ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (117)
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (73)
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (32)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (31)
  • Elsevier  (83)
  • American Geophysical Union  (32)
  • The Geological Society of America  (2)
  • Essen : Verl. Glückauf
  • Public Library of Science
  • 2005-2009  (117)
Collection
  • Articles  (117)
Source
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: A remote sensing approach permits for the first time the derivation of a map of the carbon dioxide concentration in a volcanic plume. The airborne imaging remote sensing overcomes the typical difficulties associated with the ground measurements and permits rapid and large views of the volcanic processes together with the measurements of volatile components exolving from craters. Hyperspectral images in the infrared range (1900–2100 nm), where carbon dioxide absorption lines are present, have been used. These images were acquired during an airborne campaign by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Pu`u` O`o Vent situated at the Kilauea East Rift zone, Hawaii. Using a radiative transfer model to simulate the measured up-welling spectral radiance and by applying the newly developed mapping technique, the carbon dioxide concentration map of the Pu`u` O`o Vent plume were obtained. The carbon dioxide integrated flux rate were calculated and a mean value of 396±138 t d−1 was obtained. This result is in agreement, within the measurements errors, with those of the ground measurements taken during the airborne campaign.
    Description: Published
    Description: 3192–3199
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: Hyperspectral data ; Volcanic plume ; Carbon dioxide ; AVIRIS ; Kilauea ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM=Hg0 (g)+HgII (g)) and particulate (Hg(p)) mercury in the summit gas emissions of La Soufrière andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermalmagmatic volatiles has been occurring since 1992 from the Southern summit crater.We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg(p) mass ratio of ~63. Combining the mean TGM/H2S mass ratio of the volcanic plume (~3.2×10−6), measured close to the source vent, with the H2S plume flux (~0.7 t d−1), determined simultaneously, allows us to estimate a gaseous mercury emission rate of 0.8 kg yr−1 from La Soufrière summit dome. Somewhat lower TGM/Stot mass ratio in fumarolic gases from the source vent (4.4×10−7) suggests that plume chemical composition is not well represented by the emission source (fumaroles) due to chemical processes prior to (or upon) discharge. Current mercury emission from La Soufrìere volcano represents a very small contribution to the estimated global volcanic budget for this element.
    Description: Published
    Description: 276-282
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mercury ; Fumaroles ; Volcanic plume ; Trace metals ; Gaseous and particulate mercury ; Emission rate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The multi-parametric permanent system (tilt and GPS networks, robotized geodetic station) for monitoring ground deformation at Stromboli volcano was set up in the 1990s and later greatly improved during the effusive event of 2002–2003. Unlike other volcanoes, e.g. Mt. Etna, the magnitude of ground deformation signals of Stromboli is very small and through the entire period of operation of the monitoring system, only two major episodes of deformation, in 1994–1995 and 2000, which did not lead to an eruption but rather pure intrusion, were measured. Similarly to the 2002–2003 eruption, no important deformations were detected in the months before the 2007 eruption. However, unlike the 2002–2003 eruption, GPS and tilt stations recorded a continuous deflation during the entire 2007 eruption, which allowed us to infer a vertical elongated prolate ellipsoidal source, centered below the summit craters at depth of about 2.8 km b.s.l. Due to its geometry and position, this source simulates an elongated plumbing system connecting the deeper LP magma storage (depth from 5 to 10 km) with the HP shallower storage (0.8–3 km), both previously identified by petrologic and geochemical studies. This result represents the first contribution of geophysics to the definition of the plumbing system of Stromboli at intermediate depth. Finally, no deformation due to the plumbing system was measured for a long time after the end of the eruption. Meanwhile, the new terrestrial geodetic monitoring system installed within the Sciara del Fuoco, on the lava fan formed during the eruption, indicated that during the first months after the end of the eruption the ground velocity progressively decreased in time, suggesting that part of the deformation was due to the thermal contraction of the lava flow.
    Description: Published
    Description: 172-181
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Ground Deformation ; source modelling ; flank instability ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The transport, degassing and atmospheric release of halogens from active volcanism on Earth have been the focus of increasing interest over the last few decades, and have recently been the subject of the 1st workshop on “Halogens in volcanic systems and their environmental impacts” that was held in December of 2007 at Yosemite Lodge in Yosemite National Park, California. As an introduction to this Chemical Geology special issue, collecting contributions from many of the participants at the workshop, we review here recent advances in this field, including experimental and theoretical investigations of halogen behaviour in volcanic and related magmatic systems. We discuss previous research on several aspects of halogen geochemistry, including halogen abundances in the mantle and magmas on Earth; the effects of halogens on phase equilibria and melt viscosities; their partitioning between melt and fluid phase(s) upon decompression, cooling and crystallisation of magmas in the Earth's crust; and their final atmospheric release as volcanic gases. The role of halogens in the genesis of hydrothermal systems and in the transport of ore-forming metals is also reviewed, and we discuss our current understanding of atmospheric processing of volcanic halogens in both the troposphere and stratosphere, and their consequent impacts. In spite of these recent advancements, our current understanding of halogen geochemistry at active volcanoes is still far too fragmentary, and the key questions that require answers from future research are summarised in our conclusions.
