ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:526  (42)
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (38)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (25)
  • Etna
  • American Geophysical Union  (64)
  • Springer Berlin Heidelberg  (55)
  • Wabern : Federal Office of Topography, Swiss Geological Survey
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2023-07-04
    Description: To resolve undifferenced GNSS phase ambiguities, dedicated satellite products are needed, such as satellite orbits, clock offsets and biases. The International GNSS Service CNES/CLS analysis center provides satellite (HMW) Hatch-Melbourne-Wübbena bias and dedicated satellite clock products (including satellite phase bias), while the CODE analysis center provides satellite OSB (observable-specific-bias) and integer clock products. The CNES/CLS GPS satellite HMW bias products are determined by the Hatch-Melbourne-Wübbena (HMW) linear combination and aggregate both code (C1W, C2W) and phase (L1W, L2W) biases. By forming the HMW linear combination of CODE OSB corrections on the same signals, we compare CODE satellite HMW biases to those from CNES/CLS. The fractional part of GPS satellite HMW biases from both analysis centers are very close to each other, with a mean Root-Mean-Square (RMS) of differences of 0.01 wide-lane cycles. A direct comparison of satellite narrow-lane biases is not easily possible since satellite narrow-lane biases are correlated with satellite orbit and clock products, as well as with integer wide-lane ambiguities. Moreover, CNES/CLS provides no satellite narrow-lane biases but incorporates them into satellite clock offsets. Therefore, we compute differences of GPS satellite orbits, clock offsets, integer wide-lane ambiguities and narrow-lane biases (only for CODE products) between CODE and CNES/CLS products. The total difference of these terms for each satellite represents the difference of the narrow-lane bias by subtracting certain integer narrow-lane cycles. We call this total difference “narrow-lane” bias difference. We find that 3% of the narrow-lane biases from these two analysis centers during the experimental time period have differences larger than 0.05 narrow-lane cycles. In fact, this is mainly caused by one Block IIA satellite since satellite clock offsets of the IIA satellite cannot be well determined during eclipsing seasons. To show the application of both types of GPS products, we apply them for Sentinel-3 satellite orbit determination. The wide-lane fixing rates using both products are more than 98%, while the narrow-lane fixing rates are more than 95%. Ambiguity-fixed Sentinel-3 satellite orbits show clear improvement over float solutions. RMS of 6-h orbit overlaps improves by about a factor of two. Also, we observe similar improvements by comparing our Sentinel-3 orbit solutions to the external combined products. Standard deviation value of Satellite Laser Ranging residuals is reduced by more than 10% for Sentinel-3A and more than 15% for Sentinel-3B satellite by fixing ambiguities to integer values.
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Bias comparison ; Sentinel-3A/B ; Undifferenced ambiguity resolution ; CNES/CLS ; CODE
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-22
    Description: In recent strapdown airborne and shipborne gravimetry campaigns with servo accelerometers of the widely used Q-Flex type, results have been impaired by heading-dependent measurement errors. This paper shows that the effect is, in all likelihood, caused by the sensitivity of the Q-Flex type sensor to the Earth’s magnetic field. In order to assess the influence of magnetic fields on the utilised strapdown IMU of the type iMAR iNAV-RQH-1003, the IMU has been exposed to various magnetic fields of known directions and intensities in a 3-D Helmholtz coil. Based on the results, a calibration function for the vertical accelerometer is developed. At the example of five shipborne and airborne campaigns, it is outlined that under specific circumstances the precision of the gravimetry results can be strongly improved using the magnetic calibration approach: The non-adjusted RMSE at repeated lines decreased from 1.19 to 0.26 mGal at a shipborne campaign at Lake Müritz, Germany. To the knowledge of the authors, a significant influence of the Earth’s magnetic field on strapdown inertial gravimetry is demonstrated for the first time.
    Description: Technische Universität Darmstadt (3139)
    Keywords: ddc:526 ; Gravimetry ; Strapdown ; Magnetic field ; Q-Flex ; IMU
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-22
    Description: The Sentinel-6 (or Jason-CS) altimetry mission provides a long-term extension of the Topex and Jason-1/2/3 missions for ocean surface topography monitoring. Analysis of altimeter data relies on highly-accurate knowledge of the orbital position and requires radial RMS orbit errors of less than 1.5 cm. For precise orbit determination (POD), the Sentinel-6A spacecraft is equipped with a dual-constellation GNSS receiver. We present the results of Sentinel-6A POD solutions for the first 6 months since launch and demonstrate a 1-cm consistency of ambiguity-fixed GPS-only and Galileo-only solutions with the dual-constellation product. A similar performance (1.3 cm 3D RMS) is achieved in the comparison of kinematic and reduced-dynamic orbits. While Galileo measurements exhibit 30–50% smaller RMS errors than those of GPS, the POD benefits most from the availability of an increased number of satellites in the combined dual-frequency solution. Considering obvious uncertainties in the pre-mission calibration of the GNSS receiver antenna, an independent inflight calibration of the phase centers for GPS and Galileo signal frequencies is required. As such, Galileo observations cannot provide independent scale information and the estimated orbital height is ultimately driven by the employed forces models and knowledge of the center-of-mass location within the spacecraft. Using satellite laser ranging (SLR) from selected high-performance stations, a better than 1 cm RMS consistency of SLR normal points with the GNSS-based orbits is obtained, which further improves to 6 mm RMS when adjusting site-specific corrections to station positions and ranging biases. For the radial orbit component, a bias of less than 1 mm is found from the SLR analysis relative to the mean height of 13 high-performance SLR stations. Overall, the reduced-dynamic orbit determination based on GPS and Galileo tracking is considered to readily meet the altimetry-related Sentinel-6 mission needs for RMS height errors of less than 1.5 cm.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Sentinel-6 ; Jason-CS ; Single-receiver ambiguity fixing ; Precise orbit determination ; GPS ; Galileo ; SLR ; Altimetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-22
    Description: In this simulation study we analyze the benefit of ground-space optical two-way links (OTWL) for Galileo precise orbit determination (POD). OTWL is a concept based on continuous wave laser ranging and time transfer with modulated signals from and to ground stations. The measurements are in addition to Global Navigation Satellite System (GNSS) observations. We simulate the measurements with regard to 16 Galileo Sensor Stations. In the simulation study we assume that the whole Galileo satellite constellation is equipped with terminals for OTWL. Using OTWL together with Galileo L-band, in comparison with an orbit solution calculated with L-band-only, demonstrates the advantage of combining two ranging techniques with different influences of systematic errors. The two-way link allows a station and satellite clock synchronization. Furthermore, we compare the ground-space concept with the satellite-to-satellite counterpart known as optical two-way inter-satellite links (OISL). The advantage of OTWL is the connection between the satellite system and the solid Earth as well as the possibility to synchronize the satellite clocks and the ground station clocks. The full network, using all three observation types in combination is simulated as well. The possibility to estimate additional solar radiation pressure (SRP) parameters within these combinations is a clear benefit of these additional links. We paid great attention to simulate systematic effects of all observation techniques as realistically as possible. For L-band these are measurement noise, tropospheric delays, phase center variation of receiver and transmitter antennas, constant and variable biases as well as multipath. For optical links we simulated colored and distance-dependent noise, offsets due to the link repeatability and offsets related to the equipment calibration quality. In addition, we added a troposphere error for the OTWL measurements. We discuss the influence on the formal orbit uncertainties and the effects of the systematic errors. Restrictions due to weather conditions are addressed as well. OTWL is synergetic with the other measurement techniques like OISL and can be used for data transfer and communication, respectively.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Galileo ; POD ; Optical two-way link ; Inter-satellite link
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-22
    Description: We present a partition-enhanced least-squares collocation (PE-LSC) which comprises several modifications to the classical LSC method. It is our goal to circumvent various problems of the practical application of LSC. While these investigations are focused on the modeling of the exterior gravity field the elaborated methods can also be used in other applications. One of the main drawbacks and current limitations of LSC is its high computational cost which grows cubically with the number of observation points. A common way to mitigate this problem is to tile the target area into sub-regions and solve each tile individually. This procedure assumes a certain locality of the LSC kernel functions which is generally not given and, therefore, results in fringe effects. To avoid this, it is proposed to localize the LSC kernels such that locality is preserved, and the estimated variances are not notably increased in comparison with the classical LSC method. Using global covariance models involves the calculation of a large number of Legendre polynomials which is usually a time-consuming task. Hence, to accelerate the creation of the covariance matrices, as an intermediate step we pre-calculate the covariance function on a two-dimensional grid of isotropic coordinates. Based on this grid, and under the assumption that the covariances are sufficiently smooth, the final covariance matrices are then obtained by a simple and fast interpolation algorithm. Applying the generalized multi-variate chain rule, also cross-covariance matrices among arbitrary linear spherical harmonic functionals can be obtained by this technique. Together with some further minor alterations these modifications are implemented in the PE-LSC method. The new PE-LSC is tested using selected data sets in Antarctica where altogether more than 800,000 observations are available for processing. In this case, PE-LSC yields a speed-up of computation time by a factor of about 55 (i.e., the computation needs only hours instead of weeks) in comparison with the classical unpartitioned LSC. Likewise, the memory requirement is reduced by a factor of about 360 (i.e., allocating memory in the order of GB instead of TB).
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Gravity field ; Least squares collocation (LSC) ; Covariance function ; Data combination ; Prediction ; Antarctica
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-22
    Description: In 2015, the International Association of Geodesy defined the International Height Reference System (IHRS) as the conventional gravity field-related global height system. The IHRS is a geopotential reference system co-rotating with the Earth. Coordinates of points or objects close to or on the Earth’s surface are given by geopotential numbers C(P) referring to an equipotential surface defined by the conventional value W0 = 62,636,853.4 m2 s−2, and geocentric Cartesian coordinates X referring to the International Terrestrial Reference System (ITRS). Current efforts concentrate on an accurate, consistent, and well-defined realisation of the IHRS to provide an international standard for the precise determination of physical coordinates worldwide. Accordingly, this study focuses on the strategy for the realisation of the IHRS; i.e. the establishment of the International Height Reference Frame (IHRF). Four main aspects are considered: (1) methods for the determination of IHRF physical coordinates; (2) standards and conventions needed to ensure consistency between the definition and the realisation of the reference system; (3) criteria for the IHRF reference network design and station selection; and (4) operational infrastructure to guarantee a reliable and long-term sustainability of the IHRF. A highlight of this work is the evaluation of different approaches for the determination and accuracy assessment of IHRF coordinates based on the existing resources, namely (1) global gravity models of high resolution, (2) precise regional gravity field modelling, and (3) vertical datum unification of the local height systems into the IHRF. After a detailed discussion of the advantages, current limitations, and possibilities of improvement in the coordinate determination using these options, we define a strategy for the establishment of the IHRF including data requirements, a set of minimum standards/conventions for the determination of potential coordinates, a first IHRF reference network configuration, and a proposal to create a component of the International Gravity Field Service (IGFS) dedicated to the maintenance and servicing of the IHRS/IHRF.
    Description: https://www.ngs.noaa.gov/GRAV-D/data_ms05.shtml
    Keywords: ddc:526 ; International Height Reference System (IHRS) ; International Height Reference Frame (IHRF) ; World height system ; Global unified vertical reference system ; Geopotential height datum ; Permanent tide ; Tide systems ; The Colorado experiment
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-22
    Description: Ambiguity resolution of a single receiver is becoming more and more popular for precise GNSS (Global Navigation Satellite System) applications. To serve such an approach, dedicated satellite orbit, clock and bias products are needed. However, we need to be sure whether products based on specific frequencies and signals can be used when processing measurements of other frequencies and signals. For instance, for Galileo E5a frequency, some receivers track only the pilot signal (C5Q) while some track only the pilot-data signal (C5X). We cannot compute the differences between C5Q and C5X directly since these two signals are not tracked concurrently by any common receiver. As code measurements contribute equally as phase in the Melbourne-Wuebbena (MelWub) linear combination it is important to investigate whether C5Q and C5X can be mixed in a network to compute a common satellite MelWub bias product. By forming two network clusters tracking Q and X signals, respectively, we confirm that GPS C5Q and C5X signals cannot be mixed together. Because the bias differences between GPS C5Q and C5X can be more than half of one wide-lane cycle. Whereas, mixing of C5Q and C5X signals for Galileo satellites is possible. The RMS of satellite MelWub bias differences between Q and X cluster is about 0.01 wide-lane cycles for both E1/E5a and E1/E5b frequencies. Furthermore, we develop procedures to compute satellite integer clock and narrow-lane bias products using individual dual-frequency types. Same as the finding from previous studies, GPS satellite clock differences between L1/L2 and L1/L5 estimates exist and show a periodical behavior, with a peak-to-peak amplitude of 0.7 ns after removing the daily mean difference of each satellite. For Galileo satellites, the maximum clock difference between E1/E5a and E1/E5b estimates after removing the mean value is 0.04 ns and the mean RMS of differences is 0.015 ns. This is at the same level as the noise of the carrier phase measurement in the ionosphere-free linear combination. Finally, we introduce all the estimated GPS and Galileo satellite products into PPP-AR (precise point positioning, ambiguity resolution) and Sentinel-3A satellite orbit determination. Ambiguity fixed solutions show clear improvement over float solutions. The repeatability of five ground-station coordinates show an improvement of more than 30% in the east direction when using both GPS and Galileo products. The Sentinel-3A satellite tracks only GPS L1/L2 measurements. The standard deviation (STD) of satellite laser ranging (SLR) residuals is reduced by about 10% when fixing ambiguity parameters to integer values.
    Description: Klinikum rechts der Isar der Technischen Universität München (8934)
    Keywords: ddc:526 ; Integer satellite clock ; Ambiguity resolution ; Daily code and phase biases ; GPS and Galileo signals ; Pilot and data
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-22
    Description: The increasing importance of terrestrial gravimetry in monitoring global change processes, in providing a reference for satellite measurements and in applications in metrology necessitates a stable reference system reflecting the measurement accuracy achievable by modern gravimeters. Therefore, over the last decade, the International Association of Geodesy (IAG) has developed a system to achieve accurate, homogeneous, long-term global recording of Earth’s gravity, while taking advantage of the potential of today’s absolute gravity measurements. The current status of the International Gravity Reference System and Frame is presented as worked out by the IAG Joint Working Group 2.1.1 “Establishment of a global absolute gravity reference system” during the period 2015–2019. Here, the system is defined by the instantaneous acceleration of free-fall, expressed in the International System of Units (SI) and a set of conventional corrections for the time-independent components of gravity effects. The frame as the systems realization includes a set of conventional temporal gravity corrections which represent a uniform set of minimum requirements. Measurements with absolute gravimeters, the traceability of which is ensured by comparisons and monitoring at reference stations, provide the basis of the frame. A global set of such stations providing absolute gravity values at the microgal level is the backbone of the frame. Core stations with at least one available space geodetic technique will provide a link to the terrestrial reference frame. Expanded facilities enabling instrumental verification as well as repeated regional and additional comparisons will complement key comparisons at the level of the International Committee for Weights and Measures (CIPM) and ensure a common reference and the traceability to the SI. To make the gravity reference system accessible to any user and to replace the previous IGSN71 network, an infrastructure based on absolute gravity observations needs to be built up. This requires the support of national agencies, which are encouraged to establish compatible first order gravity networks and to provide information about existing absolute gravity observations.
