ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (182,058)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
  • American Geophysical Union (AGU)
  • International Union of Crystallography
  • Society of Economic Geologists (SEG)
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2024-02-27
    Description: Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO〈jats:sub〉2〈/jats:sub〉 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO〈jats:sub〉2〈/jats:sub〉 sink with lower net CO〈jats:sub〉2〈/jats:sub〉 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO〈jats:sub〉2〈/jats:sub〉 sink was located in western Canada (median: −52 g C m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH〈jats:sub〉4〈/jats:sub〉 m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO〈jats:sub〉2〈/jats:sub〉 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 25(1), ISSN: 1525-2027
    Publication Date: 2024-03-04
    Description: Mineral dust accumulated on the ocean floor is an important archive for reconstructing past atmospheric circulation changes and climatological conditions in the source areas. Dust emitted from Southern Hemisphere dust sources is widely deposited over the oceans. However, there are few records of dust deposition over the open ocean, and a large need for extended geographical coverage exists. We present a large data set (134 surface sediment samples) of Late Holocene dust deposition from seafloor surface sediments covering the entire South Atlantic Ocean. Polymodal grain-size distributions of the lithogenic fraction indicate that the sediments are composed of multiple sediment components. By using end-member modeling, we attempt to disentangle the dust signal from non-aeolian sediments. Combined with 230Th-normalized lithogenic fluxes, we quantified the specific deposition fluxes for mineral dust, crrent-sorted sediments and ice-rafted debris (IRD). Although the method could not completely separate the different components in every region, it shows that dust deposition off the most prominent dust source for the South Atlantic Ocean—southern South America—amounts up to approximately 0.7 g cm−2 Kyr−1 and decreases downwind. Bottom-current-sorted sediments and IRD are mostly concentrated around the continental margins. The ratio of the coarse to fine dust end members reveals input from north African dust sources to the South Atlantic. The majority of the observations are in good agreement with new model simulations. This extensive and relevant data set of dust grain size and deposition fluxes to the South Atlantic could be used to calibrate and validate further model simulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-13
    Description: The availability of silicon (Si) in the ocean plays an important role in regulating biogeochemical and ecological processes. The Si budget of the Arctic Ocean appears balanced, with inputs equivalent to outputs, though it is unclear how a changing climate might aggravate this balance. In this study, we focus on Si cycling in Arctic coastal areas and continental shelf sediments to better constrain the Arctic Ocean Si budget. We provide the first estimate of amorphous Si (ASi) loading from erosion of coastal Yedoma deposits (30–90 Gmol yr−1), demonstrating comparable rates to particulate Si loading from rivers (10–90 Gmol yr−1). We found a positive relationship between surface sediment ASi and organic matter content on continental shelves. Combining these values with published Arctic shelf sediment properties and burial rates we estimate 70 Gmol Si yr−1 is buried on Arctic continental shelves, equivalent to 4.5% of all Si inputs to the Arctic Ocean. Sediment dissolved Si fluxes increased with distance from river mouths along cruise transects of shelf regions influenced by major rivers in the Laptev and East Siberian seas. On an annual basis, we estimate that Arctic shelf sediments recycle approximately up to twice as much DSi (680 Gmol Si) as is loaded from rivers (340–500 Gmol Si).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Global Biogeochemical Cycles, American Geophysical Union (AGU), 38(1), ISSN: 0886-6236
    Publication Date: 2024-02-13
    Description: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year−1 in observational product and +0.54 PgCO2-e year−1 in model median) and CH4 (+0.21 PgCO2-e year−1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%–60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-26
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Erosion of permafrost coasts due to climate warming releases large quantities of organic carbon (OC) into the Arctic Ocean. While burial of permafrost OC in marine sediments potentially limits degradation, resuspension of sediments in the nearshore zone potentially enhances degradation and greenhouse gas production, adding to the “permafrost carbon feedback.” Recent studies, focusing on bulk sediments, suggest that permafrost OC derived from coastal erosion is predominantly deposited close to shore. However, bulk approaches disregard sorting processes in the coastal zone, which strongly influence the OC distribution and fate. We studied soils and sediments along a transect from the fast‐eroding shoreline of Herschel Island—〈jats:italic〉Qikiqtaruk〈/jats:italic〉 (Yukon, Canada) to a depositional basin offshore. Sample material was fractionated by density (1.8 g cm〈jats:sup〉−3〈/jats:sup〉) and size (63 μm), separating loose OC from mineral‐associated OC. Each fraction was analyzed for element content (TOC, TN), carbon isotopes (δ〈jats:sup〉13〈/jats:sup〉C, Δ〈jats:sup〉14〈/jats:sup〉C), molecular biomarkers (〈jats:italic〉n〈/jats:italic〉‐alkanes, 〈jats:italic〉n〈/jats:italic〉‐alkanoic acids, lignin phenols, cutin acids), and mineral surface area. The OC partitioning between fractions changes considerably along the transect, highlighting the importance of hydrodynamic sorting in the nearshore zone. Additionally, OC and biomarker loadings decrease along the land‐ocean transect, indicating significant loss of OC during transport. However, molecular proxies for degradation show contrasting trends, suggesting that OC losses are not always well reflected in its degradation state. This study, using fraction partitioning that crosses land‐ocean boundaries in a way not done before, aids to disentangle sorting processes from degradation patterns, and provides quantitative insight into losses of thawed and eroded permafrost OC.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publication Date: 2024-04-24
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-25
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic〉INSIGHT〈/italic〉 is a Python‐based software tool for processing and reducing 2D grazing‐incidence wide‐ and small‐angle X‐ray scattering (GIWAXS/GISAXS) data. It offers the geometric transformation of the 2D GIWAXS/GISAXS detector image to reciprocal space, including vectorized and parallelized pixel‐wise intensity correction calculations. An explicit focus on efficient data management and batch processing enables full control of large time‐resolved synchrotron and laboratory data sets for a detailed analysis of kinetic GIWAXS/GISAXS studies of thin films. It processes data acquired with arbitrarily rotated detectors and performs vertical, horizontal, azimuthal and radial cuts in reciprocal space. It further allows crystallographic indexing and GIWAXS pattern simulation, and provides various plotting and export functionalities. Customized scripting offers a one‐step solution to reduce, process, analyze and export findings of large 〈italic〉in situ〈/italic〉 and 〈italic〉operando〈/italic〉 data sets.〈/p〉
    Keywords: ddc:548 ; grazing‐incidence X‐ray scattering ; time‐resolved studies ; in situ studies ; operando studies ; computer programs
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-13
    Description: Since the 1980s various international directives and frameworks have acknowledged the potential of risk communication to foster community empowerment. However, to achieve empowerment, communication has to be effective. When it comes to natural disasters, such as earthquakes, science communication requires the involvement of communities as a whole, promoting bottom-up strategies and proactive engagement. In this light, we conducted a scoping review of scientific publications on seismic risk communication in Europe published between 2000 and 2022. We focused on how seismic risk communication has changed in that time span, looking for targeted approaches, tools, recipients and channels. Here we provide an overview of the results obtained from the analysis of 109 selected publications, also highlighting the importance of scientific communication as a transnational problem, due to the mobility of modern society. Our study reveals that seismic risk communication in Europe is becoming increasingly proactive, focusing on a bottom-up strategy that relies on youth to build the resilience of future generations. The potential for the community empowerment has been primarily addressed with seismic risk communication during the pre-crisis phase of the disaster, when risk awareness can be effectively raised. Social media are increasingly used to provide timely and actionable information in times of crisis, to engage citizens within a two-way risk communication model, in the pre-crisis time, and to provide scientific data for post-disaster processing. The future agenda of seismic risk communication in Europe should focus on building trust with the public, moving towards a three-way model of seismic risk communication and, even more importantly, taking action to curb the spread of fake news and their negative impact on disaster management. Last but not least, more efforts should be made to link practice and theory and explicitly build seismic risk communication on theoretical models.
    Description: Published
    Description: San Francisco, California, USA
    Description: OS: Terza missione
    Keywords: Seismic risk ; communication ; Europe ; scoping review ; 04.06. Seismology ; 05.08. Risk ; 05.09
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-13
    Description: In mid-September 2021 there was a rapid increase in geophysical and geochemical parameters on the island of Vulcano, Italy, reaching alarming values. This phase of unrest aroused serious concern among Civil Protection, local authorities and the scientific community due to the risk of phreatomagmatic activity, with potentially serious repercussions on the inhabitants of the island and on visiting tourists. The beginning of the unrest was marked by a high occurrence rate of local micro-seismicity related to fluid dynamics within the shallower hydrothermal system (mainly Long Period and Very Long Period events); Volcano-Tectonic (VT) earthquakes increased in late October after most of the monitored parameters reached their climax. Afterwards, major episodes of VT activity were also recorded from March to April and at the end of the year 2022, when an earthquake of ML 4.6 occurred on December 4, SW of the island of Vulcano. Here, we analyze the VT earthquakes from January 2020 to December 2022, in terms of space-time distribution, energy release and focal mechanisms in the framework of the regional geodynamic context and in the light of the main characteristics of the seismic activity recorded in the Vulcano area over the past 36 years.
    Description: Published
    Description: San Francisco, California, USA
    Description: OST3 Vicino alla faglia
    Keywords: earthquakes ; monitoring ; volcano unrest ; Vulcano ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(6), ISSN: 0094-8276
    Publication Date: 2024-03-18
    Description: Understanding the material properties and physical conditions of basal ice is crucial for a comprehensive understanding of Antarctic ice‐sheet dynamics. Yet, direct data are sparse and difficult to acquire. Here, we employ ultra‐wideband radar to map high‐backscatter zones near the glacier bed within East Antarctica's Jutulstraumen drainage basin. Our backscatter analysis reveals that the basal ice in an area of ∼10,000 km² is composed of along‐flow oriented sediment‐laden basal ice units connected to the basal substrate, extending up to several hundred meters thick. Three‐dimensional thermomechanical modeling supports that these units form via basal freeze‐on of subglacial water that originated from further upstream. Our findings suggest that basal freeze‐on, and the entrainment and transport of subglacial material play a significant role in an accurate representation of material, physical, and rheological properties of the Antarctic ice sheet's basal ice, ultimately enhancing the accuracy and reliability of ice‐sheet modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-03-21
    Description: Tropospheric reactive bromine (Bry) influences the oxidation capacity of the atmosphere by acting as a sink for ozone and nitrogen oxides. Aerosol acidity plays a crucial role in Bry abundances through acid-catalyzed debromination from sea-salt-aerosol, the largest global source. Bromine concentrations in a Russian Arctic ice-core, Akademii Nauk, show a 3.5-fold increase from pre-industrial (PI) to the 1970s (peak acidity, PA), and decreased by half to 1999 (present day, PD). Ice-core acidity mirrors this trend, showing robust correlation with bromine, especially after 1940 (r = 0.9). Model simulations considering anthropogenic emission changes alone show that atmospheric acidity is the main driver of Bry changes, consistent with the observed relationship between acidity and bromine. The influence of atmospheric acidity on Bry should be considered in interpretation of ice-core bromine trends.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(4), ISSN: 0094-8276
    Publication Date: 2024-03-27
    Description: The eruption of the Hunga Tonga‐Hunga Ha'apai volcano on 15 January 2022 was one of the most explosive eruptions of the last decades. The amount of water vapor injected into the stratosphere was unprecedented in the observational record, increasing the stratospheric water vapor burden by about 10%. Using model runs from the ATLAS chemistry and transport model and Microwave Limb Sounder (MLS) satellite observations, we show that while 20%–40% more water vapor than usual was entrained into the Antarctic polar vortex in 2023 as it formed, the direct chemical effect of the increased water vapor on Antarctic ozone depletion in June through October was minor (less than 4 DU). This is because low temperatures in the vortex, as occur every year in the Antarctic, limit water vapor to the saturation pressure and thus reset any anomalies through the process of dehydration before they can affect ozone loss.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), 129(1), ISSN: 2169-897X
    Publication Date: 2024-05-21
    Description: The products from the Stable Water Isotope Intercomparison Group, Phase 2, are currently used for numerous studies, allowing water isotope model-data comparisons with various isotope-enabled atmospheric general circulation model (AGCMs) outputs. However, the simulations under this framework were performed using different parameterizations and forcings. Therefore, a uniform experimental design with state-of-the-art AGCMs is required to interpret isotope observations rigorously. Here, we evaluate the outputs from three isotope-enabled numerical models nudged by three different reanalysis products and investigate the ability of the isotope-enabled AGCMs to reproduce the spatial and temporal patterns of water isotopic composition observed at the surface and in the atmospheric airborne water. Through correlation analyses at various spatial and temporal scales, we found that the model's performance depends on the model or reanalysis we use, the observations we compare, and the vertical levels we select. Moreover, we employed the stable isotope mass balance method to conduct decomposition analyses on the ratio of isotopic changes in the atmosphere. Our goal was to elucidate the spread in simulated atmospheric column δ18O, which is influenced by factors such as evaporation, precipitation, and horizontal moisture flux. Satisfying the law of conservation of water isotopes, this budget method is expected to explain various fractionation phenomena in atmospheric meteorological and climatic events. It also aims to highlight the spreads in modeled isotope results among different experiments using multiple models and reanalyses, which are primarily dominated by uncertainties in moisture flux and precipitation, respectively.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-05-21
    Description: Based on a 6-year long record (2014–2020) of the isotopic composition of rain (δ18Op) at Réunion Island (55°E, 22°S), in the South-West Indian Ocean, this study shows that the annual isotopic composition of precipitation in this region is strongly controlled by the number of cyclones, the number of best-track days, and the proportion of cyclonic rain during the year. Our results support the use of δ18Op in annual-resolved tropical climate archives as a reliable proxy of past cyclone frequency. The influence of the proportion of cyclonic rain on the annual isotopic composition arises from the systematically more depleted precipitation and water vapor during cyclonic events than during less organized convective systems. The analysis of the daily to hourly isotopic composition of water vapor (δ18Ov) during low-pressure systems and the reproduction of daily δ18Ov observations by AGCMs with a global medium to coarse resolution (LMDZ-iso and ECHAM6-wiso) suggest that during cyclonic periods the stronger depletion mainly arises from both enhanced large-scale precipitation and water vapor-rain interactions under humid conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-07-04
    Description: The recent diversification of macromolecular crystallographic experiments including the use of pink beams, convergent electron diffraction and serial snapshot crystallography has shown the limitations of using the Laue equations for diffraction prediction. This article gives a computationally efficient way of calculating approximate crystal diffraction patterns given varying distributions of the incoming beam, crystal shapes and other potentially hidden parameters. This approach models each pixel of a diffraction pattern and improves data processing of integrated peak intensities by enabling the correction of partially recorded reflections. The fundamental idea is to express the distributions as weighted sums of Gaussian functions. The approach is demonstrated on serial femtosecond crystallography data sets, showing a significant decrease in the required number of patterns to refine a structure to a given error.
    Description: Reflection position, size and shape prediction and partiality estimation of crystal diffraction by integrating using a Gaussian basis are described.