    Description: Published
    Description: 1-18
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Halogens ; Magmatic fluids ; Ore deposits ; Volcanic degassing ; Volcanic gas ; Atmospheric effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-03
    Description: The currently available data set of S–Cl–F abundances in volcanic gas plumes and high-temperature fumarolic gas samples from basaltic volcanism is reviewed here in the attempt to derive constraints on the modes of halogen degassing from mafic silicate melts. Apart from large volcano-to-volcano variations, reflecting remarkable differences in volatile abundances in the source magmas, each of the explored volcanoes displays large changes of SO2/HCl and SO2/HF ratios with the style of volcanic activity, with HCl/HF staying fairly constant. Halogen abundances are low and SO2/HCl and SO2/HF are high when fresh (volatile-rich) magmas sustain degassing, as during explosive eruptions, at the onset of eruptive cycles, or shortly before paroxysmal events. Low SO2/HCl and SO2/HF ratios are instead characteristic of late stages of volcanic degassing, typically being observed in the concluding stages of basaltic eruptions, or during periods of reduced magma supply at persistently degassing volcanoes. These observations are taken as evidence of halogens being less keen to enter the gas phase (relative to S) during degassing of basaltic magmas; and quantitatively interpreted in light of a Rayleigh-type open-system degassing model. The model, though simple, quantitatively reproduces the range of volcanic gas compositions observed at basaltic volcanoes worldwide, and allows prediction of vapour/melt partitioning contrasts of factors ~9 and ~36 for the volatile couples S–Cl and S–F, respectively. These predictions require validation from appropriately designed experiments of halogen partitioning between magmatic vapours and silicate melts over a range of P–T–X conditions.
    Description: Published
    Description: 99-109
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic degassing ; Halogens ; Volcanic gases ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Dynamic accumulation chamber methods have been extensively used to estimate the total output of CO2 released from active volcanic area. In order to asses the performance and reliability of a closed dynamic system several tests were carried out with different soil permeabilities and soil CO2 fluxes. A special device was used to create a constant one-dimensional CO2 flux through a soil column with a known permeability. Three permeabilities were investigated, ranging between 3.6 × 10− 2 and 3.5 × 10 μm2, as were several CO2 fluxes (ranging between 1.1 × 10− 6 and 6.3 × 10− 5 kg m− 2 s− 1). The results highlight that the accuracy of soil CO2 flux measurements strictly depends on the soil gas permeability and the soil CO2 flux regimen. Generally chamber measurements underestimate CO2 fluxes at low soil permeability and low soil CO2 fluxes, whereas appreciable overestimations occur for high permeability soil, especially for high soil CO2 fluxes. Other tests carried out with different settings for the measurement device, such as the chamber volume and the flux of the pump used to recirculate air through the chamber and the gas analyzer (recirculation flux), revealed a strong dependence of the closed dynamic chamber measurements on the recirculation flux. Low recirculation fluxes (0.2–0.4 l min− 1) decreased the performance of the measurement system, causing underestimations of the actual soil CO2 flux, whereas higher values (0.6–1.0 l min− 1) resulted in overestimations, especially for elevated soil CO2 fluxes. An empirical equation was deduced to allow accumulation chamber fluxes to be calculated very accurately based on soil gas permeabilities measured in the field.
    Description: Published
    Description: 387-393
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux measuraments ; Closed dynamic chamber ; soil gas permeability ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In September 2002, a series of tectonic earthquakes occurred north of Sicily, Italy, followed by three events of volcanic unrest within 150 km. On 28 October 2002, Mount Etna erupted; on 3 November 2002, submarine degassing occurred near Panarea Island; and on 28 December 2002, Stromboli Island erupted. All of these events were considered unusual: the Mount Etna northeast-rift eruption was the largest in 55 yr; the Panarea degassing was one of the strongest ever detected there; and the Stromboli eruption, which produced a landslide and tsunami, was the largest effusive eruption in 17 yr. Here we investigate the synchronous occurrence of these clustered events, and develop a possible explanatory model. We compute short-term earthquake-induced dynamic strain changes and compare them to long-term tectonic effects. Results suggest that the earthquake-induced strain changes exceeded annual tectonic strains by at least an order of magnitude. This agitation occurred in seconds, and may have induced fluid and gas pressure migration within the already active hydrothermal and magmatic systems.
    Description: This study was partly funded by the Deutsche Forschungsgemeinschaft (WA 1642/1-4), and Protezione Civile, project INGV-DPC-V2.
