within boundaries that are defined manually or through principal component analysis in a parameter space consisting of clustered database entries. We have implemented both methods within a massively parallel computational framework while utilizing the Gibbs free energy minimization program Perple_X. Results show that our autonomous approach increases the resolution of the thermodynamic database in compositional regions that are most likely required for geodynamic models of magmatic systems.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-08-28
    Description: Marine boundary layer clouds, including the transition from stratocumulus to cumulus, are poorly represented in numerical weather prediction and general circulation models. Further uncertainties in the cloud structure arise in the presence of biomass burning carbonaceous aerosol, as is the case over the southeast Atlantic Ocean, where biomass burning aerosol is transported from the African continent. As the aerosol plume progresses across the southeast Atlantic Ocean, radiative heating within the aerosol layer has the potential to alter the thermodynamic environment and therefore the cloud structure; however, limited work has been done to quantify this along the trajectory of the aerosol plume in the region. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF1) in support of the Layered Atlantic Smoke Interactions with Clouds field campaign provided a unique opportunity to collect observations of cloud and aerosol properties during two consecutive biomass burning seasons during July through October of 2016 and 2017 over Ascension Island (7.96∘ S, 14.35∘ W). Using observed profiles of temperature, humidity, and clouds from the field campaign alongside aerosol optical properties from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), as input for the Rapid Radiation Transfer Model (RRTM), profiles of the radiative heating rate due to aerosols and clouds were computed. Radiative heating is also assessed across the southeast Atlantic Ocean using an ensemble of back trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Idealized experiments using the RRTM with and without aerosols and a range of values for the single-scattering albedo (SSA) demonstrate that shortwave (SW) heating within the aerosol layer above Ascension Island can locally range between 2 and 8 K d−1 depending on the aerosol optical properties, though impacts of the aerosol can be felt elsewhere in the atmospheric column. When considered under clear conditions, the aerosol has a cooling effect at the TOA, and based on the observed cloud properties at Ascension Island, the cloud albedo is not large enough to overcome this. Shortwave radiative heating due to biomass burning aerosol is not balanced by additional longwave (LW) cooling, and the net radiative impact results in a stabilization of the lower troposphere. However, these results are extremely sensitive to the single-scattering albedo assumptions in models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-08-28
    Description: Information on global cropland distribution and agricultural production is critical for the world's agricultural monitoring and food security. We present datasets of cropland extent and agricultural production in a two-paper series of a cultivated planet in 2010. In the first part, we propose a new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and multilevel statistics of the cropland area, which is independent of training samples. First, cropland area statistics are used to rank the input cropland maps, and then a scoring table is built to indicate the agreement among the input datasets. Secondly, statistics are allocated adaptively to the pixels with higher agreement scores until the cumulative cropland area is close to the statistics. The multilevel allocation results are then integrated to obtain the extent of cropland. We applied SASAM to produce a global cropland synergy map with a 500 m spatial resolution for circa 2010. The accuracy assessments show that the synergy map has higher accuracy than the input datasets and better consistency with the cropland statistics. The synergy cropland map is available via an open-data repository (https://doi.org/10.7910/DVN/ZWSFAA; Lu et al., 2020). This new cropland map has been used as an essential input to the Spatial Production Allocation Model (SPAM) for producing the global dataset of agricultural production for circa 2010, which is described in the second part of the two-paper series.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-07-24
    Description: Transformation of refractory cratonic mantle into more fertile lithologies is the key to the fate of cratonic lithosphere. This process has been extensively studied in the eastern North China Craton (NCC) while that of its western part is still poorly constrained. A comprehensive study of newly-found pyroxenite xenoliths from the Langshan area, in the northwestern part of this craton is integrated with a regional synthesis of pyroxenite and peridotite xenoliths to constrain the petrogenesis of the pyroxenites and provide an overview of the processes involved in the modification of the deep lithosphere. The Langshan pyroxenites are of two types, high-Mg# [Mg2+/(Mg2++Fe2+)*100 = ∼ 90, atomic ratios] olivine-bearing websterites with high equilibration temperatures (880 ∼ 970 oC), and low-Mg# (70 ∼ 80) plagioclase-bearing websterites with low equilibration temperatures (550 ∼ 835 oC). The high-Mg# pyroxenites show trade-off abundances of olivine and orthopyroxene, highly depleted bulk Sr-Nd (ƐNd = +11.41, 87Sr/86Sr = ∼0.7034) and low clinopyroxene Sr isotopic ratios (mean 87Sr/86Sr = ∼0.703). They are considered to reflect the reaction of mantle peridotites with silica-rich silicate melts derived from the convective mantle. Their depletion in fusible components (e.g., FeO, TiO2 and Na2O) and progressive exhaustion of incompatible elements suggest melt extraction after their formation. The low-Mg# pyroxenites display layered structures, convex-upward rare earth element patterns, moderately enriched bulk Sr-Nd isotopic ratios (ƐNd = -14.20 ∼ -16.74, 87Sr/86Sr = 0.7070 ∼ 0.7078) and variable clinopyroxene Sr-isotope ratios (87Sr/86Sr = 0.706-0.711). They are interpreted to be crustal cumulates from hypersthene-normative melts generated by interaction between the asthenosphere and heterogeneous lithospheric mantle. Combined with studies on regional peridotite xenoliths, it is shown that the thinning and refertilization of the lithospheric mantle was accompanied by crustal rejuvenation and that such processes occurred ubiquitously in the northwestern part of the NCC. A geodynamic model is proposed for the evolution of the deep lithosphere, which includes long-term mass transfer through a mantle wedge into the deep crust from the Paleozoic to the Cenozoic, triggered by subduction of the Paleo-Asian ocean and the Late Mesozoic lithospheric extension of eastern Asia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-07-21
    Description: The western European kinematic evolution results from the opening of the western Neotethys and the Atlantic oceans since the late Paleozoic and the Mesozoic. Geological evidence shows that the Iberian domain recorded the propagation of these two oceanic systems well and is therefore a key to significantly advancing our understanding of the regional plate reconstructions. The late-Permian–Triassic Iberian rift basins have accommodated extension, but this tectonic stage is often neglected in most plate kinematic models, leading to the overestimation of the movements between Iberia and Europe during the subsequent Mesozoic (Early Cretaceous) rift phase. By compiling existing seismic profiles and geological constraints along the North Atlantic margins, including well data over Iberia, as well as recently published kinematic and paleogeographic reconstructions, we propose a coherent kinematic model of Iberia that accounts for both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was a domain of distributed and oblique extension made of two rift systems in the Pyrenees and in the Iberian intra-continental basins. It differs from standard models that consider left-lateral strike-slip movement localized only in the northern Pyrenees in introducing a significant strike-slip movement south of the Ebro block. At a larger scale it emphasizes the role played by the late-Permian–Triassic rift and magmatism, as well as strike-slip faulting in the evolution of the western Neotethys Ocean and their control on the development of the Atlantic rift.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-07-21
    Description: The northern Canadian Cordillera (NCC) of northwestern Canada is segmented by several margin-parallel, right-lateral, strike-slip faults that accumulated several hundred kilometers of displacement between the Late Cretaceous and the Eocene. The depth extent of these faults, notably the Tintina fault (TF), has important implications for the tectonic assemblage and evolution of NCC lithospheric mantle, but geophysical models and geochemical data remain inconclusive. Using a recent three-dimensional P-wave seismic velocity model, we resolved a series of sharp (∼10 km) P-wave velocity contrasts (∼4%) at uppermost mantle depths beneath the surface trace of the TF. Seismic anisotropy data that represent upper-mantle fabrics revealed similar changes in the orientation and magnitude of anisotropy in the vicinity of the TF. These data suggest that the TF is a lithospheric-scale shear zone. After restoration of 430 km of right-lateral displacement along the TF, fast P-wave anomalies align with the outline of the North American craton margin. We propose the fast anomaly structure currently located in eastern Alaska represents a fragment of the Mackenzie craton that was chiseled and displaced to the northwest by the TF between the Late Cretaceous and the Eocene. A second cratonic fragment currently located in the southern NCC may be associated with the Cassiar terrane at upper-mantle depth. These observations provide the first evidence that large lithospheric-scale shear zones cut through refractory mantle and produce major lateral displacement of cratonic mantle material within cordilleras worldwide.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-07-21
    Description: Many modern deltas exhibit a compound geometry that consists of a shoreline clinoform and a larger subaqueous clinoform connected through a subaqueous platform. Despite the ubiquity of compound clinoforms in modern deltas, very few examples have been documented from the ancient sedimentary record. We present recognition criteria for shelf compound-clinoform systems in both tide- and wave-dominated deltas by integration of ancient and modern examples from multiple types of data. The compound clinothem can be identified by using a combination of: (1) the three-dimensional (3-D) configuration identified in bathymetric or seismic data, (2) bipartite stacked regressive units, consisting of a lower muddy coarsening-to-fining-upward (CUFU) or coarsening-upward (CU) unit (30–100 m thick) and an overlying sandier CU unit (5–30 m thick) (together they represent the subaqueous and shoreline clinoform pair), and (3) distinct facies described herein, though both types of delta have highly bioturbated mudstone and siltstone bottomsets. Tide-dominated deltas have muddy foresets with tidal scours containing tidal rhythmites or inclined heterolithic strata in the subaqueous clinothem overlain by river and tidal deposits of the shoreline clinothem. Wave-dominated deltas show mainly wave-enhanced sediment-gravity-flow (WSGF) beds and some thin hummocky/swaley cross-stratified (HCS/SCS) sandstones toward the top in the subaqueous muddy foreset, and upward-thickening HCS/SCS and trough/planar cross-bedded sandstones interbedded with siltstones in the shoreline clinothem. The subaqueous platform, which links the clinoform couplet, shows evidence of frequent tidal or wave reworking and redeposition. The platform in tide-dominated deltas is characterized by tide-generated heterolithic strata (e.g., bidirectional current-rippled and cross-stratified sandstones, spring and neap tidal bundles, tidal rhythmites) with occasional storm-wave–influenced strata. In contrast, the wave-dominated platform comprises small-scale swales with scours and mud clasts and some WSGF deposits. The proposed criteria can aid in the recognition of compound deltaic clinothems in other basins, particularly those with limited amounts and/or types of data.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-07-21
    Description: The Himalayan syntaxes, characterized by extreme rates of rock exhumation co-located with major trans-orogenic rivers, figure prominently in the debate on tectonic versus erosional forcing of exhumation. Both the mechanism and timing of rapid exhumation of the Namche Barwa massif in the eastern syntaxis remain controversial. It has been argued that coupling between crustal rock advection and surface erosion initiated in the late Miocene (8–10 Ma). Recent studies, in contrast, suggest a Quaternary onset of rapid exhumation linked to a purely tectonic mechanism. We report new multisystem detrital thermochronology data from the most proximal Neogene clastic sediments downstream of Namche Barwa and use a thermo-kinematic model constrained by new and published data to explore its exhumation history. Modeling results show that exhumation accelerated to ~4 km/m.y. at ca. 8 Ma and to ~9 km/m.y. after ca. 2 Ma. This three-stage history reconciles apparently contradictory evidence for early and late onset of rapid exhumation and suggests efficient coupling between tectonics and erosion since the late Miocene. Quaternary acceleration of exhumation is consistent with river-profile evolution and may be linked to a Quaternary river-capture event.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-07-21
