ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Saccharomyces cerevisiae  (444)
  • Springer  (444)
  • American Meteorological Society
  • American Physical Society
  • 1995-1999  (201)
  • 1990-1994  (243)
  • 1965-1969
Collection
Keywords
Publisher
Years
Year
  • 1
    ISSN: 1572-8773
    Keywords: iron ; siderophores ; transport ; Saccharomyces cerevisiae ; fungi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Transport proteins of microorganisms may either belong to the ATP-binding cassette (ABC) superfamily or to the major facilitator (MFS)-superfamily. MFS transporters are single-polypeptide membrane transporters that transport small molecules via uniport, symport or antiport mechanisms in response to a chemiosmotic gradient. Although Saccharomyces cerevisiae is a non-siderophore producer, various bacterial and fungal siderophores can be utilized as an iron source. From yeast genome sequencing data six genes of the unknown major facilitator (UMF) family were known of which YEL065w Sce was recently identified as a transporter for the bacterial siderophore ferrioxamine B (Sit1p). The present investigation shows that another UMF gene, YHL047c Sce, encodes a transporter for the fungal siderophore triacetylfusarinine C. The gene YHL047c Sce (designated TAF1) was disrupted using the kanMX disruption module in a fet3 background (strain DEY 1394 Δfet3), possessing a defect in the high affinity ferrous iron transport. Growth promotion assays and transport experiments with 55Fe-labelled triacetylfusarinine C showed a complete loss of iron utilization and uptake in the disrupted strain, indicating that TAF1 is the gene for the fungal triacetylfusarinine transport in Saccharomyces cerevisiae and possibly in other siderophore producing fungi.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8773
    Keywords: catalase ; copper resistance ; pH-dependent growth ; Saccharomyces cerevisiae ; superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A strain of Saccharomyces cerevisiae has been adapted to increasing concentrations of copper at two different pH values. The growth curve at pH 5.5 is characterized by a time generation increasing with the amount of added copper. A significant decrease of cell volume as compared with the control is also observed. At pH 3 the cells grow faster than at pH 5.5 and resist higher copper concentrations (3.8 against 1.2 mm). Experimental evidence indicates that, after copper treatment, the metal is not bound to the cell wall, but is localized intracellularly. A significant precipitation of copper salts in the medium was observed only at pH 5.5. Increased levels of superoxide dismutase (SOD) activity were observed in copper-treated cells and which persisted after 20 subsequent inocula in a medium without added metal. On the contrary, catalase activity was not stimulated by copper treatment and, hence, not correlated with SOD levels. The mechanism of copper resistance, therefore, probably involves a persistent induction of SOD, but not of catalase, and it is strongly pH-dependent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-8773
    Keywords: EPR ; Saccharomyces cerevisiae ; uptake ; vanadate ; vanadyl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Vanadium uptake by whole cells and isolated cell walls of the yeast Saccharomyces cerevisiae was studied. When orthovanadate was added to wild-type S. cerevisiae cells growing in rich medium, growth was inhibited as a function of the VO4 3- concentration and the growth was completely arrested at a concentration of 20 mM of VO4 3- in YEPD. Electron paramagnetic resonance (EPR) spectroscopy was used to obtain structural and dynamic information about the cell-associated paramagnetic vanadyl ion. The presence of EPR signals indicated that vanadate was reduced by whole cells to the vanadyl ion. On the contrary, no EPR signals were detected after interaction of vanadate with isolated cell walls. A ‘mobile’ and an ‘immobile’ species associated in cells with small chelates and with macromolecular sites, respectively, were identified. The value of rotational correlation time τ r indicated the relative motional freedom at the macromolecular site. A strongly ‘immobilized’ vanadyl species bound to polar sites mainly through coulombic attractions was detected after interaction of VO2+ ions with isolated cell walls.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1130-1135 
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; mitochondria ; mRNA-specific translational activation ; synthetic genes ; gene regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mitochondrial gene expression in yeast,Saccharomyces cerevisiae, depends on translational activation of individual mRNAs by distinct proteins encoded in the nucleus. These nuclearly coded mRNA-specific translational activators are bound to the inner membrane and function to mediate the interaction between mRNAs and mitochondrial ribosomes. This complex system, found to date only in organelles, appears to be an adaptation for targeting the synthesis of mitochondrially coded integral membrane proteins to the membrane. In addition, mRNA-specific translational activation is a rate-limiting step used to modulate expression of at least one mitochondrial gene in response to environmental conditions. Direct study of mitochondrial gene regulation and the targeting of mitochondrially coded proteins in vivo will now be possible using synthetic genes inserted into mtDNA that encode soluble reporter/passenger proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 48 (1992), S. 1162-1164 
    ISSN: 1420-9071
    Keywords: Polygodial ; warburganal ; antifungal activity ; Candida albicans ; Saccharomyces cerevisiae ; Pityrosporum ovale ; enhancing effect ; antioxidants ; vitamin C ; BHA ; anethole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The antifungal activity of two drimane sesquiterpene dialdehydes, polygodial (1) and warburganal (2), alone and in combination with several other substances, was examined against three fungi,Candida albicans, Saccharomyces cerevisiae andPityrosporum ovale employing a broth dilution method. Anethole significantly synergized the activity of the two sesquiterpenoids againstC. albicans andS. cerevisiae however, it had only an, additive effect againstP. ovale. By contrast, two antioxidants, ascorbic acid (vitamin C) and BHA (butylated hydroxyanisole), noticeably enhanced the activity of the sesquiterpenoids againstP. ovale, but had no, effect againstC. albicans andS. cerevisiae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1033-1041 
    ISSN: 1420-9071
    Keywords: Ubiquitin ; yeast ; Saccharomyces cerevisiae ; Dictyostelium discoideum ; cytoskeleton ; mutants ; endocytosis ; actin ; myosin ; calmodulin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Endocytosis is a general term that is used to describe the internalization of external and plasma membrane molecules into the cell interior. In fact, several different mechanisms exist for the internalization step of this process. In this review we emphasize the work on the actin-dependent pathways, in particular in the yeastSaccharomyces cerevisiae, because several components of the molecular machinery are identified. In this yeast, the analysis of endocytosis in various mutants reveals a requirement for actin, calmodulin, a type I myosin, as well as a number of other proteins that affect actin dynamics. Some of these proteins have homology to proteins in animal cells that are believed to be involved in endocytosis. In addition, the demonstration that ubiquitination of some cell surface molecules is required for their efficient internalization is described. We compare the actin, myosin and ubiquitin requirements for endocytosis with recent results found studying these processes usingDictyostelium discoideum and animal cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1111-1116 
    ISSN: 1420-9071
    Keywords: Mitochondria ; mitochondrial inheritance ; cytoskeleton ; Saccharomyces cerevisiae ; Schizosaccharomyces pombe ; membrane proteins ; organelle movement ; mitochondrial morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mechanisms mediating the inheritance of mitochondria are poorly understood, but recent studies with the yeastsSaccharomyces cerevisiae andSchizosaccharomyces pombe have begun to identify components that facilitate this essential process. These components have been identified through the analysis of conditional yeast mutants that display aberrant mitochondrial distribution at restrictive conditions. The analysis of these mutants has uncovered several novel proteins that are localized either to cytoskeletal structures or to the mitochondria themselves. Many mitochondrial inheritance mutants also show altered mitochondrial morphology and defects in maintenance of the mitochondrial genome. Although some inheritance components and mechanisms appear to function specifically in certain types of cells, other conserved proteins are likely to mediate mitochondrial behavior in all eukaryotic cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; mitochondrial ribosomes ; peptidyl transferase ; Varl ribosomal protein ; gene relocation ; posttranscriptional rRNA modification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mitochondria posses their own ribosomes responsible for the synthesis of a small number of proteins encoded by the mitochondrial genome. In yeast,Saccharomyces cerevisiae, the two ribosomal RNAs and a single ribosomal protein, Varl, are products of mitochondrial genes, and the remaining approximately 80 ribosomal proteins are encoded in the nucleus. The mitochondrial translation system is dispensable in yeast, providing an excellent experimental model for the molecular genetic analysis of the fundamental properties of ribosomes in general as well as adaptations required for the specialized role of ribosomes in mitochondria. Recent studies of the peptidyl transferase center, one of the most highly conserved functional centers of the ribosome, and the Varl protein, an unusual yet essential protein in the small ribosomal subunit, have provided new insight into conserved and divergent features of the mitochondrial ribosome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    BioMetals 12 (1999), S. 289-294 
    ISSN: 1572-8773
    Keywords: accumulation ; gold ; proton efflux ; Saccharomyces cerevisiae ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract This paper examines the effects of ionic gold on Saccharomyces cerevisiae, as determined by long-term (growth in gold-containing media) and short-term interactions (H+ efflux activity). An increasing gold concentration inhibited growth and at 〈0.2 mM Au, growth was not observed. Transmission electron microscopy revealed no differences in ultrastructure but fine electron dense particles were observed in unstained preparations from gold-containing medium. After glucose addition (to 10mM) to starved suspensions of S. cerevisiae, glucose-dependent reduction of external pH occurred as the cells extruded protons. In the presence of increasing gold concentrations, the lag time before proton extrusion did not change but the rate and duration decreased significantly with a marked influence on proton efflux rate being observed at ≤ 10 μM. Extension of preincubation time of yeast cells in gold-containing medium resulted in a decreasing proton efflux rate and colloidal phase formation in the cell suspensions, the time between gold addition and the beginning of colloidal phase formation depending on the gold concentration used. Both Ca and Mg enhanced the inhibitory effect of gold on the yeast cells with Ca showing a stronger inhibitory effect than Mg.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 7 (1991), S. 131-135 
    ISSN: 1476-5535
    Keywords: Saccharomyces cerevisiae ; Jerusalem artichoke ; High-fructose syrup ; Ethanol ; Immobilized yeast cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The results from this study showed that Jerusalem artichoke juice can be used for the production of very enriched fructose syrup by selective conversion of glucose to ethanol in a continuous process using immobilized cells ofSaccharomyces cerevisiae ATCC 36859. The product contained up to 99% of the total carbohydrates as fructose compared to 76% in the feed. Using Jerusalem artichoke juice supplemented with some glucose a product was obtained with 7.5% w/v ethanol which made ethanol recovery economically favourable. It was found that some fructose was consumed in these continuous processes; the glucose/fructose conversion rate ratio was regulated by the glucose concentration in the product stream.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 7 (1991), S. 181-189 
    ISSN: 1476-5535
    Keywords: Saccharomyces cerevisiae ; Torulaspora delbrueckii ; Aroma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Thirty-three fermentations of Pedro Ximénez grapes, collected in three degrees of ripeness, were carried out by inoculation with three types of inoculum: pure cultures ofSaccharomyces cerevisiae races and ofTorulaspora delbrueckii, indigenous yeasts, and mixed cultures of indigenous yeasts enriched with the pure cultures. By means of variance analysis 21 compounds were determined whose final concentrations in the wines significantly depended on the musts, the inocula or both. Eleven products that depended significantly on the inocula were subjected to a discriminant analysis in which most of the pure cultures gathered in a discriminant space area different from that occupied by the indigenous yeasts. The centroids corresponding to most of the mixed cultures were shifted to the central area of the discriminant space, moved away from their corresponding pure cultures and approached the indigenous yeasts. The results show a high similarity between the fermentations carried out with mixed cultures with the addedS. cerevisiae races and those fermentations carried out with the indigenous yeasts, with regard to those compounds which were significantly dependent on the inocula.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0983