    Keywords: ddc:548 ; partiality estimation ; diffraction prediction ; merging ; serial snapshot crystallography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publication Date: 2023-06-23
    Description: Climate change in the Arctic has substantial impacts on human life and ecosystems both within and beyond the Arctic. Our analysis of CMIP6 simulations shows that some climate models project much larger Arctic climate change than other models, including changes in sea ice, ocean mixed layer, air-sea heat flux, and surface air temperature in wintertime. In particular, dramatic enhancement of Arctic Ocean convection down to a few hundred meters is projected in these models but not in others. Interestingly, these models employ the same ocean model family (NEMO) while the choice of models for the atmosphere and sea ice varies. The magnitude of Arctic climate change is proportional to the strength of the increase in poleward ocean heat transport, which is considerably higher in this group of models. Establishing the plausibility of this group of models with high Arctic climate sensitivity to anthropogenic forcing is imperative given the implied ramifications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publication Date: 2023-06-23
    Description: Sea ice leads play an important role in energy exchange between the ocean and atmosphere in polar regions, and therefore must be considered in weather and climate models. As sea ice leads are not explicitly resolved in such models, lead-averaged surface heat flux is of considerable interest for the parameterization of energy exchange. Measurements and numerical studies have established that the lead-averaged surface heat flux depends not only on meteorological parameters, but also on lead width. Nonetheless, few studies to date have investigated the dependency of surface heat flux on lead width. Most findings on that dependency are based on observations with lead widths smaller than a few hundred meters, but leads can have widths from a few meters to several kilometers. In this parameter study, we present the results of three series of large-eddy simulations of turbulent exchange processes above leads. We varied the lead width and air temperature, as well as the roughness length. As this study focused on conditions without background wind, ice-breeze circulation occurred, and was the main driver of the adjustment of surface heat flux. A previous large-eddy simulation study with uncommonly large roughness length found that lead-averaged surface heat flux exhibited a distinct maximum at lead widths of about 3 km, while our results show the largest heat fluxes for the smallest leads simulated (lead width of 50 m). At more realistic roughness lengths, we observed monotonously increasing heat fluxes with increasing lead width. Further, new scaling laws for the ice-breeze circulation are proposed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(3), ISSN: 2169-9275
    Publication Date: 2023-06-23
    Description: The Arctic is warming much faster than the global average. This is known as Arctic Amplification and is caused by feedbacks in the local climate system. In this study, we explore a previously proposed hypothesis that an associated wind feedback in the Barents Sea could play an important role by increasing the warm water inflow into the Barents Sea. We find that the strong recent decrease in Barents Sea winter sea ice cover causes enhanced ocean-atmosphere heat flux and a local air temperature increase, thus a reduction in sea level pressure and a local cyclonic wind anomaly with eastward winds in the Barents Sea Opening. By investigating various reanalysis products and performing high-resolution perturbation experiments with the ocean and sea ice model FESOM2.1, we studied the impact of cyclonic atmospheric circulation changes on the warm Atlantic Water import into the Arctic via the Barents Sea and Fram Strait. We found that the observed wind changes do not significantly affect the warm water transport into the Barents Sea, which rejects the wind-feedback hypothesis. At the same time, the cyclonic wind anomalies in the Barents Sea increase the amount of Atlantic Water recirculating westwards in Fram Strait by a downslope shift of the West Spitsbergen Current, and thus reduce Atlantic Water reaching the Arctic basin via Fram Strait. The resulting warm-water anomaly in the Greenland Sea Gyre drives a local anticyclonic circulation anomaly.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-10-24
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Complex functional materials play a crucial role in a broad range of energy‐related applications and in general for materials science. Revealing the structural mechanisms is challenging due to highly correlated coexisting phases and microstructures, especially for 〈italic〉in situ〈/italic〉 or 〈italic〉operando〈/italic〉 investigations. Since the grain sizes influence the properties, these microstructural features further complicate investigations at synchrotrons due to the limitations of illuminated sample volumes. In this study, it is demonstrated that such complex functional materials with highly correlated coexisting phases can be investigated under 〈italic〉in situ〈/italic〉 conditions with neutron diffraction. For large grain sizes, these experiments are valuable methods to reveal the structural mechanisms. For an example of 〈italic〉in situ〈/italic〉 experiments on barium titanate with an applied electric field, details of the electric‐field‐induced phase transformation depending on grain size and frequency are revealed. The results uncover the strain mechanisms in barium titanate and elucidate the complex interplay of stresses in relation to grain sizes as well as domain‐wall densities and mobilities.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This work reports 〈italic〉in situ〈/italic〉 neutron diffraction experiments on a broad range of grain sizes of barium titanate. The study reveals the grain‐size‐dependent strain mechanisms and shows the competitiveness of neutron diffraction with high‐resolution synchrotron diffraction.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005767:jcr2vb5054:jcr2vb5054-fig-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:550.724 ; ddc:548 ; neutron diffraction ; in situ ; applied electric fields ; barium titanate ; strain mechanisms ; grain sizes ; complex functional materials ; microstructures ; coexisting phases
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(22), ISSN: 0094-8276
    Publication Date: 2023-11-25
    Description: Given the role played by the historical and extensive coverage of sea ice concentration (SIC) observations in reconstructing the long‐term variability of Antarctic sea ice, and the limited attention given to model‐dependent parameters in current sea ice data assimilation studies, this study focuses on enhancing the performance of the Data Assimilation System for the Southern Ocean in assimilating SIC through optimizing the localization and observation error estimate, and two assimilation experiments were conducted from 1979 to 2018. By comparing the results with the sea ice extent of the Southern Ocean and the sea ice thickness in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that without optimizations due to achieving more reasonable error estimates. Investigating uncertainties of the sea ice volume anomaly modeling reveals the importance of the sea ice‐ocean interaction in the SIC assimilation, implying the necessity of assimilating more oceanic and sea‐ice observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(20), ISSN: 0094-8276
    Publication Date: 2023-11-20
    Description: Surface processes alter the water stable isotope signal of the surface snow after deposition. However, it remains an open question to which extent surface post-depositional processes should be considered when inferring past climate information from ice core records. Here, we present simulations for the Greenland Ice Sheet, combining outputs from two climate models with an isotope-enabled snowpack model. We show that surface vapor exchange and associated fractionation imprint a climate signal into the firn, resulting in an increase in the annual mean value of δ18O by +2.3‰ and a reduction in d-excess by −6.3‰. Further, implementing isotopic fractionation during surface vapor exchange improves the representation of the observed seasonal amplitude in δ18O from 65.0% to 100.2%. Our results stress that surface vapor exchange is important in the climate proxy signal formation and needs consideration when interpreting ice core climate records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publication Date: 2023-02-23
    Description: Comparing helicopter-borne surface temperature maps in winter and optical orthomosaics in summer from the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3–2.5 K warmer on sea ice that later formed melt ponds. A one-dimensional steady-state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold-based classification achieves a correct classification for 41% of the melt ponds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), 38, 22 p., pp. e2022PA004439-e2022PA004439, ISSN: 2572-4517
    Publication Date: 2023-08-30
    Description: Atmospheric carbon dioxide concentrations (pCO2) beyond ice core records have been reconstructed from δ11B derived from planktic foraminifera found in equatorial sediment cores. Here, I applied a carbon cycle model over the Plio-Pleistocene to evaluate the assumptions leading to these numbers. During glacials times, simulated atmospheric pCO2 was unequilibrated with pCO2 in the equatorial surface ocean by up to 35 ppm while the δ11B-based approaches assume unchanged (quasi)equilibrium between both. In the Pliocene, δ11B-based estimates of surface ocean pH are lower in the Pacific than in the Atlantic resulting in higher calculated pCO2. This offset in pH between ocean basins is not supported by models. To calculate pCO2 in surface waters out of the δ11B-based pH some assumptions on either total alkalinity or dissolved inorganic carbon are necessary. However, the assumed values of these under-constrained variables were according to my results partly inconsistent with chemically possible combinations within the marine carbonate system. The model results show glacial/interglacial variability in total alkalinity of the order of 100 μmol/kg, which is rarely applied to proxy reconstructions. Simulated atmospheric pCO2 is tightly (r2 〉 0.9) related to equatorial surface-ocean pH, which can be used for consistency checks. Long-term trends in volcanic CO2 outgassing and the strength of the continental weathering fluxes are still unconstrained, allowing for a wide range of possible atmospheric pCO2 across the Plio-Pleistocene. Nevertheless, this carbon cycle analysis suggests that reported atmospheric pCO2 above 500 ppm in the Pliocene might, for various reasons, need to be revised to smaller numbers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(12), ISSN: 0094-8276
    Publication Date: 2023-09-01
    Description: Aquatic ecosystems play an important role in global methane cycling and many field studies have reported methane supersaturation in the oxic surface mixed layer (SML) of the ocean and in the epilimnion of lakes. The origin of methane formed under oxic condition is hotly debated and several pathways have recently been offered to explain the “methane paradox.” In this context, stable isotope measurements have been applied to constrain methane sources in supersaturated oxygenated waters. Here we present stable carbon isotope signatures for six widespread marine phytoplankton species, three haptophyte algae and three cyanobacteria, incubated under laboratory conditions. The observed isotopic patterns implicate that methane formed by phytoplankton might be clearly distinguished from methane produced by methanogenic archaea. Comparing results from phytoplankton experiments with isotopic data from field measurements, suggests that algal and cyanobacterial populations may contribute substantially to methane formation observed in the SML of oceans and lakes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 15(9), ISSN: 1942-2466
    Publication Date: 2023-09-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Most viscous‐plastic sea ice models use the elliptical yield curve. This yield curve has a fundamental flaw: it excludes acute angles between deformation features at high resolution. Conceptually, the teardrop (TD) and parabolic lens (PL) yield curves offer an attractive alternative. These yield curves feature a non‐symmetrical shape, a Coulombic behavior for the low‐medium compressive stress, and a continuous transition to the ridging‐dominant mode, but their published formulation leads to negative or zero bulk and shear viscosities and, consequently, poor numerical convergence with stress states at times outside the yield curve. These issues are a consequence of the original assumption that the constitutive equations of the commonly used elliptical yield curve are also applicable to non‐symmetrical yield curves and yield curves with tensile strength. We derive a corrected formulation for the constitutive relations of the TD and PL yield curves. Results from simple uni‐axial loading experiments show that with the new formulation the numerical convergence of the solver improves and much smaller nonlinear residuals after a smaller number of total solver iterations can be reached, resulting in significant improvements in numerical efficiency and representation of the stress and deformation fields. The TD and PL yield curves lead to smaller angles of failure that better agree with observations. They are promising candidates to replace the elliptical yield curve in high‐resolution pan‐Arctic sea ice simulations.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-09-12
    Description: Two data evaluation concepts for X‐ray stress analysis based on energy‐dispersive diffraction on polycrystalline materials with cubic crystal structure, almost random crystallographic texture and strong single‐crystal elastic anisotropy are subjected to comparative assessment. The aim is the study of the residual stress state in hard‐to‐reach measurement points, for which the sin2ψ method is not applicable due to beam shadowing at larger sample tilting. This makes the approaches attractive for stress analysis in engineering parts with complex shapes, for example. Both approaches are based on the assumption of a biaxial stress state within the irradiated sample volume. They exploit in different ways the elastic anisotropy of individual crystallites acting at the microscopic scale and the anisotropy imposed on the material by the near‐surface stress state at the macroscopic scale. They therefore complement each other, in terms of both their preconditions and their results. The first approach is based on the evaluation of strain differences, which makes it less sensitive to variations in the strain‐free lattice parameter a0. Since it assumes a homogeneous stress state within the irradiated sample volume, it provides an average value of the in‐plane stresses. The second approach exploits the sensitivity of the lattice strain to changes in a0. Consequently, it assumes a homogeneous chemical composition but provides a stress profile within the information depth. Experimental examples from different fields in materials science, namely shot peening of austenitic steel and in situ stress analysis during welding, are presented to demonstrate the suitability of the proposed methods.
    Description: The single‐crystal elastic anisotropy and the anisotropy of the near‐surface (residual) stress state of polycrystalline materials with random texture are exploited in energy‐dispersive X‐ray stress analysis to study samples under constrained measurement conditions.
    Keywords: ddc:548 ; X‐ray stress analysis ; energy‐dispersive diffraction ; polycrystalline materials ; single‐crystal elastic anisotropy
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Reviews of Geophysics, American Geophysical Union (AGU), 61(3), ISSN: 8755-1209
    Publication Date: 2023-10-09
    Description: Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-07-20
    Description: A pseudosymmetric description of the crystal lattice derived from a single wide‐angle Kikuchi pattern can have several causes. The small size (〈15%) of the sector covered by an electron backscatter diffraction pattern, the limited precision of the projection centre position and the Kikuchi band definition are crucial. Inherent pseudosymmetries of the crystal lattice and/or structure also pose a challenge in the analysis of Kikuchi patterns. To eliminate experimental errors as much as possible, simulated Kikuchi patterns of 350 phases have been analysed using the software CALM [Nolze et al. (2021). J. Appl. Cryst.54, 1012–1022] in order to estimate the frequency of and reasons for pseudosymmetric crystal lattice descriptions. Misinterpretations occur in particular when the atomic scattering factors of non‐equivalent positions are too similar and reciprocal‐lattice points are systematically missing. As an example, a pseudosymmetry prediction depending on the elements involved is discussed for binary AB compounds with B1 and B2 structure types. However, since this is impossible for more complicated phases, this approach cannot be directly applied to compounds of arbitrary composition and structure.
    Description: Distinguishing between actual and apparent pseudosymmetry in electron backscatter diffraction patterns is nearly impossible, even for simulated patterns. However, the resulting lattice is always a superlattice as long as the signal is not a superposition of multiple patterns.
    Keywords: ddc:548 ; Bravais lattices ; pseudosymmetry ; lattice point density ; ordered/disordered structures ; lattice distortion ; electron backscatter diffraction ; backscattered Kikuchi diffraction patterns ; lattice parameters ; Funk transform
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-07-21
    Description: A band width determination using the first derivative of the band profile systematically underestimates the true Bragg angle. Corrections are proposed to compensate for the resulting offset Δa/a of the mean lattice parameters derived from as many Kikuchi band widths as possible. For dynamically simulated Kikuchi patterns, Δa/a can reach up to 8% for phases with a high mean atomic number Z, whereas for much more common low‐Z materials the offset decreases linearly. A predicted offset Δa/a = f(Z) is therefore proposed, which also includes the unit‐cell volume and thus takes into account the packing density of the scatterers in the material. Since Z is not always available for unknown phases, its substitution by Zmax, i.e. the atomic number of the heaviest element in the compound, is still acceptable for an approximate correction. For simulated Kikuchi patterns the offset‐corrected lattice parameter deviation is Δa/a 〈 1.5%. The lattice parameter ratios, and the angles α, β and γ between the basis vectors, are not affected at all.
    Description: Automatically determined band widths in simulated backscatter Kikuchi patterns exhibit differences from the double Bragg angles that correlate with the scatterer density. Corrections are proposed to compensate for this.