    Description: Archean basement inliers within the Northern Highland terrane (NHT), Scottish Caledonides, have been correlated with the Lewisian Gneiss Complex of the Laurentian foreland. New zircon U-Pb ages indicate that the NHT basement contains evidence for magmatism at 2823–2687 Ma and 1772–1655 Ma. The first group compares with crystallization ages of the foreland Archean gneisses. However, the second group, and a supracrustal unit, formed ∼100–250 m.y. after the youngest major phase of juvenile magmatism and sedimentation in the foreland. Also, there is no indication within the NHT basement of the Paleoproterozoic mafic and felsic intrusions common within the foreland, leading us to conclude that there is no firm basis for correlation of the two crustal blocks. The Caledonian Moine thrust, which separates the foreland and the NHT basement, is thought to have reworked a Grenvillian suture indicated by the presence of the ca. 1100–1000 Ma Eastern Glenelg eclogites. On the basis of the new isotopic data, we propose that the NHT basement was a fragment of Baltica that was emplaced onto Laurentia during the Grenvillian orogeny, representing a further example of basement terrane transfer in the circum–North Atlantic orogens.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-07-21
    Description: The geochemical analysis of trace elements in rutile (e.g., Pb, U, and Zr) is routinely used to extract information on the nature and timing of geological events. However, the mobility of trace elements can affect age and temperature determinations, with the controlling mechanisms for mobility still debated. To further this debate, we use laser-ablation–inductively coupled plasma–mass spectrometry and atom probe tomography to characterize the micro- to nanoscale distribution of trace elements in rutile sourced from the Capricorn orogen, Western Australia. At the 〉20 µm scale, there is no significant trace-element variation in single grains, and a concordant U-Pb crystallization age of 1872 ± 6 Ma (2σ) shows no evidence of isotopic disturbance. At the nanoscale, clusters as much as 20 nm in size and enriched in trace elements (Al, Cr, Pb, and V) are observed. The 207Pb/206Pb ratio of 0.176 ± 0.040 (2σ) obtained from clusters indicates that they formed after crystallization, potentially during regional metamorphism. We interpret the clusters to have formed by the entrapment of mobile trace elements in transient sites of radiation damage during upper amphibolite facies metamorphism. The entrapment would affect the activation energy for volume diffusion of elements present in the cluster. The low number and density of clusters provides constraints on the time over which clusters formed, indicating that peak metamorphic temperatures are short-lived,
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-07-21
    Description: Volcanic rocks in Archean and Paleoproterozoic greenstone belts are abundant and have been suggested as a potential Au source for orogenic Au deposits. The behavior of Au during metamorphism of these rocks is, however, poorly known. We present ultra-low-detection-limit Au analyses from a suite of variably metamorphosed rocks from the Archean La Grande subprovince, Canada, and the Paleoproterozoic Central Lapland greenstone belt, Finland. Both areas are well endowed in Au and have great potential for discovery of new orogenic Au deposits. The metavolcanic rocks in these belts are grouped into tholeiite and calc-alkaline magmatic series, for which the protolith Au contents are calculated using Au versus Zr/Y power-law regressions from greenschist facies samples. In the tholeiitic rocks, Au is compatible during magmatic processes and decreases with differentiation, whereas in the calc-alkaline rocks, Au is incompatible and increases with differentiation. Mass-variation calculations show that as much as 77% and 59% of the initial Au content is lost during progressive metamorphism to upper amphibolite facies conditions (〉550 °C) in La Grande and Central Lapland respectively. This study highlights, first, that metavolcanic rocks release Au during metamorphism in Archean and Paleoproterozoic greenstone belts and are thus a good potential source rocks for orogenic Au deposits; second, that the Au fertility of the metavolcanic rocks is controlled by their mantle source and magmatic evolution; and third, that the metamorphic devolatilization model can be applied to Archean and Paleoproterozoic orogenic Au deposits.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-07-21
    Description: High-resolution stable isotope (δ18O and δ13C) sclerochronology of accretionary carbonate bivalve shells can provide subannual environmental records useful for understanding intervals of extinction, which are commonly periods of rapid change and instability. Here, we present results from high-resolution serial sampling of Lahillia larseni bivalve shells across the Cretaceous-Paleogene boundary (KPB) on Seymour Island, Antarctica. These data highlight two intervals of anomalous δ18O and δ13C values that coincide with condensed fossil last occurrences: one at the KPB and one at an apparent extinction event 150 k.y. earlier. We interpret these two intervals to represent periods of both climate warming, as indicated by lower δ18O, and seasonal anoxia or euxinia, as evidenced by anomalously low (−21.6‰ to −3.0‰ VPDB [Vienna Peedee belemnite]) δ13C values with high (2‰ to 19‰ in magnitude) seasonal variation. Low-oxygen conditions may have acted as a kill mechanism at the earlier extinction interval and possibly prolonged recovery from the KPB extinction.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-07-21
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-07-21
    Description: The Paleoproterozoic Francevillian succession of Gabon has figured prominently in concepts about Earth’s early oxygenation and genesis of a large positive excursion in carbon-isotope values, the Lomagundi-Jatuli event (LJE). Here we present a detailed study of a 139-m-long core of Francevillian rocks marked by carbonate δ13C (δ13Ccarb) values of 5‰–9‰ that decline upsection to near 0‰, a trend inferred by many workers as a fingerprint of the LJE and its termination. However, we show that the shift in δ13Ccarb values coincides with a facies change: shallow-marine facies are marked by the strongly positive values, whereas deeper-marine facies (below storm wave base) are at ∼0‰. The most circumspect interpretation of such facies dependence of δ13Ccarb is that shallow-marine settings record the isotope effects of local physical and biochemical processes driving the ambient dissolved inorganic carbon (DIC) pool to heavier values, and the lighter values (∼0‰) in deeper-water facies track the DIC of the open-marine realm where δ13C was largely unaffected by fractionations occurring in shallow-water settings. Further, a transgressing redoxcline created conditions for precipitation of Mn-bearing minerals and chemotrophic microbial biota, including methane cycling communities evident by organic δ13C (δ13Corg) values of −47‰ and Δδcarb-org values as high as 46‰. Thus, the Francevillian C-isotope profile reflects basin-specific conditions and is not a priori an indicator of global C-cycle disturbances nor of the termination of the LJE.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-07-21
    Description: Production of the silt that forms loess is attributed to processes operating in both glacial systems (glacial grinding) and sandy deserts (saltation-induced fracturing). However, the efficacy of saltation for significant silt production is controversial. Understanding the potential for silt production in deserts is essential for determining the paleoclimatic significance of loess. To better assess the significance of eolian abrasion for silt production, experimental abrasion was conducted in a device designed to simulate sand saltation at sustained storm-wind velocities (∼25 m/s). The design differs from previous work in (1) maintaining strong measured velocities for long duration, (2) removing preexisting silt and utilizing control samples, (3) and scaling results to estimate potential for loess accumulation. Scaling experimental rates of production to geologic proportions indicates that eolian abrasion of sand produces insufficient silt to create geologically significant loess deposits.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-07-21
    Description: This paper addresses the question of how much uncertainties in CO2 fluxes over Australia can be reduced by assimilation of total-column carbon dioxide retrievals from the Orbiting Carbon Observatory-2 (OCO-2) satellite instrument. We apply a four-dimensional variational data assimilation system, based around the Community Multiscale Air Quality (CMAQ) transport-dispersion model. We ran a series of observing system simulation experiments to estimate posterior error statistics of optimized monthly-mean CO2 fluxes in Australia. Our assimilations were run with a horizontal grid resolution of 81 km using OCO-2 data for 2015. Based on four representative months, we find that the integrated flux uncertainty for Australia is reduced from 0.52 to 0.13 Pg C yr−1. Uncertainty reductions of up to 90 % were found at grid-point resolution over productive ecosystems. Our sensitivity experiments show that the choice of the correlation structure in the prior error covariance plays a large role in distributing information from the observations. We also found that biases in the observations would significantly impact the inverted fluxes and could contaminate the final results of the inversion. Biases in prior fluxes are generally removed by the inversion system. Biases in the boundary conditions have a significant impact on retrieved fluxes, but this can be mitigated by including boundary conditions in our retrieved parameters. In general, results from our idealized experiments suggest that flux inversions at this unusually fine scale will yield useful information on the carbon cycle at continental and finer scales.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-07-21
    Description: Dune-scale cross-beds are a fundamental building block of fluvial-deltaic stratigraphy and have been recognized on Earth and other terrestrial planets. The architecture of these stratal elements reflects bed-form dynamics that are dependent on river hydrodynamic conditions, and previous work has documented a multitude of scaling relationships to describe the morphodynamic interactions between dunes and fluid flow. However, these relationships are predicated on normal flow conditions for river systems and thus may be unsuitable for application in fluvial-deltaic settings that are impacted by nonuniform flow. The ways in which dune dimensions vary systematically due to the influence of reach-averaged, nonuniform flow, and how such changes may be encoded in dune cross-strata, have not been investigated. Herein, we explored the influence of backwater flow on dune geometry in a large modern fluvial channel and its implications for interpretation of systematic variability in dune cross-strata in outcrop-scale stratigraphy. This was accomplished by analyzing high-resolution channel-bed topography data for the lowermost 410 km of the Mississippi River, which revealed that dune size increases to a maximum before decreasing toward the river outlet. This spatial variability coincides with enhanced channel-bed aggradation and decreasing dune celerity, which arise due to backwater hydrodynamics. An analytical model of bed-form stratification, identifying spatial variability of cross-set thickness, indicates a prominent downstream decrease over the backwater region. These findings can be used to inform studies of ancient fluvial-deltaic settings, by bolstering assessments of proximity to the marine terminus and associated spatially varying paleohydraulics.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-07-21
    Description: In the Neves area, eastern Alps, fractures that localized shear zones in middle continental crust above the Alpine megathrust are commonly oriented at a high angle to the inferred long-term shortening direction. Fractures show a segmentation geometry and, locally, a discernible offset, indicating movement opposite to the sense of subsequent ductile shear and implying a switch of principal stress axes σ1 and σ3 during fracturing. We propose that this repeated switch, demonstrated by overprinting relationships and different degrees of fracture reactivation, was due to sporadic co-seismic to early post-seismic rebound in the upper plate of the Alpine continental collision system. Fracturing occurred intermittently in the weak midcrustal rocks due to seismic stress release at high transient strain rates and pore-fluid pressures. Widespread transient fracturing in the hanging wall of the Alpine megathrust regionally controls the orientation of ductile shear zones in the middle crust, as well as the emplacement of magmatic dikes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-07-21
    Description: In this paper, we present the first multiyear time series of atmospheric ammonia (NH3) ground-based measurements in the Paris region (Créteil, 48.79∘ N, 2.44∘ E, France) retrieved with the midresolution “Observations of the Atmosphere by Solar absorption Infrared Spectroscopy” (OASIS) ground-based Fourier transform infrared solar observatory. Located in an urban region, OASIS has previously been used for monitoring air quality (tropospheric ozone and carbon monoxide) thanks to its specific column sensitivity across the whole troposphere down to the atmospheric boundary layer. A total of 4920 measurements of atmospheric total columns of ammonia have been obtained from 2009 to 2017, with uncertainties ranging from 20 % to 35 %, and have been compared with NH3 concentrations derived from the Infrared Atmospheric Sounding Interferometer (IASI). OASIS ground-based measurements show significant interannual and seasonal variabilities of atmospheric ammonia. NH3 total columns over the Paris megacity (12 million people) vary seasonally by 2 orders of magnitude from approximately 0.1×1016 molec. cm−2 in winter to 10×1016 molec. cm−2 for spring peaks, probably due to springtime spreading of fertilizers on surrounding croplands.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-07-21