    Keywords: 2-oxoglutarate dehydrogenase ; Saccharomyces cerevisiae ; rad52-mediated chromosome loss
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ogd1 mutants of Saccharomyces cerevisiae are deficient in mitochondrial 2-oxoglutarate dehydrogenase activity; they cannot grow on glycerol and produce an increased amount of organic acids during growth on glucose as substrate. Using gamma ray-induced rad52-mediated chromosome loss the ogd1 mutation can be assigned to chromosome IX. Tetrad analysis of crosses between ogd1 and other markers on chromosome IX revealed that the OGD1 gene maps on the left arm of this chromosome 1.9 cM from his5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Orotate phosphoribosyl transferase ; Nucleotide sequence-5-phosphoribosyl 1-pyrophosphate (5PRPP)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Orotate phosphoribosyl transferase (OPRTase) catalyses the transformation of orotate to OMP in the pyrimidine pathway. In the yeast Saccharomyces cerevisiae, the URA5 gene is known to encode this enzyme activity. In this paper we present the cloning and sequencing of a yeast gene, named URA10, encoding a second OPRTase enzyme. Comparison of the predicted amino acid sequences between URA5 and URA10 genes shows more than 75% similarity. These sequences have also been compared to those of Escherichia coli, Podospora anserina, Sordaria macrospora and Dictyostelium discoideum. Remarkable similarities in the primary structure of these proteins have been found. Gene disruption experiments revealed that URA10 gene expression is responsible for the leaky phenotype of a ura5 mutant. Assays of OPRTase activity in extracts from ura5 and ura10 mutants indicate that the URA10 product contributes only 20% of the total activity found in wild type cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mutants ; Farnesyl diphosphate synthetase ; Ergosterol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two yeast mutant strains auxotrophic for ergosterol and blocked in farnesyl diphosphate synthetase (EC 2.5.1.1) were isolated. Genetic analysis has shown that these mutant strains carry additional mutations in the ergosterol pathway besides erg20-1 and erg20-2 which affect FPP synthetase. The novel feature of these mutants is their ability to excrete prenyl alcohols (farnesol and geraniol). As geraniol is toxic for yeast cells, the above leaky mutations in FPP synthetase have to be associated with others in the sterol pathway, in order to slow down geraniol synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-0983
    Keywords: Glucose oxidase ; Aspergillus ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We report the cloning of the Aspergillus niger glucose oxidase gene and its use to elevate glucose oxidase productivity in A. niger by increasing the gene dosage. In addition, the gene has been introduced into A. nidulans where it provides the novel capacity to produce glucose oxidase. A plasmid, in which DNA encoding the mature form of glucose oxidase was preceded by a Saccharomyces cerevisiae secretion signal, effected high-level production of extracellular glucose oxidase in this yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-0983
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; Argininosuccinate lyase ; Sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The complete nucleotide sequence of the ARG7 gene, coding for argininosuccinate lyase (EC 4.3.2.1), in the fission yeast (Schizosaccharomyces pombe) has been determined. It consists of an open reading frame of 461 codons. The deduced protein has a molecular weight of 51 200 Da. The gene is devoid of introns which is confirmed by the fact that it is expressed in Escherichia coli after spontaneous insertion of a bacterial sequence probably bearing a prokaryotic promoter. A perfect “TATA” box is found at-72 and the major transcription initiation site in Saccharomyces cerevisiae is located at-11 as shown by primer extension experiments. Comparison of the S. pombe lyase with related proteins from other organisms reveals an important degree of conservation except in the carboxyterminal part of the polypeptide. Additionally, a deletion removing 66 amino acids of the carboxy terminus yields an enzyme exhibiting some biological activity. A unique 1500 b transcript was found in S. cerevisiae when the intact gene was present, but the deleted version of the gene gave rise to at least three transcripts of 1800, 2800 and 3900 b.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Pyrimidine salvage pathway ; Semi-dominant mutants ; FUR1 ; Uracil phosphoribosyl transferase ; Regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Saccharomyces cerevisiae, the protein encoded by the FUR1 gene is absolutely required for the expression of uracil phosphoribosyl transferase activity. The occurrence of semi-dominant mutations for 5-fluorouracil-(5FU)-resistance at this locus led us to clone and sequence the semi-dominant fur 1–5 allele. A single point mutation, resulting in the substitution of arginine 134 for serine, is responsible for this mutant phenotype. The fur 1–5 allele is transcribed and expressed at the same level as the wild-type allele. But, in contrast with the wild-type, the UPR Tase activity of the fur 1–5 mutant strain is stimulated in vitro by UTP and does not, therefore, correspond to a loss of feedback of UPR Tase activity. We found that uracil, as a free base, induces a significative increase in transcription and UPR Tase activity in a wild-type strain as well as in uracil-overproducing mutants which principally explains the high efficiency of the pyrimidine salvage pathway in S. cerevisiae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 18 (1990), S. 401-403 
    ISSN: 1432-0983
    Keywords: Baking yeast ; Saccharomyces cerevisiae ; Dough leavening ; Benomyl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary To investigate the leavening ability of yeast in dough, chromosome loss was induced by benomyl treatment in YOY1037, a diploid between a baking strain and a laboratory strain, and its effect on the leavening ability was studied. When benomyl-treated cells were spread on plates with a dye indicator for ploidy, about 20% of the visible colonies were stained dark blue or dark purple; the rest stained pale blue, similar to the diploid YOY1037. Strains showing the MATα phenotype, and non-galactose fermenting strains, apparently having lost particular chromosomes, were observed only in those with darkcoloured colonies. Strains with dark-coloured colonies showed a wider range of leavening ability than did those with pale-coloured colonies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-0983
    Keywords: Xylitol dehydrogenase gene ; Pichia stipitis ; Saccharomyces cerevisiae ; Xylose utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A P. stipitis cDNA library in λgt11 was screened using antisera against P. stipitis xylose reductase and xylitol dehydrogenase, respectively. The resulting cDNA clones served as probes for screening a P. stipitis genomic library. The genomic XYL2 gene was isolated and the nucleotide sequence of the 1089 bp structural gene, and of adjacent non-coding regions, was determined. The XYL2 open-reading frame codes for a protein of 363 amino acids with a predicted molecular mass of 38.5 kDa. The XYL2 gene is actively expressed in S. cerevisiae transformants. S. cerevisiae cells transformed with a plasmid, pRD1, containing both the xylose reductase gene (XYL1) and the xylitol dehydrogenase gene (XYL2), were able to grow on xylose as a sole carbon source. In contrast to aerobic glucose metabolism, S. cerevisiae XYL1-XYL2 transformants utilize xylose almost entirely oxidatively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Centromere flanking sequences ; tRNA modification enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Transcriptional analysis of the region flanking the left boundary of the centromere of chromosome VI revealed the presence of a gene immediately adjacent to CEN6. The transcription of the gene is directed toward the centromere, and nucleotide sequence analysis showed that the coding region terminates only 50 bp away from CEN6. Our results extend to chromosome VI the observation that centromere-flanking regions of S. cerevisiae are transcriptionally active. Disruption of the coding region of the gene showed that its product, whilst not essential for cell viability, is important for normal cell growth. The gene has been termed DEG1 (DEpressed Growth rate). Comparison of the deduced amino acid sequence of DEG1 with a protein sequence databank revealed homology with the enzyme tRNA pseudouridine synthase I of E. coli.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1432-0983
    Keywords: Mutagen hyper-resistance ; Nitrogen mustard ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A screening of haploid yeast strains for enhanced resistance to nitrogen mustard (HN2) yielded a recessive mutant allele, hnm1, that conferred hyper-resistance (HYR) to HN2. Diploids, homo- or heterozygous for the HNM1 locus, exhibit normal wild-type like resistance while homozygosity for hnm1 leads to the phenotype HYR to HN2. The hnm1 mutation could be found in yeast strains proficient or deficient in different DNA repair systems. In these mostly HN2-sensitive haploid repair-deficient mutants, hnm1 acted as a partial suppressor of HN2 sensitivity. All isolated recessive mutations conferring hyper-resistance belonged to a single complementations group. The HYR to HN2 phenotype was maximally expressed in growing cells and was associated with reduced mutability by HN2. HNM1 most probably controls uptake of HN2 which would be impaired in the hnm1 mutants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; G418 resistance ; Gene cartridges ; Heterologous Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Coding sequence cartridges for aminoglycoside phosphotransferase (APT) were isolated from bacterial transposon Tn903. When incorporated into a heterologous gene construction utilising the PGK1 promoter and terminator, the heterologous APT gene provided a G418-resistance determinant that functioned efficiently as a dominant marker for yeast in both multiple- and single-copy. Transformant colonies on selective medium appeared rapidly, within 36–48 h, and growth rate of the transformed cells was normal. A simple and highly sensitive radiolabelling assay for APT enzyme activity was developed for use with crude cell protein extracts. Enzyme activity units were equated to the amount of APT protein present in the cells, and the APT protein was shown to be stable in yeast. Heterologous APT expression was 130-fold reduced compared with homologous PGK1. This resulted from an estimated two-fold decrease in mRNA level and a 65-fold decrease in translation efficiency. The latter was unaffected by AUG sequence context change, but corresponded with a high frequency of minor codons in the APT-coding sequence. APT can be used as a semi-quantitative reporter of gene expression, whose useful features are in vivo detection via the G418-resistance phenotype and powerful cell-free assay.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 19 (1991), S. 9-14 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mevalonate kinase ; Ergosterol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nucleotide sequence of the ERG12 gene, encoding mevalonate kinase, from Saccharomyces cerevisiae is presented. The longest open reading frame may code for a protein containing 443 amino acids with a deduced relative molecular mass of 48 500. The analysis of the nucleotide sequence reveals a complete identity with the yeast gene RAR1, isolated elsewhere by complementation of a rar1 mutation involved in the stability of plasmids with weak ARS. In addition, we show that mevalonate kinase is not a rate-limiting enzyme; however its sensitivity to FFP could be a key regulatory mechanism in the sterol pathway of yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Episomal plasmid ; Copy number control ; Plasmid maintenance ; Glycolytic enzyme levels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This study demonstrates how varying the promoter strength of an essential gene on a yeast 2μORI-STB YEp multicopy vector can influence vector copy levels. A phosphoglycerate kinase gene (PGK) on this plasmid was made essential for fermentative growth by transformation into a pgk - yeast strain. When in these PGK- transformants the requirement for PGK expression was the sole selective criterion for plasmid maintenance, PGK promoter activity was inversely related to vector copy levels. Plasmids with an efficiently-transcribed PGK gene were maintained at approximately one copy per cell, whereas those lacking the UAS that normally directs high basal PGK transcription levels were present at up to 10–15 copies. All cultures of these PGK+ transformants contained only a low proportion of pgk - cells. Since mitotic loss of the plasmid arrests growth through loss of a functional PGK allele, PGK confers high stability to the YEp vector in such a pgk - genetic background. In this system YEp vector levels are probably influenced by PGK transcription because high expression of PGK is needed in rapid fermentative growth. Remarkably, low plasmid PGK promoter activity caused PGK mRNA levels slightly higher than those found in yeast with normal PGK regulation. A higher plasmid copy number is therefore not the only factor counteracting the effects of low PGK transcription, and it is possible that PGK mRNA becomes more stable in response to inefficient PGK transcription.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Sporulation ; Inessential genes ; Genome organization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The SPR6 gene of Saccharomyces cerevisiae encodes a moderately abundant RNA that is present at high levels only during sporulation. The gene contains a long open reading frame that could encode a hydrophilic protein approximately 21 kDa in size. This protein is probably produced by the yeast, because the lacZ gene of Escherichia coli is expressed during sporulation when fused to SPR6 in the expected reading frame. SPR6 is inessential for sporulation; mutants that lack SPR6 activity sporulate normally and produce viable ascospores. Nonetheless, the SPR6 gene encodes a function that is relevant to sporulating cells; the wild-type allele can enhance sporulation in strains that are defective for several SPR functions. SPR6 is located on chromosome V, 14.4 centimorgans centromere-distal to MET6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Nucleo-mitochondrial interactions ; Mitochondrial status ; Lycorine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a previous paper we have shown that the alkaloid lycorine inhibits growth of rho +, mit - and rho -, strains of Saccharomyces cerevisiae, whereas strains devoid of mitochondrial DNA (rho o) are resistant to more than 200 μg/ml of the alkaloid. In this report we show that hypersuppressive petites are almost as resistant as rho o mutants, whereas isogenic rho - petites, which have retained tained longer segments of the genome, are sensitive to the drug.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1432-0983