    Keywords: ddc:548 ; mean atomic number ; Kikuchi patterns ; lattice parameters ; automated Bragg angle determination ; lattice parameter determination ; dynamical theory of electron diffraction ; electron backscatter diffraction ; Funk transform
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-07-21
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The high‐intensity time‐of‐flight (TOF) neutron diffractometer POWTEX for powder and texture analysis is currently being built prior to operation in the eastern guide hall of the research reactor FRM II at Garching close to Munich, Germany. Because of the world‐wide 〈sup〉3〈/sup〉He crisis in 2009, the authors promptly initiated the development of 〈sup〉3〈/sup〉He‐free detector alternatives that are tailor‐made for the requirements of large‐area diffractometers. Herein is reported the 2017 enterprise to operate one mounting unit of the final POWTEX detector on the neutron powder diffractometer POWGEN at the Spallation Neutron Source located at Oak Ridge National Laboratory, USA. As a result, presented here are the first angular‐ and wavelength‐dependent data from the POWTEX detector, unfortunately damaged by a 50〈italic〉g〈/italic〉 shock but still operating, as well as the efforts made both to characterize the transport damage and to successfully recalibrate the voxel positions in order to yield nonetheless reliable measurements. Also described is the current data reduction process using the 〈italic〉PowderReduceP2D〈/italic〉 algorithm implemented in 〈italic〉Mantid〈/italic〉 [Arnold 〈italic〉et al.〈/italic〉 (2014). 〈italic〉Nucl. Instrum. Methods Phys. Res. A〈/italic〉, 〈bold〉764〈/bold〉, 156–166]. The final part of the data treatment chain, namely a novel multi‐dimensional refinement using a modified version of the 〈italic〉GSAS‐II〈/italic〉 software suite [〈ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?aj5212"〉Toby & Von Dreele (2013). 〈italic〉J. Appl. Cryst.〈/italic〉〈bold〉46〈/bold〉, 544–549〈/ext-link〉], is compared with a standard data treatment of the same event data conventionally reduced as TOF diffraction patterns and refined with the unmodified version of 〈italic〉GSAS‐II〈/italic〉. This involves both determining the instrumental resolution parameters using POWGEN's powdered diamond standard sample and the refinement of a friendly‐user sample, BaZn(NCN)〈sub〉2〈/sub〉. Although each structural parameter on its own looks similar upon comparing the conventional (1D) and multi‐dimensional (2D) treatments, also in terms of precision, a closer view shows small but possibly significant differences. For example, the somewhat suspicious proximity of the 〈italic〉a〈/italic〉 and 〈italic〉b〈/italic〉 lattice parameters of BaZn(NCN)〈sub〉2〈/sub〉 crystallizing in 〈italic〉Pbca〈/italic〉 as resulting from the 1D refinement (0.008 Å) is five times less pronounced in the 2D refinement (0.038 Å). Similar features are found when comparing bond lengths and bond angles, 〈italic〉e.g.〈/italic〉 the two N—C—N units are less differently bent in the 1D results (173 and 175°) than in the 2D results (167 and 173°). The results are of importance not only for POWTEX but also for other neutron TOF diffractometers with large‐area detectors, like POWGEN at the SNS or the future DREAM beamline at the European Spallation Source.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The first real‐world neutron diffraction data have been collected with one of the POWTEX detectors (FRM II, Garching, Germany) mounted for testing at the Spallation Neutron Source (Oak Ridge National Laboratory, USA). They allow for angular‐ and wavelength‐dispersive Rietveld refinement using a modified version of 〈italic〉GSAS‐II〈/italic〉.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005767:jcr2tu5033:jcr2tu5033-fig-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; neutron detectors ; POWGEN beamline ; POWTEX detector ; DREAM beamline ; time‐of‐flight diffraction ; angular‐dispersive refinement ; wavelength‐dispersive refinement ; powder diffraction ; Rietveld refinement ; multi‐dimensional refinement
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    International Union of Crystallography | 5 Abbey Square, Chester, Cheshire CH1 2HU, England
    Publication Date: 2023-07-21
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The paper by Gopalan [〈ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?ib5086"〉(2020). 〈italic〉Acta Cryst.〈/italic〉 A〈bold〉76〈/bold〉, 318–327〈/ext-link〉] presented an enumeration of the 41 physical quantity types in non‐relativistic physics, in arbitrary dimensions, based on the formalism of Clifford algebra. Gopalan considered three antisymmetries: spatial inversion, 〈overline〉1〈/overline〉, time reversal, 1′, and wedge reversion, 1〈sup〉†〈/sup〉. A consideration of the set of all seven antisymmetries (〈overline〉1〈/overline〉, 1′, 1〈sup〉†〈/sup〉, 1′〈sup〉†〈/sup〉, 〈overline〉1〈/overline〉〈sup〉†〈/sup〉, 〈overline〉1〈/overline〉′, 〈overline〉1〈/overline〉′〈sup〉†〈/sup〉) leads to an extension of the results obtained by Gopalan. It is shown that there are 51 types of physical quantities with distinct symmetry properties in total.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉It is shown that there are 51 types of physical quantities in arbitrary dimensions with distinct transformations by wedge reversion symmetry. In the paper by 〈ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?ib5086"〉Gopalan [(2020). 〈italic〉Acta Cryst.〈/italic〉 A〈bold〉76〈/bold〉, 318–327]〈/ext-link〉 only 41 types were enumerated.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:20532733:aya2ib5117:aya2ib5117-fig-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; multivectors ; wedge reversion ; antisymmetry ; Clifford algebra
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-07-19
    Description: The derivation of a crystal structure and its phase‐specific parameters from a single wide‐angle backscattered Kikuchi diffraction pattern requires reliable extraction of the Bragg angles. By means of the first derivative of the lattice profile, an attempt is made to determine fully automatically and reproducibly the band widths in simulated Kikuchi patterns. Even under such ideal conditions (projection centre, wavelength and lattice plane traces are perfectly known), this leads to a lattice parameter distribution whose mean shows a linear offset that correlates with the mean atomic number Z of the pattern‐forming phase. The consideration of as many Kikuchi bands as possible reduces the errors that typically occur if only a single band is analysed. On the other hand, the width of the resulting distribution is such that higher image resolution of diffraction patterns, employing longer wavelengths to produce wider bands or the use of higher interference orders is less advantageous than commonly assumed.
    Description: The lattice parameters of more than 350 phases have been determined from simulated backscatter Kikuchi patterns. The deviations correlating with the mean atomic number correspond to those observed previously for experimental electron backscatter diffraction patterns.
    Keywords: ddc:548 ; Bragg angles ; Kikuchi bands ; Kikuchi patterns ; first derivative ; lattice parameters ; lattice parameter determination ; Bravais lattice type ; electron backscatter diffraction ; Radon transform
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-07-19
    Description: Serial crystallography experiments produce massive amounts of experimental data. Yet in spite of these large‐scale data sets, only a small percentage of the data are useful for downstream analysis. Thus, it is essential to differentiate reliably between acceptable data (hits) and unacceptable data (misses). To this end, a novel pipeline is proposed to categorize the data, which extracts features from the images, summarizes these features with the `bag of visual words' method and then classifies the images using machine learning. In addition, a novel study of various feature extractors and machine learning classifiers is presented, with the aim of finding the best feature extractor and machine learning classifier for serial crystallography data. The study reveals that the oriented FAST and rotated BRIEF (ORB) feature extractor with a multilayer perceptron classifier gives the best results. Finally, the ORB feature extractor with multilayer perceptron is evaluated on various data sets including both synthetic and experimental data, demonstrating superior performance compared with other feature extractors and classifiers.
    Description: A machine learning method for distinguishing good and bad images in serial crystallography is presented. To reduce the computational cost, this uses the oriented FAST and rotated BRIEF feature extraction method from computer vision to detect image features, followed by a multilayer perceptron (neural network) to classify the images.
    Keywords: ddc:548 ; serial crystallography ; data reduction ; machine learning ; feature extraction
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    International Union of Crystallography | 5 Abbey Square, Chester, Cheshire CH1 2HU, England
    Publication Date: 2023-07-19
    Description: Since high‐pressure devices have been used at synchrotron facilities, accurate determination of pressure and temperature in the sample has been a crucial objective, particularly for experiments that simulate the Earth's interior. However, in some cases using a thermocouple may have a high likelihood of failure or is incompatible with a high‐pressure assembly. To address these challenges and similar issues, we aim to expand a previously proposed solution: to jointly estimate pressure and temperature (〈italic〉PT〈/italic〉) through 〈italic〉in situ〈/italic〉 X‐ray diffraction, to cover a wider range of internal 〈italic〉PT〈/italic〉 calibrants tested over larger 〈italic〉PT〈/italic〉 ranges. A modifiable Python‐based software is offered to quickly obtain results. To achieve these aims, 〈italic〉in situ〈/italic〉 large volume press experiments are performed on pellets of intimately mixed powders of a halide (NaCl, KCl, KBr, CsCl) or MgO and a metal (Pt, Re, Mo, W, Ni) in the pressure range 3–11 GPa and temperature range 300–1800 K. Although the pressure range was chosen for practical reasons, it also covers an equally important depth range in the Earth (down to 350 km) for geoscience studies. A thermocouple was used to validate the 〈italic〉PT〈/italic〉 conditions in the cell assemblies. The key results show that choosing the appropriate calibrant materials and using a joint 〈italic〉PT〈/italic〉 estimation can yield surprisingly small uncertainties (〈italic〉i.e.〈/italic〉 〈±0.1 GPa and 〈±50 K). This development is expected to benefit current and future research at extreme conditions, as other materials with high compressibility or high thermal pressure, stable over large 〈italic〉PT〈/italic〉 ranges, may be discovered and used as 〈italic〉PT〈/italic〉 calibrants.〈/p〉
    Description: Research in high‐pressure devices, such as the diamond anvil cell and the large volume press, requires knowledge of the pressure and temperature in the sample. Here, a large volume press and an internal resistive heater were used to generate high load and heat to various combinations of intimately mixed powders of materials. X‐ray diffraction and custom software were used to jointly estimate the pressures and temperatures in the samples and establish calibrants for 〈italic〉in situ〈/italic〉 experiments at extreme conditions.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2vl5008:jsy2vl5008-fig-0001"〉
    Description: https://gitlab.desy.de/robert.farla/eoscross
    Keywords: ddc:548 ; equations of state ; X‐ray diffraction ; large volume press ; high pressure ; resistive heating
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-06-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), ISSN: 2572-4517
    Publication Date: 2023-02-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-03-05
    Description: Full‐field X‐ray nanoimaging is a widely used tool in a broad range of scientific areas. In particular, for low‐absorbing biological or medical samples, phase contrast methods have to be considered. Three well established phase contrast methods at the nanoscale are transmission X‐ray microscopy with Zernike phase contrast, near‐field holography and near‐field ptychography. The high spatial resolution, however, often comes with the drawback of a lower signal‐to‐noise ratio and significantly longer scan times, compared with microimaging. In order to tackle these challenges a single‐photon‐counting detector has been implemented at the nanoimaging endstation of the beamline P05 at PETRA III (DESY, Hamburg) operated by Helmholtz‐Zentrum Hereon. Thanks to the long sample‐to‐detector distance available, spatial resolutions of below 100 nm were reached in all three presented nanoimaging techniques. This work shows that a single‐photon‐counting detector in combination with a long sample‐to‐detector distance allows one to increase the time resolution for in situ nanoimaging, while keeping a high signal‐to‐noise level.
    Description: A direct photon‐counting detector was used for different nanoimaging phase contrast techniques, increasing the temporal resolution.
    Keywords: ddc:548 ; nanotomography ; full‐field X‐ray microscopy ; near‐field holography ; near‐field ptychography ; Zernike phase contrast ; single‐photon‐counting detector ; phase contrast
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-02-14
    Description: Machine learning (ML) has received enormous attention in science and beyond. Discussed here are the status, opportunities, challenges and limitations of ML as applied to X‐ray and neutron scattering techniques, with an emphasis on surface scattering. Typical strategies are outlined, as well as possible pitfalls. Applications to reflectometry and grazing‐incidence scattering are critically discussed. Comment is also given on the availability of training and test data for ML applications, such as neural networks, and a large reflectivity data set is provided as reference data for the community.
    Description: The status, opportunities, challenges and limitations of machine learning are discussed as applied to X‐ray and neutron scattering techniques, with an emphasis on surface scattering.
    Keywords: ddc:548 ; surface scattering ; X‐ray diffraction ; neutron scattering ; machine learning ; data analysis
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-02-21
    Description: The storage ring upgrade of the European Synchrotron Radiation Facility makes ESRF–EBS the most brilliant high‐energy fourth‐generation light source, enabling in situ studies with unprecedented time resolution. While radiation damage is commonly associated with degradation of organic matter such as ionic liquids or polymers in the synchrotron beam, this study clearly shows that highly brilliant X‐ray beams readily induce structural changes and beam damage in inorganic matter, too. Here, the reduction of Fe3+ to Fe2+ in iron oxide nanoparticles by radicals in the brilliant ESRF–EBS beam, not observed before the upgrade, is reported. Radicals are created due to radiolysis of an EtOH–H2O mixture with low EtOH concentration (∼6 vol%). In light of extended irradiation times during insitu experiments in, for example, battery and catalysis research, beam‐induced redox chemistry needs to be understood for proper interpretation of insitu data.
    Description: With the increased brilliance at the European Research Facility–Extremely Brilliant Source (ESRF–EBS), a beam‐induced reduction of non‐stochiometric iron oxide nanoparticles (almost maghemite composition) to magnetite was observed in a mixture of ethanol and water with low ethanol concentration.
    Keywords: ddc:548 ; beam‐induced radiolysis ; radiation damage on inorganic materials ; ESRF–EBS
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-02-08
    Description: Shells of the giant clam Tridacna can provide decade-long records of past environmental conditions via their geochemical composition and structurally through growth banding. Counting the daily bands can give an accurate internal age model with high temporal resolution, but daily banding is not always visually retrievable, especially in fossil specimens. We show that daily geochemical cycles (e.g., Mg/Ca) are resolvable via highly spatially resolved laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS; 3 \xc3\x97 33 \xce\xbcm laser slit) in our Miocene (\xe2\x88\xbc10 Ma) specimen, even in areas where daily banding is not visually discernible. By applying wavelet transformation on the measured daily geochemical cycles, we quantify varying daily growth rates throughout the shell. These growth rates are thus used to build an internal age model independent of optical daily band countability. Such an age model can be used to convert the measured elemental ratios from a function of distance to a function of time, which helps evaluate paleoenvironmental proxy data, for example, regarding the timing of sub-seasonal events. Furthermore, the quantification of daily growth rates across the shell facilitates the evaluation of (co)dependencies between growth rates and corresponding elemental compositions.