    Description: Ministry of Education, Youth and Sports of the Czech Republic (MŠMT)
    Keywords: ddc:526 ; Gravity reference system and frame ; Absolute gravimeter
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-22
    Description: Wide-lane (WL) uncalibrated phase delay (UPD) is usually derived from Melbourne–Wübbena (MW) linear combination and is a prerequisite in Global Navigation Satellite Systems (GNSS) precise point positioning (PPP) ambiguity resolution (AR). MW is a linear combination of pseudorange and phase, and the accuracy is limited by the larger pseudorange noise which is about one hundred times of the carrier phase noise. However, there exist inconsistent pseudorange biases which may have detrimental effect on the WL UPD estimation, and further degrade user-side ambiguity fixing. Currently, only the large part of pseudorange biases, e.g., the differential code bias (DCB), are available and corrected in PPP-AR, while the receiver-type-dependent biases have not yet been considered. Ignoring such kind of bias, which could be up to 20 cm, will cause the ambiguity fixing failure, or even worse, the incorrect ambiguity fixing. In this study, we demonstrate the receiver-type-dependent WL UPD biases and investigate their temporal and spatial stability, and further propose the method to precisely estimate these biases and apply the corrections to improve the user-side PPP-AR. Using a large data set of 1560 GNSS stations during a 30-day period, we demonstrate that the WL UPD deviations among different types of receivers can reach ± 0.3 cycles. It is also shown that such kind of deviations can be calibrated with a precision of about 0.03 cycles for all Global Positioning System (GPS) satellites. On the user side, ignoring the receiver-dependent UPD deviation can cause significant positioning error up to 10 cm. By correcting the deviations, the positioning performance can be improved by up to 50%, and the fixing rate can also be improved by 10%. This study demonstrates that for the precise and reliable PPP-AR, the receiver-dependent UPD deviations cannot be ignored and have to be handled.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Description: ftp://geodesy.noaa.gov/cors/rinex/
    Description: ftp://ftp.gfz-potsdam.de/GNSS/products/mgex/
    Description: ftp://ftp.aiub.unibe.ch/CODE/
    Keywords: ddc:526 ; Uncalibrated phase delay ; Precise point positioning ; Ambiguity resolution ; Receiver-type-dependent bias
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-22
    Description: The gravity field maps of the satellite gravimetry missions Gravity Recovery and Climate Experiment (GRACE ) and GRACE Follow-On are derived by means of precise orbit determination. The key observation is the biased inter-satellite range, which is measured primarily by a K-Band Ranging system (KBR) in GRACE and GRACE Follow-On. The GRACE Follow-On satellites are additionally equipped with a Laser Ranging Interferometer (LRI), which provides measurements with lower noise compared to the KBR. The biased range of KBR and LRI needs to be converted for gravity field recovery into an instantaneous range, i.e. the biased Euclidean distance between the satellites’ center-of-mass at the same time. One contributor to the difference between measured and instantaneous range arises due to the nonzero travel time of electro-magnetic waves between the spacecraft. We revisit the calculation of the light time correction (LTC) from first principles considering general relativistic effects and state-of-the-art models of Earth’s potential field. The novel analytical expressions for the LTC of KBR and LRI can circumvent numerical limitations of the classical approach. The dependency of the LTC on geopotential models and on the parameterization is studied, and afterwards the results are compared against the LTC provided in the official datasets of GRACE and GRACE Follow-On. It is shown that the new approach has a significantly lower noise, well below the instrument noise of current instruments, especially relevant for the LRI, and even if used with kinematic orbit products. This allows calculating the LTC accurate enough even for the next generation of gravimetric missions.
    Description: Max-Planck-Gesellschaft http://dx.doi.org/10.13039/501100004189
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:526 ; GRACE follow-on ; Light time correction ; General relativity ; Laser interferomery ; K-band ranging
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-07-20
    Description: GNSS satellite and receiving antennas exhibit group delay variations (GDV), which affect code pseudorange measurements. Like antenna phase center variations, which affect phase measurements, they are frequency-dependent and vary with the direction of the transmitted and received signal. GNSS code observations contain the combined contributions of satellite and receiver antennas. If absolute GDV are available for the receiver antennas, absolute satellite GDV can be determined. In 2019, an extensive set of absolute receiver antenna GDV was published and, thus, it became feasible to estimate absolute satellite antenna GDV based on terrestrial observations. We used the absolute GDV of four selected receiver antenna types and observation data of globally distributed reference stations that employ these antenna types to determine absolute GDV for the GPS, GLONASS, Galileo, BeiDou, and QZSS satellite antennas. Besides BeiDou-2 satellites whose GDV are known to reach up to 1.5 m peak-to-peak, the GPS satellites show the largest GDV at frequencies L1 and L5 with up to 0.3 and 0.4 m peak-to-peak, respectively. They also show the largest satellite-to-satellite variations within a constellation. The GDV of GLONASS-M satellites reach up to 25 cm at frequency G1; Galileo satellites exhibit the largest GDV at frequency E6 with up to 20 cm; BeiDou-3 satellites show the largest GDV of around 15 cm at frequencies B1-2 and B3. Frequencies L2 of GPS IIIA, E1 of Galileo FOC, and B2a/B2b of BeiDou-3 satellites are the least affected. Their variations are below 10 cm.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Technische Universität Dresden (1019)
    Keywords: ddc:526 ; Absolute group delay variations ; Code-minus-carrier combination ; GPS ; GLONASS ; Galileo ; BeiDou ; QZSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-07-19
    Description: Quick response in emergency situations is crucial, because any delay can result in dramatic consequences and potentially human losses. Therefore, many institutions/authorities are relying on development of strategies for emergency management, specially to have a quick response process using modern technologies like unmanned aerial vehicles. A key factor affecting this process is to have a quick geo-situation report of the emergency in real time, which reflects the current emergency situation and supports in right decision-making. Providing such geo-reports is still not an easy task because—in most cases—a priori known spatial data like map data (raster/vector) or geodatabases are outdated, and anyway would not provide an overview on the current situation. Therefore, this paper introduces a management methodology of spatial data focusing on enabling a free access and viewing the data of interest in real time and in situ to support emergency managers. The results of this work are twofold: on the one hand, an automated mechanism for spatial data synchronization and streaming was developed and on the other hand, a spatial data sharing concept was realized using web map tile service. For results assessment, an experimental framework through the joint research project ANKommEn (English acronym: Automated Navigation and Communication for Exploration) was implemented. The assessment procedure was achieved based on specific evaluation criteria like time consumption and performance and showed that the developed methodology can help in overcoming some of existing challenges and addressing the practically relevant questions concerning on the complexity in spatial data sharing and retrieval.
    Description: Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
    Description: Technische Universität Braunschweig (1042)
    Keywords: ddc:526 ; Emergency ; Exploration ; Database ; Data retrieval ; Client interface
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-03-06
    Description: Rockfall is a natural hazard in mountainous areas not to be underestimated. Mass activities differing in rock volume may cause considerable economic damage. Accomplishing qualitative appraisal of high-potential zones for rockfall is a first step towards implementing mitigation strategies. Nowadays, Geographical Information Systems (GIS) are the state-of-the-art tool for a fast and economic approach of identifying potential hazard zones rather than using conventional mapping with in-situ field data. Primarily, current research focuses on designing and implementing user-friendly tools delineating potential rockfall hazard zonation (RHZ). The constructed model examines triggering factors like slope, aspect, elevation, lithology, structural lineament, rainfall intensity, and seismic activity focal depth of a mountainous coastal region (Gulf of Aqaba, Egypt). The extracted geomorphological parameters were based on a high-resolution TanDEM-X Digital Elevation Model. The enhanced Landsat ETM + 7 was used to generate the lithological and structural lineament parameters, while the rainfall data were collected from NASA project tool. The zonation model was implemented by means of ESRI’s ArcGIS Pro ModelBuilder. Google Earth Pro orthophotos compared with the generated rockfall hazard zonation map indicate the potential RHZ with high reliability. The achieved results show that 15 % of the study area qualifies as a high rockfall hazard zone. As the RHZs generated by the model depend on the input data and the selected rating scores and weights, obtaining ground truth is essential to get a trustworthy result. Finally, this study recommends employing the built RHZ model on similar terrains worldwide to support decision-makers involving any sustainable development projects.
    Keywords: ddc:526 ; Rockfall hazard zonation ; ModelBuilder ; GIS ; Sensitivity analysis ; Sinai Peninsula
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-23
    Description: The differential code biases (DCBs) of the global positioning system (GPS) receiver onboard low-Earth orbit (LEO) satellites are commonly estimated by a local spherical symmetry assumption together with the known GPS satellite DCBs from ground-based observations. Nowadays, more and more LEO satellites are equipped with GPS receivers for precise orbit determination, which provides a unique chance to estimate both satellite and receiver DCBs without any ground data. A new method to estimate the GPS satellite and receiver DCBs using a network of LEO receivers is proposed. A multi-layer mapping function (MF) is used to combine multi-LEO satellite data at varying orbit heights. First, model simulations are conducted to compare the vertical total electron content (VTEC) derived from the multi-layer MF and the reference VTEC obtained from the empirical ionosphere model International Reference Ionosphere and Global Core Plasmasphere Model. Second, GPS data are collected from five LEO missions, including ten receivers used to estimate both the satellite and receiver DCBs simultaneously with the multi-layer MF. The results show that the GPS satellite DCB solutions obtained from space-based data are consistent with ground-based solutions provided by the Centre for Orbit Determination in Europe. The proposed normalization procedure combining topside observations from different LEO missions has the potential to improve the accuracies of satellite DCBs of Global Navigation Satellite Systems as well as the receiver DCBs onboard LEO satellites, although the number of LEO missions and spatial–temporal coverage of topside observations are limited.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Global positioning system (GPS) ; Differential code bias (DCB) ; Normalization method ; Mapping function (MF)
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-23
    Description: Future generations of global navigation satellite systems (GNSSs) can benefit from optical technologies. Especially optical clocks could back-up or replace the currently used microwave clocks, having the potential to improve GNSS position determination enabled by their lower frequency instabilities. Furthermore, optical clock technologies—in combination with optical inter-satellite links—enable new GNSS architectures, e.g., by synchronization of distant optical frequency references within the constellation using time and frequency transfer techniques. Optical frequency references based on Doppler-free spectroscopy of molecular iodine are seen as a promising candidate for a future GNSS optical clock. Compact and ruggedized setups have been developed, showing frequency instabilities at the 10–15 level for averaging times between 1 s and 10,000 s. We introduce optical clock technologies for applications in future GNSS and present the current status of our developments of iodine-based optical frequency references.
    Description: DLR
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Optical clock ; Iodine reference ; Space instrumentation ; Future GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-12-15
    Description: Solar radiation pressure (SRP) is the dominant non-gravitational perturbation for GPS satellites. In the IGS (International GNSS Service), this perturbation is modeled differently by individual analysis centers (ACs). The two most widely used methods are the Empirical CODE orbit Model (ECOM, ECOM2) and the JPL GSPM model. When using ECOM models, a box-wing model or other a priori models, as well as stochastic pulses at noon or midnight, are optionally adopted by some ACs to compensate for the deficiencies of the ECOM or ECOM2 model. However, both box-wing and GSPM parameters were published many years ago. There could be an aging effect going with time. Also, optical properties and GSPM parameters of GPS Block IIF satellites are currently not yet published. In this contribution, we first determine Block-specific optical parameters of GPS satellites using GPS code and phase measurements of 6 years. Various physical effects, such as yaw bias, radiator emission in the satellite body-fixed − X and Y directions and the thermal radiation of solar panels, are considered as additional constant parameters in the optical parameter adjustment. With all the adjusted parameters, we form an enhanced box-wing model adding all the modeled physical effects. In addition, we determine Block-specific GSPM parameters by using the same GPS measurements. The enhanced box-wing model and the GSPM model are then taken as a priori model and are jointly used with ECOM and ECOM2 model, respectively. We find that the enhanced box-wing model performs similarly to the GSPM model outside eclipse seasons. RMSs of all the ECOM and ECOM2 parameters are reduced by 30% compared to results without the a priori model. Orbit misclosures and orbit predictions are improved by combining the enhanced box-wing model with ECOM and ECOM2 models. In particular, the improvement in orbit misclosures for the eclipsing Block IIR and IIF satellites, as well as the non-eclipsing IIA satellites, is about 25%, 10% and 10%, respectively, for the ECOM model. Therefore, the enhanced box-wing model is recommended as an a priori model in GPS satellite orbit determination.
    Description: Projekt DEAL
    Keywords: ddc:526 ; GPS solar radiation pressure ; Radiator ; Yaw bias ; GSPM ; Enhanced box-wing model
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-12-15
    Description: Turkey, as a developing country, is designing and performing massive construction projects around Istanbul. Beginning from the 1960s, rapid urbanization has been taking place due to industrialization, which brings an increase in the population. Yet, construction projects have been accelerated especially during the last decade, and many new projects are scheduled to be completed in a short time. Ground-based observations are generally carried out to monitor the deformations within construction sites, especially through geometric levelling, and GNSS techniques. However, in most cases, these monitoring measurements are only scheduled within the period of the construction process, and ensuing deformations are usually not considered. In addition to these techniques, the space-based interferometric technique can also be used to define the line of sight surface displacements with high accuracy, using the phase difference between image result for synthetic aperture radar images. In particular, Persistent Scatter Interferometry is one of the interferometric methods that are capable of defining the two-dimensional (vertical and horizontal) deformation for the desired epoch with a high temporal resolution. Thus it can be used as a complementary method for monitoring ground deformations, where the measurement is made by ground-based observations. In this study, the deforming areas related to underground metro construction are investigated through significant displacements between 2015 and 2018 of Sentinel-1 space-borne SAR data using the PSI technique. These results are validated by comparison with available levelling data corresponding to the new metro line.
    Description: Freie Universität Berlin (1008)
    Keywords: ddc:526 ; Surface deformation monitoring ; Sentinel-1 ; Levelling ; Persistent scatter interferometry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-12-16
    Description: The feasibility of precise real-time orbit determination of low earth orbit satellites using onboard GNSS observations is assessed using six months of flight data from the Sentinel-6A mission. Based on offline processing of dual-constellation pseudorange and carrier phase measurements as well as broadcast ephemerides in a sequential filter with a reduced dynamic force model, navigation solutions with a representative position error of 10 cm (3D RMS) are achieved. The overall performance is largely enabled by the superior quality of the Galileo broadcast ephemerides, which exhibits a two- to three-times smaller signal-in-space-range error than GPS and allows for geodetic-grade GNSS real-time orbit determination without a need for external correction services. Compared to GPS-only processing, a roughly two-times better navigation accuracy is achieved in a Galileo-only or mixed GPS/Galileo processing. On the other hand, GPS tracking offers a useful complement and additional robustness in view of a still incomplete Galileo constellation. Furthermore, it provides improved autonomy of the navigation process through the availability of earth orientation parameters in the new civil navigation message of the L2C signal. Overall, GNSS-based onboard orbit determination can now reach a similar performance as the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) navigation system. It lends itself as a viable alternative for future remote sensing missions.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Orbit determination ; Broadcast ephemerides ; LEO satellites ; Galileo ; Sentinel-6 ; DORIS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-12-16
    Description: For more than 20 years, precise point positioning (PPP) has been a well-established technique for carrier phase-based navigation. Traditionally, it relies on precise orbit and clock products to achieve accuracies in the order of centimeters. With the modernization of legacy GNSS constellations and the introduction of new systems such as Galileo, a continued reduction in the signal-in-space range error (SISRE) can be observed. Supported by this fact, we analyze the feasibility and performance of PPP with broadcast ephemerides and observations of Galileo and GPS. Two different functional models for compensation of SISREs are assessed: process noise in the ambiguity states and the explicit estimation of a SISRE state for each channel. Tests performed with permanent reference stations show that the position can be estimated in kinematic conditions with an average three-dimensional (3D) root mean square (RMS) error of 29 cm for Galileo and 63 cm for GPS. Dual-constellation solutions can further improve the accuracy to 25 cm. Compared to standard algorithms without SISRE compensation, the proposed PPP approaches offer a 40% performance improvement for Galileo and 70% for GPS when working with broadcast ephemerides. An additional test with observations taken on a boat ride yielded 3D RMS accuracy of 39 cm for Galileo, 41 cm for GPS, and 27 cm for dual-constellation processing compared to a real-time kinematic reference solution. Compared to the use of process noise in the phase ambiguity estimation, the explicit estimation of SISRE states yields a slightly improved robustness and accuracy at the expense of increased algorithmic complexity. Overall, the test results demonstrate that the application of broadcast ephemerides in a PPP model is feasible with modern GNSS constellations and able to reach accuracies in the order of few decimeters when using proper SISRE compensation techniques.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:526 ; Precise point positioning ; GPS ; Galileo ; Broadcast ephemerides ; Signal-in-space range error
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-07-03
    Description: Absolute gravimeters are used in geodesy, geophysics and physics for a wide spectrum of applications. Stable gravimetric measurements over timescales from several days to decades are required to provide relevant insight into geophysical processes. Users of absolute gravimeters participate in comparisons with a metrological reference in order to monitor the temporal stability of the instruments and determine the bias to that reference. However, since no measurement standard of higher-order accuracy currently exists, users of absolute gravimeters participate in key comparisons led by the International Committee for Weights and Measures. These comparisons provide the reference values of highest accuracy compared to the calibration against a single gravimeter operated at a metrological institute. The construction of stationary, large-scale atom interferometers paves the way for a new measurement standard in absolute gravimetry used as a reference with a potential stability up to 1 nm/s 2 at 1 s integration time. At the Leibniz University Hannover, we are currently building such a very long baseline atom interferometer with a 10-m-long interaction zone. The knowledge of local gravity and its gradient along and around the baseline is required to establish the instrument’s uncertainty budget and enable transfers of gravimetric measurements to nearby devices for comparison and calibration purposes. We therefore established a control network for relative gravimeters and repeatedly measured its connections during the construction of the atom interferometer. We additionally developed a 3D model of the host building to investigate the self-attraction effect and studied the impact of mass changes due to groundwater hydrology on the gravity field around the reference instrument. The gravitational effect from the building 3D model is in excellent agreement with the latest gravimetric measurement campaign which opens the possibility to transfer gravity values with an uncertainty below the 10 nm/s2 level.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Niedersächsisches Ministerium für Wissenschaft und Kultur http://dx.doi.org/10.13039/501100010570
    Description: https://www.bipm.org/kcdb
    Keywords: ddc:526 ; Atom interferometry ; Gravity acceleration ; Absolute gravimetry ; Gravimeter reference
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-07-03
    Description: XGM2019e is a combined global gravity field model represented by spheroidal harmonics up to degree and order (d/o) 5399, corresponding to a spatial resolution of 2′ (~ 4 km). As data sources, it includes the satellite model GOCO06s in the longer wavelength range up to d/o 300 combined with a ground gravity grid which also covers the shorter wavelengths. The ground data consist over land and ocean of gravity anomalies provided by courtesy of NGA (15′ resolution, identical to XGM2016) augmented with topographically derived gravity information over land (EARTH2014). Over the oceans, gravity anomalies derived from satellite altimetry are used (DTU13 with a resolution of 1′). The combination of the satellite data with the ground gravity observations is performed by using full normal equations up to d/o 719 (15′). Beyond d/o 719, a block-diagonal least squares solution is calculated for the high-resolution ground gravity data (from topography and altimetry). All calculations are performed in the spheroidal harmonic domain. In the spectral band up to d/o 719, the new model shows a slightly improved behaviour in the magnitude of a few mm RMS over land as compared to preceding models such as XGM2016, EIGEN6c4 or EGM2008 when validated with independent geoid information derived from GNSS/levelling. Over land and in the spectral range above d/o 719, the accuracy of XGM2019e marginally suffers from the sole use of topographic forward modelling, and geoid differences at GNSS/levelling stations are increased in the order of several mm RMS in well-surveyed areas, such as the US and Europe, compared to models containing real gravity data over their entire spectrum, e.g. EIGEN6c4 or EGM2008. However, GNSS/levelling validation also indicates that the performance of XGM2019e can be considered as globally more consistent and independent of existing high-resolution global models. Over the oceans, the model exhibits an enhanced performance (equal or better than preceding models), which is confirmed by comparison of the MDT’s computed from CNES/CLS 2015 mean sea surface and the high-resolution geoid models. The MDT based on XGM2019e shows fewer artefacts, particularly in the coastal regions, and fits globally better to DTU17MDT which is considered as an independent reference MDT.