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; CaMV 35S promoter ; CaMV 35S terminator ; Heterologous expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Complementation of fission yeast mutants by plant genomic libraries could be a promising method for the isolation of novel plant genes. One important prerequisite is the functioning of plant promoters and terminators in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Therefore, we studied the expression of the bacterial β-glucuronidase (GUS) reporter gene under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter and 35S terminator. We show here that S. pombe initiates transcription at exactly the same start site as was reported for tobacco. The 35S CaMV terminator is appropriately recognized leading to a polyadenylated mRNA of the same size as obtained in plant cells transformed with the same construct. Furthermore, the GUS-mRNA is translated into fully functional GUS protein, as determined by an enzymatic assay. Interestingly, expression of the 35S promoter in the budding yeast S. cerevisiae was found to be only moderate and about hundredfold lower than in S. pombe. To investigate whether different transcript stabilities are responsible for this enormous expression difference in the two yeasts, the 35S promoter was substituted by the ADH (alcohol dehydrogenase) promoter from fission yeast. In contrast to the differential expression pattern of the 35S promoter, the ADH promoter resulted in equally high expression rates in both fission and budding yeast, comparable to the 35S promoter in S. pombe. Since the copy number of the 35S-GUS constructs differs only by a factor of two in the two yeasts, it appears that differential recognition of the 35S promoter is responsible for the different transcription rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondria ; Intron-encoded proteins ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The respiratory competency of a yeast strain devoid of mitchondrial introns is quite normal. However, it may be asked whether intron-encoded proteins participate in metabolisms other than those of mitochondrial introns. Using strains without mitochondrial introns we have answered two questions. The first was: does the absence of intron-encoded proteins abolsh mitochondrial recombination? The second was: do mitochondrial introns and intron-encoded proteins play a part in mitochondrial DNA rearrangements induced by ethidium bromide (rho- production)? We have shown that the introns and intron-encoded proteins are not essential essential components of either phenomenon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 18 (1990), S. 23-27 
    ISSN: 1432-0983
    Keywords: Protein translocation ; Saccharomyces cerevisiae ; Peroxisomes ; Overexpression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Import of proteins into organelles usually requires a cis-acting targeting signal. Analysis of various hybrid proteins, consisting of mouse DHFR and parts of catalase A from Saccharomyces cerevisiae, revealed that fusion proteins containing the N-terminal 126 amino acids, or less, of catalase A remain in the cytosol whereas fusion proteins containing 140, or more, N-terminal amino acids of catalase A form large aggregates inside the cell. These protein bodies, which lack a surrounding membrane, copurified with peroxisomes on cell fractionation. The peroxisomal targeting signal of catalase A does not reside at the C-terminus or at the N-terminus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1432-1432
    Keywords: Thiolase ; Peroxisome evolution ; Bootstrap analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The thiolase family is a widespread group of proteins present in prokaryotes and three cellular compartments of eukaryotes. This fact makes this family interesting in order to study the evolutionary process of eukaryotes. Using the sequence of peroxisomal thiolase from Saccharomyces cerevisiae recently obtained by us and the other known thiolase sequences, a phylogenetic analysis has been carried out. It shows that all these proteins derived from a primitive enzyme, present in the common ancestor of eubacteria and eukaryotes, which evolved into different specialized thiolases confined to various cell compartments. The evolutionary tree obtained is compatible with the endosymbiotic theory for the origin of peroxisomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 38 (1994), S. 363-368 
    ISSN: 1432-1432
    Keywords: Saccharomyces cerevisiae ; 2-μm circle ; DNA sequencing ; Horizontal transmission ; Site-specific recombination ; Selfish DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We compared the nucleotide substitution pattern over the entire genome of two unique variants of the 6,300-bp selfish DNA (2 μm) plasmid in Saccharomyces cerevisiae. The DNA sequence of the left-unique region is identical among 2-μm variants, while the right-unique region shows substantial divergence. This chimeric pattern cannot be explained by neutral or Darwinian selection models. We propose that horizontal transmission of the 2-μm plasmid coupled with a directed, polarized gene conversion maintains the DNA sequence of the left-unique region, whereas the right-unique region is subject to random drift and Darwinian selection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1573-0832
    Keywords: Nystatin ; amphotericin B ; amphotericin B methyl ester ; polyene antibiotics ; yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Saccharomyces cerevisiae was cultured under anaerobiosis in semi-complete medium to which either palmitoleic or oleic acid was added. Cells were grown at 20 °C or 30 °C. The levels of total lipids, total sterols, and phospholipids were higher in cells grown at 20 °C than at 30 °C. The effects of nystatin (NYS), amphotericin B (AMB), and amphotericin B methyl ester (AME) were evaluated by determining cell viability and liberation of intracellular compounds. The loss of cell viability is higher in the first 30 minutes of incubation with the drugs and is the same regardless of the type of cells obtained. Low molecular weight compounds and ions such as K+ are liberated a few minutes after incubation with the drugs whereas proteins and substances absorbing at 260 nm are liberated later. Phosphate liberation comes after K+ and before compounds of higher molecular weights.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Mycopathologia 142 (1998), S. 67-70 
    ISSN: 1573-0832
    Keywords: l-glutamine ; fructose-6-phosphate amidotransferase ; Candida albicans ; fungi ; Saccharomyces cerevisiae ; Schizosaccharomyces pombe ; systemic mycoses chemotherapy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The 3' part of the glucosamine-6-phosphate synthase gene from Histoplasma capsulatum was PCR amplified using degenerate primers designed from the known glucosamine-6-phosphate synthase gene sequences, cloned and sequenced. The computer analysis of the 676 bp sequence revealed the presence of two introns. The identities of the deduced amino acid sequence to the corresponding Saccharomyces cerevisiae and Candida albicans fragment are 65 and 63.8%, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 1572-9699
    Keywords: 2-Deoxy-D-glucose transport ; polyphosphate ; Saccharomyces cerevisiae ; sugar phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The role of polyphosphate in 2-deoxy-D-glucose transport was studied in yeast cells, pulse-labeled with [32P]orthophosphate, by comparing the concentrations and specific activities of polyphosphate, orthophosphate and 2-dGlc-phosphate. When 2-dGlc transport was measured under aerobic conditions, it appeared that polyphosphate replenished the orthophosphate pool, indicating that polyphosphate has, at least mainly, an indirect role in sugar phosphorylation. Also in cells with a reduced respiratory capacity, due to a treatment with antimycin A, no direct role for polyphosphate in 2-dGlc transport could be detected. Under these conditions, only a very limited breakdown of polyphosphate occurred, probably because of the small decrease in the orthophosphate concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 62 (1992), S. 35-46 
    ISSN: 1572-9699
    Keywords: introns ; pre-mRNA splicing ; RNA processing ; Saccharomyces cerevisiae ; yeast genetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The occurrence of introns in nuclear precursor RNAs (pre-mRNAs) is widespread in eukaryotes, and the splicing process that removes them is basically the same in yeasts as it is in higher eukaryotes. Splicing takes place in a very large, multi-component complex, the spliceosome, and biochemical studies have been complicated by the large number of splicing factors involved. This review describes how genetic approaches used to study RNA splicing inSaccharomyces cerevisiae have complemented the biochemical studies and led to rapid advances in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1572-9699
    Keywords: growth inhibition ; fatty acid composition ; Saccharomyces cerevisiae ; Yarrowia lipolytica ; Teucrium polium L. extract
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aqueous Teucrium polium extract slightly inhibits the growth of Saccharomyces cerevisiae (Ki=0.029 [g/l]-1) and Yarrovia lipolytica (Ki=0.061 [g/l]-1). However, this extract causes important changes in the unsaturation degree (Δ/mol) of the cellular lipids. It moreover favours the increase of the linolenic acid concentration and the decrease of the oleic one in both species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 46 (1990), S. 193-200 
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; protein toxin ; yeast toxin precursor ; protease processing ; lectin ; (1→6)-β-D-glucan ; receptor ; resistant mutants ; spheroplasts ; ion-permeable channels ; site-directed mutagenesis ; toxin functional domains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The K1 killer toxin ofSaccharomyces cerevisiae is a secreted, virally-coded protein lethal to sensitive yeasts. Killer yeasts are immune to the toxin they produce. This killer system has been extensively examined from genetic and molecular perspectives. Here we review the biology of killer yeasts, and examine the synthesis and action of the protein toxin and the immunity component. We summarise the structure of the toxin precursor gene and its protein products, outline the proteolytic processing of the toxin subunits from the precursor, and their passage through the yeast secretory pathway. We then discuss the mode of action of the toxin, its lectin-like interaction with a cell wall glucan, and its probable role in forming channels in the yeast plasma membrane. In addition we describe models of how a toxin precursor species functions as the immunity component, probably by interfering with channel formation. We conclude with a review of the functional domains of the toxin structural gene as determined by site-directed mutagenesis. This work has identified regions associated with glucan binding, toxin activity, and immunity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 1423-0127
    Keywords: Acquired immunodeficiency syndrome ; Human immunodeficiency virus ; Nef protein ; Myristylation ; Membrane permeabilisation ; Saccharomyces cerevisiae ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The human immunodeficiency virus type 1 (HIV-1) Nef protein is essential for AIDS pathogenesis, but its function remains highly controversial. During stresses such as growth in the presence of copper or at elevated temperature, myristylated Nef is released from yeast cells and, after extended culture in stationary phase, it accumulates in the supernatant as a dense membranous material that can be centrifuged into a discrete layer above the cell pellet. This material is unique to Nef-producing cells and represents a convenient source of Nef that may have application in further biological studies. Within the yeast cell, electron microscopic examination shows that Nef localises in novel, membrane-bound bodies. These data support the evidence for a role of Nef in membrane perturbation and suggest that there may be a similar localisation for myristylated Nef in HIV-1 infected cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1432-0983
