ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-01
    Description: As a result of recent climate warming, permafrost thaw changes landscape hydrology and threatens infrastructure in the north. Topsoil temperature is an important indicator of how surface conditions translate to active layer thickness and permafrost temperatures. We measured topsoil temperature at 1-3cm depth at 68 locations within 0.5km²? at the Trail Valley Creek study site in the tundra-taiga transition zone, Northwest Territories, Canada. The sensors recorded temperature below six different vegetation types for two years (2016-2018). Topsoil temperature was highly spatially variable even within vegetation types and with mean annual temperatures between -3.7 and 0.1°C. Winter and spring topsoil temperatures clearly depended on the snow distribution, which was influenced by vegetation. On the other hand, summer and autumn temperatures were less variable in space and only weakly related with vegetation type or height, making vegetation a poor proxy for summer soil warming. Vegetation played a crucial part in the link between topsoil temperature and thaw depth. Cold winter temperature was associated with deep active layers in the following summer beneath lichen and dwarf shrub tundra, while we observed the opposite beneath tall shrubs and tussocks. Summer topsoil temperature was not important for thaw depth, in particular at tall shrub and tussock locations. Only beneath lichen and dwarf shrub tundra, we could observe a tendency towards deeper active layers at locations with higher cumulative positive degree days. Our study elucidates how vegetation mediates between above ground processes and permafrost thaw, likely in combination with soil properties and soil moisture. We highlight the importance of complex feedback mechanisms and spatial variability within a few meters for the overall permafrost response. Therefore, reliable estimates of permafrost vulnerability based on permafrost models or remote sensing observations will need to incorporate vegetation-permafrost interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3Biogeosciences, 17(16), pp. 4261-4279, ISSN: 1726-4189
    Publication Date: 2022-10-21
    Description: Connections between vegetation and soil thermal dynamics are critical for estimating the vulnerability of permafrost to thaw with continued climate warming and vegetation changes. The interplay of complex biophysical processes results in a highly heterogeneous soil temperature distribution on small spatial scales. Moreover, the link between topsoil temperature and active layer thickness remains poorly constrained. Sixty-eight temperature loggers were installed at 1-3 cm depth to record the distribution of topsoil temperatures at the Trail Valley Creek study site in the northwestern Canadian Arctic. The measurements were distributed across six different vegetation types characteristic for this landscape. Two years of topsoil temperature data were analysed statistically to identify temporal and spatial characteristics and their relationship to vegetation, snow cover, and active layer thickness. The mean annual topsoil temperature varied between -3.7 and 0.1°C within 0.5 km2. The observed variation can, to a large degree, be explained by variation in snow cover. Differences in snow depth are strongly related with vegetation type and show complex associations with late-summer thaw depth. While cold winter soil temperature is associated with deep active layers in the following summer for lichen and dwarf shrub tundra, we observed the opposite beneath tall shrubs and tussocks. In contrast to winter observations, summer topsoil temperature is similar below all vegetation types with an average summer topsoil temperature difference of less than 1°C. Moreover, there is no significant relationship between summer soil temperature or cumulative positive degree days and active layer thickness. Altogether, our results demonstrate the high spatial variability of topsoil temperature and active layer thickness even within specific vegetation types. Given that vegetation type defines the direction of the relationship between topsoil temperature and active layer thickness in winter and summer, estimates of permafrost vulnerability based on remote sensing or model results will need to incorporate complex local feedback mechanisms of vegetation change and permafrost thaw.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-23
    Description: Climate change is destabilizing permafrost landscapes, affecting infrastructure, ecosystems, and human livelihoods. The rate of permafrost thaw is controlled by surface and subsurface properties and processes, all of which are potentially linked with each other. However, no standardized protocol exists for measuring permafrost thaw and related processes and properties in a linked manner. The permafrost thaw action group of the Terrestrial Multidisciplinary distributed Observatories for the Study of the Arctic Connections (T-MOSAiC) project has developed a protocol, for use by non-specialist scientists and technicians, citizen scientists, and indigenous groups, to collect standardized metadata and data on permafrost thaw. The protocol introduced here addresses the need to jointly measure permafrost thaw and the associated surface and subsurface environmental conditions. The parameters measured along transects include: snow depth, thaw depth, vegetation height, soil texture, and water level. The metadata collection includes data on timing of data collection, geographical coordinates, land surface characteristics (vegetation, ground surface, water conditions), as well as photographs. Our hope is that this openly available dataset will also be highly valuable for validation and parameterization of numerical and conceptual models, and thus to the broad community represented by the T-MOSAiC project.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Public Library of Science (PLoS)
    In:  EPIC3PLOS Climate, Public Library of Science (PLoS), 3(3), pp. e0000360-e0000360, ISSN: 2767-3200
    Publication Date: 2024-04-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-26
    Description: Connections between vegetation and soil thermal dynamics are critical for estimating the vulnerability of permafrost to thaw with continued climate warming and vegetation changes. The interplay of complex biophysical processes results in a highly heterogeneous soil temperature distribution on small spatial scales. Moreover, the link between topsoil temperature and active layer thickness remains poorly constrained. Sixty-eight temperature loggers were installed at 1–3 cm depth to record the distribution of topsoil temperatures at the Trail Valley Creek study site in the northwestern Canadian Arctic. The measurements were distributed across six different vegetation types characteristic for this landscape. Two years of topsoil temperature data were analysed statistically to identify temporal and spatial characteristics and their relationship to vegetation, snow cover, and active layer thickness. The mean annual topsoil temperature varied between −3.7 and 0.1 ∘C within 0.5 km2. The observed variation can, to a large degree, be explained by variation in snow cover. Differences in snow depth are strongly related with vegetation type and show complex associations with late-summer thaw depth. While cold winter soil temperature is associated with deep active layers in the following summer for lichen and dwarf shrub tundra, we observed the opposite beneath tall shrubs and tussocks. In contrast to winter observations, summer topsoil temperature is similar below all vegetation types with an average summer topsoil temperature difference of less than 1 ∘C. Moreover, there is no significant relationship between summer soil temperature or cumulative positive degree days and active layer thickness. Altogether, our results demonstrate the high spatial variability of topsoil temperature and active layer thickness even within specific vegetation types. Given that vegetation type defines the direction of the relationship between topsoil temperature and active layer thickness in winter and summer, estimates of permafrost vulnerability based on remote sensing or model results will need to incorporate complex local feedback mechanisms of vegetation change and permafrost thaw.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...