    Description: In order to track progress towards the global climate targets, the parties that signed the Paris Climate Agreement will regularly report their anthropogenic carbon dioxide (CO2) emissions based on energy statistics and CO2 emission factors. Independent evaluation of this self-reporting system is a fast-growing research topic. Here, we study the value of satellite observations of the column CO2 concentrations to estimate CO2 anthropogenic emissions with 5 years of the Orbiting Carbon Observatory-2 (OCO-2) retrievals over and around China. With the detailed information of emission source locations and the local wind, we successfully observe CO2 plumes from 46 cities and industrial regions over China and quantify their CO2 emissions from the OCO-2 observations, which add up to a total of 1.3 Gt CO2 yr−1 that accounts for approximately 13 % of mainland China's annual emissions. The number of cities whose emissions are constrained by OCO-2 here is 3 to 10 times larger than in previous studies that only focused on large cities and power plants in different locations around the world. Our satellite-based emission estimates are broadly consistent with the independent values from China's detailed emission inventory MEIC but are more different from those of two widely used global gridded emission datasets (i.e., EDGAR and ODIAC), especially for the emission estimates for the individual cities. These results demonstrate some skill in the satellite-based emission quantification for isolated source clusters with the OCO-2, despite the sparse sampling of this instrument not designed for this purpose. This skill can be improved by future satellite missions that will have a denser spatial sampling of surface emitting areas, which will come soon in the early 2020s.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-07-21
    Description: Poor age control in Pleistocene sediments of the central Arctic Ocean generates considerable uncertainty in paleoceanographic reconstructions. This problem is rooted in the perplexing magnetic polarity patterns recorded in Arctic marine sediments and the paucity of microfossils capable of providing calibrated biostratigraphic biohorizons or continuous oxygen isotope stratigraphies. Here, we document the occurrence of two key species of calcareous nannofossils in a single marine sediment core from the central Arctic Ocean that provide robust, globally calibrated age constraints for sediments younger than 500 ka. The key species are the coccolithophores Pseudoemiliania lacunosa, which went extinct during marine isotope stage (MIS) 12 (478–424 ka), and Emiliania huxleyi, which evolved during MIS 8 (300–243 ka). This is the first time that P. lacunosa has been described in sediments of the central Arctic Ocean. The sedimentary horizons containing these age-diagnostic species can be traced, through lithostratigraphic correlation, across more than 450 km of the inner Arctic Ocean. They provide the first unequivocal support for proposed Pleistocene chronologies of sediment from this sector of the Arctic, and they constitute a foundation for developing and testing other geochronological tools for dating Arctic marine sediments.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-07-21
    Description: We develop a new large-scale hydrological and water resources model, the Community Water Model (CWatM), which can simulate hydrology both globally and regionally at different resolutions from 30 arcmin to 30 arcsec at daily time steps. CWatM is open source in the Python programming environment and has a modular structure. It uses global, freely available data in the netCDF4 file format for reading, storage, and production of data in a compact way. CWatM includes general surface and groundwater hydrological processes but also takes into account human activities, such as water use and reservoir regulation, by calculating water demands, water use, and return flows. Reservoirs and lakes are included in the model scheme. CWatM is used in the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which compares global model outputs. The flexible model structure allows for dynamic interaction with hydro-economic and water quality models for the assessment and evaluation of water management options. Furthermore, the novelty of CWatM is its combination of state-of-the-art hydrological modeling, modular programming, an online user manual and automatic source code documentation, global and regional assessments at different spatial resolutions, and a potential community to add to, change, and expand the open-source project. CWatM also strives to build a community learning environment which is able to freely use an open-source hydrological model and flexible coupling possibilities to other sectoral models, such as energy and agriculture.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-10-28
    Description: Fishermen are known to try to avoid fishing in stormy weather, as storms pose a physical threat to fishers, their vessels, and their gear. In this article, a dataset and methods are developed to investigate the degree to which fishers avoid storms, estimate storm aversion parameters, and explore how this response varies across vessel characteristics and across regions of the United States. The data consist of vessel-level trip-taking decisions from six federal fisheries across the United States combined with marine storm warning data from the National Weather Service. The estimates of storm aversion can be used to parameterize predictive models. Fishers’ aversion to storms decreases with increasing vessel size and increases with the severity of the storm warning. This information contributes to our understanding of the risk-to-revenue trade-off that fishers evaluate every time they consider going to sea, and of the propensity of fishers to take adaptive actions to avoid facing additional physical risk.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-07-02
    Description: In the past decades, severe heat waves have frequently occurred in many parts of the world. These conspicuous heat waves exerted terrible influences on human health, society, the economy, agriculture, the ecosystem and so on. Based on observed daily temperatures in China, an integrated index of heat waves and extreme-temperature days was established involving the frequency, duration, intensity and scale of these events across large cities in China. Heat waves and extreme-temperature days showed an increasing trend in most regions except northwest China from 1955 to 2014. After the late 1980s, the increasing trend was more obvious than the decades before. The cities in the middle and lower reaches of the Yangtze River were threatened by the most serious heat events in the past 60 years, especially Chongqing and Changsha. Due to the subtropical monsoon climate and special terrain, Chongqing experienced the most heat events in a long period of time. In particular, there was obvious fluctuation of hot years in 31 cities, which did not continuously rise with global warming; 21 cities mainly located in the eastern and southern regions of China had an obvious rising trend; eight cities had a clear declining trend which was mainly distributed in the western and northern regions of China; and there were no extreme-temperature days in Kunming and Lhasa in the past 60 years. The study revealed an obvious differentiation of heat events for 31 cities under climate change; heat threat in most cities is increasing but declining or remaining unchanged in the other cities. The trend is likely to intensify with global warming.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-08-30
    Description: Sardine Sardinops sagax is an ecologically and economically important Clupeid found off the entire South African coast that includes both coastal upwelling and western boundary current systems. Although the management of the sardine fisheries historically assumed a single, panmictic population, the existence of three, semi-discrete subpopulations has recently been hypothesized. We conducted otolith δ18O and microstructure analyses to investigate nursery habitat temperatures and early life growth rates, respectively, of sardine collected from three biogeographic regions around South Africa’s coast to test that hypothesis. Analyses indicated that for both summer- and winter-captured adults and summer-captured juveniles, fishes from the west coast grew significantly slower in water that was several degrees cooler than those from the south and east coasts. This suggests that mixing of sardines between regions, particularly the west and other coasts, is relatively limited and supports the hypothesis of semi-discrete subpopulations. However, the west-south differences disappeared in the results for winter-captured juveniles, suggesting that differences in early life conditions between regions may change seasonally, and/or that all or most winter-captured juveniles originated from the west coast. Further elucidating the interactions between South African sardine subpopulations and the mechanisms thereof is important for sustainable harvesting of this species.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-07-02
    Description: Understanding the behavior of halogens (Cl, Br, and I) in subduction zones is critical to constrain the geochemical cycle of these volatiles and associated trace metals, as well as to quantify the halogen fluxes to the atmosphere via volcanic degassing. Here, the partitioning of bromine between coexisting aqueous fluids and hydrous granitic melts and its speciation in slab-derived fluids have been investigated in situ up to 840 ∘C and 2.2 GPa by synchrotron x-ray fluorescence (SXRF) and x-ray absorption spectroscopy (XAS) in diamond anvil cells. The partition coefficients DBrf/m range from ∼2 to ∼15, with an average value of 6.7±3.6 (1σ) over the whole pressure–temperature (P–T) range, indicating a moderate Br enrichment in aqueous fluids, in agreement with previous work. Extended x-ray-absorption fine-structure (EXAFS) analysis further evidences a gradual evolution of Br speciation from hydrated Br ions [Br(H2O)6]− in slab dehydration fluids to more complex structures involving both Na ions and water molecules, [BrNax(H2O)y], in hydrous silicate melts and supercritical fluids released at greater depth (〉 200 km). In denser fluids (ρ 〉 1.5 g cm−3) containing 60 wt % dissolved alkali–silicates and in hydrous Na2Si2O5 melts (10 wt % H2O), Br is found to be in a “salt-like” structure involving the six nearest Na ions and several next-nearest O neighbors that are either from water molecules and/or the silicate network. Bromine (and likely chlorine and iodine) complexing with alkalis is thus an efficient mechanism for the mobilization and transport of halogens by hydrous silicate melts and silica-rich supercritical fluids. Our results suggest that both shallow dehydration fluids and deeper silicate-bearing fluids efficiently remove halogens from the slab in the sub-arc region, thus favoring an efficient transfer of halogens across subduction zones.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-07-02
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-07-02
    Description: The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In this paper we propose a mathematical and statistical decomposition of this temporal variation in SIE. Each component is interpretable and, when combined, gives a complete picture of the variation in the sea ice. We consider timescales varying from the instantaneous and not previously defined to the multi-decadal curvilinear trend, the longest. Because our representation is daily, these timescales of variability give precise information about the timing and rates of advance and retreat of the ice and may be used to diagnose physical contributors to variability in the sea ice. We define a number of annual cycles each capturing different components of variation, especially the yearly amplitude and phase that are major contributors to SIE variation. Using daily sea ice concentration data, we show that our proposed invariant annual cycle explains 29 % more of the variation in daily SIE than the traditional method. The proposed annual cycle that incorporates amplitude and phase variation explains 77 % more variation than the traditional method. The variation in phase explains more of the variability in SIE than the amplitude. Using our methodology, we show that the anomalous decay of sea ice in 2016 was associated largely with a change of phase rather than amplitude. We show that the long term trend in Antarctic sea ice extent is strongly curvilinear and the reported positive linear trend is small and dependent strongly on a positive trend that began around 2011 and continued until 2016.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-07-02
    Description: Aerosol–cloud interactions are the largest source of uncertainty in quantifying anthropogenic radiative forcing. The large uncertainty is, in part, due to the difficulty of predicting cloud microphysical parameters, such as the cloud droplet number concentration (Nd). Even though rigorous first-principle approaches exist to calculate Nd, the cloud and aerosol research community also relies on empirical approaches such as relating Nd to aerosol mass concentration. Here we analyze relationships between Nd and cloud water chemical composition, in addition to the effect of environmental factors on the degree of the relationships. Warm, marine, stratocumulus clouds off the California coast were sampled throughout four summer campaigns between 2011 and 2016. A total of 385 cloud water samples were collected and analyzed for 80 chemical species. Single- and multispecies log–log linear regressions were performed to predict Nd using chemical composition. Single-species regressions reveal that the species that best predicts Nd is total sulfate (Radj2=0.40). Multispecies regressions reveal that adding more species does not necessarily produce a better model, as six or more species yield regressions that are statistically insignificant. A commonality among the multispecies regressions that produce the highest correlation with Nd was that most included sulfate (either total or non-sea-salt), an ocean emissions tracer (such as sodium), and an organic tracer (such as oxalate). Binning the data according to turbulence, smoke influence, and in-cloud height allowed for examination of the effect of these environmental factors on the composition–Nd correlation. Accounting for turbulence, quantified as the standard deviation of vertical wind speed, showed that the correlation between Nd with both total sulfate and sodium increased at higher turbulence conditions, consistent with turbulence promoting the mixing between ocean surface and cloud base. Considering the influence of smoke significantly improved the correlation with Nd for two biomass burning tracer species in the study region, specifically oxalate and iron. When binning by in-cloud height, non-sea-salt sulfate and sodium correlated best with Nd at cloud top, whereas iron and oxalate correlated best with Nd at cloud base.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-08-31