    Description: European Space Agency http://dx.doi.org/10.13039/501100000844
    Keywords: ddc:526 ; Gravity ; Combined gravity field model ; Spherical harmonics ; Spheroidal harmonics ; Full normal equation systems ; High-performance computing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-07-03
    Description: The iteratively reweighted least-squares approach to self-tuning robust adjustment of parameters in linear regression models with autoregressive (AR) and t-distributed random errors, previously established in Kargoll et al. (in J Geod 92(3):271–297, 2018. https://doi.org/10.1007/s00190-017-1062-6), is extended to multivariate approaches. Multivariate models are used to describe the behavior of multiple observables measured contemporaneously. The proposed approaches allow for the modeling of both auto- and cross-correlations through a vector-autoregressive (VAR) process, where the components of the white-noise input vector are modeled at every time instance either as stochastically independent t-distributed (herein called “stochastic model A”) or as multivariate t-distributed random variables (herein called “stochastic model B”). Both stochastic models are complementary in the sense that the former allows for group-specific degrees of freedom (df) of the t-distributions (thus, sensor-component-specific tail or outlier characteristics) but not for correlations within each white-noise vector, whereas the latter allows for such correlations but not for different dfs. Within the observation equations, nonlinear (differentiable) regression models are generally allowed for. Two different generalized expectation maximization (GEM) algorithms are derived to estimate the regression model parameters jointly with the VAR coefficients, the variance components (in case of stochastic model A) or the cofactor matrix (for stochastic model B), and the df(s). To enable the validation of the fitted VAR model and the selection of the best model order, the multivariate portmanteau test and Akaike’s information criterion are applied. The performance of the algorithms and of the white noise test is evaluated by means of Monte Carlo simulations. Furthermore, the suitability of one of the proposed models and the corresponding GEM algorithm is investigated within a case study involving the multivariate modeling and adjustment of time-series data at four GPS stations in the EUREF Permanent Network (EPN).
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:526 ; Regression time series ; Vector-autoregressive model ; Cross-correlations ; Multivariate scaled t-distribution ; Self-tuning robust estimator ; Generalized expectation maximization algorithm ; Iteratively reweighted least squares ; Multivariate portmanteau test ; Monte Carlo simulation ; GPS time series
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-07-03
    Description: For low Earth orbit (LEO) satellites, activities such as precise orbit determination, gravity field retrieval, and thermospheric density estimation from accelerometry require modeled accelerations due to radiation pressure. To overcome inconsistencies and better understand the propagation of modeling errors into estimates, we here suggest to extend the standard analytical LEO radiation pressure model with emphasis on removing systematic errors in time-dependent radiation data products for the Sun and the Earth. Our extended unified model of Earth radiation pressure accelerations is based on hourly CERES SYN1deg data of the Earth’s outgoing radiation combined with angular distribution models. We apply this approach to the GRACE (Gravity Recovery and Climate Experiment) data. Validations with 1 year of calibrated accelerometer measurements suggest that the proposed model extension reduces RMS fits between 5 and 27%, depending on how measurements were calibrated. In contrast, we find little changes when implementing, e.g., thermal reradiation or anisotropic reflection at the satellite’s surface. The refined model can be adopted to any satellite, but insufficient knowledge of geometry and in particular surface properties remains a limitation. In an inverse approach, we therefore parametrize various combinations of possible systematic errors to investigate estimability and understand correlations of remaining inconsistencies. Using GRACE-A accelerometry data, we solve for corrections of material coefficients and CERES fluxes separately over ocean and land. These results are encouraging and suggest that certain physical radiation pressure model parameters could indeed be determined from satellite accelerometry data.
    Description: Deutsches Zentrum für Luft- und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Description: ftp://ftp.tugraz.at/outgoing/ITSG/tvgogo/orbits/GRACE/
    Description: ftp://podaac-ftp.jpl.nasa.gov/allData/grace/L1B/JPL/
    Keywords: ddc:526 ; Solar radiation pressure ; Earth radiation pressure ; Satellite force models ; Parameter estimation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-07-03
    Description: Quantum optical technology provides an opportunity to develop new kinds of gravity sensors and to enable novel measurement concepts for gravimetry. Two candidates are considered in this study: the cold atom interferometry (CAI) gradiometer and optical clocks. Both sensors show a high sensitivity and long-term stability. They are assumed on board of a low-orbit satellite like gravity field and steady-state ocean circulation explorer (GOCE) and gravity recovery and climate experiment (GRACE) to determine the Earth’s gravity field. Their individual contributions were assessed through closed-loop simulations which rigorously mapped the sensors’ sensitivities to the gravity field coefficients. Clocks, which can directly obtain the gravity potential (differences) through frequency comparison, show a high sensitivity to the very long-wavelength gravity field. In the GRACE orbit, clocks with an uncertainty level of 1.0 × 10−18 are capable to retrieve temporal gravity signals below degree 12, while 1.0 × 10−17 clocks are useful for detecting the signals of degree 2 only. However, it poses challenges for clocks to achieve such uncertainties in a short time. In space, the CAI gradiometer is expected to have its ultimate sensitivity and a remarkable stability over a long time (measurements are precise down to very low frequencies). The three diagonal gravity gradients can properly be measured by CAI gradiometry with a same noise level of 5.0 mE/√Hz. They can potentially lead to a 2–5 times better solution of the static gravity field than that of GOCE above degree and order 50, where the GOCE solution is mainly dominated by the gradient measurements. In the lower degree part, benefits from CAI gradiometry are still visible, but there, solutions from GRACE-like missions are superior.
    Description: Deutsche Forschungsgemeinschaft
    Description: http://icgem.gfz-potsdam.de/tom_longtime
    Description: https://earth.esa.int/web/guest/-/goce-data-access-7219
    Description: ftp://podaac.jpl.nasa.gov/allData/grace/L1B/JPL/
    Keywords: ddc:526 ; Quantum optical sensors ; Optical clocks ; Relativistic geodesy ; Atomic gradiometry ; Gravity field
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-06-21
    Description: Currently, many commercial airline aircraft cannot perform three-dimensionally guided approaches based on satellite-based augmentation systems. We propose a system to rebroadcast the correction and integrity data via a data link as provided by the ground-based augmentation system such that aircraft equipped with a GPS landing system (GLS) can use the wide-area corrections and perform localizer performance with vertical guidance (LPV) approaches while maintaining the same level of integrity. In consequence, the system loses some availability and the time to alert is slightly increased. We build a prototype system and present data collected for one week, confirming technical feasibility. There is a loss of 5.3 percent of availability during a 1-week data collection cycle in which we compared our system to standalone LPV service. We tested our prototype with two commercially available GLS receivers with positive results and successfully demonstrated the functionality with a conventional Airbus 319 equipped with a standard GLS receiver.
    Keywords: ddc:526 ; SBAS ; Satellite ; Navigation ; Augmentation ; Aviation ; GPS ; GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-06-21
    Description: The GPS satellite transmitter antenna phase center offsets (PCOs) can be estimated in a global adjustment by constraining the ground station coordinates to the current International Terrestrial Reference Frame (ITRF). Therefore, the derived PCO values rest on the terrestrial scale parameter of the frame. Consequently, the PCO values transfer this scale to any subsequent GNSS solution. A method to derive scale-independent PCOs without introducing the terrestrial scale of the frame is the prerequisite to derive an independent GNSS scale factor that can contribute to the datum definition of the next ITRF realization. By fixing the Galileo satellite transmitter antenna PCOs to the ground calibrated values from the released metadata, the GPS satellite PCOs in the z-direction (z-PCO) and a GNSS-based terrestrial scale parameter can be determined in GPS + Galileo processing. An alternative method is based on the gravitational constraint on low earth orbiters (LEOs) in the integrated processing of GPS and LEOs. We determine the GPS z-PCO and the GNSS-based scale using both methods by including the current constellation of Galileo and the three LEOs of the Swarm mission. For the first time, direct comparison and crosscheck of the two methods are performed. They provide mean GPS z-PCO corrections of −186 ± 25 mm and −221 ± 37 mm with respect to the IGS values and +1.55 ± 0.22 ppb (parts per billion) and +1.72 ± 0.31 in the terrestrial scale with respect to the IGS14 reference frame. The results of both methods agree with each other with only small differences. Due to the larger number of Galileo observations, the Galileo-PCO-fixed method leads to more precise and stable results. In the joint processing of GPS + Galileo + Swarm in which both methods are applied, the constraint on Galileo dominates the results. We discuss and analyze how fixing either the Galileo transmitter antenna z-PCO or the Swarm receiver antenna z-PCO in the combined GPS + Galileo + Swarm processing propagates to the respective freely estimated z-PCO of Swarm and Galileo.
    Description: Chinese Government Scholarship http://dx.doi.org/10.13039/501100010890
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:526 ; GNSS ; PCO ; Galileo ; Terrestrial scale ; LEOs
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-06-19
    Description: Tidal ecosystems like the Wadden Sea are particularly valuable for their ecological and economic importance. Here, the natural dynamics of the abiotic and biotic processes is threatened by the human pressure, and great efforts are made on mapping and monitoring programs. Remote sensing techniques (e.g., satellite and airborne sources) are commonly used on land and intertidal areas, whereas hydroacoustic devices are deployed in the subtidal zones. The overlap of hydroacoustics (sidescan sonar) and airborne Lidar data in such sensitive transitional zone (inter- to subtidal) is rather uncommon. In order to test the limitations of both techniques in extremely shallow waters (0.7 m min, water depth) and to find the most efficient methods for the spatial classification of intertidal areas, a portion of the backbarrier tidal flat of Norderney was investigated. Lidar bathymetric data were used for extracting high resolution morphological information. Sidescan sonar mosaics were collected in two following years under contrasting weather conditions. An expert classification based on sidescan sonar backscatter intensity, seafloor texture, morphology, and surface sediment data subdivided the research area into 10 classes. The outcomes were compared with an existing RapidEye-based classification. The tested methods showed both advantages and limitations, which were discussed based on statistical analyses. Satellite and Lidar approaches were most suitable for mapping biogenic features (e.g., shellfish beds) over large areas, whereas sidescan sonar was superior for detail detection and discrimination of morpho-sedimentary regions. As an outlook, it is postulated to perform ground-truthed hydroacoustic mapping on small testing areas, and to use the obtained classification for training satellite-based classification algorithms.
    Description: Senckenberg Gesellschaft für Naturforschung (SGN) (3507)
    Keywords: ddc:526 ; remote sensing ; sidescan sonar ; seafloor classification
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-06-19
    Description: Beaches are characterized by high morphodynamic activity, and high-frequency measurements are needed to understand their states and rates of change. Ideally, beach survey methods should be at once accurate, rapid and low-cost. Recently, unmanned aerial systems (drones) have been increasingly utilized to measure beach topography. In this paper, we present a review of the state of art in drones and photogrammetry for beach surveys and the respective achieved measurement quality (where reported). We then show how drones with a minimal configuration and a low-cost setup can meet the high accuracy and rapidity required for beach surveys. To test a minimal drone and ground control point configuration, we used consumer-grade equipment to perform the same flight path with different cameras and at different altitudes. We then used photogrammetry to produce digital elevation models of the beach. Using a GNSS-RTK system, we collected 2950 independent control points to evaluate the accuracy of the digital elevation models. Results show that, once a few potential sources of uncertainties in the final digital elevation model are taken into account, the average RMSE(z) of the digital elevation models was ~5 cm, with a survey efficiency of ca. 3 m2 min−1. Digital elevation models taken at different times were used to calculate the before–after sediment budget following a storm that hit a sandy coast in Sylt Island at the German North Sea coast.
    Description: Leibniz-Zentrum für Marine Tropenforschung (ZMT) GmbH (3494)
    Keywords: ddc:526 ; sand beach topography ; photogrammetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-07-04
    Description: In the analysis of very long baseline interferometry (VLBI) observations, many geophysical models are used for correcting the theoretical signal delay. In addition to the conventional models described by Petit and Luzum (eds) (IERS Conventions, 2010), we are applying different parts of non-tidal site loading, namely the atmospheric, oceanic, and hydrological ones. To investigate their individual contributions, these parts are considered both separately and combined to a total loading. The application of the corresponding site displacements is performed at two distinct levels of the geodetic parameter estimation process (observation and normal equation level), which turn out to give very similar results in many cases. To validate our findings internally, the site displacements are provided by two different data centres: the Earth-System-Modelling group at the Deutsches GeoForschungsZentrum in Potsdam (ESMGFZ, see Dill and Dobslaw, J Geophys Res Solid Earth, 2013. https://doi.org/10.1002/jgrb.50353)] and the International Mass Loading Service [IMLS, see Petrov (The international mass loading service, 2015)]. We show that considering non-tidal loading is actually useful for mitigating systematic effects in the VLBI results, like annual signals in the station height time series. If the sum of all non-tidal loading parts is considered, the WRMS of the station heights and baseline lengths is reduced in 80–90% of all cases, and the relative improvement is about − 3.5% on average. The main differences between our chosen providers originate from hydrological loading.