    Keywords: Trans-kingdom conjugation ; DNA integration ; Saccharomyces cerevisiae ; Escherichia coli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary IncQ-derived conjugative shuttle vectors, which carried the yeast gene URA3 and/or the yeast autonomously replicating sequence (ARS1), were constructed. Both the ars-plus plasmid pAY205 and the ars-less plasmid pAY201 were successfully transmitted from E. coli to S. cerevisiae by the action of mob and tra. In this trans-kingdom conjugation, plasmid pAY205 could replicate and be retained in transconjugants. Plasmid pAY201 caused the formation of “micro-colonies” of abortive transconjugants due to its transient expression and rapid disappearance. Nevertheless, one per about 103 colonies caused by transmitted pAY201 plasmids were uncurable by integration into the homologous region of a yeast chromosome. Analyses by restriction enzyme mapping and Southern hybridization indicate that this integration is primarily caused by a double crossover during conjugation and not by a single reciprocal recombination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Transcriptional activator ; Oxidative stress ; Glutathione
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The PAR1/SNQ3 gene of S. cerevisiae, which increases resistance to iron chelators in multi-copy transformants, is identical to the YAP1 gene, a yeast activator protein isolated as a functional homologue of the human c-jun oncogene by binding specifically to the AP-1 consensus box. The observed H2O2-sensitivity of par1 mutants has been attributed to an increased sensitivity to reduced oxygen intermediates. Accordingly, par1 mutants did not survive an elevated oxygen pressure and were very sensitive to menadione and methylviologene, two chemicals enhancing the deleterious effects of oxygen. The specific activities of enzymes involved in oxygen detoxification, such as superoxide dismutase, glucose 6-phosphate dehydrogenase and glutathione reductase, were decreased in par1 mutants and increased after PAR1 over-expression. As in the case of oxygen detoxification enzymes, the cellular levels of glutathione were similarly affected. These observations indicate that PAR1/YAP1/SNQ3 is involved in the gene regulation of certain oxygen detoxification enzymes. The finding that H2O2 promotes DNA-binding of human c-jun is consistent with a similar function for PAR1/YAP1/SNQ3 and c-jun in cellular metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondrial trp-tRNA synthetase ; Nuclear mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The conditional respiratory-deficient Saccharomyces cerevisiae mutant pet-ts2281 was complemented by an yeast genomic DNA library. The gene thus isolated was sequenced and proved to be identical to the known MSW1 sequence encoding mitochondrial tryptophanyl-tRNA synthetase (Myers and Tzagoloff 1985). Compared to the wild-type, the ts2281 mutant allele of MSW1 contained a single T→C transition leading to a Leu→Ser replacement at position 294 of the protein sequence. In addition to this mutational alteration, our sequence data for the wild-type gene differ from the originally published MSW1 sequence at five other DNA positions which affect two locally restricted regions of the polypeptide chain. As expected, at the non-permissive temperature ts2281 cells are specifically defective in mitochondrial trp-tRNA formation and, thus, in overall mitochondrial protein synthesis. In addition, the patterns of cytochrome b mRNA maturation intermediates were distinctly different in ts2281 and wild-type yeast cells. The mutational effect of the observed amino-acid substitution in ts2281 is discussed in terms of weakened hydrogen bonding in the C-terminal half of the MSW1-encoded protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1432-0983
    Keywords: Glucoamylase ; Gene cloning ; Hormoconis resinae ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA coding for glucoamylase P of Hormoconis resinae was cloned using a synthetic oligonucleotide probe coding for a peptide fragment of the purified enzyme and polyclonal anti-glucoamylase antibodies. Nucleotide-sequence analysis revealed an open reading frame of 1848 base pairs coding for a protein of 616 amino-acid residues. Comparison with other fungal glucoamylase amino-acid sequences showed homologies of 37–48%. The glucoamylase cDNA, when introduced into Saccharomyces cerevisiae under the control of the yeast ADC1 promoter, directed the secretion of active glucoamylase P into the growth medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 95-99 
    ISSN: 1432-0983
    Keywords: Translational fidelity ; Paromomycin ; Stuttering ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Missense errors in the translation of mRNAs in Saccharomyces cerevisiae were screened by looking for charge heterogeneity of proteins on two-dimensional gels resulting from the substitution of charged and neutral amino acids. No such mistranslation was detected in wild-type yeast strains grown in the presence of the translational error-inducing antibiotic paromomycin. However, paromomycin-induced mistranslation of a heterologous mRNA, encoding human phosphoglycerate kinase expressed in yeast, was seen. We suggest that the combination of error-prone translation of a heterologous mRNA, and growth in the presence of paromomycin, leads to an accumulation of mistranslated proteins that can be detected by two-dimensional gel electrophoresis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Dynamin ; Mitochondria ; GTP binding protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The isolation and characterization of MGM1, and yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1432-0983
    Keywords: ABC superfamily ; Multidrug resistance ; Saccharomyces cerevisiae ; YDR1 gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A multidrug resistance gene, YDR1, of Saccharomyces cerevisiae, which encodes a 170-kDa protein of a member of the ABC superfamily, was identified. Disruption of YDR1 resulted in hypersensitivity to cycloheximide, cerulenin, compactin, staurosporine and fluphenazine, indicating that YDR1 is an important determinant of cross resistance to apparently-unrelated drugs. The Ydr1 protein bears the highest similarity to the S. cerevisiae Snq2 protein required for resistance to the mutagen 4-NQO. The drug-specificity analysis of YDR1 and SNQ2 by gene disruption, and its phenotypic suppression by the overexpressed genes, revealed overlapping, yet distinct, specificities. YDR1 was responsible for cycloheximide, cerulenin and compactin resistance, whereas, SNQ2 was responsible for 4-NQO resistance. The two genes had overlapping specificities toward staurosporine and fluphenazine. The transcription of YDR1 and SNQ2 was induced by various drugs, both relevant and irrelevant to the resistance caused by the gene, suggesting that drug specificity can be mainly attributed to the functional difference of the putative transporters. The transcription of these genes was also increased by heat shock. The yeast drug-resistance system provides a novel model for mammalian multidrug resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 20 (1991), S. 167-171 
    ISSN: 1432-0983
    Keywords: Glycolysis ; Repetitive elements τ/δ ; Promoter ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In this study we report on the complete nucleotide sequence of the yeast phosphoglycerate mutase gene (GPM1) and its essential 5′ and 3′ non-coding regions. The transcriptional start points were determined by S1-mapping and sequencing of a cDNA clone. Several sequences identified as important for transcriptional regulation in yeast promoters are present upstream of the transcription start point. 3′ to the coding region we sequenced a composite repetitive element which, apparently, originated from a recombination between a delta-and a tau-element. Finally, we mapped the GPM1 gene 13 cM distal to fas1 on chomosome XI.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1432-0983
    Keywords: Growth control ; Genetic mapping ; Molecular cloning ; Nucleo-mitochondrial interaction ; Saccharomyces cerevisiae ; Viability of petites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The PEL1 gene of Saccharomyces cerevisiae is essential for the cell viability of mitochondrial petite mutants, for the ability to utilize glycerol and ethanol on synthetic medium, and for cell growth at higher temperatures. By tetrad analysis the gene was assigned to chromosome III, centromere proximal of LEU2. The PEL1 gene has been isolated and cloned by the complementation of a pel1 mutation. The molecular analysis of the chromosomal insert carrying PEL1 revealed that this gene corresponds to the YCL4W open reading frame on the complete DNA sequence of chromosome III. The putative Pel1 protein is characterized by a low molecular weight of approximately 17 kDa, a low codon adaptation index, and a high leucine content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Papaver somniferum L. ; ARS ; Mitochondrial DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The minimal fragment of mitochondrial DNA from Papaver somniferum L. (poppy) able to promote autonomous plasmid replication in the yeast Saccharomyces cerevisiae was sequenced. Sequence analysis of the 917-bp MK4/8 DNA fragment revealed a high AT content, and the presence of two 12-bp sequences differing from the ARS core consensus of S. cerevisiae only by a T and C insertion, respectively. The mitochondrial insert contains a further six 11-bp sequences with one mismatch to the S. cerevisiae core consensus, more then 20 related sequences with two base pair exchanges, numerous direct and inverted repeats, and many copies of a sequence motif called the ARS box. The original 4.2-kb mitochondrial DNA fragment, as well as the minimal 917-bp subfragment in vector pFL1-E (a variant of YIP5, lacking an origin of replication in yeast), were then tested for their ability to replicate autonomously in another fungus, Kluyveromyces lactis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1432-0983
    Keywords: 2-Oxoglutarate dehydrogenase ; Molecular cloning ; Saccharomyces cerevisiae ; Sequencing ; Suppressor ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity of mitochondrial 2-oxoglutarate dehydrogenase in S. cerevisiae can be impaired either by the ogd1 or the kgd1 mutation. The OGD1 gene and two suppressor genes were isolated by complementation of the ogd1 mutant. The complementation of the kdg1 mutant by the OGD1 gene, an allelism test, and meiotic mapping, revealed that the ogd1 and kgd1 mutations are allelic. The two mutations were differentiated by the cloned suppressor gene which was able to partially complement ogd1, but not kgd1. The molecular analysis of the suppressor gene revealed its identity with the natural tRNA CAG Gln gene found in the upstream region of URA10.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Aminoacyl-tRNA synthetase mutant ; PGK overexpression ; In vivo misreading
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The hts1.1 temperature-sensitive histidinyl-tRNA synthetase mutation enables Saccharomyces cerevisiae to be starved for His-tRNAHis by upshift to the non-permissive temperature of 38°C. If yeast behaves similarly to bacterial and mammalian cells, this lack of His-tRNAHis should greatly enhance misreading at histidine codons (CAU/CAC) by Gln-tRNAGln, resulting in substitution of the neutral amino acid glutamine in place of histidine, a basic amino acid. Such misreading causes the isoelectric point (pI) of proteins to shift to lower values, and is readily detectable as “stuttering” on two-dimensional (2D) protein gels. By gel analysis of pulse-labelled proteins of hts1.1 yeast cells that were overexpressing phosphoglycerate kinase (PGK), our study sought to detect this specific translational error in PGK protein. It was not detected by this relatively sensitive technique, indicating that missense errors due to glutamine insertion at histidine codons do not occur in yeast at the readily-detectable level found in bacterial and mammalian cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Sporulation mutants ; Reporter genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Reporter genes consisting of sporulation-specific promoters fused to lacZ were used as markers to monitor the sporulation pathway of the yeast Saccharomyces cerevisiae. Strains transformed with these lacZ gene fusions expressed β-galactosidase (assayable on plates using the substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, X-gal) in a sporulation-dependent manner. Mutagenesis experiments performed on transformed strains resulted in the recovery of a number of novel sporulation mutants. Three classes of mutants were obtained: those which overexpressed the reporter gene under sporulation conditions, those which did not express the gene under any conditions, and those which expressed the gene in vegetative cells not undergoing sporulation. On the basis of the blue colony-colour produced in the presence of X-gal these have been described as superblue, white, and blue vegetative mutants, respectively. These were further characterised using earlier reporter genes and other marker systems. This study established that the multicopy reporter plasmids chosen do not interfere with sporulation; they are valid tools for monitoring the pathway and they provide a way to isolate mutations not readily selected by other markers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 461-464 