    Description: Temperature, H2O, and O3 profiles, as well as CO2, N2O, CH4, chlorofluorocarbon-12 (CFC-12), and sea surface temperature (SST) scalar anomalies are computed using a clear subset of AIRS observations over ocean for the first 16 years of NASA's Earth-Observing Satellite (EOS) Aqua Atmospheric Infrared Sounder (AIRS) operation. The AIRS Level-1c radiances are averaged over 16 d and 40 equal-area zonal bins and then converted to brightness temperature anomalies. Geophysical anomalies are retrieved from the brightness temperature anomalies using a relatively standard optimal estimation approach. The CO2, N2O, CH4, and CFC-12 anomalies are derived by applying a vertically uniform multiplicative shift to each gas in order to obtain an estimate for the gas mixing ratio. The minor-gas anomalies are compared to the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) in situ values and used to estimate the radiometric stability of the AIRS radiances. Similarly, the retrieved SST anomalies are compared to the SST values used in the ERA-Interim reanalysis and to NOAA's Optimum Interpolation SST (OISST) product. These intercomparisons strongly suggest that many AIRS channels are stable to better than 0.02 to 0.03 K per decade, well below climate trend levels, indicating that the AIRS blackbody is not drifting. However, detailed examination of the anomaly retrieval residuals (observed – computed) shows various small unphysical shifts that correspond to AIRS hardware events (shutdowns, etc.). Some examples are given highlighting how the AIRS radiance stability could be improved, especially for channels sensitive to N2O and CH4. The AIRS shortwave channels exhibit larger drifts that make them unsuitable for climate trending, and they are avoided in this work. The AIRS Level 2 surface temperature retrievals only use shortwave channels. We summarize how these shortwave drifts impacts recently published comparisons of AIRS surface temperature trends to other surface climatologies.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-08-31
    Description: The CloudRoots field experiment was designed to obtain a comprehensive observational dataset that includes soil, plant, and atmospheric variables to investigate the interaction between a heterogeneous land surface and its overlying atmospheric boundary layer at the sub-hourly and sub-kilometre scale. Our findings demonstrate the need to include measurements at leaf level to better understand the relations between stomatal aperture and evapotranspiration (ET) during the growing season at the diurnal scale. Based on these observations, we obtain accurate parameters for the mechanistic representation of photosynthesis and stomatal aperture. Once the new parameters are implemented, the model reproduces the stomatal leaf conductance and the leaf-level photosynthesis satisfactorily. At the canopy scale, we find a consistent diurnal pattern on the contributions of plant transpiration and soil evaporation using different measurement techniques. From highly resolved vertical profile measurements of carbon dioxide (CO2) and other state variables, we infer a profile of the CO2 assimilation in the canopy with non-linear variations with height. Observations taken with a laser scintillometer allow us to quantify the non-steadiness of the surface turbulent fluxes during the rapid changes driven by perturbation of photosynthetically active radiation by cloud flecks. More specifically, we find 2 min delays between the cloud radiation perturbation and ET. To study the relevance of advection and surface heterogeneity for the land–atmosphere interaction, we employ a coupled surface–atmospheric conceptual model that integrates the surface and upper-air observations made at different scales from leaf to the landscape. At the landscape scale, we calculate a composite sensible heat flux by weighting measured fluxes with two different land use categories, which is consistent with the diurnal evolution of the boundary layer depth. Using sun-induced fluorescence measurements, we also quantify the spatial variability of ET and find large variations at the sub-kilometre scale around the CloudRoots site. Our study shows that throughout the entire growing season, the wide variations in stomatal opening and photosynthesis lead to large diurnal variations of plant transpiration at the leaf, plant, canopy, and landscape scales. Integrating different advanced instrumental techniques with modelling also enables us to determine variations of ET that depend on the scale where the measurement were taken and on the plant growing stage.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-08-31
    Description: Most available verification metrics for ensemble forecasts focus on univariate quantities. That is, they assess whether the ensemble provides an adequate representation of the forecast uncertainty about the quantity of interest at a particular location and time. For spatially indexed ensemble forecasts, however, it is also important that forecast fields reproduce the spatial structure of the observed field and represent the uncertainty about spatial properties such as the size of the area for which heavy precipitation, high winds, critical fire weather conditions, etc., are expected. In this article we study the properties of the fraction of threshold exceedance (FTE) histogram, a new diagnostic tool designed for spatially indexed ensemble forecast fields. Defined as the fraction of grid points where a prescribed threshold is exceeded, the FTE is calculated for the verification field and separately for each ensemble member. It yields a projection of a – possibly high-dimensional – multivariate quantity onto a univariate quantity that can be studied with standard tools like verification rank histograms. This projection is appealing since it reflects a spatial property that is intuitive and directly relevant in applications, though it is not obvious whether the FTE is sufficiently sensitive to misrepresentation of spatial structure in the ensemble. In a comprehensive simulation study we find that departures from uniformity of the FTE histograms can indeed be related to forecast ensembles with biased spatial variability and that these histograms detect shortcomings in the spatial structure of ensemble forecast fields that are not obvious by eye. For demonstration, FTE histograms are applied in the context of spatially downscaled ensemble precipitation forecast fields from NOAA's Global Ensemble Forecast System.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-07-01
    Description: The McMurdo Dry Valley region is the largest ice-free area of Antarctica. Ephemeral streams flow here during the austral summer, transporting glacial meltwater to perennially ice-covered, closed basin lakes. The chemistry of 24 Taylor Valley streams was examined over the two-decade period of monitoring from 1993 to 2014, and the geochemical behavior of two streams of contrasting physical and biological character was monitored across the seven weeks of the 2010−2011 flow season. Four species dominate stream solute budgets: HCO3−, Ca2+, Na+, and Cl−, with SO42−, Mg2+, and K+ present in significantly lesser proportions. All streams contain dissolved silica at low concentrations. Across Taylor Valley, streams are characterized by their consistent anionic geochemical fingerprint of HCO3〉Cl〉SO4, but there is a split in cation composition between 14 streams with Ca〉Na〉Mg〉K and 10 streams with Na〉Ca〉Mg〉K. Andersen Creek is a first-order proglacial stream representative of the 13 short streams that flow
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-07-10
    Description: The orogenic development after the continental collision between Laurussia and Gondwana, led to two contrasting associations of mantle-derived magmatic rocks on the territory of the Bohemian Massif: (i) a 340–310 Ma lamprophyre-lamproite orogenic association and (ii) a 300–275 Ma lamprophyre association of anorogenic affinity. Major types of potassic mantle-derived magmatic rocks recognised in the orogenic and anorogenic associations include: (i) calc-alkaline to alkaline lamprophyres, (ii) alkaline “orthopyroxene minettes” (and geochemically related rocks), and (iii) peralkaline lamproites. These three types significantly differ with respect to mineral, whole-rock and Sr–Nd–Pb–Li isotope composition, and spatial distribution. The calc-alkaline lamprophyres occur throughout the entire Saxo-Thuringian and Moldanubian zones, whereas the different types of malte-derived potassic rocks are spatially restricted to particular zones. Rocks of the Carboniferous lamprophyre-lamproite orogenic association are characterised by variable negative εNd(i) and variably radiogenic Sr(i), whereas the rocks of the Permian lamprophyre association of anorogenic affinity are characterised by positive εNd(i) and relatively young depleted-mantle Nd-model ages reflecting increasing input from upwelling asthenospheric mantle. The small variation in the Pb isotopic composition of post-collisional potassic mantle-derived magmatic rocks (of both the orogenic and anorogenic series) implies that the Pb budget of the mantle beneath the Bohemian Massif is dominated by the same crust-derived material, which itself may include material derived from several sources. The source rocks of “orthopyroxene minettes” are characterised by isotopically light (“eclogitic”) Li and strongly radiogenic (crustal) Sr and may have been metasomatised by high-pressure fluids along the edge of a subduction zone. In contrast, the strongly Al2O3 and CaO depleted mantle source of the lamproites is characterised by isotopically heavy Li and high SiO2 and extreme K2O contents. This mantle source may have been metasomatised predominantly by melts. The mantle source of the lamprophyres may have undergone metasomatism by both fluids and melts.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-07-02
    Description: In this paper, the performance of three machine-learning methods for predicting short-term evolution and for reproducing the long-term statistics of a multiscale spatiotemporal Lorenz 96 system is examined. The methods are an echo state network (ESN, which is a type of reservoir computing; hereafter RC–ESN), a deep feed-forward artificial neural network (ANN), and a recurrent neural network (RNN) with long short-term memory (LSTM; hereafter RNN–LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting variables representing slow/large-scale (X), intermediate (Y), and fast/small-scale (Z) processes. For training or testing, only X is available; Y and Z are never known or used. We show that RC–ESN substantially outperforms ANN and RNN–LSTM for short-term predictions, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps equivalent to several Lyapunov timescales. The RNN–LSTM outperforms ANN, and both methods show some prediction skills too. Furthermore, even after losing the trajectory, data predicted by RC–ESN and RNN–LSTM have probability density functions (pdf's) that closely match the true pdf – even at the tails. The pdf of the data predicted using ANN, however, deviates from the true pdf. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear dynamical systems, such as weather and climate, are discussed.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-07-02
    Description: In the western Mediterranean Sea, Levantine intermediate waters (LIW), which circulate below the surface productive zone, progressively accumulate nutrients along their pathway from the Tyrrhenian Sea to the Algerian Basin. This study addresses the role played by diffusion in the nutrient enrichment of the LIW, a process particularly relevant inside step-layer structures extending down to deep waters – structures known as thermohaline staircases. Profiling float observations confirmed that staircases develop over epicentral regions confined in large-scale circulation features and maintained by saltier LIW inflows on the periphery. Thanks to a high profiling frequency over the 4-year period 2013–2017, float observations reveal the temporal continuity of the layering patterns encountered during the cruise PEACETIME and document the evolution of layer properties by about +0.06 ∘C in temperature and +0.02 in salinity. In the Algerian Basin, the analysis of in situ lateral density ratios untangled double-diffusive convection as a driver of thermohaline changes inside epicentral regions and isopycnal diffusion as a driver of heat and salt exchanges with the surrounding sources. In the Tyrrhenian Sea, the nitrate flux across thermohaline staircases, as opposed to the downward salt flux, contributes up to 25 % of the total nitrate pool supplied to the LIW by vertical transfer. Overall, however, the nutrient enrichment of the LIW is driven mostly by other sources, coastal or atmospheric, as well as by inputs advected from the Algerian Basin.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-07-02
    Description: Geologic dating methods for the most part do not directly measure ages. Instead, interpreting a geochemical observation as a geologically useful parameter – an age or a rate – requires an interpretive middle layer of calculations and supporting data sets. These are the subject of active research and evolve rapidly, so any synoptic analysis requires repeated recalculation of large numbers of ages from a growing data set of raw observations, using a constantly improving calculation method. Many important applications of geochronology involve regional or global analyses of large and growing data sets, so this characteristic is an obstacle to progress in these applications. This paper describes the ICE-D (Informal Cosmogenic-Nuclide Exposure-age Database) database project, a prototype computational infrastructure for dealing with this obstacle in one geochronological application – cosmogenic-nuclide exposure dating – that aims to enable visualization or analysis of diverse data sets by making middle-layer calculations dynamic and transparent to the user. An important aspect of this concept is that it is designed as a forward-looking research tool rather than a backward-looking archive: only observational data (which do not become obsolete) are stored, and derived data (which become obsolete as soon as the middle-layer calculations are improved) are not stored but instead calculated dynamically at the time data are needed by an analysis application. This minimizes “lock-in” effects associated with archiving derived results subject to rapid obsolescence and allows assimilation of both new observational data and improvements to middle-layer calculations without creating additional overhead at the level of the analysis application.