    Description: Technische Universität München (1025)
    Description: ftp://cddis.nasa.gov/vlbi/ivsdata/vgosdb/
    Description: http://rz-vm115.gfz-potsdam.de:8080/repository
    Keywords: ddc:526 ; VLBI ; Non-tidal loading ; Normal equation level ; ESMGFZ ; IMLS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-06-20
    Description: In 2016, an application programming interface was added to the Android operating systems, which enables the access of GNSS raw observations. Since then, an in-depth evaluation of the performance of smartphone GNSS chips is very much simplified. We analyzed the quality of the GNSS observations, especially the carrier phase observations, of the dual-frequency GNSS chip Kirin 980 built into Huawei P30 and other smartphones. More than 80 h of static observations were collected at several locations. The code and carrier phase observations were processed in baseline mode with reference to observations of geodetic-grade equipment. We were able to fix carrier phase ambiguities for GPS L1 observations. Furthermore, we performed an antenna calibration for this frequency, which revealed that the horizontal phase center offsets from the central vertical axis of the smartphone and also the phase center variations do not exceed 1–2 cm. After successful ambiguity fixing, the 3D position errors (standard deviations) are smaller 4 cm after 5 min of static observation session and 2 cm for long observation session.
    Keywords: ddc:526 ; GNSS ; Smartphone ; Carrier phase ; Antenna calibration ; Centimeter-accuracy
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-06-23
    Description: Low-pass filters are commonly used for the processing of airborne gravity observations. In this paper, for the first time, we include the resulting correlations consistently in the functional and stochastic model of residual least-squares collocation. We demonstrate the necessity of removing high-frequency noise from airborne gravity observations, and derive corresponding parameters for a Gaussian low-pass filter. Thereby, we intend an optimal combination of terrestrial and airborne gravity observations in the mountainous area of Colorado. We validate the combination in the frame of our participation in ‘the 1 cm geoid experiment’. This regional geoid modeling inter-comparison exercise allows the calculation of a reference solution, which is defined as the mean value of 13 independent height anomaly results in this area. Our result performs among the best and with 7.5 mm shows the lowest standard deviation to the reference. From internal validation we furthermore conclude that the input from airborne and terrestrial gravity observations is consistent in large parts of the target area, but not necessarily in the highly mountainous areas. Therefore, the relative weighting between these two data sets turns out to be a main driver for the final result, and is an important factor in explaining the remaining differences between various height anomaly results in this experiment.
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Residual least-squares collocation ; Regional geoid modeling ; 1 cm geoid experiment ; GRAV-D ; Low-pass filter ; Airborne gravimetry
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-06-16
    Description: Along with the rapid development of GNSS, not only BeiDou, but also Galileo, and the newly launched GPS satellites can provide signals on three frequencies at present. To fully take advantage of the multi-frequency multi-system GNSS observations on precise point positioning (PPP) technology, this study aims to implement the triple-frequency ambiguity resolution (AR) for GPS, Galileo, and BeiDou-2 combined PPP using the raw observation model. The processing of inter-frequency clock bias (IFCB) estimation and correction in the context of triple-frequency PPP AR has been addressed, with which the triple-frequency uncalibrated phase delay (UPD) estimation is realized for real GPS observations for the first time. In addition, the GPS extra-wide-line UPD quality is significantly improved with the IFCB correction. Because of not being contaminated by the IFCB, the raw UPD estimation method is directly employed for Galileo which currently has 24 satellites in operation. An interesting phenomenon is found that all Galileo satellites except E24 have a zero extra-wide-lane UPD value. With the multi-GNSS observations provided by MGEX covering 15 days, the positioning solutions of GPS + Galileo + BeiDou triple-frequency PPP AR have been conducted and analyzed. The triple-frequency kinematic GNSS PPP AR can achieve an averaged 3D positioning error of 2.2 cm, and an averaged convergence time of 10.8 min. The average convergence time can be reduced by triple-frequency GNSS PPP AR by 15.6% compared with dual-frequency GNSS PPP AR, respectively. However, the additional third frequency has only a marginal contribution to positioning accuracy after convergence.
    Description: China National Funds for Distinguished Young Scientists http://dx.doi.org/10.13039/501100005153
    Keywords: ddc:526 ; Triple-frequency ambiguity resolution ; Precise point positioning ; Raw observable model ; Inter-frequency clock bias ; Global navigation satellite system
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-06-16
    Description: The use of the GLONASS legacy signals for real-time kinematic positioning is considered. Due to the FDMA multiplexing scheme, the conventional CDMA observation model has to be modified to restore the integer estimability of the ambiguities. This modification has a strong impact on positioning capabilities. In particular, the ambiguity resolution performance of this model is clearly weaker than for CDMA systems, so that fast and reliable full ambiguity resolution is usually not feasible for standalone GLONASS, and adding GLONASS data in a multi-GNSS approach can reduce the ambiguity resolution performance of the combined model. Partial ambiguity resolution was demonstrated to be a suitable tool to overcome this weakness (Teunissen in GPS Solut 23(4):100, 2019). We provide an exhaustive formal analysis of the positioning precision and ambiguity resolution capabilities for short, medium, and long baselines in a multi-GNSS environment with GPS, Galileo, BeiDou, QZSS, and GLONASS. Simulations are used to show that with a difference test-based partial ambiguity resolution method, adding GLONASS data improves the positioning performance in all considered cases. Real data from different baselines are used to verify these findings. When using all five available systems, instantaneous centimeter-level positioning is possible on an 88.5 km baseline with the ionosphere weighted model, and on average, only 3.27 epochs are required for a long baseline with the ionosphere float model, thereby enabling near instantaneous solutions.
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Description: https://saegnss2.curtin.edu/ldc/
    Description: ftp://cddis.gsfc.nasa.gov/gnss/data/
    Description: ftp://ftp.gfz-potsdam.de/GNSS/products/mgex/
    Keywords: ddc:526 ; RTK ; GLONASS FDMA ; Integer ambiguity resolution ; Partial fixing ; Difference test ; Best integer equivariant estimation ; Multi-GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-06-16
    Description: Miniaturized atomic clocks with high frequency stability as local oscillators in global navigation satellite system (GNSS) receivers promise to improve real-time kinematic applications. For a number of years, such oscillators are being investigated regarding their overall technical applicability, i.e., transportability, and performance in dynamic environments. The short-term frequency stability of these clocks is usually specified by the manufacturer, being valid for stationary applications. Since the performance of most oscillators is likely degraded in dynamic conditions, various oscillators are tested to find the limits of receiver clock modeling in dynamic cases and consequently derive adequate stochastic models to be used in navigation. We present the performance of three different oscillators (Microsemi MAC SA.35m, Spectratime LCR-900 and Stanford Research Systems SC10) for static and dynamic applications. For the static case, all three oscillators are characterized in terms of their frequency stability at Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The resulting Allan deviations agree well with the manufacturer's data. Furthermore, a flight experiment was conducted in order to evaluate the performance of the oscillators under dynamic conditions. Here, each oscillator is replacing the internal oscillator of a geodetic-grade GNSS receiver and the stability of the receiver clock biases is determined. The time and frequency offsets of the oscillators are characterized with regard to the flight dynamics recorded by a navigation-grade inertial measurement unit. The results of the experiment show that the frequency stability of each oscillator is degraded by about at least one order of magnitude compared to the static case. Also, the two quartz oscillators show a significant g-sensitivity resulting in frequency shifts of − 1.2 × 10−9 and + 1.5 × 10−9, respectively, while the rubidium clocks are less sensitive, thus enabling receiver clock modeling and strengthening of the navigation performance even in high dynamics.
    Description: Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
    Description: Gottfried Wilhelm Leibniz Universität Hannover (1038)
    Keywords: ddc:526 ; Allan variance ; Miniaturized atomic clocks ; Frequency stability ; Flight navigation ; GNSS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-06-16
    Description: Global navigation satellite system (GNSS) remote sensing of the troposphere, called GNSS meteorology, is already a well-established tool in post-processing applications. Real-time GNSS meteorology has been possible since 2013, when the International GNSS Service (IGS) established its real-time service. The reported accuracy of the real-time zenith total delay (ZTD) has not improved significantly over time and usually remains at the level of 5–18 mm, depending on the station and test period studied. Millimeter-level improvements are noticed due to GPS ambiguity resolution, gradient estimation, or multi-GNSS processing. However, neither are these achievements combined in a single processing strategy, nor is the impact of other processing parameters on ZTD accuracy analyzed. Therefore, we discuss these shortcomings in detail and present a comprehensive analysis of the sensitivity of real-time ZTD on processing parameters. First, we identify a so-called common strategy, which combines processing parameters that are identified to be the most popular among published papers on the topic. We question the popular elevation-dependent weighting function and introduce an alternative one. We investigate the impact of selected processing parameters, i.e., PPP functional model, GNSS selection and combination, inter-system weighting, elevation-dependent weighting function, and gradient estimation. We define an advanced strategy dedicated to real-time GNSS meteorology, which is superior to the common one. The a posteriori error of estimated ZTD is reduced by 41%. The accuracy of ZTD estimates with the proposed strategy is improved by 17% with respect to the IGS final products and varies over stations from 5.4 to 10.1 mm. Finally, we confirm the latitude dependency of ZTD accuracy, but also detect its seasonality.
    Description: H2020 Marie Skłodowska-Curie Actions http://dx.doi.org/10.13039/100010665
    Keywords: ddc:526 ; GNSS ; Meteorology ; Real time ; ZTD
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-06-16
    Description: GPS Block IIF satellites are able to redistribute the transmit power between the signal components. This ability is called flex power, and it has been developed as a remedy against jamming. Since it is operationally not possible to increase the transmit power for all signal components simultaneously, a redistribution between them is necessary under certain operational situations. Flex power has been active on Block IIF satellites since January 2017 over a specific regional area and has an impact on differential code bias estimation as well as the signal-to-noise density ratio. A network of the International GNSS Service stations containing only Septentrio PolaRx5 and PolaRx5TR receivers between August 1 and November 21, 2019 has been used for differential code bias estimation using GPS L1 C/A, L1 P(Y), L2 P(Y), and L2C signals with and without consideration of the flex power in the estimation process for Block IIF satellites. The estimation results are compared with the German Aerospace Center as well as the Chinese Academy of Sciences DCB products to validate the results.
    Keywords: ddc:526 ; Differential Code Biases ; Flex Power ; GPS Block IIF
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-06-16
    Description: The access to Android-based Global Navigation Satellite Systems (GNSS) raw measurements has become a strong motivation to investigate the feasibility of smartphone-based positioning. Since the beginning of this research, the smartphone GNSS antenna has been recognized as one of the main limitations. Besides multipath (MP), the radiation pattern of the antenna is the main site-dependent error source of GNSS observations. An absolute antenna calibration has been performed for the dual-frequency Huawei Mate20X. Antenna phase center offset (PCO) and variations (PCV) have been estimated to correct for antenna impact on the L1 and L5 phase observations. Accordingly, we show the relevance of considering the individual PCO and PCV for the two frequencies. The PCV patterns indicate absolute values up to 2 cm and 4 cm for L1 and L5, respectively. The impact of antenna corrections has been assessed in different multipath environments using a high-accuracy positioning algorithm employing an undifferenced observation model and applying ambiguity resolution. Successful ambiguity resolution is shown for a smartphone placed in a low multipath environment on the ground of a soccer field. For a rooftop open-sky test case with large multipath, ambiguity resolution was successful in 19 out of 35 data sets. Overall, the antenna calibration is demonstrated being an asset for smartphone-based positioning with ambiguity resolution, showing cm-level 2D root mean square error (RMSE).
    Description: Gottfried Wilhelm Leibniz Universität Hannover (1038)
    Keywords: ddc:526 ; Absolute robot antenna calibration ; GNSS ; Smartphone-based high-accuracy positioning
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-06-16
    Description: The realization of Coordinated Universal Time, one of the tasks of the International Bureau of Weights and Measures, relies on a network of international time links which currently is organized in a star-like scheme that links all contributing laboratories. GPS signal reception is the technique most widely employed by the laboratories. The PTB currently plays a unique role in the process due to its function as the central pivot in the time transfer between the participating laboratories. We discuss how the PTB meets its obligations to the international timekeeping community as well as to its users in Germany. In its role as an National Metrology Institute (NMI), PTB is entrusted with the realization and dissemination of legal time in Germany. The services were offered to the public support measurements and timing applications traceable to the national and international standards to be made in calibration laboratories and in many industrial sectors. We thus discuss the meaning and definition of traceability, how different GNSS systems can be used to establish traceability and their performance in doing so.
    Keywords: ddc:526 ; GNSS ; GPS ; Galileo ; Time and frequency metrology ; Traceability
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-06-14
    Description: This study presents a solution of the ‘1 cm Geoid Experiment’ (Colorado Experiment) using spherical radial basis functions (SRBFs). As the only group using SRBFs among the fourteen participated institutions from all over the world, we highlight the methodology of SRBFs in this paper. Detailed explanations are given regarding the settings of the four most important factors that influence the performance of SRBFs in gravity field modeling, namely (1) the choosing bandwidth, (2) the locations of the SRBFs, (3) the type of the SRBFs as well as (4) the extensions of the data zone for reducing the edge effect. Two types of basis functions covering the same spectral range are used for the terrestrial and the airborne measurements, respectively. The non-smoothing Shannon function is applied to the terrestrial data to avoid the loss of spectral information. The cubic polynomial (CuP) function which has smoothing features is applied to the airborne data as a low-pass filter for filtering the high-frequency noise. Although the idea of combining different SRBFs for different observations was proven in theory to be possible, it is applied to real data for the first time, in this study. The RMS error of our height anomaly result along the GSVS17 benchmarks w.r.t the validation data (which is the mean results of the other contributions in the ‘Colorado Experiment’) drops by 5% when combining the Shannon function for the terrestrial data and the CuP function for the airborne data, compared to those obtained by using the Shannon function for both the two data sets. This improvement indicates the validity and benefits of using different SRBFs for different observation types. Global gravity model (GGM), topographic model, the terrestrial gravity data, as well as the airborne gravity data are combined, and the contribution of each data set to the final solution is discussed. By adding the terrestrial data to the GGM and the topographic model, the RMS error of the height anomaly result w.r.t the validation data drops from 4 to 1.8 cm, and it is further reduced to 1 cm by including the airborne data. Comparisons with the mean results of all the contributions show that our height anomaly and geoid height solutions at the GSVS17 benchmarks have an RMS error of 1.0 cm and 1.3 cm, respectively; and our height anomaly results give an RMS value of 1.6 cm in the whole study area, which are all the smallest among the participants.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:526 ; ‘1 cm Geoid Experiment’ ; Spherical radial basis functions ; Regional geoid modeling ; Heterogeneous data combination
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-06-08
    Description: Satellite altimetry has been widely used to determine surface elevation changes in polar ice sheets. The original height measurements are irregularly distributed in space and time. Gridded surface elevation changes are commonly derived by repeat altimetry analysis (RAA) and subsequent spatial interpolation of height change estimates. This article assesses how methodological choices related to those two steps affect the accuracy of surface elevation changes, and how well this accuracy is represented by formal uncertainties. In a simulation environment resembling CryoSat-2 measurements acquired over a region in northeast Greenland between December 2010 and January 2014, different local topography modeling approaches and different cell sizes for RAA, and four interpolation approaches are tested. Among the simulated cases, the choice of either favorable or unfavorable RAA affects the accuracy of results by about a factor of 6, and the different accuracy levels are propagated into the results of interpolation. For RAA, correcting local topography by an external digital elevation model (DEM) is best, if a very precise DEM is available, which is not always the case. Yet the best DEM-independent local topography correction (nine-parameter model within a 3,000 m diameter cell) is comparable to the use of a perfect DEM, which exactly represents the ice sheet topography, on the same cell size. Interpolation by heterogeneous measurement-error-filtered kriging is significantly more accurate (on the order of 50% error reduction) than interpolation methods, which do not account for heterogeneous errors.