    Description: Published
    Description: 251-254
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: simultaneous magma eruptions ; earthquake trigger ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Methane, the most abundant hydrocarbon in the atmosphere, plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after CO2. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (Kvenvolden and Rogers, 2005). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Among natural sources the volcanic/geothermal emissions are probably the least constrained. Recent estimations for volcanic and geothermal systems in Europe (Etiope et al. 2007) gave a rather large provisional range (4-16 kt/a) that claims for much more field measurements in order to widen the current database and decrease the present uncertainties. Pantelleria is an active volcanic complex, at present in quiescent status, hosting a high enthalpy geothermal system. Explorative geothermal wells tapped an exploitable water-dominated reservoir at 600-800 m depth with maximum measured temperatures of 250 °C. While some data are available on diffuse CO2 fluxes, data on CH4 are available only for fumarolic fluids. In the present study we measured CH4 fluxes in the area of Favara Grande characterized by intense diffuse degassing and widespread signs of geothermal activity (fumaroles, steaming grounds and large zones devoid of vegetation). Values range from negative (-43 to 0 mgCH4 m2 day), typical of soils with methanotrophic activity, up to 3500 mgCH4 m2 day in the most thermalized area. The preliminary estimate of the methane release from the area of Favara Grande is about 2.5 t/a. Extrapolation to the whole volcanic/geothermal system of Pantelleria gives about 10 t/a.
    Description: Published
    Description: Davos, Switzerland
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil gases ; methane output ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Description: Published
    Description: 246-254
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Electric resistivity tomography (ERT), self-potential (SP), soil CO2 flux, and temperature are used to study the inner structure of La Fossa cone (Vulcano, Aeolian Islands). Nine profiles were performed across the cone with a measurement spacing of 20 m. The crater rims of La Fossa cone are underlined by sharp horizontal resistivity contrasts. SP, CO2 flux, and temperature anomalies underline these boundaries which we interpret as structural limits associated to preferential circulation of fluids. The Pietre Cotte crater and Gran Cratere crater enclose the main hydrothermal system, identified at the centre of the edifice on the base of low electrical resistivity values (b20 Ω m) and strong CO2 degassing, SP, and temperature anomalies. In the periphery, the hydrothermal activity is also visible along structural boundaries such as the Punte Nere, Forgia Vecchia, and Palizzi crater rims and at the base of the cone, on the southern side of the edifice, along a fault attributed to the NW main tectonic trend of the island. Inside the Punte Nere crater, the ERT sections show an electrical resistive body that we interpret as an intrusion or a dome. This magmatic body is reconstructed in 3D using the available ERT profiles. Its shape and position, with respect to the Pietre Cotte crater fault, allows replacing this structure in the chronology of the development of the volcano. It corresponds to a late phase of activity of the Punte Nere edifice. Considering the position of the SP, soil CO2 flux, and temperature maxima and the repartition of conductive zones related to hydrothermal circulation with respect to the main structural features, La Fossa cone could be considered as a relevant example of the strong influence of preexisting structures on hydrothermal fluid circulation at the scale of a volcanic edifice.
    Description: Published
    Description: 231-245
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: partially_open
    Keywords: electrical resistivity ; self-potential ; soil CO2 degassing ; temperature ; fluid circulation ; hydrothermal system ; structural boundary ; Vulcano ; La Fossa cone ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: An infrared absorption spectroscopy remote sensing technique was used to determine the S02/HCl ratio in fumarolic plumes at Vulcano, Italy. The measurements were made from the southern crater rim of Fossa Grande Crater, about 400 m from the fumarolic area in the crater. Infrared absorption spectra of HCl and SO, were observed for four fumaroles a few tens of metres apart using the hot fumarolic surface as an infrared light source. The measured S02/HCl ratios in the FA, F47, FW and lower parti of the F21 fumaroles were 4.5-5.4, 3.5, 9.5-11.2 and 5.8 respectively. The S02/HCl ratio of the FA fumarole was higher than that of the gas collected directly in the fumarolic vent (S02/HCl ratio = 2.9), and was closer to the S~,,,,,,/HCl ratio (= 4.6) of the collected gas. Our results show that the SO,/HCl ratios of two fumaroles only a few tens of metres apart exhibits differences of about twofold. This suggests that this remote monitoring technique is capable of detecting spatial distribution in the S02/HCl ratios of volcanic plumes. Because temporal variations in S/Cl ratios can provide precursory signals for volcanic eruptions [l-31, this remote sensing technique can used efficiently for evaluation of volcanic activity.