    Print ISSN: 2628-3697
    Electronic ISSN: 2628-3719
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-08-31
    Description: The invasion of aquifer microbial communities by aboveground microorganisms, a phenomenon known as community coalescence, is likely to be exacerbated in groundwaters fed by stormwater infiltration systems (SISs). Here, the incidence of this increased connectivity with upslope soils and impermeabilized surfaces was assessed through a meta-analysis of 16S rRNA gene libraries. Specifically, DNA sequences encoding 16S rRNA V5-V6 regions from free-living and attached aquifer bacteria (i.e., water and biofilm samples) were analysed upstream and downstream of a SIS and compared with those from bacterial communities from watershed runoffs and surface sediments from the SIS detention and infiltration basins. Significant bacterial transfers were inferred by the SourceTracker Bayesian approach, with 23 % to 57 % of the aquifer bacterial biofilms being composed of taxa from aboveground sediments and urban runoffs. Sediments from the detention basin were found more significant contributors of taxa involved in the buildup of these biofilms than soils from the infiltration basin. Inferred taxa among the coalesced biofilm community were predicted to be high in hydrocarbon degraders such as Sphingobium and Nocardia. The 16S rRNA-based bacterial community structure of the downstream-SIS aquifer waters showed lower coalescence with aboveground taxa (8 % to 38 %) than those of biofilms and higher numbers of taxa predicted to be involved in the N and S cycles. A DNA marker named tpm enabled the tracking of bacterial species from 24 genera including Pseudomonas, Aeromonas and Xanthomonas, among these communities. Several tpm sequence types were found to be shared between the aboveground and aquifer samples. Reads related to Pseudomonas were allocated to 50 species, of which 16 were found in the aquifer samples. Several of these aquifer species were found to be involved in denitrification but also hydrocarbon degradation (P. aeruginosa, P. putida and P. fluorescens). Some tpm sequence types allocated to P. umsongensis and P. chengduensis were found to be enriched among the tpm-harbouring bacteria, respectively, of the aquifer biofilms and waters. Reads related to Aeromonas were allocated to 11 species, but only those from A. caviae were recovered aboveground and in the aquifer samples. Some tpm sequence types of the X. axonopodis phytopathogen  were recorded in higher proportions among the tpm-harbouring bacteria of the aquifer waters than in the aboveground samples. A significant coalescence of microbial communities from an urban watershed with those of an aquifer was thus observed, and recent aquifer biofilms were found to be significantly colonized by runoff-opportunistic taxa able to use urban C sources from aboveground compartments.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-08-31
    Description: Landslides are the main source of sediment in most mountain ranges. Rivers then act as conveyor belts, evacuating landslide-derived sediment. Sediment dynamics are known to influence landscape evolution through interactions among landslide sediment delivery, fluvial transport and river incision into bedrock. Sediment delivery and its interaction with river incision therefore control the pace of landscape evolution and mediate relationships among tectonics, climate and erosion. Numerical landscape evolution models (LEMs) are well suited to study the interactions among these surface processes. They enable evaluation of a range of hypotheses at varying temporal and spatial scales. While many models have been used to study the dynamic interplay between tectonics, erosion and climate, the role of interactions between landslide-derived sediment and river incision has received much less attention. Here, we present HyLands, a hybrid landscape evolution model integrated within the TopoToolbox Landscape Evolution Model (TTLEM) framework. The hybrid nature of the model lies in its capacity to simulate both erosion and deposition at any place in the landscape due to fluvial bedrock incision, sediment transport, and rapid, stochastic mass wasting through landsliding. Fluvial sediment transport and bedrock incision are calculated using the recently developed Stream Power with Alluvium Conservation and Entrainment (SPACE) model. Therefore, rivers can dynamically transition from detachment-limited to transport-limited and from bedrock to bedrock–alluvial to fully alluviated states. Erosion and sediment production by landsliding are calculated using a Mohr–Coulomb stability analysis, while landslide-derived sediment is routed and deposited using a multiple-flow-direction, nonlinear deposition method. We describe and evaluate the HyLands 1.0 model using analytical solutions and observations. We first illustrate the functionality of HyLands to capture river dynamics ranging from detachment-limited to transport-limited conditions. Second, we apply the model to a portion of the Namche Barwa massif in eastern Tibet and compare simulated and observed landslide magnitude–frequency and area–volume scaling relationships. Finally, we illustrate the relevance of explicitly simulating landsliding and sediment dynamics over longer timescales for landscape evolution in general and river dynamics in particular. With HyLands we provide a new tool to understand both the long- and short-term coupling between stochastic hillslope processes, river incision and source-to-sink sediment dynamics.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-08-31
    Description: Landfast sea ice (fast ice) attached to Antarctic (near-)coastal elements is a critical component of the local physical and ecological systems. Through its direct coupling with the atmosphere and ocean, fast-ice properties are also a potential indicator of processes related to a changing climate. However, in situ fast-ice observations in Antarctica are extremely sparse because of logistical challenges and harsh environmental conditions. Since 2010, a monitoring program observing the seasonal evolution of fast ice in Atka Bay has been conducted as part of the Antarctic Fast Ice Network (AFIN). The bay is located on the northeastern edge of Ekström Ice Shelf in the eastern Weddell Sea, close to the German wintering station Neumayer III. A number of sampling sites have been regularly revisited each year between annual ice formation and breakup to obtain a continuous record of sea-ice and sub-ice platelet-layer thickness, as well as snow depth and freeboard across the bay. Here, we present the time series of these measurements over the last 9 years. Combining them with observations from the nearby Neumayer III meteorological observatory as well as auxiliary satellite images enables us to relate the seasonal and interannual fast-ice cycle to the factors that influence their evolution. On average, the annual consolidated fast-ice thickness at the end of the growth season is about 2 m, with a loose platelet layer of 4 m thickness beneath and 0.70 m thick snow on top. Results highlight the predominately seasonal character of the fast-ice regime in Atka Bay without a significant interannual trend in any of the observed variables over the 9-year observation period. Also, no changes are evident when comparing with sporadic measurements in the 1980s and 1990s. It is shown that strong easterly winds in the area govern the year-round snow distribution and also trigger the breakup of fast ice in the bay during summer months. Due to the substantial snow accumulation on the fast ice, a characteristic feature is frequent negative freeboard, associated flooding of the snow–ice interface, and a likely subsequent snow ice formation. The buoyant platelet layer beneath negates the snow weight to some extent, but snow thermodynamics is identified as the main driver of the energy and mass budgets for the fast-ice cover in Atka Bay. The new knowledge of the seasonal and interannual variability of fast-ice properties from the present study helps to improve our understanding of interactions between atmosphere, fast ice, ocean, and ice shelves in one of the key regions of Antarctica and calls for intensified multidisciplinary studies in this region.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-08-31
    Description: Chemistry plays an indispensable role in investigations of the atmosphere; however, many climate models either ignore or greatly simplify atmospheric chemistry, limiting both their accuracy and their scope. We present the development and evaluation of the online global atmospheric chemical model BCC-GEOS-Chem v1.0, coupling the GEOS-Chem chemical transport model (CTM) as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model (BCC-AGCM). The GEOS-Chem atmospheric chemistry component includes detailed tropospheric HOx–NOx–volatile organic compounds–ozone–bromine–aerosol chemistry and online dry and wet deposition schemes. We then demonstrate the new capabilities of BCC-GEOS-Chem v1.0 relative to the base BCC-AGCM model through a 3-year (2012–2014) simulation with anthropogenic emissions from the Community Emissions Data System (CEDS) used in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The model captures well the spatial distributions and seasonal variations in tropospheric ozone, with seasonal mean biases of 0.4–2.2 ppbv at 700–400 hPa compared to satellite observations and within 10 ppbv at the surface to 500 hPa compared to global ozonesonde observations. The model has larger high-ozone biases over the tropics which we attribute to an overestimate of ozone chemical production. It underestimates ozone in the upper troposphere which is likely due either to the use of a simplified stratospheric ozone scheme or to biases in estimated stratosphere–troposphere exchange dynamics. The model diagnoses the global tropospheric ozone burden, OH concentration, and methane chemical lifetime to be 336 Tg, 1.16×106 molecule cm−3, and 8.3 years, respectively, which is consistent with recent multimodel assessments. The spatiotemporal distributions of NO2, CO, SO2, CH2O, and aerosol optical depth are generally in agreement with satellite observations. The development of BCC-GEOS-Chem v1.0 represents an important step for the development of fully coupled earth system models (ESMs) in China.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-08-31
    Description: We report the results of a multiproxy study that combines structural analysis of a fracture–stylolite network and isotopic characterization of calcite vein cements and/or fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid systems and pathways that were present during the main stages of contraction in the Tuscan Nappe and Umbria–Marche Apennine Ridge (northern Apennines). We reconstruct four steps of deformation at the scale of the belt: burial-related stylolitization, Apenninic-related layer-parallel shortening with a contraction trending NE–SW, local extension related to folding, and late-stage fold tightening under a contraction still striking NE–SW. We combine the paleopiezometric inversion of the roughness of sedimentary stylolites – that constrains the range of burial depth of strata prior to layer-parallel shortening – with burial models and U–Pb absolute dating of fault coatings in order to determine the timing of development of mesostructures. In the western part of the ridge, layer-parallel shortening started in Langhian time (∼15 Ma), and then folding started at Tortonian time (∼8 Ma); late-stage fold tightening started by the early Pliocene (∼5 Ma) and likely lasted until recent/modern extension occurred (∼3 Ma onward). The textural and geochemical (δ18O, δ13C, Δ47CO2 and 87Sr∕86Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation either are local or flowed laterally from the same reservoir. However, the western edge of the ridge recorded pulses of eastward migration of hydrothermal fluids (〉140 ∘C), driven by the tectonic contraction and by the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria–Marche Apennine Ridge.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-07-16
    Description: We developed the WRF-GC model, an online coupling of the Weather Research and Forecasting (WRF) mesoscale meteorological model and the GEOS-Chem atmospheric chemistry model, for regional atmospheric chemistry and air quality modeling. WRF and GEOS-Chem are both open-source community models. WRF-GC offers regional modellers access to the latest GEOS-Chem chemical module, which is state of the science, well documented, traceable, benchmarked, actively developed by a large international user base, and centrally managed by a dedicated support team. At the same time, WRF-GC enables GEOS-Chem users to perform high-resolution forecasts and hindcasts for any region and time of interest. WRF-GC uses unmodified copies of WRF and GEOS-Chem from their respective sources; the coupling structure allows future versions of either one of the two parent models to be integrated into WRF-GC with relative ease. Within WRF-GC, the physical and chemical state variables are managed in distributed memory and translated between WRF and GEOS-Chem by the WRF-GC coupler at runtime. We used the WRF-GC model to simulate surface PM2.5 concentrations over China during 22 to 27 January 2015 and compared the results to surface observations and the outcomes from a GEOS-Chem Classic nested-China simulation. Both models were able to reproduce the observed spatiotemporal variations of regional PM2.5, but the WRF-GC model (r=0.68, bias =29 %) reproduced the observed daily PM2.5 concentrations over eastern China better than the GEOS-Chem Classic model did (r=0.72, bias =55 %). This was because the WRF-GC simulation, nudged with surface and upper-level meteorological observations, was able to better represent the pollution meteorology during the study period. The WRF-GC model is parallelized across computational cores and scales well on massively parallel architectures. In our tests where the two models were similarly configured, the WRF-GC simulation was 3 times more efficient than the GEOS-Chem Classic nested-grid simulation due to the efficient transport algorithm and the Message Passing Interface (MPI)-based parallelization provided by the WRF software framework. WRF-GC v1.0 supports one-way coupling only, using WRF-simulated meteorological fields to drive GEOS-Chem with no chemical feedbacks. The development of two-way coupling capabilities, i.e., the ability to simulate radiative and microphysical feedbacks of chemistry to meteorology, is under way. The WRF-GC model is open source and freely available from http://wrf.geos-chem.org (last access: 10 July 2020).