    Description: German Research Foundation
    Keywords: ddc:526 ; Satellite altimetry ; Kriging ; Repeat altimetry ; Interpolation ; Ice sheet
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-02-14
    Description: The precise orbit determination (POD) of Global Navigation Satellite System (GNSS) satellites and low Earth orbiters (LEOs) are usually performed independently. It is a potential way to improve the GNSS orbits by integrating LEOs onboard observations into the processing, especially for the developing GNSS, e.g., Galileo with a sparse sensor station network and Beidou with a regional distributed operating network. In recent years, few studies combined the processing of ground- and space-based GNSS observations. The integrated POD of GPS satellites and seven LEOs, including GRACE-A/B, OSTM/Jason-2, Jason-3 and, Swarm-A/B/C, is discussed in this study. GPS code and phase observations obtained by onboard GPS receivers of LEOs and ground-based receivers of the International GNSS Service (IGS) tracking network are used together in one least-squares adjustment. The POD solutions of the integrated processing with different subsets of LEOs and ground stations are analyzed in detail. The derived GPS satellite orbits are validated by comparing with the official IGS products and internal comparison based on the differences of overlapping orbits and satellite positions at the day-boundary epoch. The differences between the GPS satellite orbits derived based on a 26-station network and the official IGS products decrease from 37.5 to 23.9 mm (34% improvement) in 1D-mean RMS when adding seven LEOs. Both the number of the space-based observations and the LEO orbit geometry affect the GPS satellite orbits derived in the integrated processing. In this study, the latter one is proved to be more critical. By including three LEOs in three different orbital planes, the GPS satellite orbits improve more than from adding seven well-selected additional stations to the network. Experiments with a ten-station and regional network show an improvement of the GPS satellite orbits from about 25 cm to less than five centimeters in 1D-mean RMS after integrating the seven LEOs.
    Description: Chinese Government Scholarship http://dx.doi.org/10.13039/501100010890
    Keywords: ddc:526 ; POD ; Integrated processing ; Sparse ground network ; GPS ; LEOs ; GRACE ; Jason ; Swarm
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-03-12
    Description: The Russian Global Navigation Satellite System (GLONASS) satellites have a stretched body shape and take a specific attitude mode inside the eclipse. Based on previous studies, the new Empirical CODE orbit model (ECOM2) performs better than the classical ECOM model if a satellite has elongated shape or does not maintain yaw-steering mode, and the use of an a priori box-wing (BW) model improves the orbits significantly when employing the ECOM model. However, we find that the ECOM model performs better than the ECOM2 model for GLONASS satellites outside eclipse seasons, while it performs two times worse in eclipse seasons. The use of the conventional box-wing model results in very little improvement. By assessing the ECOM Y〈sub〉0〈/sub〉 estimates, we conclude that there are potential radiators on the -x surface of GLONASS satellites causing orbit perturbations also inside the eclipse. The higher-order Fourier terms of the ECOM2 model can compensate for such effects better than the ECOM model. Based on this finding, we first confirm that GLONASS-K satellites take a similar attitude mode as GLONASS-M satellites inside the eclipse. Then, we adjust optical parameters of GLONASS satellites as part of precise orbit determination (POD) considering the potential radiator and thermal radiation effects. Finally, the adjusted parameters are introduced into a new box-wing model and jointly used with the ECOM and ECOM2 model, respectively. Results show that the amplitude and the dependency of the empirical parameters on the β angle are greatly reduced for both ECOM and ECOM2 models. Rather than the conventional box-wing model, the new box-wing model reduces the orbit misclosure between two consecutive arcs for both GLONASS-M and GLONASS-K satellites. In particular, the improvement in GLONASS-M satellites is more than 30% for the ECOM model during eclipse seasons. Further evaluation from 24-h predicted orbits demonstrates that the improvement during eclipse seasons is mainly in along- and cross-track directions. Finally, we validate GLONASS satellite orbits using Satellite Laser Ranging (SLR) observations. The use of the new box-wing model reduces the spurious pattern of the SLR residuals as a function of β and Δu significantly, and the linear dependency of the SLR residuals on the elongation drops from as large as -0.760 mm/deg to almost zero for both ECOM and ECOM2 models. In general, GLONASS-M satellites benefit more from the new a priori box-wing model and the BW+ECOM model results in the best SLR residuals, with an improvement of about 50% and 20%, respectively, for the mean and standard deviation (STD) values with respect to the orbit products without a priori model.
    Description: Technische Universität München (1025)
    Keywords: ddc:526 ; Solar radiation pressure ; Eclipse ; Radiator ; GLONASS ; Box-wing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-04-07
    Description: Integrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.
    Description: The petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.
    Description: Published
    Description: 5659–5678
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Petrology ; eruption ; GPS ; volcano seismology ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: The quantification of eruptive activity represents one major challenge in volcanology. Digital comparison of lidar-based elevation models of Etna (Italy) was made to quantify the volumes of volcanics emitted in 2007–2010. During this period, Etna produced several summit paroxysms followed by a flank eruption. We integrated the total volume difference resulting from the subtraction of the 2007 and 2010 digital elevation models with volumes of eruptive products based on field and aerial surveys to attribute volumes with hitherto unrealized precision to poorly constrained eruptions. The total erupted volume of 2007–2010 is 〉86 × 106m3, most (~74 × 106m3) of which is made up by the lava flows of the 2008–2009 flank eruption. The survey also reveals the high lava volume (5.73 × 106m3) and average eruption rate (~400m3 s 1) of the 10 May 2008 paroxysm, whose flow front stopped 6.2km from the vent, not far from the town of Zafferana Etnea.
    Description: Published
    Description: 4270–4278
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: LiDAR ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-01-16
    Description: Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.
    Description: Published
    Description: 84
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: explosive eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: At Mount Etna, the present-day active volcano is an open conduit structure characterized by continuous eruptive activity. Such conditions have been thought unique in the evolution of the Etnean volcano as well as in the Mediterranean region. However, a review study of available geophysical data and models, combined with geological records, petrographic and geochemical considerations, has led us to consider that a large area of about 28 km2 located in Val Calanna, on the eastern side of Valle del Bove, can be interpreted as the site of an old open conduit volcano. A dyke swarm outcrops in the area, whose deep alteration and fumarolization can be attributed to the sustained passage of volcanic gases over long periods. Radiometric dating yields an age of about 129 ka. This finding sheds new light on the evolution of Mount Etna volcano, indicating that the tectonic conditions leading to an open conduit volcano must also have been active in the past.
    Description: Published
    Description: 50
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Magnetic anomalies ; Dyke ; Mount Etna ; Mt. Calanna volcanics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-05-29
    Description: The Campi Flegrei caldera in southern Italy is one of the greatest geohazard areas on Earth. Evidence of an active magmatic and geothermal system is provided by ongoing ground uplift, with volcano-tectonic and longperiod (LP) seismicity, the persistent degassing of ~1500 tonnes of CO2 per day, the presence of hot fumaroles at temperatures of 90–150 °C, brine-rich aquifers (with total dissolved solids up to 33 g l−1) and high thermal gradients in the crust (with temperatures reaching 420 °C at 3,050 m b.s.l.). Since the 1940s, more than 100 exploratory boreholes have been drilled in the area to depths of 80–3,100 m by the Azienda Geologica Italiana Petroli (AGIP) and the Società Anonima Forze Endogene Napoletane (SAFEN). To date, however, no systematic reanalysis of the drilling data has been carried out, and the buried volcanic structure has not been updated using the most recent scientific results and previous findings. By integrating unpublished data from the AGIP and SAFEN reports with published information from geological, volcanological, petrological, petrophysical and geophysical studies, this paper presents an improved picture of the Campi Flegrei caldera that will be useful for volcanic hazard assessment and mitigation in the Naples area and for future research planning The results suggest that intra-caldera activity has been influenced by how the magmatic system at depths greater than about 4 km has determined the transfer of magma, volatiles, and heat to the overlying geothermal system and, ultimately, to the surface. In particular, intriguing is that the most volcanically active central-eastern sector of the caldera, which is subject to intense bradyseismic ground movement and gas emission, coincides with a structurally delimited subsurface rock volume characterized by an uprising of the 100 °C isotherm, a deep water supply to the shallower aquifer, the early disappearance of secondary calcite, LP seismicity and high seismic S-wave attenuation. In this area, we also document evidence of repeated injection at depths of c. 1.5–3.0 km of isolated and small-volume batches of magma, where occurred their crystallization and degassing. Shallow intrusions and degassing of magma are thus identified as two of the key processes that drive unrest in Campi Flegrei.
    Description: Published
    Description: 401-421
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic system ; Campi Flegrei ; AGIP ; Volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-06-03
    Description: The ongoing unrest at the Campi Flegrei caldera (CFc) in southern Italy is prompting exploration of its poorly studied offshore sector. We report on a multidisciplinary investigation of the Secca delle Fumose (SdF), a submarine relief known since antiquity as the largest degassing structure of the offshore sector of CFc. We combined high-resolution morphobathymetric and seismostratigraphic data with onshore geological information to propose that the present-day SdF morphology and structure developed during the initial stages of the last CFc eruption at Monte Nuovo in AD 1538. We suggest that the SdF relief stands on the eastern uplifted border of a N-S-trending graben-like structure formed during the shallow emplacement of the Monte Nuovo feeding dike. We also infer that the high-angle bordering faults that generated the SdF relief now preferentially allow the ascent of hot brines (with an equilibrium temperature of 1798C), thereby sustaining hydrothermal degassing on the seafloor. Systematic vertical seawater profiling shows that hydrothermal seafloor venting generates a sizeable CO2, pH, and temperature anomaly in the overlying seawater column. Data for the seawater vertical profile can be used to estimate the CO2 and energy (heat) outputs from the SdF area at 50 tons/d ( 0.53 kg/s) and 80 MW, respectively. In view of the cause-effect relationship with the Monte Nuovo eruption, and the substantial gas and energy outputs, we consider that the SdF hydrothermal system needs to be included in monitoring programs of the ongoing CFc unrest.
    Description: Published
    Description: 4153–4178
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrothermal fluid ; Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: Abstract. On 29 September 1538 a week-long eruption began in Campi Flegrei forming a new volcano, Monte Nuovo. From contemporary accounts of the eruption, it has been possible to reconstruct the main phases of activity. These phases may be correlated with different depositional units identified in the field. The eruption opened with a hydromagmatic phase, during which a large amount of external water (meteoric or sea water) was able to interact with the magma. The exhaustion of the water supply and decrease in volatile content initiated a change in the dynamic conditions of eruption, which became more purely magmatic in character and less explosive.
    Description: Published
    Description: 608--615
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Monte Nuovo ; The 1538 eruption ; (Campi Flegrei, Italy) ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: Pyroclastic density currents (PDCs) are gravitydriven hot mixtures of gas and volcanic particles which can propagate at high speed and cover distances up to several tens of kilometers around a given volcano. Therefore, they pose a severe hazard to the surroundings of explosive volcanoes able to produce such phenomena. Despite this threat, probabilistic volcanic hazard assessment (PVHA) of PDCs is still in an early stage of development. PVHA is rooted in the quantification of the large uncertainties (aleatory and epistemic) which characterize volcanic hazard analyses. This quantification typically requires a big dataset of hazard footprints obtained from numerical simulations of the physical process. For PDCs, numerical models range from very sophisticated (not useful for PVHA because of their very long runtimes) to very simple models (criticized because of their highly simplified physics). We present here a systematic and robust validation testing of a simple PDC model, the energy cone (EC), to unravel whether it can be applied to PVHA of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy), we assess the ability of EC to capture the values and variability in some relevant variables for hazard assessment, i.e., area of PDC invasion and maximum runout. In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86 which indicates an equal or better performance compared to other volcanic mass-flow models. The p values for the observed maximum runouts vary from 0.003 to 0.44. Finally, the frequencies of PDC arrival computed from the EC are similar to those determined from the spatial distribution of past PDC deposits, with high PDC-arrival frequencies over an ∼8-km radius from the crater area at Somma-Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived from our validation tests seem to indicate that the EC is a suitable candidate to compute PVHA of PDCs.
    Description: Published
    Description: 79
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Pyroclastic density currents ; Probabilistic hazard assessment ; Energy cone ; Somma-Vesuvius ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-12-16
    Description: Volcanic ash produced during explosive eruptions can have very severe impacts on modern technological societies. Here, we use reconstructed patterns of fine ash dispersal recorded in terrestrial and marine geological archives to assess volcanic ash hazards. The ash-dispersal maps from nine Holocene explosive eruptions of Italian volcanoes have been used to construct frequency maps of distal ash deposition over a wide area, which encompasses central and southern Italy, the Adriatic and Tyrrhenian seas and the Balkans. The maps are presented as two cumulative-thickness isopach maps, one for nine eruptions from different volcanoes and one for six eruptions from Somma-Vesuvius. These maps represent the first use of distal ash layers to construct volcanic hazard maps, and the proposed methodology is easily applicable to other volcanic areas worldwide.
    Description: This research was partially funded by INGV-DPC of Italy (SPEED project), IUGG grants to RS and PRIN09 project (coordinator RS).
    Description: Published
    Description: 866
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic ash ; Tephrostratigraphy ; Volcanic hazard ; Central Mediterranean ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-12-14
    Description: Explosive volcanic eruptions are defined as the violent ejection of gas and hot fragments from a vent in the Earth's crust. Knowledge of ejection velocity is crucial for understanding and modeling relevant physical processes of an eruption, and yet direct measurements are still a difficult task with largely variable results. Here we apply pioneering high-speed imaging to measure the ejection velocity of pyroclasts from Strombolian explosive eruptions with an unparalleled temporal resolution. Measured supersonic velocities, up to 405 m/s, are twice higher than previously reported for such eruptions. Individual Strombolian explosions include multiple, sub-second-lasting ejection pulses characterized by an exponential decay of velocity. When fitted with an empirical model from shock-tube experiments literature, this decay allows constraining the length of the pressurized gas pockets responsible for the ejection pulses. These results directly impact eruption modeling and related hazard assessment, as well as the interpretation of geophysical signals from monitoring networks.
    Description: INGV-DPC “V2” and “Paroxysm”, FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks”, and FP7-PEOPLE-IEF-2008 – 235328 Projects
    Description: Published
    Description: L02301
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: strombolian ; ejection velocity ; explosive eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-07-13
    Description: Mount Etna volcano is subject to transient magmatic intrusions and flank movement. The east flank of the edifice, in particular, is moving eastward and is dissected by the Timpe Fault System. The relationship of this eastward motion with intrusions and tectonic fault motion, however, remains poorly constrained. Here we explore this relationship by using analogue experiments that are designed to simulate magmatic rift intrusion, flank movement, and fault activity before, during, and after a magmatic intrusion episode. Using particle image velocimetry allows for a precise temporal and spatial analysis of the development and activity of fault systems. The results show that the occurrence of rift intrusion episodes has a direct effect on fault activity. In such a situation, fault activitymay occur or may be hindered, depending on the interplay of fault displacement and flank acceleration in response to dike intrusion. Our results demonstrate that a complex interplaymay exist between an active tectonic fault system and magmatically induced flank instability. Episodes of magmatic intrusion change the intensity pattern of horizontal flank displacements andmay hinder or activate associated faults. We further compare our results with the GPS data of the Mount Etna 2001 eruption and intrusion. We find that syneruptive displacement rates at the Timpe Fault System have differed from the preeruptive or posteruptive periods, which shows a good agreement of both the experimental and the GPS data. Therefore, understanding the flank instability and flank stability at Mount Etna requires consideration of both tectonic and magmatic forcing.
    Description: Published
    Description: 5356-5368
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: analogue models ; strain ; stress ; eruption ; flank dynamics ; GPS ; faults ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-06-25
    Description: Monogenetic volcanic fields, such as the Auckland Volcanic Field (AVF), New Zealand, are common on the Earth’s surface and are typically dominated by basaltic lava flows up to 10 s of km long. In monogenetic volcanic fields located in close proximity to human population and infrastructure, lava flows are a significant threat. In this study, lava flow emplacement conditions for some basaltic eruptions of the AVF were reconstructed using the thermo-rheological MAGFLOW model. Eight existing lava flows in the AVF were simulated using MAGFLOW and eruptive volumes measured from Light Detection and Ranging (LiDAR)-derived digital terrain models (DTMs). Fitting the simulations to the dimensions of actual lava flows provides insight into their emplacement mechanisms and conditions, such as effusion rate, and probable eruption durations. By looking at emplacement in different settings, the likely magma ascent rate for studied AVF eruptions is calculated to have been on the order of 0.1 m/s. In the AVF, the typical estimated duration of past lava flows was from a minimum of 2 days for small volume flows, such as Little Rangitoto (0.0015 km3), up to 83 days for large volume flows, such as Three Kings (0.078 km3). The three best-fitting simulations were used to establish eruption scenarios for future volcanic hazard mapping for the AVF. Inferences of eruption duration that will be useful for developing realistic emergency management plans and recovery scenarios for this densely populated volcanic field are also provided.
