ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-21
    Description: The western European kinematic evolution results from the opening of the western Neotethys and the Atlantic oceans since the late Paleozoic and the Mesozoic. Geological evidence shows that the Iberian domain recorded the propagation of these two oceanic systems well and is therefore a key to significantly advancing our understanding of the regional plate reconstructions. The late-Permian–Triassic Iberian rift basins have accommodated extension, but this tectonic stage is often neglected in most plate kinematic models, leading to the overestimation of the movements between Iberia and Europe during the subsequent Mesozoic (Early Cretaceous) rift phase. By compiling existing seismic profiles and geological constraints along the North Atlantic margins, including well data over Iberia, as well as recently published kinematic and paleogeographic reconstructions, we propose a coherent kinematic model of Iberia that accounts for both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was a domain of distributed and oblique extension made of two rift systems in the Pyrenees and in the Iberian intra-continental basins. It differs from standard models that consider left-lateral strike-slip movement localized only in the northern Pyrenees in introducing a significant strike-slip movement south of the Ebro block. At a larger scale it emphasizes the role played by the late-Permian–Triassic rift and magmatism, as well as strike-slip faulting in the evolution of the western Neotethys Ocean and their control on the development of the Atlantic rift.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2021-03-23
    Description: The Cenomanian to early Santonian interval is usually considered a time of postrifting tectonic quiescence around the northern margins of Iberia that preceded the onset of the Pyrenean convergence by crustal thrusting in the latest Santonian. However, plate kinematic models of the Mesozoic evolution of Iberia poorly constrain the Turonian-Santonian position of Iberia relative to Eurasia. This study reconstructs changes in the sedimentary facies and architecture of the Iberian carbonate platform throughout the Late Cretaceous and sheds new light on the geodynamic evolution of the Iberia-Eurasia relationship at that time. Sixteen outcrop sections were described and 24 sedimentary facies identified that define 5 depositional environments ranging from the basin to the continental setting. From these and previously published field data we reconstruct the evolution of the Pyrenean carbonate platform, on an east-west transect nearly 400 km long, on the basis of 11 short-term depositional sequences and 5 long-term systems tracts. In our interpretation, the Cenomanian and Turonian correspond to a postrift stage during which the European and Iberian margins, together with the deep basin between them, subside gently, as shown by accommodation rates varying from ~15 to 30 m/My in the margins and ~100 to 150 m/My in the basin. The Coniacian and early Santonian are characterized by a large-scale flexural response consisting of (1) uplift of the southern Iberian margin, with negative accommodation rates, karstified surfaces and paleosols, and (2) increasing subsidence rates in the basin and its edges (the northern Iberian margin and eastern Aquitaine platform), with accommodation rates several times greater than during the Turonian. We propose that far-field stress associated with slight northward motion of the Iberia plate led to the incipient large-scale flexural deformation in the Pyrenean domain. The late Santonian and Campanian are an early orogenic stage marked by rapid subsidence throughout the Pyrenean domain, except at its western end. We argue that the initiation of the Pyrenean convergence, usually considered to occur during the latest Santonian, occurred in the Coniacian.
    Print ISSN: 0037-9409
    Electronic ISSN: 1777-5817
    Topics: Geosciences
    Published by EDP Sciences on behalf of Société Géologique de France.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-06
    Description: The North Pyrenean Zone (NPZ) inverts remnants of an Aptian-Cenomanian rifting during which subcontinental mantle was exhumed. These remnants contain a syn-rift HT-LP metamorphic domain, the Internal Metamorphic Zone (IMZ). New field and RSCM data and structural cross-sections constrain the structural and metamorphic relationships between the IMZ and the underlying low-grade NPZ. The IMZ is a tectonic nappe that overthrusts the European margin along the 3M Fault. Along this contact, the Tuc de Haurades peridotite is surrounded by tectonic breccia composed of ductilely deformed carbonate and sparse lherzolite clasts that passes upward into foliated marbles. Marbles contain top-to-south ductile shear, recording ongoing extensional deformation that marks the onset of HT metamorphism. During Early Cretaceous rifting, European Mesozoic sedimentary cover metamorphosed and its base brecciated as it slid basinward on Triassic salt onto exhumed mantle. As the exhumed mantle domain closed during early convergence, the detached metamorphosed cover was transported northward and thrust into the distal European margin, sampling lherzolite tectonic lenses. This triggered the first tectonic loading on the European plate. This study highlights the role of the IMZ in the early Pyrenean orogenic phase and gives new insights on the E-W diversity of structural setting of the NPZ peridotites.Table with RSCM temperatures and original and high quality photographs of the samples are available on the GSL Figshare portal https://doi.org/10.6084/m9.figshare.c.5539260.