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-07-16
    Description: Mixed-method bicultural research in Aotearoa New Zealand, including the weaving of Indigenous and other knowledge, is emerging within many academic disciplines. However, mātauranga Māori (the knowledge, culture, values, and world view of the Indigenous peoples of Aotearoa New Zealand) and Te Ao Māori (the Māori world) is poorly represented within geomorphological investigations. Here, we review international efforts to include Indigenous knowledge in geologic and geomorphic studies and provide an overview of the current state of mātauranga Māori within research endeavours in Aotearoa New Zealand. We review three theoretical frameworks (i.e. methodologies) for including mātauranga Māori in research projects and three models (i.e. methods) for including Māori values within research. We identify direct benefits to geomorphology and discuss how these frameworks and models can be adapted for use with Indigenous knowledge systems outside of Aotearoa New Zealand. The aim of this review is to encourage geomorphologists around the world to engage with local Indigenous peoples to develop new approaches to geomorphic research. In Aotearoa New Zealand, we hope to inspire geomorphologists to embark on research journeys in genuine partnership with Māori that promote toitū te mātauranga – the enduring protection, promotion and respect of mātauranga Māori.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-07-16
    Description: Suspended sediment load in rivers is highly uncertain because sediment production and transport at catchment scale are strongly variable in space and time, and they are affected by catchment hydrology, topography, and land cover. Among the main sources of this variability are the spatially distributed nature of overland flow as an erosion driver and of surface erodibility given by soil type and vegetation cover distribution. Temporal variability mainly results from the time sequence of rainfall intensity during storms and snowmelt leading to soil saturation and overland flow. We present a new spatially distributed soil erosion and suspended sediment transport module integrated into the computationally efficient physically based hydrological model TOPKAPI-ETH, with which we investigate the effects of the two erosion drivers – precipitation and surface erodibility – on catchment sediment fluxes in a typical pre-Alpine mesoscale catchment. By conducting a series of numerical experiments, we quantify the impact of spatial variability in the two key erosion drivers on erosion–deposition patterns, sediment delivery ratio, and catchment sediment yields. Main findings are that the spatial variability in erosion drivers affects sediment yield by (i) increasing sediment production due to a spatially variable precipitation, while decreasing it due to a spatially variable surface erodibility, (ii) favouring the clustering of sediment source areas in space by surface runoff generation, and (iii) decreasing their connectivity to the river network by magnifying sediment buffers. The results highlight the importance of resolving spatial gradients controlling hydrology and sediment processes when modelling sediment dynamics at the mesoscale, in order to capture the key effects of sediment sources, buffers, and hillslope hydrological pathways in determining the sediment signal.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-05-14
    Description: The Miocene Columbia River Basalt Group (CRBG) is the youngest and best studied continental flood basalt province on Earth. The 210,000 km3 of basaltic lava flows in this province were fed by a series of dike swarms, the largest of which is the Chief Joseph dike swarm (CJDS) exposed in northeastern Oregon and southwestern Washington. We present and augment an extensive data set of field observations, collected by Dr. William H. Taubeneck (1923–2016; Oregon State University, 1955–1983); this data set elucidates the structure of the CJDS in new detail. The large-scale structure of the CJDS, represented by 4279 mapped segments mostly cropping out over an area of 100 × 350 km2, is defined by regions of high dike density, up to ∼5 segments/km−2 with an average width of 8 m and lengths of ∼100–1000 m. The dikes in the CJDS are exposed across a range of paleodepths, from visibly feeding surface flows to ∼2 km in depth at the time of intrusion. Based on extrapolation of outcrops, we estimate the volume of the CJDS dikes to be 2.5 × 102–6 × 104 km3, or between 0.1% and 34% of the known volume of the magma represented by the surface flows fed by these dikes. A dominant NNW dike segment orientation characterizes the swarm. However, prominent sub-trends often crosscut NNW-oriented dikes, suggesting a change in dike orientations that may correspond to magmatically driven stress changes over the duration of swarm emplacement. Near-surface crustal dilation across the swarm is ∼0.5–2.7 km to the E-W and ∼0.2–1.3 km to the N-S across the 100 × 350 km region, resulting in strain across this region of 0.4%–13.0% E-W and 0.04%–0.3% N-S. Host-rock partial melt is rare in the CJDS, suggesting that only a small fraction of dikes were long-lived.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-07-15
    Description: Atmospheric mineral dust influences Earth's radiative budget, cloud formation, and lifetime; has adverse health effects; and affects air quality through the increase of regulatory PM10 concentrations, making its real-time quantification in the atmosphere of strategic importance. Only few near-real-time techniques can discriminate dust aerosol in PM10 samples and they are based on the dust chemical composition. The online determination of mineral dust using aerosol absorption photometers offers an interesting and competitive alternative but remains a difficult task to achieve. This is particularly challenging when dust is mixed with black carbon, which features a much higher mass absorption cross section. We build on previous work using filter photometers and present here for the first time a highly time-resolved online technique for quantification of mineral dust concentration by coupling a high-flow virtual impactor (VI) sampler that concentrates coarse particles with an aerosol absorption photometer (Aethalometer, model AE33). The absorption of concentrated dust particles is obtained by subtracting the absorption of the submicron (PM1) aerosol fraction from the absorption of the virtual impactor sample (VI-PM1 method). This real-time method for detecting desert dust was tested in the field for a period of 2 months (April and May 2016) at a regional background site of Cyprus, in the Eastern Mediterranean. Several intense desert mineral dust events were observed during the field campaign with dust concentration in PM10 up to 45 µg m−3. Mineral dust was present most of the time during the campaign with an average PM10 of about 8 µg m−3. Mineral dust absorption was most prominent at short wavelengths, yielding an average mass absorption cross section (MAC) of 0.24±0.01 m2 g−1 at 370 nm and an absorption Ångström exponent of 1.41±0.29. This MAC value can be used as a site-specific parameter for online determination of mineral dust concentration. The uncertainty of the proposed method is discussed by comparing and validating it with different methods.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-07-15
    Description: Dry–rewetting perturbations are natural disturbances in the edaphic environment and particularly in dryland cultivation areas. The interaction of this disturbance with glyphosate-based herbicides (GBHs) deserves special attention in the soil environment due to the intensification of agricultural practices and the acceleration of climate change with an intensified water cycle. The objective of this study was to assess the response of microbial communities in a soil with a long history of GBHs to a secondary imposed perturbation (a single dry–rewetting event). A factorial microcosm study was conducted to evaluate the potential conditioning effect of an acute glyphosate exposure on the response to a following dry–rewetting event. A respiratory quotient (RQ) based on an ecologically relevant substrate (p-coumaric acid) and basal respiration was used as a physiological indicator. Similarly, DNA-based analyses were considered, including quantitative PCR (qPCR) of functional sensitive microbial groups linked to cycles of carbon (Actinobacteria) and nitrogen (ammonia-oxidizing microorganisms), qPCR of total bacteria and denaturing gradient gel electrophoresis (DGGE) of ammonia-oxidizing bacteria (AOB). Significant effects of herbicide and of dry–rewetting perturbations were observed in the RQ and in the copy number of the amoA gene of AOB, respectively. However, no significant interaction was observed between them when analyzing the physiological indicator and the copy number of the evaluated genes. PCR–DGGE results were not conclusive regarding a potential effect of dry–rewetting × herbicide interaction on AOB community structure, suggesting further analysis by deep sequencing of the amoA gene. The results of this study indicate that the perturbation of an acute glyphosate exposure in a soil with a long history of this herbicide does not have a conditioning effect on the response to a subsequent dry–rewetting disturbance according to a physiological indicator or the quantified bacterial/archaeal genes. This is particularly relevant for the sustainability of soils in rainfed agriculture, where frequent exposure to GBHs along with intensification of hydrological cycles are expected to occur. Further studies considering multiple dry–rewetting disturbances and in different soil types should be conducted to simulate those conditions and to validate our results.
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-07-15
    Description: Storm tides are a major hazard for the German North Sea coasts. For coastal protection and economic activities, planning information on the probability and magnitude of extreme storm tides and their possible future changes is important. This study focuses on the most extreme events and examines whether they could have become more severe under slightly different conditions while still remaining within physical plausibility. In the face of a limited number of observational data on very severe events, an extensive set of model data is used to extract most extreme storm tide events for locations in the German Bight, in particular Borkum and the Ems estuary. The data set includes water levels and respective atmospheric conditions from a hindcast and future climate realizations without sea level rise describing today's and possible future conditions. A number of very severe events with water levels exceeding those measured near Borkum since 1906 are identified in the data set. A possible further amplification of the highest events is investigated by simulating these events for the North Sea with different phase lags between the astronomical tide given at the open model boundaries and the wind forcing. It is found that superposition of spring tide conditions, different timing of the astronomical high water and atmospheric conditions during the highest storm event would cause an enhancement of the highest water level up to about 50 cm. The water levels of the two highest events from the data set are used to analyse the effects in the Ems estuary using a high-resolution model of the German Bight. Additionally, the influences of an extreme river runoff and of sea level rise are studied. The extreme river runoff of 1200 m3 s−1 increases the highest water levels by several decimetres in the narrow upstream part of the Ems estuary. This effect diminishes downstream. The sea level rise increases the water level in the downstream part of the Ems estuary by the amount applied at the model boundary to the North Sea. In the upstream part, its influence on the water level decreases. This study may serve as a first step towards an impact assessment for severe storm tides and towards implications for coastal zone management in times of climate change.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-07-15
    Description: More than 300 non-dispersive infrared (NDIR) CO2 low-cost sensors labelled as LP8 were integrated into sensor units and evaluated for the purpose of long-term operation in the Carbosense CO2 sensor network in Switzerland. Prior to deployment, all sensors were calibrated in a pressure and climate chamber and in ambient conditions co-located with a reference instrument. To investigate their long-term performance and to test different data processing strategies, 18 sensors were deployed at five locations equipped with a reference instrument after calibration. Their accuracy during 19 to 25 months deployment was between 8 and 12 ppm. This level of accuracy requires careful sensor calibration prior to deployment, continuous monitoring of the sensors, efficient data filtering, and a procedure to correct drifts and jumps in the sensor signal during operation. High relative humidity (〉 ∼85 %) impairs the LP8 measurements, and corresponding data filtering results in a significant loss during humid conditions. The LP8 sensors are not suitable for the detection of small regional gradients and long-term trends. However, with careful data processing, the sensors are able to resolve CO2 changes and differences with a magnitude larger than about 30 ppm. Thereby, the sensor can resolve the site-specific CO2 signal at most locations in Switzerland. A low-power network (LPN) using LoRaWAN allowed for reliable data transmission with low energy consumption and proved to be a key element of the Carbosense low-cost sensor network.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-07-15
    Description: Peatlands store ∼ 20 %–30 % of the global soil organic carbon stock and are an important source of dissolved organic carbon (DOC) for inland waters. Recent improvements for in situ optical monitoring revealed that the DOC concentration in streams draining peatlands is highly variable, showing seasonal variation and short and intense DOC concentration peaks. This study aimed to statistically determine the variables driving stream DOC concentration variations at seasonal and event scales. Two mountainous peatlands (one fen and one bog) were monitored in the French Pyrenees to capture their outlet DOC concentration variability at a high-frequency rate (30 min). Abiotic variables including precipitation, stream temperature and water level, water table depth, and peat water temperature were also monitored at high frequency and used as potential predictors to explain DOC concentration variability. Results show that at both sites DOC concentration time series can be decomposed into a seasonal baseline interrupted by many short and intense peaks of higher concentrations. The DOC concentration baseline is driven, at the seasonal scale, by peat water temperature. At the event scale, DOC concentration increases are mostly driven by a rise in the water table within the peat at both sites. Univariate linear models between DOC concentration and peat water temperature or water table increases show greater efficiency at the fen site. Water recession times were derived from water level time series using master recession curve coefficients. They vary greatly between the two sites but also within one peatland site. They partly explain the differences between DOC dynamics in the studied peatlands, including peat porewater DOC concentrations and the links between stream DOC concentration and water table rise within the peatlands. This highlights that peatland complexes are composed of a mosaic of heterogeneous peat units distinctively producing or transferring DOC to streams.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-07-15
    Description: Submarine groundwater discharge (SGD) is an important gateway for nutrients and pollutants from land to sea. While understanding SGD is crucial for managing nearshore ecosystems and coastal freshwater reserves, studying this discharge is complicated by its occurrence at the limit between land and sea, a dynamic environment. This practical difficulty is exacerbated by the significant spatial and temporal variability. Therefore, to capture the magnitude of SGD, a variety of techniques and measurements, applied over multiple periods, is needed. Here, we combine several geophysical methods to detect zones of fresh submarine groundwater discharge (FSGD) in the intertidal zone, upper beach, dunes, and shallow coastal area. Both terrestrial electrical-resistivity tomography (ERT; roll-along) and marine continuous resistivity profiling (CRP) are used from the shallow continental shelf up to the dunes and combined with frequency domain electromagnetic (FDEM) mapping in the intertidal zone. In particular, we apply an estimation of robust apparent electrical conductivity (rECa) from FDEM data to provide reliable lateral and vertical discrimination of FSGD zones. The study area is a very dynamic environment along the North Sea, characterized by semi-diurnal tides between 3 and 5 m. CRP is usually applied in calmer conditions, but we prove that such surveys are possible and provide additional information to primarily land-bound ERT surveying. The 2D inversion models created from ERT and CRP data clearly indicate the presence of FSGD on the lower beach or below the low-water line. This discharge originates from a potable freshwater lens below the dunes and flows underneath a thick saltwater lens, present from the dunes to the lower sandy beach, which is fully observed with ERT. Freshwater outflow intensity has increased since 1980, due to a decrease of groundwater pumping in the dunes. FDEM mapping at two different times reveals discharge at the same locations, clearly displays the lateral variation of the zone of discharge, and suggests that FSGD is stronger at the end of winter compared to the beginning of autumn. ERT, CRP, and FDEM are complementary tools in the investigation of SGD. They provide a high-resolution 3D image of the saltwater and freshwater distribution in the phreatic coastal aquifer over a relatively large area, both off- and onshore.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-07-16
    Description: SUMMARY We present a statistical rock physics inversion of the elastic and electrical properties to estimate the petrophysical properties and quantify the associated uncertainty. The inversion method combines statistical rock physics modeling with Bayesian inverse theory. The model variables of interest are porosity and fluid saturations. The rock physics model includes the elastic and electrical components and can be applied to the results of seismic and electromagnetic inversion. To describe the non-Gaussian behaviour of the model properties, we adopt non-parametric probability density functions to sample multimodal and skewed distributions of the model variables. Different from machine learning approach, the proposed method is not completely data-driven but is based on a statistical rock physics model to link the model parameters to the data. The proposed method provides pointwise posterior distributions of the porosity and CO2 saturation along with the most-likely models and the associated uncertainty. The method is validated using synthetic and real data acquired for CO2 sequestration studies in different formations: the Rock Springs Uplift in Southwestern Wyoming and the Johansen formation in the North Sea, offshore Norway. The proposed approach is validated under different noise conditions and compared to traditional parametric approaches based on Gaussian assumptions. The results show that the proposed method provides an accurate inversion framework where instead of fitting the relationship between the model and the data, we account for the uncertainty in the rock physics model.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-07-16
    Description: An optimized method is presented to determine dissolved free (DFCHO) and dissolved combined carbohydrates (DCCHO) in saline matrices, such as oceanic seawater, Arctic ice core samples or brine using a combination of a desalination with electro-dialysis (ED) and high-performance anion exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD). Free neutral sugars, such as glucose and galactose, were found with 95 %–98 % recovery rates. Free amino sugars and free uronic acids were strongly depleted during ED at pH=8, but an adjustment of the pH could result in higher recoveries (58 %–59 % for amino sugars at pH=11; 45 %–49 % for uronic acids at pH=1.5). The applicability of this method for the analysis of DCCHO was evaluated with standard solutions and seawater samples compared with another established desalination method using membrane dialysis. DFCHO in field samples from different regions on Earth ranged between 11 and 118 nM and DCCHO between 260 and 1410 nM. This novel method has the potential to contribute to a better understanding of biogeochemical processes in the oceans and sea–air transfer processes of organic matter into the atmosphere in future studies.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-07-16
    Description: A sensor comprised of an electronic circuit and a hybrid single and dual heat pulse probe was constructed and tested along with a novel signal processing procedure to determine changes in the effective dual-probe spacing radius over the time of measurement. The circuit utilized a proportional–integral–derivative (PID) controller to control heat inputs into the soil medium in lieu of a variable resistor. The system was designed for onboard signal processing and implemented USB, RS-232, and SDI-12 interfaces for machine-to-machine (M2M) exchange of data, thereby enabling heat inputs to be adjusted to soil conditions and data availability shortly after the time of experiment. Signal processing was introduced to provide a simplified single-probe model to determine thermal conductivity instead of reliance on late-time logarithmic curve fitting. Homomorphic and derivative filters were used with a dual-probe model to detect changes in the effective probe spacing radius over the time of experiment to compensate for physical changes in radius as well as model and experimental error. Theoretical constraints were developed for an efficient inverse of the exponential integral on an embedded system. Application of the signal processing to experiments on sand and peat improved the estimates of soil water content and bulk density compared to methods of curve fitting nominally used for heat pulse probe experiments. Applications of the technology may be especially useful for soil and environmental conditions under which effective changes in probe spacing radius need to be detected and compensated for over the time of experiment.