    Description: Published
    Description: 879
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow ; Effusion rate ; Magma flux ; Ascent velocity ; MAGFLOW ; Numerical simulation ; Feeder dyke ; Scoria cone ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: We present high-resolution Vp and Vp/Vs models of the southern Apennines (Italy) computed using local earthquakes recorded from 2006 to 2011 with a graded inversion scheme that progressively resolves the crustal structure, from the large scale of the Apennines belt to the local scale of the normal-fault system. High-Vp bodies defined in the upper and mid crust under the external Apennines are interpreted as extensive mafic intrusions revealing anorogenic magmatism episodes that broadened on the Adriatic domain during Paleogene. Under the mountain belt, a low-Vp region, annular to the Neapolitan volcanic district, indicates the existence of a thermal/fluid anomaly in the mid crust, coinciding with a shallow Moho and diffuse degassing of deeply derived CO2. In the belt axial zone, low Vp/Vs gas-pressurized rock volumes under the Apulian carbonates correlate to high heat flow, strong CO2-dominated gas emissions of mantle origin and shallow carbonate reservoirs with pressurized CO2 gas caps. We hypothesize that the pressurized fluid volumes located at the base of the active fault system influence the rupture process of large normal-faulting earthquakes, like the 1980 Mw6.9 Irpinia event, and that major asperities are confined within the high-Vp Apulian carbonates. This study confirms once more that pre-existing structures of the Pliocene Apulian belt controlled the rupture propagation during the Irpinia earthquake. The main shock broke a 30 km long, NE-dipping seismogenic structure, whereas delayed ruptures (both the 20 s and the 40 s sub-events) developed on antithetic faults, reactivating thrust faults located at the eastern edge of the Apulian belt.
    Description: Published
    Description: 8283–8311
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: embargoed_20150609
    Keywords: The velocity structure of the southern Apennines is determined by a multi-scale tomography ; Large Cenozoic mafic intrusions are identified in the Apulian crust ; Pressurized CO2 reservoirs identified under the axial belt can affect crustal seismicity ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.
    Description: INGV-DPC “V2” and “Paroxysm,” FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks,” and FP7-PEOPLE-IEF-2008–235328 “NEMOH” ITN projects
    Description: Published
    Description: 3096–3102
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: jet noise ; volcano acoustics ; Stromboli ; Yasur ; Fuego ; strombolian eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: Starting off from a review of previous literature on kinematic models of the unstable eastern flank of Mt. Etna, we propose a new model. The model is based on our analysis of a large quantity of multidisciplinary data deriving from an extensive and diverse network of INGV monitoring devices deployed along the slopes of the volcano. Our analysis had a twofold objective: first, investigating the origin of the recently observed slow-slip events on the eastern flank of Mt. Etna; and second, defining a general kinematic model for the instability of this area of the volcano. To this end, we investigated the 2008–2013 period using data collected from different geochemical, geodetic, and seismic networks, integrated with the tectonic and geologic features of the volcano and including the volcanic activity during the observation period. The complex correlations between the large quantities of multidisciplinary data have given us the opportunity to infer, as outlined in this work, that the fluids of volcanic origin and their interrelationship with aquifers, tectonic and morphological features play a dominant role in the large scale instability of the eastern flank of Mt. Etna. Furthermore, we suggest that changes in the strain distribution due to volcanic inflation/deflation cycles are closely connected to changes in shallow depth fluid circulation. Finally, we propose a general framework for both the short and long term modeling of the large flank displacements observed.
    Description: Published
    Description: 635–658
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; monitoring data ; GPS ; flank instability ; gas geochemistry ; volcanic tremor ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to under- stand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02–0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earth- quakes (5.6 MW 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated. Citation: Malagnini, L., R. B. Herrmann, I. Munafò, M. Buttinelli, M. Anselmi, A. Akinci, and E. Boschi (2012), The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard, Geophys. Res. Lett., 39, L19302, doi:10.1029/ 2012GL053214.
    Description: Published
    Description: L19302
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: open
    Keywords: earthquake sources, seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: From 2006 to spring 2013, Campi Flegrei (CF) caldera, Italy, was mostly uplifting at an increasing rate, particularly high from 2011. We show that the 2011–2013 accelerated uplift and 1980–2010 inflation and deflation phases can be explained by a two-source conceptual model similar to that proposed by Amoruso et al. (2014) (reference model). However, pressurization of the sole thin quasi-horizontal ∼4000 m deep source, responsible for large-scale 1980–2010 deformation, can explain the whole 2011–2013 deformation, while activity of the shallower Solfatara hydrothermal source, responsible for residual 1980–2010 deformation, appears constant. These results suggest a predominantly magmatic unrest in 2011–2013. Near-real-time comparison of observations and reference model predictions can provide additional information for short-term eruption forecasting at CF; a similar approach could be followed also in other volcanic environments.
    Description: Published
    Description: 3081–3088
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: The two sources of 1980–2010 CF deformation satisfy also the 2011–2013 unrest ; Pressurization of the sole ∼4000 m deep source satisfies the whole deformation ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: Editor’s Note: The following comment and reply arise from an article published in Geophysical Research Letters by Voigt et al. (2014). The article addresses a volcanology topic, and the commenters take issue with some conclusions and offer an analysis of their own. Voigt and co-authors have responded. Why is this comment-and-reply being published in the Bulletin? It is because Geophysical Research Letters is one of a number of journals that do not offer any published forum for discussion of the papers they publish. This is a matter of editorial policy and a decision for each journal. The Bulletin of Volcanology does provide a forum for discussion of articles published. When contacted by Marcello Liotta with the request that the Bulletin consider hosting a discussion of the Voigt et al. volcanology article in GRL, I agreed to do so if the GRL authors were willing to engage with the comment. Voigt and co-authors were willing to do so and have been allowed a small amount of additional space to summarize for Bulletin readers the key points of the GRL paper under discussion before responding directly to the comment from Liotta and Rizzo. I hope that Bulletin readers find the discussion and reply of interest.
    Description: Published
    Description: 865
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Volcanic degassing ; Volcanic plume ; Etna ; Chemical evolution of trace gases ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-10-06
    Description: Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions atMt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from2.6 to 3.0 g/cm3. P wave velocities (VP), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent VP with recent literature data on 3D VP seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (〉5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions.
    Description: Published
    Description: 722
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Cognate xenoliths . Gabbro . Geobarometry . Rock density . P-wave velocity . Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: The 1669 AD flank eruption was the most destructive event on Etna volcano in historical times (~700 BC) and provided, because of the presence of numerous quarries and subsurface data, the opportunity for a unique case study in which we directly measured the thickness of the lava field. Moreover, analysis of historical documents allowed reconstruction of the temporal evolution of the lava field and estimation of the average effusion rate. One hundred and thirty eight thickness measurements, acquired from field surveys and subsurface data, allowed us to divide the lava field into twelve zones of homogenous mean thickness and to calculate a total lava volume of (607 ± 105) × 106 m3, corresponding to an average effusion rate of 58 ± 10 m3/s. This new volume differs by −24% up to +64%, from previously published values. The temporal evolution of the cumulative volume and average effusion rate were reconstructed for the first fourteen days, from field data and analysis of historical records. A short initial phase was characterized by a rapid increase in effusion rate, which reached a peak of ~640 m3/s after three days. This was followed by a longer phase in which the flow rate decreased. The first fourteen days were crucial for the development of the lava field, and in this time it covered 72% of its final area and produced most of the damage. Thereafter, the growth of a complex lava tube network promoted lava field lengthening to the city of Catania, 17 km away from the vent. Effusion rate trends like those of the 1669 eruption can be adopted for future investigations aimed at assessing the effects of similar events on Etna’s most highly urbanized area and at other effusive basaltic volcanoes.
    Description: Published
    Description: 694
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna, 1669, Lava flow field, Lava volume, effusion rate trend ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: The statistical analysis of volcanic activity at Mt Etna was conducted with the twofold aim of (1) constructing a probability map for vent opening of future flank eruptions and (2) forecasting the expected number of eruptive events at the summit craters. The spatiotemporal map of new vent opening at Etna volcano is based on the analysis of spatial locations and frequency of flank eruptions starting from 1610. Thanks to the completeness and accuracy of historical data over the last four centuries, we examined in detail the spatial and temporal distribution of flank eruptions showing that effusive events follow a nonhomogenous Poisson process with space-time varying intensities. After demonstrating the spatial nonhomogeneity and the temporal nonstationarity of flank eruptions at Etna, we calculated the recurrence rates (events expected per unit area per unit time) and produced different spatiotemporal probability maps of new vent opening in the next 1, 10 and 50 years. These probabilistic maps have an immediate use in evaluating the future timing and areas of Etna prone to volcanic hazards. Finally, the results of the analysis of the persistent summit activity during the last 110 years indicate that the hazard rate for eruptive events is not constant with time, differs for each summit crater of Mt Etna, highlighting a general increase in the eruptive frequency starting from the middle of last century and particularly from 1971, when the SE crater was formed.
    Description: This work was developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 1925-1935
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; probabilistic modeling ; eruption ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: Flank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.
    Description: This work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.
    Description: Published
    Description: 4398-4409
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Volcano flank instability ; Pernicana fault ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K" ılauea Volcano, Hawai‘i, caused by magma " o-Kupaianaha withdrawal during the early eruptive episodes (1983–1985) of the ongoing Pu‘u ‘ O‘" " eruption. Eruptive activity at the Pu‘u ‘ O‘" o vent was typically accompanied by abrupt deflation that lasted for several hours and was followed by a sudden onset of gradual inflation once the eruptive episode had ended. Similar patterns of deflation and inflation were recorded at K" ılauea’s summit, approximately 15 km to the northwest, albeit with time delays of hours. These delay times can be reproduced by modeling the spatiotemporal changes in magma pressure and flow rate within an elastic-walled dike that traverses K" ılauea’s ERZ. Key parameters that affect the behavior of the magma-dike system are the dike dimensions, the elasticity of the wall rock, the magma viscosity, and to a lesser degree the magnitude and duration of the pressure variations themselves. Combinations of these parameters define a transport efficiency and a pressure diffusivity, which vary somewhat from episode to episode, resulting in variations in delay times. The observed variations in transport efficiency are most easily explained by small, localized changes to the geometry of the magma pathway
    Description: Published
    Description: 2232–2246
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: magma flow ; dikes ; Kilauea ; elastic rock ; magma-rock coupling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: From December 2005 to January 2006, an anomalous degassing episode was observed at Mount Etna, well-correlated with an increase in volcanic tremor, and in the almost complete absence of eruptive activity. In the same period, more than 10,000 very long period (VLP) events were detected. Through moment tensor inversion analyses of the VLP pulses, we obtained quantitative estimates of the volumetric variations associated with these events. This allowed a quantitative investigation of the relationship between VLP seismic activity, volcanic tremor, and gas emission rate at Mount Etna. We found a statistically significant positive correlation between SO2 gas flux and volcanic tremor, suggesting that tremor amplitude can be used as a first-order proxy for the background degassing activity of the volcano. VLP volumetric changes and SO2 gas flux are correlated only for the last part of our observations, following a slight change in the VLP source depth. We calculate that the gas associated with VLP signal genesis contributed less than 5% of the total gas emission. The existence of a linear correlation between VLP and degassing activities indicates a general relationship between these two processes. The effectiveness of such coupling appears to depend upon the particular location of the VLP source, suggesting that conduit geometry might play a significant role in the VLP-generating process. These results are the first report on Mount Etna of a quantitative relationship between the amounts of gas emissions directly estimated through instrumental flux measurements and the quantities of gas mass inferred in the VLP source inversion.
    Description: Published
    Description: 4910-4921
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Very Long Period seismicity ; UV scanners network ; Etna Volcano ; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: Global positioning system (GPS) and differential interferometric synthetic aperture radar (DInSAR) data, collected from July 2007 to July 2008 on Mt. Etna, are analyzed to define the dynamics preceding and accompanying the onset of the eruption on 13 May 2008. Short- and long-term comparisons have been made on both GPS and radar data, covering similar time windows. Thanks to the availability of three GPS surveys the year before the eruption onset, an increase in the seaward movement of the NE flank of the volcano has been detected in the few months before the dike intrusion. The GPS ground deformation pattern also shows a slight inflation centered on the western side of the volcano in the preeruptive long-term comparison (from July 2007 to May 2008). The GPS has been integrated with DInSAR data by the SISTEM approach, to take advantage of the different methodologies and provide high spatial sampling of the 3-D ground displacement pattern. We inverted the SISTEM results to model the pressure source causing the observed preeruptive inflation. The subsequent emplacement of the eruptive dike was imaged by two GPS surveys carried out on a dense network over the uppermost part of the volcano on 6 and 13 May, i.e., a few days before and a few hours after the beginning of the eruption. We inverted this comparison to define the position, geometry, and kinematics of the dike. The dike intrusion was also imaged by DInSAR data with temporal baselines of 2-3 months, which confirm strong displacements localized on the summit area, rapidly decreasing toward the middle flanks of the volcano, as detected by very short-term GPS data; furthermore, the comparison between DInSAR and GPS data highlighted the presence of a depressurizing source localized beneath the upper southwestern area, acting just after the dike intrusion. Finally, the long-period (1 year) GPS and DInSAR data were integrated by SISTEM to finely depict the 3-D ground deformation pattern with the highest spatial resolution. The long-period data allowed the complex kinematics of the volcano to be finely imaged and highlighting the interaction between flank dynamics and magma injection.
    Description: Published
    Description: 2818-2835
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: flank dynamics ; eruption ; volcano-tectonics ; GPS ; DInSAR ; data integration ; Etna ; deformation ; volcano ; fault ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: We present results from the first crustal seismic tomography for the southern Tyrrhenian area, which includes ocean bottom seismometer (OBS) data and a bathymetry correction. This area comprises Mt. Etna, the Aeolian Islands, and many volcanic seamounts, including the Marsili Seamount. The seismicity distribution in the area depends on the complex interaction between tectonics and volcanism. The 3-D velocity model presented in this study is obtained by the inversion of P wave arrival times from crustal earthquakes. We integrate travel time data recorded by an OBS network (Tyrrhenian Deep Sea Experiment), the SN-1 seafloor observatory, and the land network. Our model shows a high correlation between the P wave anomaly distribution and seismic and volcanic structures. Two main low-velocity anomalies underlie the central Aeolian Islands and Mt. Etna. The two volumes, which are related to the well-known active volcanism, are separated and located at different depths. This finding, in agreement with structural, petrography, and GPS data from literature, confirms the independence of the two systems. The strongest negative anomaly is found below Mt. Etna at the base of the crust, and we associate it with the deep feeding system of the volcano. We infer that most of the seismicity is generated in brittle rock volumes that are affected by the action of hot fluids under high pressure due to the active volcanism in the area. Lateral changes of velocity are related to a transition from the western to the central Aeolian Islands and to the passage from continental crust to the Tyrrhenian oceanic uppermost mantle.
    Description: Published
    Description: 3703–3719
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: ocean bottom seismometers ; southern Tyrrhenian Sea ; seismic tomography ; Aeolian Islands ; Etna ; oceanic continental crust ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-02-24
    Description: During effusive eruptions, thermal satellite monitoring has proved well suited to map the thermal flux from lava flows. However, during lava fountaining events, thermal contributions from active flows and from the fountain itself cannot be separated in low resolution satellite data. Here using photogrammetry and atmospheric modeling techniques, we compare radiance estimates from long-range ground-based thermal camera data (from which the fountain can be excluded) with those from SEVIRI satellite images for a fountaining event at Mount Etna (12 August 2011). The radiant heat flux determined from the ground-based camera showed similar behavior to values retrieved from Spinning Enhanced Visible and Infrared Imager (SEVIRI); thus the SEVIRI signal is interpreted to be dominated by the lava flows, with minimal contribution from the fountain. Furthermore, by modeling the cooling phase of each pixel inundated by lava, the mean thickness and lava volume (~2.4 × 106 m3) derived from camera images are comparable with those calculated from SEVIRI (~2.8 × 106 m3).