    Keywords: Tridacna
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-01-24
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Flood risk assessments require different disciplines to understand and model the underlying components hazard, exposure, and vulnerability. Many methods and data sets have been refined considerably to cover more details of spatial, temporal, or process information. We compile case studies indicating that refined methods and data have a considerable effect on the overall assessment of flood risk. But are these improvements worth the effort? The adequate level of detail is typically unknown and prioritization of improvements in a specific component is hampered by the lack of an overarching view on flood risk. Consequently, creating the dilemma of potentially being too greedy or too wasteful with the resources available for a risk assessment. A “sweet spot” between those two would use methods and data sets that cover all relevant known processes without using resources inefficiently. We provide three key questions as a qualitative guidance toward this “sweet spot.” For quantitative decision support, more overarching case studies in various contexts are needed to reveal the sensitivity of the overall flood risk to individual components. This could also support the anticipation of unforeseen events like the flood event in Germany and Belgium in 2021 and increase the reliability of flood risk assessments.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: BMBF http://dx.doi.org/10.13039/501100002347
    Description: Federal Environment Agency http://dx.doi.org/10.13039/501100010809
    Description: http://howas21.gfz-potsdam.de/howas21/
    Description: https://www.umwelt.niedersachsen.de/startseite/themen/wasser/hochwasser_amp_kustenschutz/hochwasserrisikomanagement_richtlinie/hochwassergefahren_und_hochwasserrisikokarten/hochwasserkarten-121920.html
    Description: https://download.geofabrik.de/europe/germany.html
    Description: https://emergency.copernicus.eu/mapping/list-of-components/EMSN024
    Description: https://data.jrc.ec.europa.eu/collection/id-0054
    Description: https://oasishub.co/dataset/surface-water-flooding-footprinthurricane-harvey-august-2017-jba
    Description: https://www.wasser.sachsen.de/hochwassergefahrenkarte-11915.html
    Keywords: ddc:551.48 ; decision support ; extreme events ; integrated flood risk management ; risk assessment
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-02-09
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Gas transport in soils is usually assumed to be purely diffusive, although several studies have shown that non‐diffusive processes can significantly enhance soil gas transport. These processes include barometric air pressure changes, wind‐induced pressure pumping and static air pressure fields generated by wind interacting with obstacles. The associated pressure gradients in the soil can cause advective gas fluxes that are much larger than diffusive fluxes. However, the contributions of the respective transport processes are difficult to separate. We developed a large chamber system to simulate pressure fields and investigate their influence on soil gas transport. The chamber consists of four subspaces in which pressure is regulated by fans that blow air in or out of the chamber. With this setup, we conducted experiments with oscillating and static pressure fields. CO〈sub〉2〈/sub〉 concentrations were measured along two soil profiles beneath the chamber. We found a significant relationship between static lateral pressure gradients and the change in the CO〈sub〉2〈/sub〉 profiles (R〈sup〉2〈/sup〉 = 0.53; 〈italic toggle="no"〉p〈/italic〉‐value 〈2e‐16). Even small pressure gradients between −1 and 1 Pa relative to ambient pressure resulted in an increase or decrease in CO〈sub〉2〈/sub〉 concentrations of 8% on average in the upper soil, indicating advective flow of air in the pore space. Positive pressure gradients resulted in decreasing, negative pressure gradients in increasing CO〈sub〉2〈/sub〉 concentrations. The concentration changes were probably caused by an advective flow field in the soil beneath the chamber generated by the pressure gradients. No effect of oscillating pressure fields was observed in this study. The results indicate that static lateral pressure gradients have a substantial impact on soil gas transport and therefore are an important driver of gas exchange between soil and atmosphere. Lateral pressure gradients in a comparable range can be induced under windy conditions when wind interacts with terrain features. They can also be caused by chambers used for flux measurements at high wind speed or by fans used for head‐space mixing within the chambers, which yields biased flux estimates.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; advective flux ; chamber flux measurements ; static air pressure fields ; wind‐induced pressure pumping
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(21), ISSN: 0094-8276
    Publication Date: 2023-11-01
    Description: Molybdenum (Mo) is a trace element sensitive to oceanic redox conditions. The fidelity of sedimentary Mo as a paleoredox proxy of coeval seawater depends on the extent of Mo remobilization during postdepositional processes. Here we present the Mo content and isotope profiles for deep sediments from the Nankai Trough, Japan. The Mo signature suggests that these sediments have experienced extensive early diagenesis and hydrothermal alteration at depth. Iron (Fe)‐manganese (Mn) (oxyhydr)oxide alteration combined with Mo thiolation leads to a more than twenty‐fold enrichment of Mo within the sulfate reduction zone. Hydrothermal fluids and Mo adsorption onto Fe‐Mn (oxyhydr)oxides cause extremely negative Mo‐isotope values at the underthrust zone. These postdepositional Mo signals might be misinterpreted as expanded anoxia in the water column. Our findings highlight the importance of constraining postdepositional effects on Mo‐based proxies during paleoredox reconstruction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-11-18
    Description: Spatiotemporal characterisation of the soil redox status within the capillary fringe (CF) is a challenging task. Air‐filled porosities (ε), oxygen concentration (O〈sub〉2〈/sub〉) and soil redox potential (EH) are interrelated soil variables within active biogeochemical domains such as the CF. We investigated the impact of water table (WT) rise and drainage in an undisturbed topsoil and subsoil sample taken from a Calcaric Gleysol for a period of 46 days. We merged 1D (EH and matric potential) and 2D (O〈sub〉2〈/sub〉) systems to monitor at high spatiotemporal resolution redox dynamics within self‐constructed redoxtron housings and complemented the data set by a 3D pore network characterization using X‐ray microtomography (X‐ray μCT). Depletion of O〈sub〉2〈/sub〉 was faster in the organic matter‐ and clay‐rich aggregated topsoil and the CF extended 〉10 cm above the artificial WT. The homogeneous and less‐aggregated subsoil extended only 4 cm above the WT as indicated by ε–O〈sub〉2〈/sub〉–EH data during saturation. After drainage, 2D O〈sub〉2〈/sub〉 imaging revealed a fast aeration towards the lower depths of the topsoil, which agrees with the connected ε derived by X‐ray μCT (ε〈sub〉CT_conn〈/sub〉) of 14.9% of the total porosity. However, small‐scaled anoxic domains with O〈sub〉2〈/sub〉 saturation 〈5% were apparent even after lowering the WT (down to 0.25 cm〈sup〉2〈/sup〉 in size) for 23 days. These domains remained a nucleus for reducing soil conditions (E〈sub〉H〈/sub〉 〈 −100 mV), which made it challenging to characterise the soil redox status in the CF. In contrast, the subsoil aeration reached O〈sub〉2〈/sub〉 saturation after 8 days for the complete soil volume. Values of ε〈sub〉CT_conn〈/sub〉 around zero in the subsoil highlighted that soil aeration was independent of this parameter suggesting that other variables such as microbial activity must be considered when predicting the soil redox status from ε alone. The use of redoxtrons in combination with localised redox‐measurements and image based pore space analysis resulted in a better 2D/3D characterisation of the pore system and related O〈sub〉2〈/sub〉 transport properties. This allowed us to analyse the distribution and activity of microbiological niches highly associated with the spatiotemporal variable redox dynamics in soil environments. Highlights: The time needed to turn from reducing to oxidising (period where all platinum electrodes feature E〈sub〉H〈/sub〉 〉 300 mV) condition differ for two samples with contrasting soil structure. The subsoil with presumably low O〈sub〉2〈/sub〉 consumption rates aerated considerably faster than the topsoil and exclusively by O〈sub〉2〈/sub〉 diffusion through medium‐ and fine‐sized pores. To derive the soil redox status based upon the triplet ε–O〈sub〉2〈/sub〉–E〈sub〉H〈/sub〉 is challenging at present in heterogeneous soil domains and larger soil volumes than 250 cm〈sup〉3〈/sup〉. Undisturbed soil sampling along with 2D/3D redox measurement systems (e.g., redoxtrons) improve our understanding of redox dynamics within the capillary fringe.
    Keywords: ddc:631.4 ; environmental monitoring ; incubation experiments ; redox processes ; soil reducing conditions ; undisturbed soil ; X‐ray microtomography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-11-17
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈sec xmlns:mml="http://www.w3.org/1998/Math/MathML" id="ejss13362-sec-1003" xml:lang="en"〉 〈p xml:lang="en"〉Long‐term experiments (LTEs) have provided data to modellers and agronomists to investigate changes and dynamics of soil organic carbon (SOC) under different cropping systems. As treatment changes have occurred due to agricultural advancements, so too have analytical soil methods. This may lead to method bias over time, which could affect the robust interpretation of data and conclusions drawn. This study aims to quantify differences in SOC due to changes in dry combustion methods over time, using soil samples of a LTE established in 1963 that focuses on mineral and organic fertilizer management in the temperate zone of Northeast Germany. For this purpose, 1059 soil samples, collected between 1976 and 2008, have been analysed twice, once with their historical laboratory method right after sampling, and a second time in 2016 when all samples were analysed using the same elementary analyser. In 9 of 11 soil sampling campaigns, a paired 〈italic toggle="no"〉t〈/italic〉‐test provided evidence for significant differences in the historical SOC values when compared with the re‐analysed concentrations of the same LTE sample. In the sampling years 1988 and 2004, the historical analysis obtained about 0.9 g kg〈sup〉−1〈/sup〉 lower SOC compared with the re‐analysed one. For 1990 and 1998, this difference was about 0.4 g kg〈sup〉−1〈/sup〉. Correction factors, an approach often used to correct for different analytical techniques, could only be applied for 5 of 11 sampling campaigns to account for constant and proportional systematic method error. For this particular LTE, the interpretation of SOC changes due to agronomic management (here fertilization) deviates depending on the analytical method used, which may weaken the explanatory power of the historical data. We demonstrate that analytical method changes over time present one of many challenges in the interpretation of time series data of SOC dynamics. Therefore, LTE site managers need to ensure providing all necessary protocols and data in order to retrace method changes and if necessary recalculate SOC.〈/p〉 〈/sec〉〈sec xmlns:mml="http://www.w3.org/1998/Math/MathML" id="ejss13362-sec-0003" xml:lang="en"〉 〈title〉Highlights〈/title〉 〈p xml:lang="en"〉〈list list-type="bullet" id="ejss13362-list-0001"〉 〈list-item id="ejss13362-li-0001"〉〈p〉A total of 1059 LTE soil samples taken between 1976 and 2008 were re‐analysed for SOC in 2016〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0002"〉〈p〉Several methodological changes for SOC determination led to significant different SOC concentration in the same sample〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0003"〉〈p〉Interpretation and time series of LTE soil data suffer from consideration of analytical method changes and poor documentation of the same〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0004"〉〈p〉Soil archive establishment, thorough method protocols and diligent proficiency testing after soil method changes ameliorate the dilemma〈/p〉〈/list-item〉 〈/list〉〈/p〉 〈/sec〉
    Description: Brandenburger Staatsministerium für Wissenschaft, Forschung und Kultur http://dx.doi.org/10.13039/501100004581
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100004937
    Description: https://doi.org/10.4228/zalf-acge-b683
    Keywords: ddc:631.4 ; Bland–Altman ; carbon stocks ; data trueness ; Deming regression ; method bias ; soil archive ; soil survey
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Infrared spectroscopy in the visible to near‐infrared (vis–NIR) and mid‐infrared (MIR) regions is a well‐established approach for the prediction of soil properties. Different data fusion and training approaches exist, and the optimal procedures are yet undefined and may depend on the heterogeneity present in the set and on the considered scale. The objectives were to test the usefulness of partial least squares regressions (PLSRs) for soil organic carbon (SOC), total carbon (C〈sub〉t〈/sub〉), total nitrogen (N〈sub〉t〈/sub〉) and pH using vis–NIR and MIR spectroscopy for an independent validation after standard calibration (use of a general PLSR model) or using memory‐based learning (MBL) with and without spiking for a national spectral database. Data fusion approaches were simple concatenation of spectra, outer product analysis (OPA) and model averaging. In total, 481 soils from an Austrian forest soil archive were measured in the vis–NIR and MIR regions, and regressions were calculated. Fivefold calibration‐validation approaches were carried out with a region‐related split of spectra to implement independent validations with n ranging from 47 to 99 soils in different folds. MIR predictions were generally superior over vis–NIR predictions. For all properties, optimal predictions were obtained with data fusion, with OPA and spectra concatenation outperforming model averaging. The greatest robustness of performance was found for OPA and MBL with spiking with 〈italic toggle="no"〉R〈/italic〉〈sup〉2〈/sup〉 ≥ 0.77 (N), 0.85 (SOC), 0.86 (pH) and 0.88 (C〈sub〉t〈/sub〉) in the validations of all folds. Overall, the results indicate that the combination of OPA for vis–NIR and MIR spectra with MBL and spiking has a high potential to accurately estimate properties when using large‐scale soil spectral libraries as reference data. However, the reduction of cost‐effectiveness using two spectrometers needs to be weighed against the potential increase in accuracy compared to a single MIR spectroscopy approach.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; data fusion ; independent validation ; infrared spectroscopy ; MBL ; nitrogen ; outer product analysis ; pH ; soil organic carbon ; spiking ; total carbon
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(17), ISSN: 0094-8276
    Publication Date: 2023-09-08
    Description: We quantify sea ice concentration (SIC) changes related to synoptic cyclones separately for each month of the year in the Greenland, Barents and Kara Seas for 1979–2018. We find that these SIC changes can be statistically significant throughout the year. However, their strength varies from region to region and month to month, and their sign strongly depends on the considered time scale (before/during vs. after cyclone passages). Our results show that the annual cycle of cyclone impacts on SIC is related to varying cyclone intensity and traversed sea ice conditions. We further show that significant changes in these cyclone impacts have manifested in the last 40 years, with the strongest changes occurring in October and November. For these months, SIC decreases before/during cyclones have more than doubled in magnitude in the Barents and Kara Seas, while SIC increases following cyclones have weakened (intensified) in the Barents Sea (Kara Sea).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-12-19
    Description: As a contribution to the Regional Carbon Cycle Assessment and Processes phase 2 (RECCAP2) project, we present synthesized estimates of Arctic Ocean sea-air CO2 fluxes and their uncertainties from surface ocean pCO2-observation products, ocean biogeochemical hindcast and data assimilation models, and atmospheric inversions. For the period of 1985–2018, the Arctic Ocean was a net sink of CO2 of 116 ± 4 TgC yr−1 in the pCO2 products, 92 ± 30 TgC yr−1 in the models, and 91 ± 21 TgC yr−1 in the atmospheric inversions. The CO2 uptake peaks in late summer and early autumn, and is low in winter when sea ice inhibits sea-air fluxes. The long-term mean CO2 uptake in the Arctic Ocean is primarily caused by steady-state fluxes of natural carbon (70% ± 15%), and enhanced by the atmospheric CO2 increase (19% ± 5%) and climate change (11% ± 18%). The annual mean CO2 uptake increased from 1985 to 2018 at a rate of 31 ± 13 TgC yr−1 dec−1 in the pCO2 products, 10 ± 4 TgC yr−1 dec−1 in the models, and 32 ± 16 TgC yr−1 dec−1 in the atmospheric inversions. Moreover, 77% ± 38% of the trend in the net CO2 uptake over time is caused by climate change, primarily due to rapid sea ice loss in recent years. Furthermore, true uncertainties may be larger than the given ensemble standard deviations due to common structural biases across all individual estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-12-14
    Description: In Bragg coherent diffractive imaging, the precise location of the measured crystals in the interior of the sample is usually missing. Obtaining this information would help the study of the spatially dependent behavior of particles in the bulk of inhomogeneous samples, such as extra‐thick battery cathodes. This work presents an approach to determine the 3D position of particles by precisely aligning them at the instrument axis of rotation. In the test experiment reported here, with a 60 µm‐thick LiNi0.5Mn1.5O4 battery cathode, the particles were located with a precision of 20 µm in the out‐of‐plane direction, and the in‐plane coordinates were determined with a precision of 1 µm.
    Description: A method to determine the 3D position of particles in Bragg coherent diffractive imaging experiments is proposed. Test measurements demonstrate depth‐resolution with a precision of 20 µm along the beam. image
    Keywords: ddc:548 ; extra‐thick battery cathodes ; Bragg coherent X‐ray diffractive imaging ; battery cathodes ; Bragg diffraction ; sphere of confusion ; 3D mapping
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-01-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In recent years, many two‐dimensional (2D) hydrodynamic models have been extended to include the direct rainfall method (DRM). This allows their application as a hydrological‐hydrodynamic model for the determination of floodplains in one model system. In previous studies on DRM, the role of catchment hydrological processes (CaHyPro) and its interaction with the calibration process was not investigated in detail. In the present, case‐oriented study, the influence of the spatiotemporal distribution of the processes precipitation and runoff formation in combination with the 2D model HEC‐RAS is investigated. In a further step, a conceptual approach for event‐based interflow is integrated. The study is performed on the basis of a single storm event in a small rural catchment (low mountain range, 38 km〈sup〉2〈/sup〉) in Hesse (Germany). The model results are evaluated against six quality criteria and compared to a simplified baseline model. Finally, the calibrated improved model is contrasted with a calibrated baseline model. The results show the enhancement of the model results due to the integration of the CaHyPro and highlight its interplay with the calibrated model parameters.〈/p〉
    Keywords: ddc:551.48 ; 2D hydrodynamic modeling ; calibration ; direct rainfall modeling ; hydrological processes ; radar data ; runoff formation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-01-06
    Description: The seasonal cycle is the dominant mode of variability in the air-sea CO2 flux in most regions of the global ocean, yet discrepancies between different seasonality estimates are rather large. As part of the Regional Carbon Cycle Assessment and Processes Phase 2 project (RECCAP2), we synthesize surface ocean pCO2 and air-sea CO2 flux seasonality from models and observation-based estimates, focusing on both a present-day climatology and decadal changes between the 1980s and 2010s. Four main findings emerge: First, global ocean biogeochemistry models (GOBMs) and observation-based estimates (pCO2 products) of surface pCO2 seasonality disagree in amplitude and phase, primarily due to discrepancies in the seasonal variability in surface DIC. Second, the seasonal cycle in pCO2 has increased in amplitude over the last three decades in both pCO2 products and GOBMs. Third, decadal increases in pCO2 seasonal cycle amplitudes in subtropical biomes for both pCO2 products and GOBMs are driven by increasing DIC concentrations stemming from the uptake of anthropogenic CO2 (Cant). In subpolar and Southern Ocean biomes, however, the seasonality change for GOBMs is dominated by Cant invasion, whereas for pCO2 products an indeterminate combination of Cant invasion and climate change modulates the changes. Fourth, biome-aggregated decadal changes in the amplitude of pCO2 seasonal variability are largely detectable against both mapping uncertainty (reducible) and natural variability uncertainty (irreducible), but not at the gridpoint scale over much of the northern subpolar oceans and over the Southern Ocean, underscoring the importance of sustained high-quality seasonally resolved measurements over these regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-01-06
    Description: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-01-12
    Description: A split‐and‐delay unit for the extreme ultraviolet and soft X‐ray spectral regions has been built which enables time‐resolved experiments at beamlines FL23 and FL24 at the Free‐electron LASer in Hamburg (FLASH). Geometric wavefront splitting at a sharp edge of a beam splitting mirror is applied to split the incoming soft X‐ray pulse into two beams. Ni and Pt coatings at grazing incidence angles have been chosen in order to cover the whole spectral range of FLASH2 and beyond, up to hν = 1800 eV. In the variable beam path with a grazing incidence angle of ϑd = 1.8°, the total transmission (T) ranges are of the order of 0.48 〈 T 〈 0.84 for hν 〈 100 eV and T 〉 0.50 for 100 eV 〈 hν 〈 650 eV with the Ni coating, and T 〉 0.06 for hν 〈 1800 eV for the Pt coating. For a fixed beam path with a grazing incidence angle of ϑf = 1.3°, a transmission of T 〉 0.61 with the Ni coating and T 〉 0.23 with a Pt coating is achieved. Soft X‐ray pump/soft X‐ray probe experiments are possible within a delay range of −5 ps 〈 Δt 〈 +18 ps with a nominal time resolution of tr = 66 as and a measured timing jitter of tj = 121 ± 2 as. First experiments with the split‐and‐delay unit determined the averaged coherence time of FLASH2 to be τc = 1.75 fs at λ = 8 nm, measured at a purposely reduced coherence of the free‐electron laser.