    Print ISSN: 2193-0856
    Electronic ISSN: 2193-0864
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-07-17
    Description: SUMMARY The horizontal-to-vertical spectral ratio (HVSR) of ambient noise is commonly used to infer a site's resonance frequency (${f_{0,site}}$). HVSR calculations are performed most commonly using the Fourier amplitude spectrum obtained from a single merged horizontal component (e.g. the geometric mean component) from a three-component sensor. However, the use of a single merged horizontal component implicitly relies on the assumptions of azimuthally isotropic seismic noise and 1-D surface and subsurface conditions. These assumptions may not be justified at many sites, leading to azimuthal variability in HVSR measurements that cannot be accounted for using a single merged component. This paper proposes a new statistical method to account for azimuthal variability in the peak frequency of HVSR curves (${f_{0,HVSR}}$). The method uses rotated horizontal components at evenly distributed azimuthal intervals to investigate and quantify azimuthal variability. To ensure unbiased statistics for ${f_{0,HVSR}}$ are obtained, a frequency-domain window-rejection algorithm is applied at each azimuth to automatically remove contaminated time windows in which the ${f_{0,HVSR}}$ values are statistical outliers relative to those obtained from the majority of windows at that azimuth. Then, a weighting scheme is used to account for different numbers of accepted time windows at each azimuth. The new method is applied to a data set of 114 HVSR measurements with significant azimuthal variability in ${f_{0,HVSR}}$, and is shown to reliably account for this variability. The methodology is also extended to the estimation of a complete lognormal-median HVSR curve that accounts for azimuthal variability. To encourage the adoption of this statistical approach to accounting for azimuthal variability in single-station HVSR measurements, the methods presented in this paper have been incorporated into hvsrpy, an open-source Python package for HVSR processing.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-07-16
    Description: The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) mission is one of six high-priority candidate missions (HPCMs) under consideration by the European Commission to enlarge the Copernicus Space Component. Together, the high-priority candidate missions fill gaps in the measurement capability of the existing Copernicus Space Component to address emerging and urgent user requirements in relation to monitoring anthropogenic CO2 emissions, polar environments, and land surfaces. The ambition is to enlarge the Copernicus Space Component with the high-priority candidate missions in the mid-2020s to provide enhanced continuity of services in synergy with the next generation of the existing Copernicus Sentinel missions. CRISTAL will carry a dual-frequency synthetic-aperture radar altimeter as its primary payload for measuring surface height and a passive microwave radiometer to support atmospheric corrections and surface-type classification. The altimeter will have interferometric capabilities at Ku-band for improved ground resolution and a second (non-interferometric) Ka-band frequency to provide information on snow layer properties. This paper outlines the user consultations that have supported expansion of the Copernicus Space Component to include the high-priority candidate missions, describes the primary and secondary objectives of the CRISTAL mission, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-07-16
    Description: It is widely accepted that the atmospheric boundary layer is drastically under-sampled in the vertical dimension. In recent years, the commercial availability of ground-based remote sensors combined with the widespread use of small, weather-sensing uncrewed aerial systems (WxUAS) has opened up many opportunities to fill this measurement gap. In July 2018, the University of Oklahoma (OU) deployed a state-of-the-art WxUAS, dubbed the CopterSonde, and the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS) in the San Luis Valley in south-central Colorado. Additionally, these systems were deployed to the Kessler Atmospheric and Ecological Field Station (KAEFS) in October 2018. The colocation of these various systems provided ample opportunity to compare and contrast kinematic and thermodynamic observations from different methodologies of boundary layer profiling, namely WxUAS, remote sensing, and the traditional in situ radiosonde. In this study, temperature, dew point temperature, wind speed, and wind direction from these platforms are compared statistically with data from the two campaigns. Moreover, we present select instances from the dataset to highlight differences between the measurement techniques. This analysis highlights strengths and weaknesses of planetary boundary layer profiling and helps lay the groundwork for developing highly adaptable systems that integrate remote and in situ profiling techniques.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-07-16
    Description: Für die Verortung der deutschen akademischen Humangeographie im Geflecht zwischen wissenschaftlicher Praxis, theoretischen Propositionen und Lehralltag war der Geographentag in Kiel im Jahre 1969 ein Meilenstein. Anlässlich der Erinnerung an den Ort und die Debatten vor 50 Jahren wurde wiederum Kiel im Jahre 2019 zu einem Ort der Reflektion. Der hier vorliegende Beitrag versucht in einer bewusst persönlich formulierten Art die Impulse, die von „Kiel 1969“ ausgingen, im universitären Alltag des Geographischen Institutes der TU München in den 1980er Jahren zu verorten und hierdurch gewissermaßen zu relativieren. Hierdurch entsteht ein differenziertes Bild von richtungsweisenden Veränderungen und verharrenden Strukturen, welche ineinander verwoben die damals überregional bekannte Münchener Sozialgeographie charakterisierten – und für die deutschsprachige Humangeographie über die speziell Münchner Zustände hinaus bezeichnend waren.
    Print ISSN: 0016-7312
    Electronic ISSN: 2194-8798
    Topics: Ethnic Sciences , Geography
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-01-08
    Description: An improved two-sphere integration (TSI) technique has been developed to quantify black carbon (BC) concentrations in the atmosphere and seasonal snow. The major advantage of this system is that it combines two distinct integrated spheres to reduce the scattering effect due to light-absorbing particles and thus provides accurate determinations of total light absorption from BC collected on Nuclepore filters. The TSI technique can be calibrated using a series of 15 filter samples of standard fullerene soot. This technique quantifies the mass of BC by separating the spectrally resolved total light absorption into BC and non-BC fractions. To assess the accuracy of the improved system, an empirical procedure for measuring BC concentrations with a two-step thermal–optical method is also applied. Laboratory results indicate that the BC concentrations determined using the TSI technique and theoretical calculations are well correlated (R2=0.99), whereas the thermal–optical method underestimates BC concentrations by 35 %–45 % compared to that measured by the TSI technique. Assessments of the two methods for atmospheric and snow samples revealed excellent agreement, with least-squares regression lines with slopes of 1.72 (r2=0.67) and 0.84 (r2=0.93), respectively. However, the TSI technique is more accurate in quantifications of BC concentrations in both the atmosphere and seasonal snow, with an overall lower uncertainty. Using the improved TSI technique, we find that light absorption at a wavelength of 550 nm due to BC plays a dominant role relative to non-BC light absorption in both the atmosphere (62.76 %–91.84 % of total light absorption) and seasonal snow (43.11 %–88.56 %) over northern China.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-07-15
    Description: Quantitative precipitation estimation with commercial microwave links (CMLs) is a technique developed to supplement weather radar and rain gauge observations. It is exploiting the relation between the attenuation of CML signal levels and the integrated rain rate along a CML path. The opportunistic nature of this method requires a sophisticated data processing using robust methods. In this study we focus on the processing step of rain event detection in the signal level time series of the CMLs, which we treat as a binary classification problem. This processing step is particularly challenging, because even when there is no rain, the signal level can show large fluctuations similar to that during rainy periods. False classifications can have a high impact on falsely estimated rainfall amounts. We analyze the performance of a convolutional neural network (CNN), which is trained to detect rainfall-specific attenuation patterns in CML signal levels, using data from 3904 CMLs in Germany. The CNN consists of a feature extraction and a classification part with, in total, 20 layers of neurons and 1.4×105 trainable parameters. With a structure inspired by the visual cortex of mammals, CNNs use local connections of neurons to recognize patterns independent of their location in the time series. We test the CNN's ability to recognize attenuation patterns from CMLs and time periods outside the training data. Our CNN is trained on 4 months of data from 800 randomly selected CMLs and validated on 2 different months of data, once for all CMLs and once for the 3104 CMLs not included in the training. No CMLs are excluded from the analysis. As a reference data set, we use the gauge-adjusted radar product RADOLAN-RW provided by the German meteorological service (DWD). The model predictions and the reference data are compared on an hourly basis. Model performance is compared to a state-of-the-art reference method, which uses the rolling standard deviation of the CML signal level time series as a detection criteria. Our results show that within the analyzed period of April to September 2018, the CNN generalizes well to the validation CMLs and time periods. A receiver operating characteristic (ROC) analysis shows that the CNN is outperforming the reference method, detecting on average 76 % of all rainy and 97 % of all nonrainy periods. From all periods with a reference rain rate larger than 0.6 mm h−1, more than 90 % was detected. We also show that the improved event detection leads to a significant reduction of falsely estimated rainfall by up to 51 %. At the same time, the quality of the correctly estimated rainfall is kept at the same level in regards to the Pearson correlation with the radar rainfall. In conclusion, we find that CNNs are a robust and promising tool to detect rainfall-induced attenuation patterns in CML signal levels from a large CML data set covering all of Germany.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-07-15
    Description: Per capita arable land is decreasing due to the rapidly increasing population, and fresh water is becoming scarce and more expensive. Therefore, farmers should continue to use technology and innovative solutions to improve efficiency, save input costs, and optimise environmental resources (such as water). In the case study presented in this paper, the Global Navigation Satellite System interferometric reflectometry (GNSS-IR) technique was used to monitor soil moisture during 66 d, from 3 December 2018 to 6 February 2019, in the installations of the Cajamar Centre of Experiences, Paiporta, Valencia, Spain. Two main objectives were pursued. The first was the extension of the technique to a multi-constellation solution using GPS, GLONASS, and GALILEO satellites, and the second was to test whether mass-market sensors could be used for this technique. Both objectives were achieved. At the same time that the GNSS observations were made, soil samples taken at 5 cm depth were used for soil moisture determination to establish a reference data set. Based on a comparison with that reference data set, all GNSS solutions, including the three constellations and the two sensors (geodetic and mass market), were highly correlated, with a correlation coefficient between 0.7 and 0.85.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-07-10
    Description: Catalina Basin, located within the southern California Inner Continental Borderland (ICB), United States, is traversed by two active submerged fault systems that are part of the broader North America–Pacific plate boundary: the San Clemente fault (along with a prominent splay, the Kimki fault) and the Catalina fault. Previous studies have suggested that the San Clemente fault (SCF) may be accommodating up to half of the ∼8 mm/yr right-lateral slip distributed across the ICB between San Clemente Island and the mainland coast, and that the Catalina fault (CF) acts as a significant restraining bend in the larger transform system. Here, we provide new high-resolution geophysical constraints on the seabed morphology, deformation history, and kinematics of the active faults in and on the margins of Catalina Basin. We significantly revise SCF mapping and describe a discrete releasing bend that corresponds with lows in gravity and magnetic anomalies, as well as a connection between the SCF and the Santa Cruz fault to the north. Subsurface seismic-reflection data show evidence for a vertical SCF with significant lateral offsets, while the CF exhibits lesser cumulative deformation with a vertical component indicated by folding adjacent to the CF. Geodetic data are consistent with SCF right-lateral slip rates as high as ∼3.6 mm/yr and transpressional convergence of
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-07-10