    ISSN: 1432-0983
    Keywords: Chromosome fragmentation ; MEL gene family ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nine members, MEL2–MEL10, of the MEL gene family coding for α-galactosidase were physically mapped to the ends of the chromosomes by chromosome fragmentation. Genetic mapping of the genes supported the location of all the MEL genes in the left arm of their resident chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Transformation ; Plasmid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have compared a number of procedures for the transformation of whole cells of the yeast Saccharomyces cerevisiae and assessed the effects of dimethylsulphoxide (DMSO) or ethanol, both of which have been reported to enhance transformation efficiency. We find that simplified methods benefit from the addition of one of these compounds, and although differences are observed between strains as to the more beneficial reagent, peak transformation efficiency is, in general obtained with 10% DMSO or 10% EtOH. Increases of between six- and 50-fold are observed, despite a reduction in cell viability, and at this concentration the two compounds are not additive in their effects. The optimum level appears to depend on a balance between improved DNA uptake and reduced cell viability. As a result of this work we present a straightforward and rapid transformation procedure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 1432-0983
    Keywords: Psoralen ; DNA repair mutants ; Gene conversion ; Recombination ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of the DNA repair genePSO3 on photoactivated psoralen-induced meiotic recombination, gene conversion, reverse mutation, and on survival, was assayed in diploid strains ofSaccharomyces cerevisiae homozygous for the wild-type or thepso3-1 mutant allele. Sporulation was normal in thepso3-1 diploid. Wild-type and mutant strains had the same sensitivity to photoactivated monofunctional psoralen (3-CPs+UVA) in meiosis-uncommitted and meiosis-committed stages. The mutant showed higher sensitivity to photoactivated bifunctional psoralen (8-MOP+UVA) during all stages of the meiotic cycle. Mutation induction by 3-CPs+UVA or 8-MOP+UVA in meiosis-committed cells revealed no significant differences between wild-type and thepso3-1 mutant. The status of thePSO3 gene has no influence on the kinetics of induction of gene conversion and crossing-over after 3-CPs+UVA treatment in meiosis-committed cells: gene conversion was blocked while recombination was induced. After treatment with 8-MOP+UVA gene conversion was also blocked in both strains while crossing-over could only be observed in meiosis-committed wild-type cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; URS ; FBP1 Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have constructed a plasmid, pOV10, which facilitates the introduction of putative upstream activating sequences (UAS) or upstream repressing sequences (URS) from yeast genes into plasmids containing CYC1-lacZ fusions. We have observed that the insertion of yeast sequences from 155 to 195 bp between the UAS and the TATA box of a CYC1-lacZ fusion gene can block β-galactosidase expression. It is suggested that this block is related to the formation of nucleosomes on the DNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondrial synthesis ; Nuclear control ; F1Fo-ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Respiratory-competent nuclear mutants have been isolated which presented a cryosensitive phenotype on a non-fermentative carbon source, due to a dysfunctioning of the mitochondrial F1-Fo ATP synthase which results from a relative defect in subunits 6 and 8 of the Fo sector. Both proteins are mtDNA-encoded, but the defect is due to the simultaneous presence of a mutation in two unlinked nuclear genes (NCA2 and NCA3, for Nuclear Control of ATPase) promoting a modification of the expression of the ATP8-ATP6 co-transcript (formerly denoted AAP1-OLI2). This co-transcript matures at a unique site to give two co-transcripts of 5.2 and 4.6 kb in length: in the mutant, the 5.2-kb co-transcript was greatly lowered. NCA3 was isolated from a wild-type yeast genomic library by genetic complementation. The level of the 5.2-kb transcript, like the synthesis of subunits 6 and 8, was partly restored in the transformed strain. A 1011-nucleotide ORF was identified that encodes an hydrophilic protein of 35417 Da. Disruption of chromosomal DNA within the reading frame promoted a dramatic decrease of the 5.2-kb mRNA but did not abolish the respiratory competence of a wild-type strain. NCA3 is located on chromosome IV and produces a single 1780-b transcript.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 1432-0983
    Keywords: Antimutator ; DDR48 ; Saccharomyces cerevisiae ; Spontaneous mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The antimutator phenotype, reportedly conferred by disruption of the Saccharomyces cerevisiae DDR48 gene, was suggested to affect only a specific spontaneous mutational pathway. We attempted to identify the types of mutation that are DDR48-dependent by determining the specificity of the ddr48 antimutator. However, disruption of DDR48 did not decrease the rates of spontaneous forward mutation in a plasmid-borne copy of the yeast SUP4-o gene, the reversion or suppression of the lys2–1 allele, or forward mutation at the CAN1 locus. Interestingly, the latter gene had been reported previously to be subject to the antimutator effect. DNA sequence analysis of spontaneous SUP4-o mutations arising in DDR48 and ddr48 backgrounds provided no evidence for a reduction in the rates of individual mutational classes. Thus, we were unable to verify that disruption of DDR48 causes an antimutator phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 509-516 
    ISSN: 1432-0983
    Keywords: Yeast ; Maltose fermentation ; MAL63 ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mal63p is a transcriptional activator for maltose fermentation in Saccharomyces cerevisiae. We have purified it to homogeneity from a yeast strain in which the MAL63 gene is under the control of the GAL1–GAL10 promoter. Purification included fractionation of a whole-cell extract by ion-exchange chromatography, chromatography using both non-specific DNA-affinity (calf thymus), and sequence-specific DNA-affinity chromatography. Mal63p activity was assayed by its binding to a fragment of the MAL61–MAL62 promoter, using both filter-binding and electrophoretic-mobility shift assays. DNase-I footprinting identified a new binding site (site 3) between the two previously known sites (sites 1 and 2). Mal63p is a dimer, and methylation-protection experiments identify the recognition motif as: c/a GC N9 c/a GC/g.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1432-0983
    Keywords: Key words Omnipotent suppression ; Microtubules ; Respiratory deficiency ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  SUP35 and SUP45 genes determine the accuracy of translation at the stage of termination. We present indirect evidence indicating that these genes may also control some cellular process mediated by microtubules. A majority of sup35 and sup45 suppressor mutations confer supersensitivity to benomyl, the drug which de-polymerizes microtubules. In addition, data correlating phenotypic manifestations of sup45 suppressor mutations, involving sensitivity to benomyl, respiratory deficiency and a suppressor effect, are also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1432-0983
    Keywords: Key words D-ribulose-5-phosphate 3-epimerase ; D-ribose-5-phosphate ketol-isomerase ; Pentose-phosphate pathway ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have cloned and characterized the two remaining unknown genes of the non-oxidative part of the pentose-phosphate pathway of Saccharomyces cerevisiae encoding the enzymes D-ribulose-5-phosphate 3-epimerase (Rpe1p) and D-ribose-5-phosphate ketol-isomerase (Rki1p). Rpe1p has an unexpected high specific activity of 2148 mU × (mg protein)–1 in crude extracts. Deletion mutants of RPE1 show no enzyme activity and are unable to grow on D-xylulose. Unexpectedly, haploid rki1 deletion mutants are not viable. Functional expression of RKI1 was demonstrated following an increase of gene dosage in the haploid rki1 deletion mutant, which restored viability and specific D-ribose-5-phosphate ketol-isomerase activity. Both enzymes show high similarity to the deduced protein sequences of various open reading frames, expressed sequence tags or cDNAs from different organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 30 (1996), S. 461-468 
    ISSN: 1432-0983
    Keywords: Keywords DNA repair ; Methylation damage ; Epistasis analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The major genotoxicity of methyl methanesulfonate (MMS) is due to the production of a lethal 3-methyladenine (3MeA) lesion. An alkylation-specific base-excision repair pathway in yeast is initiated by a Mag1 3MeA DNA glycosylase that removes the damaged base, followed by an Apn1 apurinic/ apyrimidinic endonuclease that cleaves the DNA strand at the abasic site for subsequent repair. MMS is also regarded as a radiomimetic agent, since a number of DNA radiation-repair mutants are also sensitive to MMS. To understand how these radiation-repair genes are involved in DNA methylation repair, we performed an epistatic analysis by combining yeast mag1 and apn1 mutations with mutations involved in each of the RAD3, RAD6 and RAD52 groups. We found that cells carrying rad6, rad18, rad50 and rad52 single mutations are far more sensitive to killing by MMS than the mag1 mutant, that double mutants were much more sensitive than either of the corresponding single mutants, and that the effects of the double mutants were either additive or synergistic, suggesting that post-replication and recombination-repair pathways recognize either the same lesions as MAG1 and APN1, or else some differ- ent lesions produced by MMS treatment. Lesions handled by recombination and post replication repair are not simply 3MeA, since over-expression of the MAG1 gene does not offset the loss of these pathways. Based on the above analyses, we discuss possible mechanisms for the repair of methylation damage by various pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; pso4-1 mutant Sporulation ; DNA repair ; Meiotic recombination Induced mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have evaluated the effect of the Saccharomyces cerevisiae pso4-1 mutation in sporulation and DNA repair during meiosis. We have found that pso4-1 cells were arrested in an early step of meiosis, before premeiotic DNA synthesis, and hence did not produce spores. These results suggest that the PSO4 gene may act at the start point of the cell cycle, as do some SPO and CDC genes. The pso4-1 mutant cells are specifically sensitive to 8-MOP- and 3-CPs-photoinduced lesions, and are found to be severely affected in meiotic recombination as well as impaired in the mutagenic response, as previously described for mitosis. This means that the PSO4 gene is important for the repair 8-MOP-photoinduced lesions, mainly double-strand breaks, and the processing of these lesions into recombinogenic intermediates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Chromosome copy numbers ; Ploidy probes ; Industrial yeasts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methods have been devised for analyzing chromosome copy numbers in S. cerevisiae strains that may be polyploid or aneuploid, as is apparent in the case of many industrial strains. The initial step involved transformation of a strain with an integrative “ploidy probe” transplacement fragment that enable the copy number of the targeted chromosomal locus to be determined via genomic Southern blotting and quantitative probe hybridization. Dual probe co-hybridization to Southern genomic DNA blots was used to extend such locus copy number determinations to other loci within the same chromosome, thereby screening for internal consistency along the length of the chromosome. This approach was also used to extend the analysis to other chromosomes in the genome. The method was established and verified with euploid series laboratory strains and then used to examine chromosome copy numbers in three industrial strains. One brewing strain apparently contained three copies of the chromosomes tested, whilst another brewing and a baking strain showed evidence of aneuploidy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    ISSN: 1432-0983
    Keywords: Key words Transcriptional regulation ; Phospholipid biosynthesis ; Saccharomyces cerevisiae ; INO2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 1432-0983
    Keywords: Biocontrol ; Secretion ; Chitinase ; Expression cloning ; Saccharomyces cerevisiae ; Trichoderma harzianum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A novel endochitinase agar-plate assay has been developed and used to identify 11 full-length cDNAs encoding endochitinase I (ENC I) from aTrichoderma harzianum cDNA library by expression in yeast. The 1473-bpchil cDNA encodes a 424-residue precursor protein including both a signal sequence and a propeptide. The deduced ENC I amino-acid sequence is homologous to other fungal and bacterial chitinases, and the enzyme cross-reacts with a polyclonal antiserum raised against chitinase A1 fromBacillus circulans. TheT. harzianum endochitinase I was secreted into the culture medium by the yeastSaccharomyces cerevisiae in a functionally active form. The purified recombinant enzyme had a molecular mass of 44 kDa, an isoelectric point of 6.3, a pH optimum of 7.0 and a temperature optimum of 20 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 1432-0983