    Description: The properties of the recently installed split‐and‐delay unit at beamlines FL23 and FL24 at FLASH2 are presented. Its operational range, performance parameters and results of a first experiment are described. image
    Keywords: ddc:550.724 ; time‐resolved pump–probe ; XUV ; soft X‐rays ; free‐electron laser
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-01-12
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic〉XDSGUI〈/italic〉 is a lightweight graphical user interface (GUI) for the 〈italic〉XDS〈/italic〉, 〈italic〉SHELX〈/italic〉 and 〈italic〉ARCIMBOLDO〈/italic〉 program packages that serves both novice and experienced users in obtaining optimal processing and phasing results for X‐ray, neutron and electron diffraction data. The design of the program enables data processing and phasing without command line usage, and supports advanced command flows in a simple user‐modifiable and user‐extensible way. The GUI supplies graphical information based on the tabular log output of the programs, which is more intuitive, comprehensible and efficient than text output can be.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉A customizable stateless graphical user interface simplifies the processing, analysis and phasing of diffraction data.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005767:jcr2yr5110:jcr2yr5110-fig-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; X‐ray diffraction ; neutron diffraction ; electron diffraction ; data processing ; graphical user interfaces ; phasing ; XDS ; ARCIMBOLDO ; SHELX
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(1), ISSN: 2169-9275
    Publication Date: 2024-05-08
    Description: We assessed the spatial and temporal variability of the Arctic Boundary Current (ABC) using seven oceanographic moorings, deployed across the continental slope north of Severnaya Zemlya in 2015–2018. Transports and individual water masses were quantified based on temperature and salinity recorders and current profilers. Our results were compared with observations from the northeast Svalbard and the central Laptev Sea continental slopes to evaluate the hydrographic transformation along the ABC pathway. The highest velocities (〉0.30 m s−1) of the ABC occurred at the upper continental slope and decreased offshore to below 0.03 m s−1 in the deep basin. The ABC showed seasonal variability with velocities two times higher in winter than in summer. Compared to upstream conditions in Svalbard, water mass distribution changed significantly within 20 km of the shelf edge due to mixing with- and intrusion of shelf waters. The ABC transported 4.15 ± 0.3 Sv in the depth range 50–1,000 m, where 0.88 ± 0.1, 1.5 ± 0.2, 0.61 ± 0.1 and 1.0 ± 0.15 Sv corresponded to Atlantic Water (AW), Dense Atlantic Water (DAW), Barents Sea Branch Water (BSBW) and Transformed Atlantic Water (TAW). 62–70% of transport was constrained to within 30–40 km of the shelf edge, and beyond 84 km, transport increases were estimated to be 0.54 Sv. Seasonality of TAW derived from local shelf-processes and advection of seasonal-variable Fram Strait waters, while BSBW transport variability was dominated by temperature changes with maximum transport coinciding with minimum temperatures. Further Barents Sea warming will likely reduce TAW and BSBW transport leading to warmer conditions along the ABC pathway.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-05-08
    Description: The Himalayan mountain range produces one of the steepest and largest rainfall gradients on Earth, with 〉3 m/yr rainfall difference over a ∼100 km distance. The Indian Summer Monsoon (ISM) contributes more than 80% to the annual precipitation budget of the central Himalayas. The remaining 20% falls mainly during pre-ISM season. Understanding the seasonal cycle and the transfer pathways of moisture from precipitation to the rivers is crucial for constraining water availability in a warming climate. However, the partitioning of moisture into the different storage systems such as snow, glacier, and groundwater and their relative contribution to river discharge throughout the year remains under-constrained. Here, we present novel field data from the Kali Gandaki, a trans-Himalayan river, and use 4-year time series of river and rain water stable isotope composition (δ18O and δ2H values) as well as river discharge, satellite Global Precipitation Measurement amounts, and moisture source trajectories to constrain hydrological variability. We find that rainfall before the onset of the ISM is isotopically distinct and that ISM rain and groundwater have similar isotopic values. Our study lays the groundwork for using isotopic measurements to track changes in precipitation sources during the pre-ISM to ISM transition in this key region of orographic precipitation. Specifically, we highlight the role of pre-ISM precipitation, derived from the Gangetic plain, to define the seasonal river isotopic variability across the central Himalayas. Lastly, isotopic values across the catchment document the importance of a large well-mixed groundwater reservoir supplying river discharge, especially during the non-ISM season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-12-20
    Description: We assess the Southern Ocean CO2 uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2 with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) and pCO2-observation-based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present-day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 128(10), ISSN: 2169-9003
    Publication Date: 2024-03-14
    Description: Radio Echo Sounding (RES) surveys conducted in May 2010 and April 2011 revealed a 2 km2 flat area with increased bed reflectivity at the base of Isunnguata Sermia at the western margin of the Greenland Ice Sheet. This flat reflector was located within a localized subglacial hydraulic potential (hydropotential) minimum, as part of a complex and elongated trough system. By analogy with comparable features in Antarctica, the initial interpretation of such a feature was a potential subglacial lake. In September 2013 a co-located seismic survey revealed a 1,750 m by 540 and 37 m thick stratified lens-shaped bedform at the base of a subglacial trough system. Amplitude Versus Angle (AVA) analysis yields a derived reflection coefficient R = 0.09 ± 0.14 indicative of consolidated sediments possibly overlain by dilatant till. The bed and flank on the northern side of the trough consist of unconsolidated, possibly water-bearing sediments with R = −0.10 ± 0.08, whereas on the southern side it consists of more consolidated material. We interpret the trough as a key component of the wider subglacial drainage network, for which the sediments on its northern side act as a localized water-storage reservoir. Given the observation of seasonally forming and rapidly draining supraglacial meltwater lakes in this area, we interpret the lens-shaped bedform as deposited by episodically ponding meltwater within the subglacial trough system. Our results highlight the importance of transient subglacial hydrological and sedimentological processes such as drainage events for the interaction of ice sheets and their substrates, to understand ice dynamics in a warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 128(2), ISSN: 2169-9003
    Publication Date: 2024-04-29
    Description: The stable water isotopic composition in firn and ice cores provides valuable information on past climatic conditions. Because of uneven accumulation and post-depositional modifications on local spatial scales up to hundreds of meters, time series derived from adjacent cores differ significantly and do not directly reflect the temporal evolution of the precipitated snow isotopic signal. Hence, a characterization of how the isotopic profile in the snow develops is needed to reliably interpret the isotopic variability in firn and ice cores. By combining digital elevation models of the snow surface and repeated high-resolution snow sampling for stable water isotope measurements of a transect at the East Greenland Ice-core Project campsite on the Greenland Ice Sheet, we are able to visualize the buildup and post-depositional changes of the upper snowpack across one summer season. To this end, 30 cm deep snow profiles were sampled on six dates at 20 adjacent locations along a 40 m transect. Near-daily photogrammetry provided snow height information for the same transect. Our data shows that erosion and redeposition of the original snowfall lead to a complex stratification in the δ18O signature. Post-depositional processes through vapor-snow exchange affect the near surface snow with d-excess showing a decrease in surface and near-surface layers. Our data suggests that the interplay of stratigraphic noise, accumulation intermittency, and local post-depositional processes form the proxy signal in the upper snowpack.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(2), ISSN: 2169-9275
    Publication Date: 2024-05-01
    Description: We present a 700 km airborne electromagnetic survey of late-spring fast ice and sub-ice platelet layer (SIPL) thickness distributions from McMurdo Sound to Cape Adare, providing a first-time inventory of fast ice thickness close to its annual maximum. The overall mode of the consolidated ice (including snow) thickness was 1.9 m, less than its mean of 2.6 ± 1.0 m. Our survey was partitioned into level and rough ice, and SIPL thickness was estimated under level ice. Although level ice, with a mode of 2.0 m and mean of 2.0 ± 0.6 m, was prevalent, rough ice occupied 41% of the transect by length, 50% by volume, and had a mode of 3.3 m and mean of 3.2 ± 1.2 m. The thickest 10% of rough ice was almost 6 m on average, inclusive of a 2 km segment thicker than 8 m in Moubray Bay. The thickest ice occurred predominantly along the northwestern Ross Sea, due to compaction against the coast. The adjacent pack ice was thinner (by ∼1 m) than the first-year fast ice. In Silverfish Bay, offshore Hells Gate Ice Shelf, New Harbor, and Granite Harbor, the SIPL transect volume was a significant fraction (0.30) of the consolidated ice volume. The thickest 10% of SIPLs averaged nearly 3 m thick, and near Hells Gate Ice Shelf the SIPL was almost 10 m thick, implying vigorous heat loss to the ocean (∼90 W m −2). We conclude that polynya-induced ice deformation and interaction with continental ice influence fast ice thickness in the western Ross Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publication Date: 2024-01-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 24(12), ISSN: 1525-2027
    Publication Date: 2024-01-22
    Description: In the Fram Strait, mid-ocean ridge spreading is represented by the ultra-slow system of the Molloy Ridge, the Molloy Transform Fault and the Knipovich Ridge. Sediments on oceanic and continental crust are gas charged and there are several locations with documented seafloor seepage. Sedimentary faulting shows recent stress release in the sub-surface, but the drivers of stress change and its influence on fluid flow are not entirely understood. We present here the results of an 11-month-long ocean bottom seismometer survey conducted over the highly faulted sediment drift northwards from the Knipovich Ridge to monitor seismicity and infer the regional state of stress. We obtain a detailed earthquake catalog that improves the spatial resolution of mid-ocean ridge seismicity compared with published data. Seismicity at the Molloy Transform Fault is occurring southwards from the bathymetric imprint of the fault, as supported by a seismic profile. Earthquakes in the northern termination of the Knipovich Ridge extend eastwards from the ridge valley, which together with syn-rift faulting identified in seismic reflection data, suggests that a portion of the currently active spreading center is buried under sediments away from the bathymetric expression of the rift valley. This hints at the direct link between crustal rifting processes and faulting in shallow sediments. Two earthquakes occur close to the seepage system of the Vestnesa Ridge further north from the network. We suggest that deeper rift structures, reactivated by gravity and/or post-glacial subsidence, may lead to accommodation of stress through shallow extensional faults, therefore impacting seepage dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-01-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The increasing demand for biomass for food, animal feed, fibre and bioenergy requires optimization of soil productivity, while at the same time, protecting other soil functions such as nutrient cycling and buffering, carbon storage, habitat for biological activity and water filter and storage. Therefore, one of the main challenges for sustainable agriculture is to produce high yields while maintaining all the other soil functions. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soils that generate those functions. We developed a soil model to simulate the impact of various agricultural management options and climate change on soil functions by integrating the relevant processes mechanistically and in a systemic way. As a special feature, we include the dynamics of soil structure induced by tillage and biological activity, which is especially relevant in arable soils. The model operates on a 1D soil profile consisting of a number of discrete layers with dynamic thickness. We demonstrate the model performance by simulating crop growth, root growth, nutrient and water uptake, nitrogen cycling, soil organic matter turnover, microbial activity, water distribution and soil structure dynamics in a long‐term field experiment including different crops and different types and levels of fertilization. The model is able to capture essential features that are measured regularly including crop yield, soil organic carbon, and soil nitrogen. In this way, the plausibility of the implemented processes and their interactions is confirmed. Furthermore, we present the results of explorative simulations comparing scenarios with and without tillage events to analyse the effect of soil structure on soil functions. Since the model is process‐based, we are confident that the model can also be used to predict quantities that have not been measured or to estimate the effect of management measures and climate states not yet been observed. The model thus has the potential to predict the site‐specific impact of management decisions on soil functions, which is of great importance for the development of a sustainable agriculture that is currently also on the agenda of the ‘Green Deal’ at the European level.〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://git.ufz.de/bodium/bodium_v1.0
    Keywords: ddc:631.4 ; agriculture ; computational model ; simulation ; soil microbiology ; soil structure ; sustainable soil
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), 38(10), ISSN: 2572-4517
    Publication Date: 2024-03-13
    Description: Three recently published papers including Napier et al. (2022, https://doi.org/10.1029/2021PA004355) utilize novel microanalytical approaches with varved marine sediments to demonstrate the potential to reconstruct seasonal and inter-annual climate variability. Obtaining paleoclimate data at a resolution akin to the observational record is vitally important for improving our understanding of climate phenomena such as monsoons and modes of variability such as the El Niño Southern Oscillation, for which appraisals of past inter-annual variability is critical. The ability to generate seasonal and inter annual resolution sea surface temperature proxy time series spanning a thousand years or more is revolutionary and has the potential to fill gaps in our knowledge of climate variability. Although generally limited to sediments from regions with oxygen depleted bottom waters, there is great potential to integrate shorter seasonal resolution climate “snap shots” from other archives such as annually banded corals into composite time series. But as paleoceanographic data are used more by the observational and modeling fields, we make the case for conducting a thorough case-by-case assessment of the processes that influence the climate signal recovered from proxies, using careful replication to validate new approaches. Understanding or exploring the potential influence of processes which effectively filter the climate signal will lead to more quantitative paleoceanographic data that will better serve the broader climate science community.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-03-18
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Temperature and soil moisture are known to control pesticide mineralization. Half‐life times (DT〈sub〉50〈/sub〉) derived from pesticide mineralization curves generally indicate longer residence times at low soil temperature and moisture but do not consider potential changes in the microbial allocation of pesticide‐derived carbon (C). We aimed to determine carbon use efficiency (CUE, formation of new biomass relative to total C uptake) to better understand microbial utilization of pesticide‐derived C under different environmental conditions and to support the conventional description of degradation dynamics based on mineralization. We performed a microcosm experiment at two MCPA (2‐methyl‐4‐chlorophenoxyacetic acid) concentrations (1 and 20 mg kg〈sup〉−1〈/sup〉) and defined 20°C/pF 1.8 as optimal and 10°C/pF 3.5 as limiting environmental conditions. After 4 weeks, 70% of the initially applied MCPA was mineralized under optimal conditions but MCPA mineralization reached less than 25% under limiting conditions. However, under limiting conditions, an increase in CUE was observed, indicating a shift towards anabolic utilization of MCPA‐derived C. In this case, increased C assimilation implied C storage or the formation of precursor compounds to support resistance mechanisms, rather than actual growth since we did not find an increase in the 〈italic toggle="no"〉tfdA〈/italic〉 gene relevant to MCPA degradation. We were able to confirm the assumption that under limiting conditions, C assimilation increases relative to mineralization and that C redistribution, may serve as an explanation for the difference between mineralization and MCPA dissipation‐derived degradation dynamics. In addition, by introducing CUE to the temperature‐ and moisture‐dependent degradation of pesticides, we can capture the underlying microbial constraints and adaptive mechanisms to changing environmental conditions.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Changing environmental conditions alter the MCPA degradation dynamics and the allocation of pesticide‐derived carbon to anabolic or catabolic metabolism.〈boxed-text position="anchor" content-type="graphic" id="ejss13417-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:13510754:media:ejss13417:ejss13417-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Collaborative Research Center 1253 CAMPOS (DFG)