    Description: Published
    Description: 5058–5063
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; satellite ; thermal monitoring ; SEVIRI ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-06-09
    Description: We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to- 810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG’s SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of 28 106 m3, with a maximum intensity of 227 m3 s 1 being obtained for the 12 August 2011 event. The timeaveraged output over the year was 0.9 m3 s 1, this being the same as the rate that has characterized Etna’s effusive activity for the last 40 years.
    Description: We are grateful to EUMETSAT for SEVIRI data.
    Description: Published
    Description: L06305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: satellite ; lava fountains ; Etna ; erupted volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-03
    Description: The weakening mechanisms occurring during an earthquake failure are of prominent importance in determining the resulting energy release and the seismic waves excitation. In this paper we consider the fully dynamic response of a seismogenic structure where lubrication processes take place. In particular, we numerically model the spontaneous propagation of a 3-D rupture in a fault zone where the frictional resistance is controlled by the properties of a low viscosity slurry, formed by gouge particles and fluids. This model allows for the description of the fault motion in the extreme case of vanishing effective normal stress, by considering a viscous fault response and therefore without the need to invoke, in the framework of Coulomb friction, the generation of the tensile mode of fracture. We explore the effects of the parameters controlling the resulting governing law for such a lubricated fault; the viscosity of the slurry, the roughness of the fault surfaces and the thickness of the slurry film. Our results indicate that lubricated faults produce a nearly complete stress drop (i.e., a very low residual friction coefficient; mu ~ 0.01), a high fracture energy density (E_G ~ few 10s of MJ/m^2) and significant slip velocities (vpeak ~ few 10s of m/s). The resulting values of the equivalent characteristic slip-weakening distance (d_0_eq = 0.1–0.8 m, depending on the adopted parameters) are compatible with the seismological inferences. Moreover, in the framework of our model we found that supershear ruptures are highly favored. In the case of enlarging gap height we can have the healing of slip or even the inhibition of the rupture. Quantitative comparisons with different weakening mechanisms previously proposed in the literature, such as the exponential weakening and the frictional melting, are also discussed.
    Description: Published
    Description: B05304
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: governing models ; theoretical seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: In this work, waveform variations in repeating volcanotectonic earthquakes occurring from 2001–2009 in the northeastern flank of Mt. Etna were studied. Changes in waveform were found mainly during 2002–2003; and consisted of a decreasing similarity in the coda of events in earthquake families, as revealed by cross-correlation analysis, and delays, increasing proportionally to the lapse time, detected by coda wave interferometry. Such variations, mainly evident at stations located in the north-eastern flank of the volcano, were likely due to medium changes taking place within this region. Localized medium velocity decreases were inferred to occur in 2002–2003, followed by successive increases. The velocity decrease was interpreted as being caused by the opening or enlargement of cracks, produced by intruding magma bodies, intense ground deformation, and/ or VT earthquake activity that accompanied the 2002–2003 Mt. Etna eruption. On the other hand, subsequent velocity increases were interpreted as resulting from healing processes.
    Description: Published
    Description: L18311
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: coda wave interferometry ; Etna ; VT earthquakes ; Pernicana fault ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-04-03
    Description: The study of geodynamics relies on an understanding of the strength of the lithosphere. However, our knowledge of kilometer‐scale rheology has generally been obtained from centimeter‐sized laboratory samples or from microstructural studies of naturally deformed rocks. In this study, we present a method that allows rheological examination at a larger scale. Utilizing forward numerical modeling, we simulated lithospheric deformation as a function of heat flow and rheological parameters and computed several testable predictions including horizontal velocities, stress directions, and the tectonic regime. To select the best solutions, we compared the model predictions with experimental data. We applied this method in Italy and found that the rheology shows significant variations at small distances. The strength ranged from 0.6 ± 0.2 TN/m within the Apennines belt to 21 ± 6 TN/m in the external Adriatic thrust. These strength values correspond to an aseismic mantle in the upper plate and to a strong mantle within the Adriatic lithosphere. With respect to the internal thrust, we found that strike‐slip or transpressive, but not compressive, earthquakes can occur along the deeper portion of the thrust. The differences in the lithospheric strength are greater than our estimated uncertainties and occur across the Adriatic subduction margin. Using the proposed method, the lithospheric strength can be also determined when information at depth is scarce but sufficient surface data are available. Citation: Carafa, M. M. C., and S. Barba (2011), Determining rheology from deformation data: The case of central Italy, Tectonics, 30, TC2003, doi:10.1029/2010TC002680.
    Description: Published
    Description: TC2003
    Description: JCR Journal
    Description: restricted
    Keywords: Rheology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-04-04
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: Published
    Description: B03216
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; magnetotelluric ; flank instability ; volcano ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-04-04
    Description: We produce a spatial probability map of vent opening (susceptibility map) at Etna, using a statistical analysis of structural features of flank eruptions of the last 2 ky. We exploit a detailed knowledge of the volcano structures, including the modalities of shallow magma transfer deriving from dike and dike-fed fissure eruptions analysis on historical eruptions. Assuming the location of future vents will have the same causal factors as the past eruptions, we converted the geological and structural data in distinct and weighted probability density functions, which were included in a non-homogeneous Poisson process to obtain the susceptibility map. The highest probability of new eruptive vents opening falls within a N-S aligned area passing through the Summit Craters down to about 2,000 ma.s.l. on the southern flank. Other zones of high probability follow the North-East, East-North-East, West, and South Rifts, the latter reaching low altitudes (∼400 m). Less susceptible areas are found around the faults cutting the upper portions of Etna, including the western portion of the Pernicana fault and the northern extent of the Ragalna fault. This structuralbased susceptibility map is a crucial step in forecasting lava flow hazards at Etna, providing a support tool for decision makers.
    Description: This study was performed with the financial support from the V3-LAVA project (DPC-INGV 2007–2009 contract).
    Description: Published
    Description: 2083–2094
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Flank eruption ; Dike ; Volcano structure ; Susceptibility map ; Spatial clustering ; Back analysis ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: The dynamics of the May 18, 1980 lateral blast at Mount St. Helens, Washington (USA), were studied by means of a three-dimensional multiphase flow model. Numerical simulations describe the blast flow as a high-velocity pyroclastic density current generated by a rapid expansion (burst phase, lasting less than 20 s) of a pressurized polydisperse mixture of gas and particles and its subsequent gravitational collapse and propagation over a rugged topography. Model results show good agreement with the observed large-scale behavior of the blast and, in particular, reproduce reasonably well the front advancement velocity and the extent of the inundated area. Detailed analysis of modeled transient and local flow properties supports the view of a blast flow led by a high-speed front (with velocities between 100 and 170 m/s), with a turbulent head relatively depleted in fine particles, and a trailing, sedimenting body. In valleys and topographic lows, pyroclasts accumulate progressively at the base of the current body after the passage of the head, forming a dense basal flow depleted in fines (less than 5 wt.%) with total particle volume fraction exceeding 10−1 in most of the sampled locations. Blocking and diversion of this basal flow by topographic ridges provides the mechanism for progressive current unloading. On ridges, sedimentation occurs in the flow body just behind the current head, but the sedimenting, basal flow is progressively more dilute and enriched in fine particles (up to 40 wt.% in most of the sampled locations). In the regions of intense sedimentation, topographic blocking triggers the elutriation of fine particles through the rise of convective instabilities. Although the model formulation and the numerical vertical accuracy do not allow the direct simulation of the actual deposit compaction, present results provide a consistent, quantitative model able to interpret the observed stratigraphic sequence.
    Description: Published
    Description: B06208
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mount St. Helens ; blast, multiphase flow ; numerical simulations ; pyroclastic density currents ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: One hundred twenty-nine long-period (LP) events, divided into two families of similar events, were recorded by the 50 stations deployed on Mount Etna in the second half of June 2008. During this period lava was flowing from a lateral fracture after a summit Strombolian eruption. In order to understand the mechanisms of these events, we perform moment tensor inversions. Inversions are initially kept unconstrained to estimate the most likely mechanism. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainties in the velocity model. Constrained inversions for a crack, a pipe or an explosion then allow us to accurately determine the structural orientations of the source mechanisms. Both numerical tests and LP event inversions emphasise the importance of using stations located as close as possible to the source. Inversions for both families show mechanisms with a strong volumetric component. These events are most likely generated by cracks striking SW–NE for both families and dipping 70° SE (family 1) and 50° NW (family 2). For family 1 events, the crack geometry is nearly orthogonal to the dikelike structure along which events are located, while for family 2 the location gave two pipelike bodies that belong to the same plane as the crack mechanism. The orientations of the cracks are consistent with local tectonics, which shows a SW–NE weakness direction. The LP events appear to be a response to the lava fountain occurring on 10 May 2008 as opposed to the flank lava flow.
    Description: Published
    Description: B01304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Etna Volcano ; long-period events ; source mechanism ; location ; plumbing systems ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: The morphological evolution of the Sciara del Fuoco, Stromboli, is described from a time series dataset formed by Digital Elevation Models and orthophotos derived by digitising historical contour maps compiled in 1868 and 1937 and by processing data from aerial surveys carried out between 1954 and 2009. All maps were coregistered in the same reference system and used to build a quantitative reconstruction of the morphological changes of the Sciara del Fuoco slope. The changes mainly relate to the emplacement of many lava flows and their successive erosion. A comparative quantitative analysis yields estimates of areas and volumes of the lava fields formed on the sub-aerial part of the Sciara del Fuoco during a number of effusive events between 1937 and 2001, some of them never assessed before. The results of the analysis constrain the interpretation of the evolution and the magnitude of the recent effusive activity at the Stromboli volcano. Despite some uncertainties due to widely spaced observation periods, the results integrate all available topographic knowledge and contribute to an understanding of the main characteristics of the recent effusive eruptive styles at Stromboli volcano.
    Description: Published
    Description: 231-248
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; Lava flow eruptions ; Digital Elevation Models ; Sciara del Fuoco ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-04
    Description: Strombolian eruptions, common at basaltic volcanoes, are mildly explosive events that are driven by a large bubble of magmatic gas (a slug) rising up the conduit and bursting at the surface. Gas overpressure within the bursting slug governs explosion dynamics and vigor and is the main factor controlling associated acoustic and seismic signals. We present a theoretical investigation of slug overpressure based on magma-static and geometric considerations and develop a set of equations that can be used to calculate the overpressure in a slug when it bursts, slug length at burst, and the depth at which the burst process begins. We find that burst overpressure is controlled by two dimensionless parameters: V′, which represents the amount of gas in the slug, and A′, which represents the thickness of the film of magma that falls around the rising slug. Burst overpressure increases nonlinearly as V′ and A′ increase. We consider two eruptive scenarios: (1) the “standard model,” in which magma remains confined to the vent during slug expansion, and (2) the “overflow model,” in which slug expansion is associated with lava effusion, as occasionally observed in the field. We find that slug overpressure is higher for the overflow model by a factor of 1.2–2.4. Applying our model to typical Strombolian eruptions at Stromboli, we find that the transition from passive degassing to explosive bursting occurs for slugs with volume 〉24–230 m3, depending on magma viscosity and conduit diameter, and that at burst, a typical Strombolian slug (with a volume of 100–1000 m3) has an internal gas pressure of 1–5 bars and a length of 13–120 m. We compare model predictions with field data from Stromboli for low-energy “puffers,” mildly explosive Strombolian eruptions, and the violently explosive 5 April 2003 paroxysm. We find that model predictions are consistent with field observations across this broad spectrum of eruptive styles, suggesting a common slug-driven mechanism; we propose that paroxysms are driven by unusually large slugs (large V′).
    Description: Published
    Description: B02206
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli ; Taylor bubble ; basaltic volcanoes ; falling film ; gas slug ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: Near-fault strong-ground motions (0.1–10 Hz) recorded during the Mw 6.3 2009 L’Aquila earthquake exhibit great spatial variability. Modeling the observed seismograms allows linking distinct features of the observed wavefield to particular source and propagation effects and provides insights on strong motion complexity from this moderate magnitude event. We utilize a hybrid integral-composite approach based on a k-square kinematic rupture model, combining low-frequency coherent and high-frequency incoherent source radiation and providing omega-squared source spectral decay. Several source model features, proven to be stable by means of an uncertainty analysis in the preceding low-frequency (〈0.2 Hz) multiple finite-extent source inversion (Paper 1), were constrained. Synthetic Green’s functions are calculated in a 1D-layered crustal model including 1D soil profiles to account for site-specific response (where available). The results show that although the local site effects improve the modeling, the spatial broadband ground-motion variability is to large extent controlled by the rupture kinematics. The modeling thus confirms and further constraints the source model features, including the position and slip amount of the two main asperities, the largest asperity time delay and the rupture velocity distribution on the fault. Furthermore, we demonstrate that the crossover frequency dividing the coherent and incoherent wavefield, often considered independent on the station position, has to be variable in order to adequately reproduce both near and far station recordings. This suggests that the incoherency of the radiated wavefield is controlled by the wave-propagation phenomena and/or the initial updip rupture propagation was very smooth (coherent) up to relatively high frequencies (〉2 Hz)
    Description: Published
    Description: B0438
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: broad band modeling, source complexity, aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-03
    Description: This paper presents the results of a systematic historical study of the seismic, bradyseismic and eruptive activity of the Campi Flegrei caldera. The aim is to make a revised historical data available for accurate volcanological interpretation, supplying additional data and highlighting spurious previous data. The analysis begins with the supposed 1198 eruption, which did not actually take place. No information is available for the thirteenth and fourteenth centuries. As far as the fifteenth and sixteenth centuries are concerned, only direct sources were examined for this paper, and they include many different types of evidence. The chronological breadth of the analysis has also provided information about the seismic crises and bradyseisms prior to the eruption of 1538. The exceptional nature of this 1538 eruption attracted the attention of intellectuals, diplomats and natural philosophers, who left valuable accounts, which we have analysed, and which include many that are still available in their original manuscript form. The previous studies concerning the 1538 eruption were based on 23 (variously used) sources. We have examined 35 additional sources bringing the overall corpus of sources analysed to 58. The results provide a more precise scenario of events preceding the 1538 eruption, including bradyseismic activity starting from the end of the fifteenth century. The chronology of the phenomena described comprises the core result of this study, and has been constructed so as to clarify the time, location and impact of each event. For the 1538 eruption, a countdown is included which may also have a predictive value. For the last 36 hours before eruption began, the countdown is hour-by-hour. The effects of the eruption and earthquakes on people, structures and society are also described for Pozzuoli, Agnano and Naples. The areas where heavy materials and ash fell are likewise indicated, as well are the earth tremors felt by the population from the eruptive crisis up to 1582.
    Description: Published
    Description: 655-677
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera. ; historical data ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-12-06
    Description: We apply a novel computational approach to assess, for the first time, volcanic ash dispersal during the Campanian Ignimbrite (Italy) super-eruption providing insights into eruption dynamics and the impact of this gigantic event. The method uses a 3D time-dependent computational ash dispersion model, a set of wind fields, and more than 100 thickness measurements of the CI tephra deposit. Results reveal that the CI eruption dispersed 250–300 km3 of ash over 3.7 million km2. The injection of such a large quantity of ash (and volatiles) into the atmosphere would have caused a volcanic winter during the Heinrich Event 4, the coldest and driest climatic episode of the Last Glacial period. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle-Early Upper Paleolithic groups in Southern and Eastern Europe.
    Description: Published
    Description: L10310
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Campanian Ignimbrire ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-06-09
    Description: The 11–13 January 2011 eruptive episode at Etna volcano occurred after several months of increasing ash emissions from the summit craters, and was heralded by increasing SO2 output, which peaked at ∼5000 megagrams/day several hours before the start of the eruptive activity. The eruptive episode began with a phase of Strombolian activity from a pit crater on the eastern flank of the SE‐Crater. Explosions became more intense with time and eventually became transitional between Strombolian and fountaining, before moving into a lava fountaining phase. Fountaining was accompanied by lava output from the lower rim of the pit crater. Emplacement of the resulting lava flow field, as well as associated lava fountain‐ and Strombolian‐phases, was tracked using a remote sensing network comprising both thermal and visible cameras. Thermal surveys completed once the eruptive episode had ended also allowed us to reconstruct the emplacement of the lava flow field. Using a high temporal resolution geostationary satellite data we were also able to construct a detailed record of the heat flux during the fountain‐fed flow phase and its subsequent cooling. The dense rock volume of erupted lava obtained from the satellite data was 1.2 × 106 m3; this was emplaced over a period of about 6 h to give a mean output rate of ∼55 m3 s−1. By comparison, geologic data allowed us to estimate dense rock volumes of ∼0.85 × 106 m3 for the pyroclastics erupted during the lava fountain phase, and 0.84–1.7 × 106 m3 for lavas erupted during the effusive phase, resulting in a total erupted dense rock volume of 1.7–2.5 × 106 m3 and a mean output rate of 78–117 m3 s−1. The sequence of events and quantitative results presented here shed light on the shallow feeding system of the volcano.