    Keywords: Aspergillus kawachii ; β-xylanase ; Expression ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract First-strand cDNA was prepared from mRNA isolated from Aspergillus kawachii IFO4308 and the β-xylanase gene (xynC) amplified by using the polymerase chain reaction (PCR) technique. This gene was inserted between the yeast phosphoglycerate kinase (PGK1) gene promoter (PGK1 p) and terminator (PGK1 T) sequences. The PGK1 P-xynC-PGK1 T construct (designated XYN3) was cloned into a multicopy episomal plasmid and the XYN3 gene was expressed in Saccharomyces cerevisiae. Functional β-xylanase (Xyn3) was produced and secreted by the recombinant yeast. Xyn3 was stable between 30 and 50°C, and the optimum temperature and pH were shown to be at 60°C and lower than pH3, respectively. An autoselective fur1::LEU2 XYN3 recombinant strain was developed that allowed β-xylanase production at a level of 300 nkat/ml in a non-selective complex medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1432-0983
    Keywords: Key words Cysteine uptake ; Amino-acid permeases ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Uptake by Saccharomyces cerevisiae of the sulphur-containing amino acid L-cysteine was found to be non-saturable under various conditions, and uptake kinetics suggested the existence of two or more transport systems in addition to the general amino-acid permease, Gap1p. Overexpression studies identified BAP2, BAP3, AGP1 and GNP1 as genes encoding transporters of cysteine. Uptake studies with disruption mutants confirmed this, and identified two additional genes for transporters of cysteine, TAT1 and TAT2, both very homologous to BAP2, BAP3, AGP1 and GNP1. While Gap1p and Agp1p appear to be the main cysteine transporters on the non-repressing nitrogen source proline, Bap2p, Bap3p, Tat1p, Tat2p, Agp1p and Gnp1p are all important for cysteine uptake on ammonium-based medium. Furthermore, whereas Bap2p, Bap3p, Tat1p and Tat2p seem most important under amino acid-rich conditions, Agp1p contributes significantly when only ammonium is present, and Gnp1p only contributes under the latter condition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 34 (1998), S. 269-279 
    ISSN: 1432-0983
    Keywords: Key words Double-strand breaks ; Heteroduplex DNA ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spontaneous and double-strand break (DSB)-induced gene conversion in Saccharomyces cerevisiae was assayed using non-tandem chromosomal direct repeat crosses and plasmid × chromosome crosses. Each cross involved identical ura3 alleles marked with phenotypically silent restriction fragment length polymorphic (RFLP) mutations at approximately 100-bp intervals. DSBs introduced in vivo at HO sites in one allele stimulated recombination to Ura+ by more than two orders of magnitude. Spontaneous gene-conversion products were isolated from a related strain lacking a functional HO nuclease gene. The multiple markers did not appear to influence the frequency of direct repeat deletions for spontaneous or DSB-induced events. DSB-induced conversion reflected efficient mismatch repair of heteroduplex DNA. Conversion frequencies of equidistant markers on opposites sides of the DSB were similar in the direct repeat cross. In contrast, markers 5′ of the DSB (promoter-proximal) converted more often than 3′ markers in plasmid × chromosome crosses, a possible consequence of crossing-over associated with long conversion tracts. With direct repeats, bidirectional tracts (extending 5′ and 3′ of the DSB) occurred twice as often as in a plasmid × chromosome cross in which DSBs were introduced into the plasmid-borne allele. A key difference between the direct-repeat and plasmid×chromosome crosses is that the ends of a broken plasmid are linked, whereas the ends of a broken chromosome are unlinked. We tested whether linkage of ends influenced tract directionality using a second plasmid × chromosome cross in which DSBs were introduced into the chromosomal allele and found few bidirectional tracts. Thus, chromosome environment, but not linkage of ends, influences tract directionality. The similar tract spectra of the two plasmid × chromosome crosses suggest that similar mechanisms are involved whether recombination is initiated by DSBs in plasmid or chromosomal alleles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 306-308 
    ISSN: 1432-0983
    Keywords: Gene deletion ; Open reading frame ; Saccharomyces cerevisiae ; Polymerase chain reaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The classical disruption method for yeast genes is by using in vitro deletion of the gene of interest, or of a part of it, with restriction enzymes. We are now routinely using a strategy that takes advantage of polymerase chain reactions (PCRs) which amplify large pieces of DNA. Since this approach results in a complete, precise deletion of the open reading frame, which is replaced by a unique restriction site, the ligated PCR can be used for the insertion of different markers of for two-step gene disruptions without an inserted marker. As we have now used this strategy for the deletion of more than ten genes we have in this report included some hints based on our experience.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1432-0983
    Keywords: Multidrug resistance ; Candida albicans ; Saccharomyces cerevisiae ; ABC transporters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By functional complementation of a PDR5 null mutant of Saccharomyces cervisiae, we have cloned and sequenced the multidrug-resistance gene CDR1 of Candida albicans. Transformation by CDR1 of a PDR5-disrupted host hypersensitive to cycloheximide and chloramphenicol resulted in resistance to cycloheximide, chloramphenicol and other drugs, such as the antifungal miconazole, with collateral hypersensitivity to oligomycin, nystatin and 2,4 dinitrophenol. Our results also demonstrate the presence of several PDR5 complementing genes in C. albicans, displaying multidrug-resistance patterns different from PDR5 and CDR1. The nucleotide sequence of CDR1 revealed that, like PDR5, it encodes a putative membrane pump belonging to the ABC (ATP-binding cassette) superfamily. CDR1 encodes a 1501-residue protein of 169.9 kDa whose predicted structural organization is characterized by two homologous halves, each comprising a hydrophobic region with a set of six transmembrane stretches, preceded by a hydrophilic nucleotide binding fold.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 180-183 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; In-vivo cloning ; Non-replicative vectors ; Homologous recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have devised a new strategy to clone DNA sequences from an yeast autonomously-propagating plasmid into a non-autonomous integrative vector by in-vivo recombination. The method consists of a first step in which the replicative plasmid carrying the DNA fragment of interest forms a co-integrate with the non-replicative plasmid by an induced in-vivo reciprocal exchange accompanied by gene conversion. The dimeric plasmid obtained is then purified and cut with an appropriate restriction enzyme and ligated independently to obtain the two intact monomeric plasmids, the original autonomous plasmid plus the new non-autonomous plasmid carrying the subcloned DNA fragment. The dimeric co-integrate can also serve as substrate for a second in-vivo reciprocal exchange that produces new autonomous plasmids carrying the desired DNA fragment. The technique considerably expands the applications of in-vivo cloning in yeast by complementing three important characteristics of previously published methods: (1) it can be used to clone into non-propagating vectors; (2) co-transformation experiments are not required; and (3) the intermediate co-integrate can be used to generate new types of autonomously-propagating plasmids directly. These characteristics are independent of whether the DNA insert is flanked by appropriate restriction sites or whether it does, or does not, express a detectable phenotype in yeast. The method is particularly useful for the cloning of large DNA fragments and can be used for plasmids from organisms other than yeasts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1432-0983
    Keywords: 1,3-β-glucanase genes ; Saccharomyces cerevisiae ; Chromosomal mapping ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The map position of three 1,3-β-glucanase-encoding genes in S. cerevisiae has been determined following conventional meiotic and mitotic mapping combined with recombinant DNA techniques. EXG1, EXG2 and SSG1 were localized to chromosomes XII, IV and XV, respectively, by hybridizing the cloned genes to Southern blots of chromosomes sepaated by pulsed-field gel electrophoresis, in conjunction with the rad52-1-dependent chromosome-loss mapping technique. Meiotic tetrad analyses further localized the EXG1 gene 6.1 centimorgans centromere-proximal to CDC25 on the right arm of chromosome XII. EXG2 was positioned between LYS4 and GCN2 on the right arm of chromosome IV, at distances of 6.2 centimorgans from LYS4 and 4.9 centimorgans from GCN2. Finally, the SSG1 locus mapped on the right arm of chromosome XV, about 8.2 centimorgans to the centromere-proximal side of HIS3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Hydrostatic pressure ; Tetraploidy ; Homozygous diploid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Hydrostatic pressure and a dye plate method were used to investigate the direct induction of tetraploids or homozygous diploids from the industrial diploid or haploid yeast Saccharomyces cerevisiae. Above 200 MPa, hydrostatic pressure greatly inactivated the strains HF399s1 (α haploid), P-540 (a/α diploid), and P-544 (a/α diploid). At the same time, when pressure-treated cells of these strains were spread on a dye plate, some of the visible colonies were stained red/blue or dark blue (variant colonies); the rest stained violet, similar to colonies originating from diploid cells or haploid cells that were not pressure-treated. In addition, above 100 MPa, the formation of variant colonies increased with increasing pressure, and maximized (1x10-1) at 200 and 250 MPa, respectively. The size of almost all variant cells from P-544, P-540, and HF399s1 was visibly increased compared with that of untreated cells and the measured cellular DNA content of P-540 and HF399s1 was double that of untreated cells. Furthermore, based on random spore analysis and mass-matings, induced variants in the diploid strains were found to be tetraploid with an a/a/α/α genotype at the mating-type locus or, in the haploid strains, homozygous diploid with an α/α genotype. From these results we conclude that pressure treatment in combination with a dye plate is a useful method for strain improvement by direct induction of tetraploids or homozygous diploids from industrial strains whether diploid or haploids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 291-298 
    ISSN: 1432-0983
    Keywords: Cytochrome c 1 ; Cytochrome c 1 heme lyase ; GRF2p ; Glucose repression ; HAPp ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this paper we examine the expression of the Saccharomyces cerevisiae CYT2 gene, which encodes cytochrome c 1 heme lyase. This enzyme is required for covalent attachment of heme to apocytochrome c 1, a subunit of the mitochondrial respiratory chain. Transcription of the 1-kb CYT2 mRNA initiates at four prominent sites at a distance of 52–225 bp in front of the AUG start codon. The level of CYT2 mRNA is not influenced by the presence or absence of oxygen or of heme, but it is subject to carbonsource control. The concentration of the CYT2 mRNA is significantly reduced in glucose-grown cells as compared to cells grown under non-repressing conditions. Neither the HAPp activator proteins nor MIG1p, a repressor protein involved in glucose repression, seem to mediate this effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; recA gene expression ; UV radiation ; Mitotic gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of the Escherichia coli RecA protein on mitotic recombination in the diploid D7 strain of Saccharomyces cerevisiae damaged by UV radiation was investigated. The D7 strain was transformed by two modified versions of the pNF2 plasmid: one, containing the ADH-1 promoter, and the other containing the recA gene tandemly arranged behind the ADH-1 promoter region. Immunological analysis proved the presence of the 38-kDa RecA protein in D7/pNF2ADHrecA transformants. We observed a positive effect of recA gene expression on mitotic gene conversion, mainly at higher doses of UV radiation. The results indicate that a RecA-like activity could participate in steps preceeding mitotic conversion events in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 15-20 
    ISSN: 1432-0983