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: DFG Priority Program 2322 “Soil System”
    Description: Ellrichshausen Foundation
    Description: Research Training Group “Integrated Hydrosystem modeling”
    Description: https://doi.org/10.5281/zenodo.5081655
    Keywords: ddc:631.4 ; anabolism ; carbon use efficiency ; catabolism ; effect of soil moisture and temperature ; gene‐centric process model ; MCPA biodegradation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-03-21
    Description: Snowpack emissions are recognized as an important source of gas-phase reactive bromine in the Arctic and are necessary to explain ozone depletion events in spring caused by the catalytic destruction of ozone by halogen radicals. Quantifying bromine emissions from snowpack is essential for interpretation of ice-core bromine. We present ice-core bromine records since the pre-industrial (1750 CE) from six Arctic locations and examine potential post-depositional loss of snowpack bromine using a global chemical transport model. Trend analysis of the ice-core records shows that only the high-latitude coastal Akademii Nauk (AN) ice core from the Russian Arctic preserves significant trends since pre-industrial times that are consistent with trends in sea ice extent and anthropogenic emissions from source regions. Model simulations suggest that recycling of reactive bromine on the snow skin layer (top 1 mm) results in 9–17% loss of deposited bromine across all six ice-core locations. Reactive bromine production from below the snow skin layer and within the snow photic zone is potentially more important, but the magnitude of this source is uncertain. Model simulations suggest that the AN core is most likely to preserve an atmospheric signal compared to five Greenland ice cores due to its high latitude location combined with a relatively high snow accumulation rate. Understanding the sources and amount of photochemically reactive snow bromide in the snow photic zone throughout the sunlit period in the high Arctic is essential for interpreting ice-core bromine, and warrants further lab studies and field observations at inland locations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-04-19
    Description: The greenhouse gas (GHG) balance of boreal peatlands in permafrost regions will be affected by climate change through disturbances such as permafrost thaw and wildfire. Although the future GHG balance of boreal peatlands including ponds is dominated by the exchange of both carbon dioxide (CO2) and methane (CH4), disturbance impacts on fluxes of the potent GHG nitrous oxide (N2O) could contribute to shifts in the net radiative balance. Here, we measured monthly (April to October) fluxes of N2O, CH4, and CO2 from three sites located across the sporadic and discontinuous permafrost zones of western Canada. Undisturbed permafrost peat plateaus acted as N2O sinks (−0.025 mg N2O m−2 d−1), but N2O uptake was lower from burned plateaus (−0.003 mg N2O m−2 d−1) and higher following permafrost thaw in the thermokarst bogs (−0.054 mg N2O m−2 d−1). The thermokarst bogs had below-ambient N2O soil gas concentrations, suggesting that denitrification consumed atmospheric N2O during reduction to dinitrogen. Atmospheric uptake of N2O in peat plateaus and thermokarst bogs increased with soil temperature and soil moisture, suggesting sensitivity of N2O consumption to further climate change. Four of five peatland ponds acted as N2O sinks (−0.018 mg N2O m−2 d−1), with no influence of thermokarst expansion. One pond with high nitrate concentrations had high N2O emissions (0.30 mg N2O m−2 d−1). Overall, our study suggests that the future net radiative balance of boreal peatlands will be dominated by impacts of wildfire and permafrost thaw on CH4 and CO2 fluxes, while the influence from N2O is minor.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 128(10), ISSN: 2169-8953
    Publication Date: 2024-04-11
    Description: Human activities have increasingly changed terrestrial particulate organic carbon (POC) export to the coastal ocean since the Industrial Age (19th century). However, the influence of human perturbations on the composition and flux of terrestrial biospheric and petrogenic POC sub-pools remains poorly constrained. Here, we examined 13C and 14C compositions of bulk POC and source-specific biomarkers (fatty acids, FA) from two nearshore sediment cores collected in the Pearl River-derived mudbelt, to determine the impacts of human perturbations of the Pearl River watershed on the burial of terrestrial POC in the coastal ocean over the last century. Our results show that although agricultural practices and deforestation during the 1930s–1950s increased C4 plant coverage in the watershed, the export fluxes of terrestrial biospheric and petrogenic POC remained rather unchanged; however, added perturbations since 1974, including increasing coal consumption, embankment and dam constructions caused massive export of both petrogenic POC and relatively fresh terrestrial biospheric POC from the river delta. Our data reveal that human activities substantially enhance the transfer of petrogenic POC and fresh biospheric POC to the coastal ocean after ca. 1974, with the latter process acting as an important sink for anthropogenic CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), 128(24), ISSN: 2169-897X
    Publication Date: 2024-05-21
    Description: The Arctic is experiencing unprecedented moistening which is expected to have far-reaching impact on global climate and weather patterns. However, it remains unclear whether this newly sourced moisture originates locally from ice-free ocean regions or is advected from lower latitudes. In this study, we use water vapor isotope measurements in combination with trajectory-based diagnostics and an isotope-enabled atmosphere general circulation model, to assess seasonal shifts in moisture sources and transport pathways in the Arctic. Continuous measurements of near-surface vapor, δ18O, and δD were performed onboard RV Polarstern during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition from October 2019 to September 2020. Combining this isotope data set with meteorological observations reveals that the spatiotemporal evolution of δ18O mimics changes in local temperature and humidity at synoptic to seasonal time scales, while corresponding d-excess changes suggest a seasonal shift in the origin of moisture. Simulation results from the particle dispersion model FLEXPART support these findings, indicating that summer moisture originates from nearby open ocean, while winter moisture comes from more remote sources with longer residence time over sea-ice. Results from a nudged ECHAM6-wiso simulation also indicate that evaporative processes from the ocean surface reproduce summer isotope values, but are insufficient to explain measured winter isotope values. Our study provides the first isotopic characterization of Central Arctic moisture over the course of an entire year, helping to differentiate the influence of local processes versus large-scale vapor transport on Arctic moistening. Future process-based investigations should focus on assessing the non-equilibrium isotopic fractionation during airmass transformation over sea-ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-05-29
    Description: The amount of snow on Arctic sea ice impacts the ice mass budget. Wind redistribution of snow into open water in leads is hypothesized to cause significant wintertime snow loss. However, there are no direct measurements of snow loss into Arctic leads. We measured the snow lost in four leads in the Central Arctic in winter 2020. We find, contrary to expectations, that under typical winter conditions, minimal snow was lost into leads. However, during a cyclone that delivered warm air temperatures, high winds, and snowfall, 35.0 ± 1.1 cm snow water equivalent (SWE) was lost into a lead (per unit lead area). This corresponded to a removal of 0.7–1.1 cm SWE from the entire surface—∼6%–10% of this site's annual snow precipitation. Warm air temperatures, which increase the length of time that wintertime leads remain unfrozen, may be an underappreciated factor in snow loss into leads.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-05-30
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Deep‐ploughing far beyond the common depth of 30 cm was used more than 50 years ago in Northern Germany with the aim to break root‐restricting layers and thereby improve access to subsoil water and nutrient resources. We hypothesized that effects of this earlier intervention on soil properties and yields prevailed after 50 years. Hence, we sampled two sandy soils and one silty soil (Cambisols and a Luvisol) of which half of the field had been deep‐ploughed 50 years ago (soils then re‐classified as Treposols). The adjacent other half was not deep‐ploughed and thus served as the control. At all the three sites, both deep‐ploughed and control parts were then conventionally managed over the last 50 years. We assessed yields during the dry year 2019 and additionally in 2020, and rooting intensity at the year of sampling (2019), as well as changes in soil structure, carbon and nutrient stocks in that year. We found that deep‐ploughing improved yields in the dry spell of 2019 at the sandy sites, which was supported by a more general pattern of higher NDVI indices in deep‐ploughed parts for the period from 2016 to 2021 across varying weather conditions. Subsoil stocks of soil organic carbon and total plant‐available phosphorus were enhanced by 21%–199% in the different sites. Root biomass in the subsoil was reduced due to deep‐ploughing at the silty site and was increased or unaffected at the sandy sites. Overall, the effects of deep‐ploughing were site‐specific, with reduced bulk density in the buried topsoil stripes in the subsoil of the sandy sites, but with elevated subsoil density in the silty site. Hence, even 50 years after deep‐ploughing, changes in soil properties are still detectable, although effect size differed among sites.〈/p〉
    Description: BonaRes http://dx.doi.org/10.13039/501100022576
    Keywords: ddc:631.4 ; aggregates ; carbon sequestration ; deep‐ploughing ; macronutrients ; subsoil ; Treposol
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-06-24
    Description: Scientific tasks aimed at decoding and characterizing complex systems and processes at high pressures set new challenges for modern X‐ray diffraction instrumentation in terms of X‐ray flux, focal spot size and sample positioning. Presented here are new developments at the Extreme Conditions beamline (P02.2, PETRA III, DESY, Germany) that enable considerable improvements in data collection at very high pressures and small scattering volumes. In particular, the focusing of the X‐ray beam to the sub‐micrometer level is described, and control of the aberrations of the focusing compound refractive lenses is made possible with the implementation of a correcting phase plate. This device provides a significant enhancement of the signal‐to‐noise ratio by conditioning the beam shape profile at the focal spot. A new sample alignment system with a small sphere of confusion enables single‐crystal data collection from grains of micrometer to sub‐micrometer dimensions subjected to pressures as high as 200 GPa. The combination of the technical development of the optical path and the sample alignment system contributes to research and gives benefits on various levels, including rapid and accurate diffraction mapping of samples with sub‐micrometer resolution at multimegabar pressures.
    Description: Facing the challenges of X‐ray diffraction from tiny samples subjected to multimegabar pressures, instrumentation developments are presented that enable, among other studies, single‐crystal data collection from micrometer‐ to sub‐micrometer‐sized grains. The developments are based on a sub‐micrometer beam capability employing compound refractive lenses operating with a phase correcting plate and a precise motorization solution.
    Keywords: ddc:548
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-09-27
    Description: Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake‐groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike‐and‐Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from 〈0.2 to 〉0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.
    Description: Article impact statement: The probability of cluster membership quantified using an algorithm should be validated against another probabilistic‐based classifier.
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.9 ; ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-10-01
    Description: Copper (Cu) is an essential element for plants and microorganisms and at larger concentrations a toxic pollutant. A number of factors controlling Cu dynamics have been reported, but information on quantitative relationships is scarce. We aimed to (i) quantitatively describe and predict soil Cu concentrations (CuAR) in aqua regia considering site‐specific effects and effects of pH, soil organic carbon (SOC) and cation exchange capacity (CEC), and (ii) study the suitability of mixed‐effects modelling and rule‐based models for the analysis of long‐term soil monitoring data. Thirteen uncontaminated long‐term monitoring soil profiles in southern Germany were analysed. Since there was no measurable trend of increasing CuAR concentrations with time in the respective depth ranges of the sites, data from different sampling dates were combined and horizon‐specific regression analyses including model simplifications were carried out for 10 horizons. Fixed‐ and mixed‐effects models with the site as a random effect were useful for the different horizons and significant contributions (either of main effects or interactions) of SOC, CEC and pH were present for 9, 8 and 7 horizons, respectively. Horizon‐specific rule‐based cubist models described the CuAR data similarly well. Validations of cubist models and mixed‐effects models for the CuAR concentrations in A horizons were successful for the given population after random splitting into calibration and validation samples, but not after independent validations with random splitting according to sites. Overall, site, CEC, SOC and pH provide important information for a description of CuAR concentrations using the different regression approaches. Highlights: Information on quantitative relationships for factors controlling Cu dynamics is scarce. Site, CEC, SOC and pH provide important information for a description of Cu concentrations. Validations of cubist models and mixed‐effects models for A horizons were successful for a closed population of sites.
    Description: Bavarian State Ministry of the Environment and Consumer Protection http://dx.doi.org/10.13039/501100010219
    Description: Ministry of Agriculture and Environment Mecklenburg‐Western Pomerania
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-10-04
    Description: The small‐angle neutron scattering data of nanostructured magnetic samples contain information regarding their chemical and magnetic properties. Often, the first step to access characteristic magnetic and structural length scales is a model‐free investigation. However, due to measurement uncertainties and a restricted q range, a direct Fourier transform usually fails and results in ambiguous distributions. To circumvent these problems, different methods have been introduced to derive regularized, more stable correlation functions, with the indirect Fourier transform being the most prominent approach. Here, the indirect Fourier transform is compared with the singular value decomposition and an iterative algorithm. These approaches are used to determine the correlation function from magnetic small‐angle neutron scattering data of a powder sample of iron oxide nanoparticles; it is shown that with all three methods, in principle, the same correlation function can be derived. Each method has certain advantages and disadvantages, and thus the recommendation is to combine these three approaches to obtain robust results.
    Description: Three different approaches are compared for determination of the correlation function from the small‐angle neutron scattering data of a powder sample of iron oxide nanoparticles.
    Keywords: ddc:548
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-10-04
    Description: Soil aeration is a critical factor for oxygen‐limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X‐ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-06-16
    Description: A method of ab initio crystal structure determination from powder diffraction data for organic and metal–organic compounds, which does not require prior indexing of the powder pattern, has been developed. Only a reasonable molecular geometry is required, needing knowledge of neither unit‐cell parameters nor space group. The structures are solved from scratch by a global fit to the powder data using the new program FIDEL‐GO (`FIt with DEviating Lattice parameters ‐ Global Optimization'). FIDEL‐GO uses a similarity measure based on cross‐correlation functions, which allows the comparison of simulated and experimental powder data even if the unit‐cell parameters deviate strongly. The optimization starts from large sets of random structures in various space groups. The unit‐cell parameters, molecular position and orientation, and selected internal degrees of freedom are fitted simultaneously to the powder pattern. The optimization proceeds in an elaborate multi‐step procedure with built‐in clustering of duplicate structures and iterative adaptation of parameter ranges. The best structures are selected for an automatic Rietveld refinement. Finally, a user‐controlled Rietveld refinement is performed. The procedure aims for the analysis of a wide range of `problematic' powder patterns, in particular powders of low crystallinity. The method can also be used for the clustering and screening of a large number of possible structure candidates and other application scenarios. Examples are presented for structure determination from unindexed powder data of the previously unknown structures of the nanocrystalline phases of 4,11‐difluoro‐, 2,9‐dichloro‐ and 2,9‐dichloro‐6,13‐dihydro‐quinacridone, which were solved from powder patterns with 14–20 peaks only, and of the coordination polymer dichloro‐bis(pyridine‐N)copper(II).
    Description: A new method for the structure determination of molecular crystals from unindexed powder data has been developed and successfully applied. The method performs a global optimization using pattern comparison based on cross‐correlation functions.