    Description: The Lake Malawi (Nyasa) Rift, in the East African Rift System (EARS), is an ideal modern analogue for the study of extensional tectonic systems in low strain rate settings. The seismically active rift contains the 700-m-deep Lake Malawi, one of the world’s oldest and largest freshwater lakes with one of the most diverse endemic faunal assemblages on Earth. Modern and reprocessed legacy multichannel seismic-reflection data are constrained by velocity information from a wide-angle seismic experiment to evaluate variability in extension, segmentation, and timing of fault development along the 550-km-long rift zone. Fault geometries and patterns of synrift sediment fills show that the Lake Malawi Rift is composed of three asymmetric rift segments, with intervening accommodation zone morphologies controlled by the degree of overlap between segment border faults. Most extension occurs on the basin border faults, and broadly distributed extension is only observed at one accommodation zone, where no border fault overlap is observed. Structural restorations indicate a weakly extended rift system (∼7 km), with diminishing values of extension and thinner rift fill from north to south, suggesting a progressively younger rift to the south. There is no evidence of diking, sill injection, or extrusives within the synrift fill of the Lake Malawi Rift, although the volcanic load of the Rungwe magmatic system north of the lake and related subsidence may explain the presence of anomalously thick synrift fill in the northernmost part of the lake. The thickest synrift depocenters (∼5.5 km) are confined to narrow 10- to 20-km-wide zones adjacent to each rift segment border fault, indicating concentration of strain on border faults rather than intrarift faults. Intrarift structures control axial sediment delivery in the North and Central rift segments, focusing sediment into confined areas resulting in localized overpressure and shale diapirs. The asymmetric, basement-controlled relief was established early in rift development. When overprinted with frequent high-amplitude hydroclimate fluctuations, which are well documented for this basin, the resulting highly variable landscape and lake morphometry through time likely impacted the diverse endemic faunas that evolved within the basin. New seismic-reflection data, augmented by wide-angle seismic data and age constraints from drill core, offer the most highly resolved 3D view to date of latest Cenozoic extensional deformation in East Africa and provide a foundation for hazards analysis, resource assessments, and constraining deformation in a low strain rate, magma-poor active rift.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-07-10
    Description: Processes linked to shallow subduction, slab rollback, and extension are recorded in the whole-rock major-, trace-element, and Sr, Nd, and Pb isotopic compositions of mafic magmatic rocks in both time and space over southwestern United States. Eocene to Mio-Pliocene volcanic rocks were sampled along a transect across the west-central Great Basin (GB) in Nevada to the Ancestral Cascade Arc (ACA) in the northern Sierra Nevada, California (∼39°–40° latitude), which are interpreted to represent a critical segment of a magmatic sweep that occurred as a result of subduction from east-northeast convergence between the Farallon and North American plates and extension related to the change from a convergent to a transform margin along the western edge of North America. Mafic volcanic rocks from the study area can be spatially divided into three broad regions: GB (5–35 Ma), eastern ACA, and western ACA (2.5–16 Ma). The volcanic products are dominantly calc-alkalic but transition to alkalic toward the east. Great Basin lavas erupted far inland from the continental margin and have higher K, P, Ti, and La/Sm as well as lower (Sr/P)pmn, Th/Rb, and Ba/Nb compared to ACA lavas. Higher Pb isotopic values, combined with lower Ce/Ce* and high Th/Nb ratios in some ACA lavas, are interpreted to come from slab sediment. Mafic lavas from the GB and ACA have overlapping 87Sr/86Sr and 143Nd/144Nd values that are consistent with mantle wedge melts mixing with a subduction-modified lithospheric mantle source. Eastern and western ACA lavas largely overlap in age and elemental and isotopic composition, with the exception of a small subset of lavas from the westernmost ACA region; these lavas show lower 87Sr/86Sr at a given 143Nd/144Nd. Results show that although extension contributes to melting in some regions (e.g., selected lavas in the GB and Pyramid Lake), chemical signatures for most mafic melts are dominated by subduction-related mantle wedge and a lithospheric mantle component.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-07-14
    Description: SUMMARY This study focuses in the analysis of the internal structure of the upper 3 km of Los Humeros (LH) caldera and the relation of electrical and hydrothermal anomalies. For this purpose, we measured, processed and interpreted 78 broad-band magnetotelluric (MT) soundings. We performed a 3-D inversion of the data set (ModEM) using all MT soundings, although only half of the available frequencies per sounding due to limited computed power. We also carried out the 2-D inversions (NLCG) of the invariant determinant along two orthogonal profiles (EW and NS) crossing the caldera structure; their comparison yields similar resistivity and structural models results. The resistivity modelling is complemented with the results of a joint 3-D inversion of an accurate gravity database of 720 stations, and total field aeromagnetic data (SGM) from the caldera crater. The combined results provide novel details about the structure of the shallow geothermal reservoir of the resurgence caldera complex hosting the active hydrothermal system. Density and resistivity models show the existence of a composed crater basin structure separated by an EW high-density structure; the northern basin is associated to the LH crater, whereas the southern basin associates to the emergent Los Potreros (LP) caldera basin. The magnetization model indicates that there is a common source for the magnetic volcanic products observed at the caldera surface, and that the LP fault is the more magnetized fault of the geothermal system. The propylic zoning under the geothermal field, which according to the MT model results has resistivities above ∼100 Ω-m, was extrapolated using this and additional criteria to obtain the distribution of other hypothetical propylitic zones of hydrothermal potential.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-07-13
    Description: SUMMARY For the time stationary global geomagnetic field, a new modelling concept is presented. A Bayesian non-parametric approach provides realistic location dependent uncertainty estimates. Modelling related variabilities are dealt with systematically by making little subjective a priori assumptions. Rather than parametrizing the model by Gauss coefficients, a functional analytic approach is applied. The geomagnetic potential is assumed a Gaussian process to describe a distribution over functions. A priori correlations are given by an explicit kernel function with non-informative dipole contribution. A refined modelling strategy is proposed that accommodates non-linearities of archeomagnetic observables: First, a rough field estimate is obtained considering only sites that provide full field vector records. Subsequently, this estimate supports the linearization that incorporates the remaining incomplete records. The comparison of results for the archeomagnetic field over the past 1000 yr is in general agreement with previous models while improved model uncertainty estimates are provided.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-07-13
    Description: SUMMARY Rapid development of time-lapse seismic monitoring instrumentations has made it possible to collect dense time-lapse data for tomographically retrieving time-lapse (even continuous) images of subsurface changes. While traditional time-lapse full waveform inversion (TLFWI) algorithms are designed for sparse time-lapse surveys, they lack of effective temporal constraint on time-lapse data, and, more importantly, lack of the uncertainty estimation of the TLFWI results that is critical for further interpretation. Here, we propose a new data assimilation TLFWI method, using hierarchical matrix powered extended Kalman filter (HiEKF) to quantify the image uncertainty. Compared to existing Kalman filter algorithms, HiEKF allows to store and update a data-sparse representation of the cross-covariance matrices and propagate model errors without expensive operations involving covariance matrices. Hence, HiEKF is computationally efficient and applicable to 3-D TLFWI problems. Then, we reformulate TLFWI in the framework of HiEKF (termed hereafter as TLFWI-HiEKF) to predict time-lapse images of subsurface spatiotemporal velocity changes and simultaneously quantify the uncertainty of the inverted velocity changes over time. We demonstrate the validity and applicability of TLFWI–HiEKF with two realistic CO2 monitoring models derived from Frio-II and Cranfield CO2 injection sites, respectively. In both 2-D and 3-D examples, the inverted high-resolution time-lapse velocity results clearly reveal a continuous velocity reduction due to the injection of CO2. Moreover, the accuracy of the model is increasing over time by assimilating more time-lapse data while the standard deviation is decreasing over lapsed time. We expect TLFWI-HiEKF to be equipped with real-time seismic monitoring systems for continuously imaging the distribution of subsurface gas and fluids in the future large-scale CO2 sequestration experiments and reservoir management.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-07-09
    Description: Despite intense focus on the ∼190 ‰ drop in atmospheric Δ14C during Heinrich Stadial 1 at ∼17.4–14.6 ka, the specific mechanisms responsible for the apparent Δ14C excess in the glacial atmosphere have received considerably less attention. The computationally efficient Bern3D Earth system model of intermediate complexity, designed for long-term climate simulations, allows us to address a very fundamental but still elusive question concerning the atmospheric Δ14C record: how can we explain the persistence of relatively high Δ14C values during the millennia after the Laschamp event? Large uncertainties in the pre-Holocene 14C production rate, as well as in the older portion of the Δ14C record, complicate our qualitative and quantitative interpretation of the glacial Δ14C elevation. Here we begin with sensitivity experiments that investigate the controls on atmospheric Δ14C in idealized settings. We show that the interaction with the ocean sediments may be much more important to the simulation of Δ14C than had been previously thought. In order to provide a bounded estimate of glacial Δ14C change, the Bern3D model was integrated with five available estimates of the 14C production rate as well as reconstructed and hypothetical paleoclimate forcing. Model results demonstrate that none of the available reconstructions of past changes in 14C production can reproduce the elevated Δ14C levels during the last glacial. In order to increase atmospheric Δ14C to glacial levels, a drastic reduction of air–sea exchange efficiency in the polar regions must be assumed, though discrepancies remain for the portion of the record younger than ∼33 ka. We end with an illustration of how the 14C production rate would have had to evolve to be consistent with the Δ14C record by combining an atmospheric radiocarbon budget with the Bern3D model. The overall conclusion is that the remaining discrepancies with respect to glacial Δ14C may be linked to an underestimation of 14C production and/or a biased-high reconstruction of Δ14C over the time period of interest. Alternatively, we appear to still be missing an important carbon cycle process for atmospheric Δ14C.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-09-01
    Print ISSN: 1052-5173
    Electronic ISSN: 1943-2690
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-08-06
    Description: SUMMARY Seven years after the beginning of a massive wastewater injection project in eastern Colombia, local earthquake activity increased significantly. The field operator and the Colombian Geological Survey immediately reinforced the monitoring of the area. Our analysis of the temporal evolution of the seismic and injection data together with our knowledge of the geological parameters of the region indicate that the surge of seismicity is being induced by the re-injection of produced water into the same three producing reservoirs. Earthquake activity began on known faults once disposal rates had reached a threshold of ∼2 × 106 m3 of water per month. The average reservoir pressure had remained constant at 7.6 MPa after several years of production, sustained by a large, active aquifer. Surface injection pressures in the seismically active areas remain below 8.3 MPa, a value large enough to activate some of the faults. Since faults are mapped throughout the region and many do not have seismicity on them, we conclude that the existence of known faults is not the only control on whether earthquakes are generated. Stress conditions of these faults are open to future studies. Earthquakes are primarily found in four clusters, located near faults mapped by the operator. The hypocentres reveal vertical planes with orientations consistent with focal mechanisms of these events. Stress inversion of the focal mechanisms gives a maximum compression in the direction ENE-WSW, which is in agreement with borehole breakout measurements. Since the focal mechanisms of the earthquakes are consistent with the tectonic stress regime, we can conclude that the seismicity is resulting from the activation of critically stressed faults. Slip was progressive and seismic activity reached a peak before declining to few events per month. The decline in seismicity suggests that most of the stress has been relieved on the main faults. The magnitude of a large majority of the recorded earthquakes was lower than 4, as the pore pressure disturbance did not reach the mapped large faults whose activation might have resulted in larger magnitude earthquakes. Our study shows that a good knowledge of the local fault network and conditions of stress is of paramount importance when planning a massive water disposal program. These earthquakes indicate that while faults provide an opportunity to dispose produced water at an economically attractive volume–pressure ratio, the possibility of induced seismicity must also be considered.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...