    Keywords: Cell-division cycle ; Mitochondrial genome ; Nuclear mutation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In former studies it was found that the ERV1 gene is essential for cell viability and for the biogenesis of functional mitochondria. A temperature-sensitive nuclear mutant exhibits a severe reduction in all the mitochondrial transcripts. Elimination of the gene leads to growth arrest after a few cell divisions. The putative gene product bears the characteristics of a regulatory factor since it has low expression rate and a high content of charged amino acids. In this study it is further verified that the ERV1 gene alone is responsible for the observed cellular and mitochondrial defects. The 5′ region of the gene is analysed by DNA deletions and complementation studies. Expression of the gene under the control of the GAL1-10 promoter in a disruption strain of ERV1 allows a more detailed specification of its influence on mitochondrial and cellular functions. Immediate and complete loss of mitochondrial genomes is observed after the promoter has been shut off, whereas the yeast cells are still able to grow for a limited time under these conditions. Analysis of the cells by in-vivo DNA flurorescence demonstrates a specific arrest in the cell-division cycle as the terminal phenotype. To further characterize the temperature-sensitive allele of ERV1 the mutated gene has been isolated and sequenced. A single point mutation which leads to the exchange of a single amino acid is found in the reading frame.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Nuclear gene ; Mitochondria ; Mitochondrial ribosomal protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nuclear gene MRP-L13 of Saccharomyces cerevisiae, which codes for the mitochondrial ribosomal protein YmL13, has been cloned and characterized. It is a single-copy gene residing on chromosome XI. Its nucleotide sequence was found to be identical to that of the previously reported ORF YK105. A comparison of the predicted protein sequence of the MRP-L13 gene product and the actual N-terminal amino-acid sequence of the isolated YmL13 protein indicated that the mature protein is preceded by a mitochondrial signal peptide of 86 amino-acid residues, which is the longest among all known mitochondrial ribosomal proteins of S. cerevisiae. No sequence similarity was found to any other ribosomal protein in the current databases. The transcription of MRP-L13 was found to be repressed in the presence of glucose. Its protein product is not strictly essential for mitochondrial functions, but disruption of the gene by insertion of LEU2 noticeably affected cellular growth on non-fermentable carbon sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 1432-0983
    Keywords: Heat-shock response ; Multidrug resistance ; AP-1 homolog ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have examined whether the stress-induced transcriptional activation ofYDR1/PDR5/STS1 is mediated by yAP-1 and yAP-2. Of the stresses examined, heat shock-induced, rapid and transient PDR5 expression became very low in ayap1 yap2 double-gene disruptant, indicating that the yAP proteins mediate the response. Similar results were obtained withSNQ2, a close homologue ofPDR5. A set of 5′-truncation derivatives of thePDR5 gene identified the region from −484 to −434 as being sufficient for the response. A sequence similar to the yAP-1 recognition element recently identified in the stress-responsive yeast genes was found in this region and in the 5′-flanking sequences ofSNQ2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 1432-0983
    Keywords: Autonomously replicating sequence ; Auxotrophy ; Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; Cloning vector ; Selectable marker ; HIS/his ; LYS/lys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three new S. pombe plasmids are described. Plasmids pSP3 and pSP4 are two Schizosaccharomyces pombe ars1 multicopy vectors with the Saccharomyces cerevisiae HIS3 or LYS2 genes as selectable markers. They complement the S. pombe his5-303 or lys1-131 mutations, respectively. Plasmid pSPars1 is a vector carrying the S. pombe ars1 and a unique NdeI site which allows the introduction of any selectable marker therefore bringing a unified vector backbone for the construction of new S. pombe/S. cerevisiae/E. coli shuttle vectors. These plasmids permit classical molecular genetic techniques to be performed directly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1432-0983
    Keywords: Key words Biocontrol ; Secretion ; Chitinase ; Expression cloning ; Saccharomyces cerevisiae ; Trichoderma harzianum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A novel endochitinase agar-plate assay has been developed and used to identify 11 full-length cDNAs encoding endochitinase I (ENC I) from a Trichoderma harzianum cDNA library by expression in yeast. The 1473-bp chi1 cDNA encodes a 424-residue precursor protein including both a signal sequence and a propeptide. The deduced ENC I amino-acid sequence is homologous to other fungal and bacterial chitinases, and the enzyme cross-reacts with a polyclonal antiserum raised against chitinase A1 from Bacillus circulans. The T. harzianum endochitinase I was secreted into the culture medium by the yeast Saccharomyces cerevisiae in a functionally active form. The purified recombinant enzyme had a molecular mass of 44 kDa, an isoelectric point of 6.3, a pH optimum of 7.0 and a temperature optimum of 20 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 35 (1999), S. 77-81 
    ISSN: 1432-0983
    Keywords: Key words Adaptive mutations ; 6-N-hydroxylaminopurine ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The frequency of reversion in a histidine-requiring mutant of Saccharomyces cerevisiae increases about ten-fold in stationary cells during histidine starvation. Histidine starvation enhances a similar frequency of reversion in a tryptophan-requiring mutant. Starvation, therefore, enhances mutation frequencies in a non-adaptive manner. The base analogue 6-N-hydroxylaminopurine (HAP) added prior to plating on medium with limited histidine strongly increases reversion of the histidine mutant. HAP-induced reversion increases further in stationary starving cells with the same kinetics as that which increases spontaneous reversion. Adding HAP to the stationary starving cells does not produce any effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    ISSN: 1432-0983
    Keywords: Key words Heteroduplex repair ; Strand discrimina-tion ; Strand interruptions ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Site-directed mutagenesis was used to construct yeast centromere plasmids in which a strand nick or gap could be placed 5′ or 3′, on either strand, to a reporter gene (SUP4-o) carrying defined base mismatches. The plasmids were then transformed into yeast cells and the direction and efficiency of mismatch repair were assayed by scoring colouring of the transformant colonies. Strands that were nicked were consistently corrected more often than intact strands, but the effect was very small. However, placement of a small gap at the same positions as the nicks resulted in a marked increase in selection for the gapped strand and an enhanced efficiency of mismatch repair. Both the preference for the gapped strand and correction of the mismatch were offset by deletion of the mismatch repair gene PMS1. Together, the results suggest that strand interruptions can direct intracellular mismatch correction of plasmid-borne base mispairs in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 36 (1999), S. 256-261 
    ISSN: 1432-0983
    Keywords: Key wordsFLO8 ; Transcriptional regulation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract It is thought that the FLO8 gene encodes a transcriptional activator of the dominant flocculation gene FLO1 in Saccharomycescerevisiae. To determine other genes which are regulated by FLO8, a detailed comparison of the transcripts from the FLO8 and Δflo8 strains was carried out. In addition to the FLO1 gene, it was found that transcription of the FLO11 and STA1 genes is positively regulated by FLO8. In flo8 strains, not only transcripts of the FLO11, STA1, and FLO1 genes but also invasive growth, extracellular glucoamylase production, and flocculation were undetected. From these results, it is suggested that FLO8 regulates these characteristics via the transcriptional regulation of the FLO11, STA1, and FLO1 genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 1432-0789
    Keywords: Antifungal activity ; Saccharomyces cerevisiae ; Phytopathogenic fungi ; Heterocyclic non-protein amino acid ; Pisum sativum ; Constitutive plant defence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary β-(Isoxazolin-5-on-2-yl)-alanine (βIA), a heterocyclic non-protein amino acid from root extracts and root exudates of pea seedlings, acts as a potent growth inhibitor of several eukaryotic organisms, including yeasts, phytopathogenic fungi, unicellular green algae, and higher plants. The antibiotic effect on baker's yeast was reversed by l-methionine, l-cysteine, and l-homocysteine. Phytopathogenic fungi such as Botrytis cinerea, Pythium ultimum, and Rhizoctonia solani grown on agar containing βIA were inhibited in the growth of mycelia or in the production of sclerotia. In contrast, no significant inhibition of either Gram-positive or Gram-negative bacteria was observed. Rhizobium leguminosarum, the compatible microsymbiont of Pisum spp., and Rhizobium meliloti were able to tolerate up to 2.9 mM βIA (500 ppm) without any effect on the growth rate. Bradyrhizobium japonicum even gave a positive chemotactic response to βIA. The ecological significance of βIA as a preformed plant protectant during the seedling stage of Pisum spp. and other βIA-containing legumes is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1432-0983
    Keywords: Sulphite-resistant mutants ; Sulphite uptake ; Acetaldehyde accumulation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth inhibition and cell killing caused by sulphite were reduced in seven Saccharomyces cerevisiae sulphite-resistant independent mutants, compared to their parental strains. Genetic analysis showed that in the seven mutants resistance was inherited as a single-gene dominant mutation and that all the analyzed mutations were allelic, thus identifying a major gene responsible for sulphite resistance in S. cerevisiae. Two of the mutants, MBS20-9 and MBS30, were further characterized. 35S-sulphite uptake experiments showed that the ability to accumulate sulphite was markedly reduced in the two resistant strains. No difference between resistant and sensitive strains with respect to glyceraldehyde-3-phosphate dehydrogenase sensitivity to sulphite, or to intracellular glutathione content, were revealed. In contrast, the extracellular acetaldehyde concentration was higher in the resistant mutants, both in the presence and in the absence of sulphite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Stationary phase ; mtDNA ; Storage carbohydrate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Double-mutant cells of the budding yeast Saccharomyces cerevisiae harboring the gcs1-1 and sed1-1 mutations are conditionally defective (cold-sensitive) only for reentry into the mitotic cycle from stationary phase. If already proliferating at the permissive temperature (29°C), these reentry-mutant cells continue to proliferate when transferred to the restrictive temperature of 14°C, but under these conditions reentry-mutant cells lose mitochondrial DNA (mtDNA). In addition, upon exhaustion of the nutrient supply at 14°C, these reentry-mutant cells entered stationary phase at a decreased cell concentration and did not accumulate the reserve carbohydrates trehalose and glycogen. Both of these deficiencies were due to the loss of mtDNA, as shown by the responses of wild-type cells also lacking mtDNA. Mitochondrial status did not affect other aspects of the reentry-mutant phenotype. Although mitochondrial activity and the accumulation of carbohydrate reserves are typical features of cells in stationary phase, the reentry-mutant phenotype reveals that neither entry into nor exit from stationary phase need involve mitochondrial function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 1432-0983
    Keywords: Glycosylphosphatidylinositol anchored-protein ; Southern analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The GGP1 gene encodes the only GPI-anchored glycoprotein (gp115) that has been purified todate in the budding yeast Saccharomyces cerevisiae. It is a single-copy gene whose deduced amino-acid sequence shares no significant homology to any other known protein. In this paper we report a Southern hybridization analysis of genomic DNA from different eukaryotic organisms to identify homologues of the GGP1 gene. We have analyzed DNA prepared from a unicellular green alga (Chlamydomonas eugametos), from two distantly related yeast species (Candida cylindracea and Schizosaccharomyces pombe), and from the common bean Phasoleus vulgaris. The moderate stringency of the experimental conditions and the high specificity of the probes used indicate that a single-copy of GGP1-related sequences exists in all these eukaryotic organisms. The chromosomal localization of the GGP1 gene in S. cerevisiae has also been determined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 92-94 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Gene mapping ; Idiomorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The STA2 (glucoamylase) gene of Saccharomyces cerevisiae has been mapped close to the end of the left arm of chromosome II. Meiotic analysis of a cross between a haploid strain containing STA2, and another strain carrying the melibiase gene MEL1 (which is known to be at the end of the left arm of chromosome II) produced parental ditype tetrads only. Since there is no significant DNA sequence similarity between the STA2 and MEL1 genes, or their respective flanking regions, we conclude that these two genes are carried by separate non-hybridizing sequences of chromosomal DNA, either of which can reside at the end of the left arm of chromosome II. By analogy with the mating-type locus of Neurospora crassa, we suggest that the STA2 and MEL1 genes are idiomorphs with respect to one another.