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-27
    Description: The architecture and nature of the continental lithosphere result from billions of years of tectonic and magmatic evolution. Continental deformation over broad regions form collisional orogens which evolution is controlled by the interactions between properties inherited from hits long-lasting evolution and plate kinematics. The analysis of present-day kinematic patterns and geophysical imaging of lithosphere structure can provide clues on these interactions. However how these interactions are connected through time and space to control topographic evolution in collision zones is unknown. Here we explore the case of the Cenozoic mountain building and topographic evolution of Western Europe. We first review the tectono-magmatic evolution of the lithosphere of Europe based on the exploitation of geological, geochronological and geochemical constraints from ophiolites, mafic rocks and xenoliths data. Combined with the analyses of low-temperature thermochronological and plate kinematic constraints we discuss the key controlling parameters of the topography. We show that among the required ingredients is the primary effect of plume-, rift- and subduction-related metasomatic events on lithosphere composition. Those main events occurred during the Neoproterozoic (750-500 Ma) and the late Carboniferous-Permian (310-270 Ma). They resulted in the thinning and weakening of the sub-continental lithospheric mantle of Europe. Contrasting lithosphere strengths and plate-mantle coupling in Western Europe with respect to the cratonic lithosphere of West Africa Craton and Baltica is the first-order parameter that explain the observed strain and stress patterns. Subsequent magmatic and thinning episodes, including those evidenced by the opening of the early Jurassic Alpine Tethys and the CAMP event, followed by late Jurassic and early Cretaceous crustal thinning, prevented thermal relaxation of the lithosphere and allowed further weakening of the European lithosphere. The spatial and temporal evolution of topographic growth resolved by the episodes of increased exhumation show two main periods of mountain building. During the late Cretaceous-early Cenozoic (80-50 Ma) contractional deformation was distributed from North Africa to Europe, but the topographic response to the onset of Africa-Eurasia convergence is detected only in central Europe. The lack of rapid exhumation signal in southern Europe and north Africa reveal that the initial continental accretion in these regions was accommodated under water in domains characterized by thin continental or oceanic crust. The second phase of orogenic uplift period starts at about 50 Ma between the High Atlas and the Pyrenees. This second key period reflects the time delay required for the wider rift systems positioned between Africa and Europe to close, likely promoted by the acceleration of convergence. Tectonic regime then became extensional in northern Europe as West European Rift (WER) opened. This event heralds the opening of the Western Mediterranean between Adria and Iberia at ca. 35 Ma. While mature orogenic systems developed over Iberia at this time, the eastern domain around northern Adria (Alps) was still to be fully closed. This kinematic and mechanical conditions triggered the initiation of backarc extension, slab retreat and delamination in the absence of strong slab pull forces. From about 20 Ma, the high temperature in the shallow asthenosphere and magmatism trapped in the mantle lithosphere contributed to topographic uplift. The first period (80-20 Ma) reveals spatially variable onset of uplift in Europe that are arguably controlled by inherited crustal architecture, superimposed on the effect of large-scale lithospheric properties. The second period marks a profound dynamic change, as sub-lithospheric processes became the main drivers. The channelized mantle flow from beneath Morocco to Central Europe builds the most recent topography. In this study, we have resolved when, where and how inheritance at lithospheric and crustal levels rule mountain building processes. More studies focus on the tectonic-magmatic evolution of the continental lithosphere are needed. We argue that when they are combined with plate reconstructions and thermochronological constraints the relative impact of inheritance and plate convergence on the orogenic evolution can be resolved.
    Print ISSN: 0037-9409
    Electronic ISSN: 1777-5817
    Topics: Geosciences
    Published by EDP Sciences on behalf of Société Géologique de France.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-01
    Description: The West European collisional Alpine belts are the result of the inversion, initiated in the middle Cretaceous, of the complex western Neotethys and the Atlantic continental rift domains and closure of remnants of Tethys between the North Africa and European cratons. While the kinematics of Africa relative to Europe is well understood, the kinematics of microplates such as Iberia and Adria within the diffuse collisional plate boundary is still a matter of debate. We review geological and stratigraphic constraints in the peri-Iberia fold-thrust belts and basins to define the deformation history and crustal segmentation of the West European realm. These data are then implemented with other constraints from recently published kinematic and paleogeographic reconstructions to propose a new regional tectonic and kinematic model for Western Europe from the late Permian to recent times. Our model suggests that the pre-collisional extension between Europe and Africa plates was distributed and oblique, hence building discontinuous rift segments between the southern Alpine Tethys and the Central Atlantic. They were characterised by variably extended crust and narrow oceanic domains segmented across transfer structures and micro-continental blocks. The main tectonic structures inherited from the late Variscan orogeny localized deformation associated with rifting and orogenic belts. We show that continental blocks, including the Ebro-Sardinia-Corsica block, have been key in accommodating strike-slip, extension, and contraction in both Iberia and Adria. The definition of a new Ebro-Sardinia-Corsica block allows refining the tectonic relationships between Iberia, Europe and Adria in the Alps. By the Paleogene, the convergence of Africa closed the spatially distributed oceanic domains, except for the Ionian basin. From this time onwards, collision spread over the different continental blocks from Africa to Europe. The area was eventually affected by the West European Rift, in the late Eocene, which may have controlled the opening of the West Mediterranean. The low convergence associated with the collisional evolution of Western Europe permits to resolve the control of the inherited crustal architecture on the distribution of strain in the collision zone, that is otherwise lost in more mature collisional domain such as the Himalaya.
    Print ISSN: 0037-9409
    Electronic ISSN: 1777-5817
    Topics: Geosciences
    Published by EDP Sciences on behalf of Société Géologique de France.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...