    Keywords: ddc:548
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-07-26
    Description: Application of farmyard manure (FYM) is common practice to improve physical and chemical properties of arable soil and crop yields. However, studies on effects of FYM application mainly focussed on topsoils, whereas subsoils have rarely been addressed so far. We, therefore, investigated the effects of 36‐year FYM application with different rates of annual organic carbon (OC) addition (0, 469, 938 and 1875 g C m−2 a−1) on OC contents of a Chernozem in 0–30 cm (topsoil) and 35–45 cm (subsoil) depth. We also investigated its effects on soil structure and hydraulic properties in subsoil. X‐ray computed tomography was used to analyse the response of the subsoil macropore system (≥19 μm) and the distribution of particulate organic matter (POM) to different FYM applications, which were related to contents in total OC (TOC) and water‐extractable OC (WEOC). We show that FYM‐C application of 469 g C m−2 a−1 caused increases in TOC and WEOC contents only in the topsoil, whereas rates of ≥938 g C m−2 a−1 were necessary for TOC enrichment also in the subsoil. At this depth, the subdivision of TOC into different OC sources shows that most of the increase was due to fresh POM, likely by the stimulation of root growth and bioturbation. The increase in subsoil TOC went along with increases in macroporosity and macropore connectivity. We neither observed increases in plant‐available water capacity nor in unsaturated hydraulic conductivity. In conclusion, only very high application of FYM over long periods can increase OC content of subsoil at our study site, but this increase is largely based on fresh, easily degradable POM and likely accompanied by high C losses when considering the discrepancy between OC addition rate by FYM and TOC response in soil. Highlights A new image processing procedure to distinguish fresh and decomposed POM. The increase of subsoil C stock based to a large extend on fresh, labile POM. Potential of arable subsoils for long‐term C storage by large FYM application rates is limited. The increase in TOC has no effect on hydraulic properties of the subsoil.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-12-06
    Description: The nuclear and magnetic structures of Mn3Fe2Si3 are investigated in the temperature range from 20 to 300 K. The magnetic properties of Mn3Fe2Si3 were measured on a single crystal. The compound undergoes a paramagnetic to antiferromagnetic transition at TN2 ≃ 120 K and an antiferromagnetic to antiferromagnetic transition at TN1 ≃ 69 K. A similar sequence of magnetic phase transitions is found for the parent compound Mn5Si3 upon temperature variation, but the field‐driven transition observed in Mn5Si3 is not found in Mn3Fe2Si3, resulting in a strongly reduced magnetocaloric effect. Structurally, the hexagonal symmetry found for both compounds under ambient conditions is preserved in Mn3Fe2Si3 through both magnetic transitions, indicating that the crystal structure is only weakly affected by the magnetic phase transition, in contrast to Mn5Si3 where both transitions distort the nuclear structure. Both compounds feature a collinear high‐temperature magnetic phase AF2 and transfer into a non‐collinear phase AF1 at low temperature. While one of the distinct crystallographic sites remains disordered in the AF2 phase in the parent compound, the magnetic structure in the AF2 phase involves all magnetic atoms in Mn3Fe2Si3. These observations imply that the distinct sites occupied by the magnetic atoms play an important role in the magnetocaloric behaviour of the family.
    Description: The nuclear and magnetic structures of Mn3Fe2Si3 are determined and the magnetic properties are compared with those of the parent compound Mn5Si3. The results imply that the distinct magnetic sites play an important role in the magnetocaloric behaviour of the family. image
    Keywords: ddc:548 ; magnetocaloric effect ; magnetic structure ; neutron diffraction ; synchrotron diffraction ; site dependence
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Earth's Future, American Geophysical Union (AGU), 10(9), ISSN: 2328-4277
    Publication Date: 2022-11-06
    Description: In this study we assessed the representation of the sea surface salinity (SSS) and liquid freshwater content (LFWC) of the Arctic Ocean in the historical simulation of 31 CMIP6 models with comparison to 39 Coupled Model Intercomparison Project phase 5 (CMIP5) models, and investigated the projected changes in Arctic liquid and solid freshwater content and freshwater budget in scenarios with two different shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5). No significant improvement was found in the SSS and LFWC simulation from CMIP5 to CMIP6, given the large model spreads in both CMIP phases. The overestimation of LFWC continues to be a common bias in CMIP6. In the historical simulation, the multi-model mean river runoff, net precipitation, Bering Strait and Barents Sea Opening (BSO) freshwater transports are 2,928 ± 1,068, 1,839 ± 3,424, 2,538 ± 1,009, and −636 ± 553 km3/year, respectively. In the last decade of the 21st century, CMIP6 MMM projects these budget terms to rise to 4,346 ± 1,484 km3/year (3,678 ± 1,255 km3/year), 3,866 ± 2,935 km3/year (3,145 ± 2,651 km3/year), 2,631 ± 1,119 km3/year (2,649 ± 1,141 km3/year) and 1,033 ± 1,496 km3/year (449 ± 1,222 km3/year) under SSP5-8.5 (SSP2-4.5). Arctic sea ice is expected to continue declining in the future, and sea ice meltwater flux is likely to decrease to about zero in the mid-21st century under both SSP2-4.5 and SSP5-8.5 scenarios. Liquid freshwater exiting Fram and Davis straits will be higher in the future, and the Fram Strait export will remain larger. The Arctic Ocean is projected to hold a total of 160,300 ± 62,330 km3 (141,590 ± 50,310 km3) liquid freshwater under SSP5-8.5 (SSP2-4.5) by 2100, about 60% (40%) more than its historical climatology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 127(10), ISSN: 2169-8953
    Publication Date: 2023-06-21
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro-, meso- and macrozooplankton) in the ocean biogeochemical model FESOM-REcoM. In the presented model, microzooplankton is a fast-growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow-growing group with a low temperature optimum. Meso- and macrozooplankton produce fast-sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light-controlled Sverdrup system to a dilution-controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on-going and future environmental change in model projections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-01-15
    Description: A Guinier camera equipped with an imaging plate is used to investigate and eliminate the sources of instrumental errors affecting the quality of the obtained scanned Guinier data. A program with a graphical user interface is presented which converts the data of the scanned images into different standard file formats for powder X‐ray patterns containing intensities, their standard deviations and the diffraction angles. The program also allows for manual and automatic correction of the 2gθ scale against a known reference material. It is shown using LaB6 that the exported X‐ray diffraction patterns provide a 2gθ scale reproducible enough to allow for averaging diffractograms obtained from different exposures of the imaging plate for the same sample. As shown on a mixture of NaCl and sodalite, the quality of the produced data is sufficient for Rietveld refinement. The software including source code is made available under a free software license.
    Description: A program for the digitization of Guinier powder diffraction images is described, which works with images from both optical and laser scanners. Thus, processing of data from storage‐phosphor‐based imaging plates and Ag‐based photographic films is possible.
    Keywords: ddc:548 ; IPreader software ; Guinier cameras ; imaging plates (IPs) ; diffraction pattern conversion into data columns ; powder X‐ray diffraction ; data processing ; Guinier method
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-01-20
    Description: Stable hydrogen isotope ratios (δ2H values) in structural hydroxyl groups of pedogenic clay minerals are inherited from the surrounding water at the time of their formation. Only non‐exchangeable H preserves the environmental forensic and paleoclimate information (δ2Hn value). To measure δ2Hn values in structural H of clay minerals and soil clay fractions, we adapted a steam equilibration method by accounting for high hygroscopicity. Our δ2Hn values for USGS57 biotite (−95.3 ± SD 0.9‰) and USGS58 muscovite (30.7 ± 1.4‰) differed slightly but significantly from the reported δ2H values (−91.5 ± 2.4‰ and −28.4 ± 1.6‰), because the minerals contained 1.1%–4.4% of exchangeable H. The low SD of replicate measurements (n = 3) confirmed a high precision. The clay separation method including destruction of Fe oxides, carbonates and soil organic matter, and dispersion did not significantly change the δ2Hn values of five different clay minerals. However, we were unable to remove all organic matter from the soil clay fractions resulting in an estimated bias of 1‰ in two samples and 15‰ in the carbon‐richest sample. Our results demonstrate that δ2Hn values of structural H of clay minerals and soil clay fractions can be reliably measured without interference from atmospheric water and the method used to separate the soil clay fraction. Highlights We tested steam equilibration to determine stable isotope ratios of structural H in clay. Gas‐tight capsule sealing in Ar atmosphere was necessary to avoid remoistening. Our steam equilibration method showed a high accuracy and precision. The clay separation method did not change stable isotope ratios of structural H in clay.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:549 ; controlled isotope exchange technique ; deuterium ; montmorillonite ; soil clay separation ; soil organic matter removal ; steam equilibration ; structural H ; USGS57 biotite ; vermiculite ; δ2H
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-07-04
    Description: Magnetic small‐angle neutron scattering (SANS) is ideally suited to providing direct reciprocal‐space information on long‐wavelength magnetic modulations, such as helicoids, solitons, merons or skyrmions. SANS of such structures in thin films or micro‐structured bulk materials is strongly limited by the tiny scattering volume vis a vis the prohibitively high background scattering by the substrate and support structures. Considering near‐surface scattering just above the critical angle of reflection, where unwanted signal contributions due to substrate or support structures become very small, it is established that the scattering patterns of the helical, conical, skyrmion lattice and fluctuation‐disordered phases in a polished bulk sample of MnSi are equivalent for conventional transmission and near‐surface SANS geometries. This motivates the prediction of a complete repository of scattering patterns expected for thin films in the near‐surface SANS geometry for each orientation of the magnetic order with respect to the scattering plane.
    Description: Near‐surface SANS is discussed for its potential as a probe of long‐wavelength magnetic modulations in specimens with reduced sample dimensions.
    Keywords: ddc:548 ; small‐angle neutron scattering ; near‐surface SANS ; magnetism ; non‐collinear magnetism ; thin films ; skyrmions ; MnSi
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 14(12), ISSN: 1942-2466
    Publication Date: 2023-06-23
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea-surface salinity and sea-level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea-ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere-ocean-ice interaction occurs. One-year-long sea-ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea-ice concentration from 2011 to 2019 is calibrated by trend-adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea-ice edge raw forecast skill is within the range of operational global subseasonal-to-seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea-ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-12-04
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉A way has been developed to measure the unit‐cell parameters of a single crystal just from an energy scan with X‐rays, even when the exact energy of the X‐rays is not well defined due to an error in the pitch angle of the monochromator. The precision of this measurement reaches 〈italic〉da〈/italic〉/〈italic〉a〈/italic〉 ∼ 1 × 10〈sup〉−5〈/sup〉. The method is based on the analysis of diffraction losses of the beam, transmitted through a single crystal (the so‐called `glitch effect'). This method can be easily applied to any transmissive X‐ray optical element made of single crystals (for example, X‐ray lenses). The only requirements are the possibility to change the energy of the generated X‐ray beam and some intensity monitor to measure the transmitted intensity. The method is agnostic to the error in the monochromator tuning and it can even be used for determination of the absolute pitch (or 2gθ) angle of the monochromator. Applying the same method to a crystal with well known lattice parameters allows determination of the exact cell parameters of the monochromator at any energy.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Diffraction losses (glitches) at certain energies of the X‐ray beam, transmitted through a single crystal, can be used for lattice parameters determination as well as for calibrating the monochromator (absolute pitch angle and the unit‐cell parameter).〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2ay5590:jsy2ay5590-fig-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; X‐ray glitches ; diffraction losses ; unit‐cell parameter ; single‐crystal X‐ray optics ; monochromator calibration
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-07-21
    Description: Finite size effects in partial pair distribution functions generate artefacts in the scattering structure factor and scattering intensity. It is shown how they can be overcome using a binned version of the Debye scattering equation. Accordingly, reverse Monte Carlo simulations are used for very small nanoparticles of LaFeO3 with diameters below 10 nm to simultaneously analyse X‐ray scattering data and extended X‐ray absorption fine structure spectra at the La K and Fe K edges. The structural information obtained is consistent regarding local structure and long‐range order.
    Description: Computing scattering intensity using the Debye scattering equation after binning interatomic distances avoids finite size artefacts and is efficient enough for simultaneous refinement of scattering data and extended X‐ray absorption spectra by reverse Monte Carlo simulations.
    Keywords: ddc:548 ; extended X‐ray absorption fine structure ; EXAFS ; wide‐angle X‐ray scattering ; WAXS ; reverse Monte Carlo ; RMC ; nanocrystals ; LaFeO3
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-12-15
    Description: High‐pressure (HP) X‐ray diffraction experiments at low temperature (LT) require dedicated instruments as well as non‐standard sample environments and measuring strategies. This is especially true when helium cryogenic temperatures below 80 K are targeted. Furthermore, only experiments on single‐crystalline samples provide the prerequisites to study subtle structural changes in the p–T phase diagram under extreme LT and HP conditions in greater detail. Due to special hardware requirements, such measurements are usually in the realm of synchrotron beamlines. This contribution describes the design of an LT/HP diffractometer (HTD2) to perform single‐crystal X‐ray diffraction experiments using a laboratory source in the temperature range 400 〉 T 〉 2 K while applying pressures of up to 20 GPa.
    Description: The design and operation of a newly commissioned single‐crystal X‐ray diffractometer (HTD2) are presented. The device enables experiments under simultaneous low‐temperature and high‐pressure conditions using a laboratory X‐ray source.
    Keywords: ddc:548 ; HTD2 ; low temperature ; high pressure ; single crystals ; instrumentation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-01-26
    Description: Erosion is a severe threat to the sustainable use of agricultural soils. However, the structural resistance of soil against the disruptive forces steppe soils experience under field conditions has not been investigated. Therefore, 132 topsoils under grass‐ and cropland covering a large range of physico‐chemical soil properties (sand: 2–76%, silt: 18–80%, clay: 6–30%, organic carbon: 7.3–64.2 g kg−1, inorganic carbon: 0.0–8.5 g kg−1, pH: 4.8–9.5, electrical conductivity: 32–946 μS cm−1) from northern Kazakhstan were assessed for their potential erodibility using several tests. An adjusted drop‐shatter method (low energy input of 60 Joule on a 250‐cm3 soil block) was used to estimate the stability of dry soil against weak mechanical forces, such as saltating particles striking the surface causing wind erosion. Three wetting treatments with various conditions and energies (fast wetting, slow wetting, and wet shaking) were applied to simulate different disruptive effects of water. Results indicate that aggregate stability was higher for grassland than cropland soils and declined with decreasing soil organic carbon content. The results of the drop‐shatter test suggested that 29% of the soils under cropland were at risk of wind erosion, but only 6% were at high risk (i.e. erodible fraction 〉60%). In contrast, the fast wetting treatment revealed that 54% of the samples were prone to become “very unstable” and 44% “unstable” during heavy rain or snowmelt events. Even under conditions comparable to light rain events or raindrop impact, 53–59% of the samples were “unstable.” Overall, cropland soils under semi‐arid conditions seem much more susceptible to water than wind erosion. Considering future projections of increasing precipitation in Kazakhstan, we conclude that the risk of water erosion is potentially underestimated and needs to be taken into account when developing sustainable land use strategies. Highlights Organic matter is the important binding agent enhancing aggregation in steppe topsoils. Tillage always declines aggregate stability even without soil organic carbon changes. All croplands soil are prone to wind or water erosion independent of their soil properties. Despite the semi‐arid conditions, erosion risk by water seems higher than by wind.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:631.4 ; climate change ; land use ; soil organic carbon ; soil texture ; water erosion ; wind erosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(22), ISSN: 0094-8276
    Publication Date: 2023-06-21
    Description: Based on the ERA5 reanalysis, we report on statistically significant impacts of transient cyclones on sea ice concentration (SIC) in the Atlantic sector of the Arctic Ocean in winter under “New Arctic” conditions (2000–2020). This includes a pattern of reduced SIC prior to and during cyclones for the whole study domain, while a regional difference between increased SIC in the Barents Sea and reduced SIC in the Greenland Sea is found as the net effect from 3 days prior to 5 days after the cyclone passage. Generally, locally low to medium SIC conditions combined with intense cyclones drive highest SIC changes. There are indications that both thermodynamic and dynamic effects contribute to the SIC changes, but a detailed quantification is required in future research. We provide evidence that cyclone impacts on SIC have amplified compared to the “Old Arctic” (1979–1999), particularly in the Barents Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-01-21
    Description: X‐ray diffraction with high spatial resolution is commonly used to characterize (poly)crystalline samples with, for example, respect to local strain, residual stress, grain boundaries and texture. However, the investigation of highly absorbing samples or the simultaneous assessment of high‐Z materials by X‐ray fluorescence have been limited due to the utilization of low photon energies. Here, a goniometer‐based setup implemented at the P06 beamline of PETRA III that allows for micrometre spatial resolution with a photon energy of 35 keV and above is reported. A highly focused beam was achieved by using compound refractive lenses, and high‐precision sample manipulation was enabled by a goniometer that allows up to 5D scans (three rotations and two translations). As experimental examples, the determination of local strain variations in martensitic steel samples with micrometre spatial resolution, as well as the simultaneous elemental distribution for high‐Z materials in a thin‐film solar cell, are demonstrated. The proposed approach allows users from the materials‐science community to determine micro‐structural properties even in highly absorbing samples.