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Phospholipid synthesis ; Phospholipid-N-methyltransferase ; Mutant ; Over-expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By functional complementation of the auxotrophic requirements for choline of a cdg1, cho2 double-mutant, by transformation with a genomic DNA library in a high copy number plasmid, two different types of complementing DNA inserts were identified. One type of insert was earlier shown to represent the CHO2 structural gene. In this report we describe the molecular and biochemical characterization of the second type of complementing activity. The transcript encoded by the cloned gene was about 1000-nt in length and was regulated in response to the soluble phospholipid precursors, inositol and choline. A gene disruption resulted in no obvious growth phenotype at 23°C or 30°C, but in a lack of growth at 37°C in the presence of monomethylethanolamine. Null-mutants exhibited an inositol-secretion phenotype, indicative of mutations in the lipid biosynthetic pathway. Complementation analysis, biochemical analysis of the phospholipid methylation pathway in vivo, and comparison of the restriction pattern of the cloned gene to published sequences, unequivocally identified the cloned gene as the OPI3 gene, encoding phospholipid-N-methyltransferase in yeast. When present in multiple copies the OPI3 gene efficiently suppresses the phospholipid methylation defect of a cho2 mutation. As a result of impaired synthesis of phosphatidylcholine, the INO1-deregulation phenotype is abolished in cho2 mutants transformed with the OPI3 gene on a high copy number plasmid. Taken together, these data demonstrate a significantly overlapping specificity of the OPI3 gene product for three sequential phospholipid methylation reactions in the de novo Ptd-Cho biosynthetic pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 181-183 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; c-myc epitope ; Fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to facilitate the process of epitope-tagging of yeast proteins, we have constructed two Saccharomyces cerevisiae-Escherichia coli shuttle vectors that allow fusion of a sequence encoding an epitope of the human c-myc protein at the 3′ end of any gene. An example of the use of this technique is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 295-304 
    ISSN: 1432-0983
    Keywords: Meiosis ; Meiotic recombination ; Saccharomyces cerevisiae ; REC114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four new meiotic recombination genes were previously isolated by selecting for mutations that rescue the meiotic lethality of rad52 spo13 strains. One of these genes, REC114, is described here, and the data confirm that REC114 is a meiosis-specific recombination gene with no detectable function in mitosis. REC114 is located on chromosome XIII approximately 4,9 cM from CIN4. The nucleotide sequence reveals an open reading frame of 1262 bp, consensus intron splice sites close to the 3′ end, and indicates that the second exon codes for only seven amino acids. In the promoter region, a URS1 consensus sequence (TGGGCGGCTA), identical to the URS1 found in the promoter of SPO16, is present 93 bp upstream of the translation start site. Northern-blot hybridization demonstrates that REC114 is transcribed only during meiosis and that it is not expressed in the absence of the IME1 gene product, even when IME2 is constitutively expressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1432-0983
    Keywords: Trehalase ; Trehalose-6-P synthase ; cAMP mutants ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rise in cAMP level that follows the addition of glucose or 2,4-dinitrophenol (DNP) to stationaryphase cells of Saccharomyces cerevisiae was accompanied by a marked activation of trehalase (3-fold increase) and a concomitant deactivation of trehalose-6 phosphate synthase (50% of the basal levels). In glucose-grown exponential cells, which are deficient in glucose-induced cAMP signalling, the addition of glucose also prompted a decrease in trehalose-6 phosphate synthase, but had no effect on trehalase activity. Mutants defective in the RAS-adenylate cyclase pathway (ras1 ras2 bcy1 strain), as well as mutants containing greatly reduced protein kinase activity either cAMP-dependent (tpk w1 BCY1 strains) or cAMP-independent (tpk1 w1 bcy1 strains), were unable to show glucose- or DNP-induced trehalase activation but still displayed a clear decrease in trehalose-6 phosphate synthase activity upon addition of these compounds. These data suggest that the activity of trehalose-6 phosphate synthase, as opposed to that of trehalase, is not controlled by the cAMP signalling pathway “in vivo”. Trehalose-6 phosphate synthase was competitively inhibited by glucose (Ki=15 mM) and resulted unaffected by ATP in assays performed “in vitro”.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 375-381 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Isocitrate lyase ; Gene regulation ; Ethanol induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ICL1 gene encoding the isocitrate lyase from Saccharomyces cerevisiae was cloned and sequenced. A reading frame of 557 amino acids showing significant similarity to isocitrate lyases from seven other species could be identified. Construction of icl1 null mutants led to growth defects on C2 carbon sources while utilization of sugars or C3 substrates remained unaffected. Using an ICL1-lacZ fusion integrated at the ICL1 locus, a more than 200-fold induction of β-galactosidase activity was observed after growth on ethanol when compared with glucose-repressed conditions. A preliminary analysis of the ICL1 upstream region identified a 364-bp fragment necessary and sufficient for this regulatory phenotype. Sequence motifs also present in the upstream regions of co-regulated genes were found within this region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Gene amplification ; ADH4 ; CUP1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Primary gene amplification, i.e., mutation from one gene copy to multiple gene copies per genome, is important in genomic evolution, as a means of producing anti-cancer drug resistance, and is associated with the progression of tumor malignancy. Primary amplification has not been studied in normal eukaryotic cells because amplifications are extremely rare in these cells. A system has been developed to phenotypically identify co-amplifications of the ADH4 and CUP1 genes of Saccharomyces cerevisiae and 21 independent spontaneous amplifications have been isolated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 414-422 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Donation ; Gene conversion ; Double-strand break repair ; Heteroduplex DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have used transformation of yeast with lincarized plasmids to study the transfer of information to the unbroken chromosome during double-strand break repair. Using a strain which carried the wild-type HIS3 allele, and a linearized plasmid which carried a mutant his3 allele, we have obtained His- transformants. In these, double-strand break repair has resulted in precise transfer of genetic information from the plasmid to the chromosome. Such repair events, we suggest, are gene conversions which entail the formation of heteroduplex DNA on the (unbroken) chromosome. If this suggestion is correct, our results reflect the spatial distribution of such heteroduplex DNA. Transfer of information from the plasmid to the chromosome was obtained at a maximal frequency of 1.5% of the repair events, and showed a dependence with distance. Transformation to His- was also obtained with a 2-kbp insertion and with a deletion of 200 bp. The latter results suggest that gene conversion of large heterologies can occur via repair of a heteroduplex DNA intermediate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 185-192 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Cell cycle ; Transcription ; DNA replication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In eukaryotic organisms, genes involved in DNA replication are often subject to some form of cell cycle control. In the yeast Saccharomyces cerevisiae, most of the DNA replication genes that have been characterized to date are regulated at the transcriptional level during G1 to S phase transition. A cis-acting element termed the MluI cell cycle box (or MCB) conveys this pattern of regulation and is common among more than 20 genes involved in DNA synthesis and repair. Recent findings indicate that the MCB element is well conserved among fungi and may play a role in controlling entry into the cell division cycle. It is evident from studies in higher systems, however, that transcriptional regulation is not the only form of control that governs the cell-cycle-dependent expression of DNA replication genes. Moreover, it is unclear why this general pattern of regulation exists for so many of these genes in various eukaryotic systems. This review summarizes recent studies of the MCB element in yeast and briefly discusses the purpose of regulating DNA replication genes in the eukaryotic cell cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 20 (1991), S. 189-194 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Bakers' and lager yeast ; Chromosomal and 2 μm DNA polymorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Seven strains of bakers' yeast were obtained as a representative sample of the Spanish baking industry. The nuclear genome was monitored for polymorphism by transverse alternating field electrophoresis (TAFE) and restriction maps of 2 μm DNA were produced. All seven strains were uniquely different when evaluated by their total chromosomal lengths whereas only two 2 μm variants were defined. There was no apparent correlation between chromosomal and plasmid polymorphism. The extensive chromosomal polymorphism within one 2 μm DNA type indicates the rapid and relatively recent evolution of the nuclear genome. The hybrid origin (S. cerevisiae-S.monacensis) of lager yeast was critically evaluated by TAFE analysis of S. cerevisiae and S. carlsbergensis chromosomes. The absence of corresponding S. cerevisiae chromosomes III and XIII in S. carlsbergensis argued against the hybrid origin of lager strains. We discuss limitations of the hybrid origin hypothesis of industrial yeasts and propose that the molecular coevolution observed in 2 μm DNA serves as a useful additional mechanism for rationalization of some of the structural polymorphism of the nuclear genome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 20 (1991), S. 437-439 
    ISSN: 1432-0983
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; β-glucuronidase ; Colony colour assay ; Fluorometric assay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Expression of the β-galactosidase gene in yeast has served as a screening marker for many purposes. Here it is shown that in two yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, the β-glucuronidase (GUS) gene can be used as an alternative marker. Since the histochemical substrate can not be taken up by yeast cells, direct colony screening of plates was found to be impossible. However, by a replica plating technique, GUS expression became visibly detectable within 10 min when the GUS gene was strongly expressed. The staining method could still be performed for expression at a 100-fold lower level, but incubation times of several hours were needed. Furthermore, specific GUS expression levels of yeast protein extracts could be quantified by a fluorometric assay which is both very simple to perform and highly sensitive. Since the GUS gene can also tolerate large N-terminal fusions, this method should be particularly attractive for studying such diverse problems as transcriptional and translational regulation or subcellular localization in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Pentose-phosphate pathway ; Transketolase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Deletion mutants for the yeast transketolase gene TKL1 were constructed by gene replacement. Transketolase activity was below the level of detection in mutant crude extracts. Transketolase protein could be detected as a single protein band of the expected size by Western-blot analysis in wild-type strains but not in the delection mutant. Deletion of TKL1 led to a reduced but distinct growth in synthetic medium without an aromatic amino-acid supplement. We also isolated double and triple mutants for transketolase (tkl1), transaldolase (tal1), and glucose 6-phosphate dehydrogenase (zwf1) by crossing the different mutants. A tal1 tkl1 double mutant grew nearly like wild-type in rich medium. Only the tkl1 zwf1 double and the tal1 tkl1 zwf1 triple mutant grew more slowly than the wild-type in rich medium. This growth defect could be partly alleviated by the addition of xylulose but not ribose. The triple mutant still grew slowly on a synthetic mineral salts medium without a supplement of aromatic amino acids. This suggests the existence of an alternative but limited source of pentose phosphates and erythrose 4-phosphate in the tkl1 zwf1 double mutants. Hybridization with low stringency showed the existence of a sequence with homology to transketolase, possibly a second gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 1432-0983
    Keywords: Mismatch correction ; Saccharomyces cerevisiae ; Excision repair ; DNA methylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The efficiency and direction of mismatch correction in the Saccharomyces cerevisiae SUP4-o gene were not altered by an excision-repair defect (rad1). Although excision-repair functions remove methylated adenine from yeast, adenine methylation at a GATC sequence in SUP4-o did not direct the correction of mismatches via excision repair.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...