    Description: Published
    Description: B11207
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: Etna ; lava fountains ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: Intermediate-focus seismicity (50〈H〈100km) related to the underplating zone of the South Shetland plate have been recorded at a small aperture seismic array set up in Deception Island, Antarctica.
    Description: Published
    Description: 531-534
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Deep earthquakes ; Antarctica ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-02-24
    Description: We present a 30 year long data set of satellite‐derived time‐averaged lava discharge rates (TADR) for Mount Etna volcano (Sicily, Italy), spanning 1980–2010 and comprising 1792 measurements during 23 eruptions. We use this to classify eruptions on the basis of magnitude and intensity, as well as the shape of the TADR time series which characterizes each effusive event. We find that while 1983–1993 was characterized by less frequent but longer‐duration effusive eruptions at lower TADRs, 2000–2010 was characterized by more frequent eruptions of shorter duration and higher TADRs. However, roughly the same lava volume was erupted during both of these 11 year long periods, so that the volumetric output was linear over the entire 30 year period, increasing at a rate of 0.8 m3 s−1 between 1980 and 2010. The cumulative volume record can be extended back in time using data available in the literature. This allows us to assess Etna’s output history over 5 centuries and to place the current trend in historical context. We find that output has been stable at this rate since 1971. At this time, the output rate changed from a low discharge rate phase, which had characterized the period 1759 to 1970, to a high discharge rate phase. This new phase had the same output rate as the high discharge rate phase that characterized the period 1610–1669. The 1610–1669 phase ended with the most voluminous eruption of historic times.
    Description: This contribution is in support of the LMV‐based (PI: Franck Donnadieu) TerMex‐MYSTRALS project “Contribution à l’évaluation des risques associés aux activités éruptives majeures de l’Etna: approche multidisciplinaire des processus et précurseurs.”
    Description: Published
    Description: B08204
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: Etna ; time averaged effusion rate ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: 129 Long Period (LP) events, divided in two families were recorded by 50 stations deployed on Mount Etna within an eruptive context in the second half of June 2008. In order to understand the mechanisms of these events, we perform moment tensor inversion. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainities in the velocity model. These tests emphasize the importance of using stations located as close as possible to the source in the inversion of LP events. Inversion of LP signals is initially unconstrained, in order to estimate the most likely mechanism. Constrained inversions then allow us to accurately determine the structural orientations of the mechanisms. Inversions for both families show mechanisms with strong volumetric components. These events are generated by cracks striking SW-NE for both families and dipping 70± SE (fam. 1) and 50± NW (fam. 2). The geometries of the cracks are different from the structures obtained by the location of these events. The orientation of the cracks is consistent with the local tectonic context on Mount Etna. The LP events seem to be a response to the lava fountain occuring on the 10th of May, 2008.
    Description: In press
    Description: (38)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Long-Period events ; earthquake source mechanism ; Etna Volcano ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: We (re)analyzed the source of the 26 December 2004 Sumatra-Andaman earthquake and tsunami through a nonlinear joint inversion of an inhomogeneous data set made up of tide gauges, satellite altimetry, and far-field GPS recordings. The purpose is twofold: (1) the retrieval of the main kinematics rupture parameters (slip, rake, and rupture velocity) and (2) the inference of the rigidity of the source zone. We independently estimate the slip from tsunami data and the seismic moment from geodetic data to derive the rigidity. Our results confirm that the source of the 2004 Sumatra-Andaman earthquake has a complex geometry, constituted by three main slip patches, with slip peaking at ~30 m in the southern part of the source. The rake direction rotates counterclockwise at the northern part of the source, according to the direction of convergence along the trench. The rupture velocity is higher in the deeper than in the shallower part of the source, consistent with the expected increase of rigidity with depth. It is also lower in the northern part, consistent with known variations of the incoming plate properties and shear velocity. Our model features a rigidity (20–30 GPa) that is lower than the preliminary reference Earth model (PREM) average for the seismogenic volume. The source rigidity is one of the factors controlling the tsunami genesis: for a given seismic moment, the lower the rigidity, the higher the induced seafloor displacement. The general consistence between our source model and previous studies supports the effectiveness of our approach to the joint inversion of geodetic and tsunami data for the rigidity estimation.
    Description: Published
    Description: B02304
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Source process ; Sumatra ; Tsunami ; Joint Inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: On 16 November 2006, a 1 day long paroxysmal eruption occurred at the summit craters of Mt. Etna volcano. A multiparametric approach, consisting of analyzing infrasonic, seismic, and video camera recordings, was carried out to follow its evolution. Volcanological and geophysical observations identified three eruptive phases. In the first phase, infrasonic and seismic characteristics reflected the highly explosive nature of the activity. Waveform characterization of infrasound events confirmed the activity of the several explosive vents at the summit of Southeast Crater (SEC). During the second phase, results highlighted the decoupling between seismic and infrasonic sources, which was due to the decrease in explosive activity and the reactivation of effusive vents located south of Bocca Nuova and on the saddle between Bocca Nuova and SEC. The third phase was the most intense and was characterized by various volcanic phenomena (pyroclastic flows, jets of dark ash, and white steam). The very high radiated infrasonic energy, together with infrasound event features, led us to infer a gas enrichment of the shallow magma column, preceding by a few minutes and likely related to the pyroclastic flows in the SEC area. After the eruption at SEC, variations in infrasound events related to the activity of Northeast Crater (NEC) were found. The observed spectral changes and the source mechanism modeling of the NEC infrasound events suggest the existence of a link in the plumbing system feeding the two craters.
    Description: Published
    Description: B09301
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; Infrasound ; volcanic tremor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-04-04
    Description: Between 2007 and early 2008, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) monitoring networks on Etna volcano recorded a recharging phase that climaxed with a new effusive eruption on 13 May 2008 and lasted about 14 months. A dike‐forming intrusion was accompanied by a violent seismic swarm, with more than 230 events recorded in the first 6 h, the largest being ML = 3.9. In the meanwhile, marked ground deformation was recorded by the permanent tilt and GPS networks, and sudden changes in the summit area were detected by five continuously recording magnetic stations. Poor weather conditions did not allow direct observation of the eruptive events, but important information was provided by infrared satellite images that detected the start of lava fountains from the eruptive fissure, feeding a lava flow. This flow spread within the Valle del Bove depression, covering 6.4 km on the southeastern flank of the volcano in a few hours. The seismicity and deformation pattern indicated that the dike‐forming intrusion was propagating northward. It produced a dry fracture field, which generated concern for the possibility that the eruptive fissures could expand downslope toward populated areas. Monitoring and modeling of the multidisciplinary data, together with the simulations of ash dispersal and lava flows, allowed us both to infer the eruptive mechanisms and to provide correct interpretation of the ongoing phenomena, furnishing useful information for civil defense purposes. We describe how this approach of feedback between monitoring and research provides critical support to risk evaluation.
    Description: We wish to thank all our colleagues from INGV Sezione di Catania for data collection, for the maintenance of the monitoring networks during the whole eruption, and for the many discussions about the interpretation of the eruptive events; the Etna Guides, the Funivia dell’Etna, and especially Alfio Mazzaglia and Nino Mazzaglia for the prompt information pertaining any news about the summit eruptive activity at Mount Etna; the Italian Civil Defense (DPC) for the close and efficient collaboration built up during the last height years of activity at Etna and other Sicilian volcanoes. We obtained MODIS data from NASA and SEVIRI data from EUMETSAT. We are indebted to Paul Davis for his B03203 BONACCORSO ET AL.: ETNA MULTIDISCIPLINARY HAZARD ASSESSMENT B03203 17 of 19 positive and encouraging comments. We thank the Associate Editor Michael P. Ryan, who helped greatly in improving the form of the manuscript. This study was undertaken with partial financial support from the INGV‐DPC 2007–2009 Agreement. Scientific papers funded by DPC do not represent its official opinion and politics. We thank Stephen Conway for revising the English language of this manuscript.
    Description: Published
    Description: B03203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; effusive eruption ; hazard evaluation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: We (re)analyzed the source of the 26 December 2004 Sumatra-Andaman earthquake and tsunami through a nonlinear joint inversion of an in-homogeneous dataset made up of tide-gages, satellite altimetry, and far-field GPS recordings. The purpose is two-fold: (1) the retrieval of the main kinematics rupture parameters (slip, rake, rupture velocity); (2) the inference of the rigidity of the source zone. We independently estimate the slip from tsunami data and the seismic moment from geodetic data, so to derive the rigidity. Our results confirm that the source of the 2004 Sumatra-Andaman earthquake has a complex geometry, constituted by three main slip patches, with slip peaking at ~30 meters in the Southern part of the source. The rake direction rotates counter-clockwise at North, according to the direction of convergence along the trench. The rupture velocity is higher in the deeper than in the shallower part of the source, consistently with the expected increase of rigidity with depth. It is also lower in the Northern part, consistently with known variations of the incoming plate properties and shear velocity. Our model features a rigidity (20-30 GPa), that is lower than PREM average for the seismogenic volume [Dziewonski and Anderson, 1981]. The source rigidity is one of the factors controlling the tsunamigenesis: for a given seismic moment, the lower the rigidity, the higher the induced seafloor displacement. The general consistence between our source model and previous studies supports the effectiveness of our approach to the joint inversion of geodetic and tsunami data for the rigidity estimation.
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Source process ; Sumatra ; Tsunami ; joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-04-04
    Description: In a recent work on the problem of sliding surfaces under the presence of frictional melt (applying in particular to earthquake fault dynamics), we derived from first principles an expression for the steady state friction compatible with experimental observations. Building on the expressions of heat and mass balance obtained in the above study for this particular case of Stefan problem (phase transition with a migrating boundary) we propose here an extension providing the full time-dependent solution (including the weakening transient after pervasive melting has started, the effect of eventual steps in velocity and the final decelerating phase). A system of coupled equations is derived and solved numerically. The resulting transient friction and wear evolution yield a satisfactory fit (1) with experiments performed under variable sliding velocities (0.9-2 m/s) and different normal stresses (0.5-20 MPa) for various rock types and (2) with estimates of slip weakening obtained from observations on ancient seismogenic faults that host pseudotachylite (solidified melt). The model allows to extrapolate the experimentally observed frictional behavior to large normal stresses representative of the seismogenic Earth crust (up to 200 MPa), high slip rates (up to 9 m/s) and cases where melt extrusion is negligible. Though weakening distance and peak stress vary widely, the net breakdown energy appears to be essentially independent of either slip velocity and normal stress. In addition, the response to earthquake-like slip can be simulated, showing a rapid friction recovery when slip rate drops. We discuss the properties of energy dissipation, transient duration, velocity weakening, restrengthening in the decelerating final slip phase and the implications for earthquake source dynamics.
    Description: S.N. and G.D.T. were supported by a European Research Council Starting Grant Project (acronym USEMS) and by a Progetti di Eccellenza Fondazione Cassa di Risparmio di Padova e Rovigo. We are grateful to Nick Beeler (and to an anonymous referee) for their constructive reviews and their help to improve the clarity of the manuscript.
    Description: Published
    Description: B10301
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Friction ; Melt ; Earthquake dynamics ; fault mechanics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-04-04
    Description: The amount of energy radiated from an earthquake can be measured using recent methods based on earthquake coda signals and spectral ratios. Such methods are not altered by either site or directivity effects, with the advantage of a greatly improved accuracy. Several studies of earthquake sequences based on the above measurements showed evidence of a breakdown in self-similarity in the moment to energy relation. Radiated energy can be also used as a gauge to estimate the average dynamic stress drop on the fault. Here we compute the dynamic stress drop, infer the co-seismic friction and estimate the co-seismic heating resulting from the frictional work during events from different main shock-aftershock earthquake sequences. We relate the dynamic friction to the maximum temperature rise estimated on the faults for each earthquake. Our results are strongly indicative that a thermally triggered dynamic frictional weakening is present, responsible for the breakdown in self-similarity. These observations from seismic data are compatible with recent laboratory evidence of thermal weakening in rock friction under seismic slip-rates, associated to various physical processes such as melting, decarbonation or dehydration.
    Description: Kevin Mayeda was supported under Weston Geophysical subcontract No. GC19762NGD and AFRL contract No. FA8718-06-C-0024. Work by L. Malagnini was performed under the auspices of the Dipartimento della Protezione Civile, under contract S3 – INGV-DPC (2007-2009), project: “Valutazione rapida dei parametri e degli effetti dei forti terremoti in Italia e nel Mediterraneo”.
    Description: Published
    Description: B06319
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: earthquake radiation ; coda ; friction ; self-similarity ; dynamic weakening ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-02-03
    Description: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Description: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Description: Published
    Description: B11203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature, and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions are fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high‐resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land use and civil defense planning in the long term, to quantify, in real time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project RBAU01RMZ4 “Lava flow simulations by Cellular Automata,” and by the National Civil Defense Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna.”
    Description: Published
    Description: B04203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: lava flows ; volcanic hazard ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: An eleven‐month deployment of 25 ocean bottom seismometers provides an unprecedented opportunity to study low‐magnitude local earthquakes in the complex transpressive plate boundary setting of the Gulf of Cadiz, known for the 1755 Lisbon earthquake and tsunami. 36 relocated earthquakes (ML 2.2 to 4.8) concentrate at 40– 60 km depth, near the base of the seismogenic layer in ∼140 Ma old oceanic mantle lithosphere, and roughly align along two perpendicular, NNE‐SSW and WNWESE striking structures. First motion focal mechanisms indicate compressive stress for the cluster close to the northern Horseshoe fault termination which trends perpendicular to plate convergence. Focal mechanisms for the second cluster near the southern termination of the Horseshoe fault indicate a strike‐slip regime, providing evidence for present‐day activity of a dextral shear zone proposed to represent the Eurasia‐Africa plate contact. We hypothesize that regional tectonics is characterized by slip partitioning.
    Description: Published
    Description: L18309
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: oceanic lithospheric mantle ; focal mechanisms ; stress tensor inversion ; Gulf of Cadiz ; ocean bottom seismometer ; 1755 Lisbon earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions is fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high-resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land-use and civil defence planning in the long-term, to quantify, in real-time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project n° RBAU01RMZ4 “Lava flow simulations by Cellular Automata”, and by the National Civil Defence Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna”.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: open
    Keywords: lava flows ; Etna ; hazard evaluation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Tectonic tremor has been recorded at many subduction zones, including the Nankai, Cascadia, Mexican, and Alaskan subduction zones. This study, the first to use small aperture seismic arrays to track tremor, deployed three small aperture seismic arrays along the Cascadia subduction zone during a tremor and slow slip episode in July 2004. The tremor was active during virtually all (up to 99%) minutes of the analyzed tremor episode using 5 min sample windows. Individual wave phases were tracked across the arrays and used to derive slowness vectors. These were compared with slowness vectors computed from a standard layered Earth model to derive tremor locations. Locations were stable within a volume roughly 250 km2 in epicenter and 20 km in depth for hours to days before moving to a new volume. The migration between volumes was not smooth, and the movement of the sources within the volume followed no specific pattern. Overall migration speeds along the strike of the subduction zone were between 5 and 15 km/d; smaller scale migration speeds between volumes reached speeds up to 2 km/min. Uncertainties in the best locations were 5 km in epicenter and 10 km in depth. For this data set and processing methodology, tremor does not locate predominately on the primary subduction interface. Our favored model for the generation of tectonic tremor signals is that the tremor is triggered by stress and fluid pressure changes caused by slow slip and is composed, at least in part, of low‐frequency earthquakes broadly distributed in location
    Description: Published
    Description: B00A24
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: tremor migration ; Cascadia 2004 ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...