    Description: A demonstration of high‐resolution micro X‐ray diffraction at high photon energies for highly absorbing samples.
    Keywords: ddc:548 ; X‐ray diffraction ; high spatial resolution ; high photon energy ; X‐ray fluorescence ; goniometers
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-01-21
    Description: Charcoal‐rich Technosols on century‐old relict charcoal hearths (RCHs) are the subject of ongoing research regarding potential legacy effects that result from historic charcoal production and subsequent charcoal amendments on forest soil properties and forest ecosystems today. RCHs consist mostly of Auh horizons that are substantially enriched in soil organic carbon (SOC), of which the largest part seems to be of pyrogenic origin (PyC). However, the reported range of SOC and PyC contents in RCH soil also suggests that they are enriched in nonpyrogenic SOC. RCH soils are discussed as potential benchmarks for the long‐term influence of biochar amendment and the post‐wildfire influences on soil properties. In this study, we utilised a large soil sample dataset (n = 1245) from 52 RCH sites in north‐western Connecticut, USA, to quantify SOC contents by total element analysis. The contents of condensed highly aromatic carbon as a proxy for black carbon (BC) were predicted by using a modified benzene polycarboxylated acid (BPCA) marker method in combination with diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy‐based partial least square regression (r2 = 0.89). A high vertical spatial sampling resolution allowed the identification of soil organic matter (SOM) enrichment and translocation processes. The results show an average 75% and 1862% increase in TOC and BPCA‐derived carbon, respectively, for technogenic Auh horizons compared to reference soils. In addition to an increase in aromatic properties, increased carboxylic properties of the RCH SOC suggest self‐humification effects of degrading charcoal and thereby the continuing formation of leachable aromatic carbon compounds, which could have effects on pedogenic processes in buried soils. Indeed, we show BPCA‐derived carbon concentrations in intermediate technogenic Cu horizons and buried top/subsoils that suggest vertical translocation of highly aromatic carbon originating in RCH Auh horizons. Topmost Auh horizons showed a gradual decrease in total organic carbon (TOC) contents with increasing depth, suggesting accumulation of recent, non‐pyrogenic SOM. Lower aliphatic absorptions in RCH soil spectra suggest different SOM turnover dynamics compared to reference soils. Furthermore, studied RCH soils featured additional TOC enrichment, which cannot be fully explained now. Highlights BC to TOC ratio and high resolution vertical SOC distribution in 52 RCH sites were studied. RCH soils non‐BC pool was potentially different to reference soils. RCH soils feature TOC accumulation in the topmost horizon. There is BC translocation into buried soils on RCH sites.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; benzene polycarboxylated acid marker (BPCA) ; black carbon ; charcoal degradation ; charcoal kiln ; pyrogenic carbon ; relict charcoal hearth ; biochar
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-01-21
    Description: This paper presents the Domain Auto Finder (DAFi) program and its application to the analysis of single‐crystal X‐ray diffraction (SC‐XRD) data from multiphase mixtures of microcrystalline solids and powders. Superposition of numerous reflections originating from a large number of single‐crystal domains of the same and/or different (especially unknown) phases usually precludes the sorting of reflections coming from individual domains, making their automatic indexing impossible. The DAFi algorithm is designed to quickly find subsets of reflections from individual domains in a whole set of SC‐XRD data. Further indexing of all found subsets can be easily performed using widely accessible crystallographic packages. As the algorithm neither requires a priori crystallographic information nor is limited by the number of phases or individual domains, DAFi is powerful software to be used for studies of multiphase polycrystalline and microcrystalline (powder) materials. The algorithm is validated by testing on X‐ray diffraction data sets obtained from real samples: a multi‐mineral basalt rock at ambient conditions and products of the chemical reaction of yttrium and nitrogen in a laser‐heated diamond anvil cell at 50 GPa. The high performance of the DAFi algorithm means it can be used for processing SC‐XRD data online during experiments at synchrotron facilities.
    Description: This paper presents the Domain Auto Finder (DAFi) program and its application to the analysis of single‐crystal X‐ray diffraction (SC‐XRD) data from multiphase mixtures of microcrystalline solids and powders. The DAFi algorithm is designed to quickly find subsets of reflections from individual domains in a whole set of SC‐XRD data and neither requires a priori crystallographic information nor is limited by the number of phases or individual domains.
    Keywords: ddc:548 ; single‐crystal domain auto finder ; DAFi ; single‐crystal X‐ray diffraction ; polycrystalline samples ; multiphase mixtures
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2023-01-25
    Description: A newly designed setup to perform steady‐state X‐ray excited optical luminescence (XEOL) spectroscopy and simultaneous XEOL and X‐ray absorption spectroscopy characterization at beamline P65 of PETRA III is described. The XEOL setup is equipped with a He‐flow cryostat and state‐of‐the‐art optical detection system, which covers a wide wavelength range of 300–1700 nm with a high spectral resolution of 0.4 nm. To demonstrate the setup functioning, low‐temperature XEOL studies on polycrystalline CuInSe2 thin film, single‐crystalline GaN thin film and single‐crystalline ZnO bulk semiconductor samples are performed.
    Description: X‐ray excited optical luminescence (XEOL) spectroscopy is increasingly important to understand the interplay between the optical properties, structure and chemical composition, providing insights into the mechanism of radiative recombination for a wide range of materials. This study demonstrates a newly implemented setup to perform steady‐state XEOL and simultaneous XEOL and XAFS characterizations at beamline P65 of PETRA III.
    Keywords: ddc:550.2 ; XEOL ; XAS ; CuInSe2 ; ZnO ; GaN
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-02-28
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Hydrogeological information about an aquifer is difficult and costly to obtain, yet essential for the efficient management of groundwater resources. Transferring information from sampled sites to a specific site of interest can provide information when site‐specific data is lacking. Central to this approach is the notion of site similarity, which is necessary for determining relevant sites to include in the data transfer process. In this paper, we present a data‐driven method for defining site similarity. We apply this method to selecting groups of similar sites from which to derive prior distributions for the Bayesian estimation of hydraulic conductivity measurements at sites of interest. We conclude that there is now a unique opportunity to combine hydrogeological expertise with data‐driven methods to improve the predictive ability of stochastic hydrogeological models.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic〉Article impact statement〈/italic〉: This article introduces hierarchical clustering as a method for defining a notion of site similarity; the aim of this method is to improve the derivation of prior distributions in Bayesian methods in hydrogeology.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://github.com/GeoStat-Bayesian/geostatDB
    Description: https://github.com/GeoStat-Bayesian/exPrior
    Description: https://github.com/GeoStat-Bayesian/siteSimilarity
    Keywords: ddc:551.49 ; hydrogeological sites ; hydrogeological modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-14
    Description: X‐ray crystallography has witnessed a massive development over the past decade, driven by large increases in the intensity and brightness of X‐ray sources and enabled by employing high‐frame‐rate X‐ray detectors. The analysis of large data sets is done via automatic algorithms that are vulnerable to imperfections in the detector and noise inherent with the detection process. By improving the model of the behaviour of the detector, data can be analysed more reliably and data storage costs can be significantly reduced. One major requirement is a software mask that identifies defective pixels in diffraction frames. This paper introduces a methodology and program based upon concepts of machine learning, called robust mask maker (RMM), for the generation of bad‐pixel masks for large‐area X‐ray pixel detectors based on modern robust statistics. It is proposed to discriminate normally behaving pixels from abnormal pixels by analysing routine measurements made with and without X‐ray illumination. Analysis software typically uses a Bragg peak finder to detect Bragg peaks and an indexing method to detect crystal lattices among those peaks. Without proper masking of the bad pixels, peak finding methods often confuse the abnormal values of bad pixels in a pattern with true Bragg peaks and flag such patterns as useful regardless, leading to storage of enormous uninformative data sets. Also, it is computationally very expensive for indexing methods to search for crystal lattices among false peaks and the solution may be biased. This paper shows how RMM vastly improves peak finders and prevents them from labelling bad pixels as Bragg peaks, by demonstrating its effectiveness on several serial crystallography data sets.
    Description: Attention is focused on perhaps the biggest bottleneck in data analysis for serial crystallography at X‐ray free‐electron lasers, which has not received serious enough examination to date. An effective and reliable way is presented to identify anomalies in detectors, using machine learning and recently developed mathematical methods in the field referred to as `robust statistics'. image
    Keywords: ddc:548 ; bad‐pixel masks ; robust mask maker ; machine learning ; robust statistics ; serial crystallography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    International Union of Crystallography | 5 Abbey Square, Chester, Cheshire CH1 2HU, England
    Publication Date: 2024-02-22
    Description: Small‐angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve‐fitting programs for decades, with many specialized tools for various fields. Here, a selection of enhancements and additions to the SASfit program are presented that may be of great benefit to interested and advanced users alike: (a) further development of the technical basis of the program, such as new numerical algorithms currently in use, a continuous integration practice for automated building and packaging of the software, and upgrades on the plug‐in system for easier adoption by third‐party developers; (b) a selection of new form factors for anisotropic scattering patterns and updates to existing form factors to account for multiple scattering effects; (c) a new type of a very flexible distribution called metalog [Keelin (2016). Decis. Anal.13, 243–277], and regularization techniques such as the expectation‐maximization method [Dempster et al. (1977). J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am.62, 55; Lucy (1974). Astron. J.79, 745; Lucy (1994). Astron. Astrophys.289, 983–994], which is compared with fits of analytical size distributions via the non‐linear least‐squares method; and (d) new structure factors, especially for ordered nano‐ and meso‐scaled material systems, as well as the Ornstein–Zernike solver for numerical determination of particle interactions and the resulting structure factor when no analytical solution is available, with the aim of incorporating its effects into the small‐angle scattering intensity model used for fitting with SASfit.
    Description: Recent enhancements and additions to the SASfit program are discussed, including anisotropic scattering models, flexible distributions, regularization techniques such as the expectation‐maximization method, and new structure factors, especially for ordered nano‐ and meso‐scaled material. The Ornstein–Zernike solver for numerical structure factors is also introduced. image
    Keywords: ddc:548 ; small‐angle scattering ; SASfit ; numerical models ; structure factors ; form factors ; regularization techniques
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-02-05
    Description: A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å〈sup〉−1〈/sup〉, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons. MIEZE has two prominent advantages compared with classical neutron spin echo. The first is the possibility to investigate spin‐depolarizing samples or samples in strong magnetic fields without loss of signal amplitude and intensity. This allows for the study of spin fluctuations in ferromagnets, and facilitates the study of samples with strong spin‐incoherent scattering. The second advantage is that multi‐analyzer setups can be implemented with comparatively little effort. The use of thermal neutrons increases the range of validity of the spin‐echo approximation towards shorter spin‐echo times. In turn, the thermal MIEZE option for greater ranges (TIGER) closes the gap between classical neutron spin‐echo spectroscopy and conventional high‐resolution neutron spectroscopy techniques such as triple‐axis, time‐of‐flight and back‐scattering. To illustrate the feasibility of TIGER, this paper presents the details of its implementation at the RESEDA beamline at FRM II by means of an additional velocity selector, polarizer and analyzer.
    Description: A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å〈sup〉−1〈/sup〉, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons.
    Keywords: ddc:548 ; neutron resonant spin echo ; MIEZE ; quasielastic scattering ; thermal neutrons
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-02-05
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Penetrating, high‐energy synchrotron X‐rays are in strong demand, particularly for high‐pressure research in physics, chemistry and geosciences, and for materials engineering research under less extreme conditions. A new high‐energy wiggler beamline P61 has been constructed to meet this need at PETRA III in Hamburg, Germany. The first part of the paper offers an overview of the beamline front‐end components and beam characteristics. The second part describes the performance of the instrumentation and the latest developments at the P61B endstation. Particular attention is given to the unprecedented high‐energy photon flux delivered by the ten wigglers of the PETRA III storage ring and the challenges faced in harnessing this amount of flux and heat load in the beam. Furthermore, the distinctiveness of the world's first six‐ram Hall‐type large‐volume press, Aster‐15, at a synchrotron facility is described for research with synchrotron X‐rays. Additionally, detection schemes, experimental strategies and preliminary data acquired using energy‐dispersive X‐ray diffraction and radiography techniques are presented.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The operation of the P61B endstation large‐volume press and optics of P61 are reviewed. The instrumentation at P61B, including the large‐volume press, detection systems and data acquisition for 〈italic〉in situ〈/italic〉 high‐pressure experiments are described.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2ju5040:jsy2ju5040-fig-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:550.724 ; extreme conditions ; high‐pressure ; large‐volume press ; energy‐dispersive X‐ray diffraction ; radiography ; resistive heating ; ultrasonic interferometry ; acoustic emissions detection
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2023-12-12
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Studying electron‐ and X‐ray‐induced electron cascades in solids is essential for various research areas at free‐electron laser facilities, such as X‐ray imaging, crystallography, pulse diagnostics or X‐ray‐induced damage. To better understand the fundamental factors that define the duration and spatial size of such cascades, this work investigates the electron propagation in ten solids relevant for the applications of X‐ray lasers: Au, B〈sub〉4〈/sub〉C, diamond, Ni, polystyrene, Ru, Si, SiC, Si〈sub〉3〈/sub〉N〈sub〉4〈/sub〉 and W. Using classical Monte Carlo simulation in the atomic approximation, we study the dependence of the cascade size on the incident electron or photon energy and on the target parameters. The results show that an electron‐induced cascade is systematically larger than a photon‐induced cascade. Moreover, in contrast with the common assumption, the maximal cascade size does not necessarily coincide with the electron range. It was found that the cascade size can be controlled by careful selection of the photon energy for a particular material. Photon energy, just above an ionization potential, can essentially split the absorbed energy between two electrons (photo‐ and Auger), reducing their initial energy and thus shrinking the cascade size. This analysis suggests a way of tailoring the electron cascades for applications requiring either small cascades with a high density of excited electrons or large‐spread cascades with lower electron densities.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Studying electron‐ and X‐ray‐induced electron cascades in solids is essential for various research areas at free‐electron laser facilities, such as X‐ray imaging, crystallography, pulse diagnostics or X‐ray‐induced damage. To better understand the fundamental factors that define the duration and spatial size of such cascades, this work investigates the electron propagation in ten solids relevant for the applications of X‐ray lasers. Using classical Monte Carlo simulation in the atomic approximation, the dependence of the cascade size on the incident electron or photon energy and on the target parameters is studied.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2gb5123:jsy2gb5123-fig-0001"〉 〈/graphic〉〈/boxed-text〉〈/p〉
    Keywords: ddc:548 ; electron cascades ; X‐ray free‐electron lasers ; Monte Carlo ; photon‐induced cascade ; electron transport
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...