    Description: Published
    Description: 219-224
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: Gas chemistry ; FTIR ; Volcano ; fumaroles ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Methane (CH4) emanating from a continental volcanichydrothermal system in Nisyros, Greece, is processed through the abiogenic reduction of mantle- and marine limestonederived CO2 [1]. Evidence for the occurrence of abiogenic hydrothermal reduction of CO2 is from the chemical and carbon isotopic equilibrium patterns. We have further characterized this abiogenic methane (C1) source for the concentrations of ethane (C2) and propane (C3), as well as for the hydrogen isotopic composition of CH4, H2O, H2 and H2S. C1/C2+ ratios are significantly higher than those typically observed for purely thermogenic sources. Hydrocarbon distribution ratios for other continental-hydrothermal sources rich in CO2 are comparable to those of the Nisyros fumaroles implying that abiogenic methane might be significantly more widespread than previously assumed [2]. Relative concentrations of hydrocarbons in continental-hydrothermal discharges are even indistinguishable from those measured in ultramafic hydrothermal emissions. The fact that redox conditions do not seem to exert any control on the relative concentrations of hydrocarbons in hydrothermal emissions in general, implies that the same two sources account for hydrocarbon production in continental and ultramafic environments. One source generates methane exclusively through the selective abiogenic reduction of CO2 (Sabatierreaction). The other source produces minor amounts of methane, ethane and propane by a random process and represents either the thermal cracking of organic matter or the polymerization starting from methane. Hydrogen isotope partitioning between H2O, H2S, H2 and CH4 in Nisyros fumaroles reveals that isotopic exchange rates are highest for H2O-H2S followed by H2O-H2. In contrast to H2 and H2S, the hydrogen isotopic composition of methane exhibits almost no local variations. This is in agreement with its predominantly abiogenic hydrothermal origin and with the low temperature sensitivity of the hydrogen isotope fractionation factor between water vapor and methane.
    Description: Published
    Description: Davos, Switzerland
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: hydrothermal gases ; methane ; ethane ; propane ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The origin of forces driving the deformation of the continental crust near subduction zones and especially in backarc regions is debated. Thiswork is based on a compilation of SKS fast splitting directions that give an image of flowlines in themantle around theMediterranean subduction zones and a comparisonwith stretching and shear directions in metamorphic core complexes that show the pattern of deformation at the scale of the middle and lower crusts.We find that : (1) the two sets of directions are parallel in the three main backarc regions, namely the Alboran Sea, the Tyrrhenian Sea and the Aegean Sea showing that the lithosphere deformswith the samedirection of stretching in the crust and themantle, suggesting that (2) crustal deformation ismainly driven frombelowby slab retreat, and (3) the lithospheric fabric is reset within a few millions of years in backarc environments.
    Description: Published
    Description: 198–209
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: subduction ; seismic anisotropy ; backarc extension ; slab retreat ; stretching lineation ; metamorphic core complexes ; Mediterranean ; Aegean ; Tyrrhenian ; Alboran ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Nitrogen isotopes , N2/36Ar and 3He/4He were measured in volcanic fluids within different geodynamic settings. Subduction zones are represented by Aeolian archipelago, Mexican volcanic belt and Hellenic arc, spreading zones – by Socorro island in Mexico and Iceland and hot spots by Iceland and Islands of Cabo Verde. The δ15N values, corrected for air contamination of volcanic fluids, discharged from Vulcano Island (Italy), highlighted the presence of heavy nitrogen (around +4.3 ±0.5‰). Similar 15N values (around +5‰), have been measured for the fluids collected in the Jalisco Block, that is a geologically and tectonically complex forearc zone of the northwestern Mexico [1]. Positive values (15N around +3‰) have been also measured in the volcanic fluids discharged from Nysiros island located in the Ellenic Arc characterized by subduction processes. All uncorrected data for the Socorro island are in the range of -1 to -2‰. The results of raw nitrogen isotope data of Iceland samples reveal more negative isotope composition (about -4.4‰). On the basis of the non-atmospheric N2 fraction (around 50%) the corrected data of 15N for Iceland are around -16‰, very close to the values proposed by [2]. In a volcanic gas sample from Fogo volcano (Cabo Verde islands) we found a very negative value: -9.9‰ and -15‰ for raw and corrected values, respectively.
    Description: Geochimica et Cosmochimica Acta
    Description: Published
    Description: Davos, Switzerland
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: Nitrogen Isotopes ; Helium Isotopes ; Volcanic fluids ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Chemical and isotopic analyses of the main gas manifestations of the island of Pantelleria (Italy) were used to gain insight on the origin of the released methane. Results indicate that the most probable origin is through abiogenic reactions within the hydrothermal system. Methane and CO2 flux measurements from the soils were made with the accumulation chamber method in an area of about 0.015 km2 within the main fumarolic area of the island (Favara Grande). The 23 measurements range from –34 to 3550 mg m-2 d-1 for CH4 and from 0.6 to 379 g m-2 d-1 for CO2. The relationships between CH4 and CO2 fluxes and the CH4/CO2 ratios in the gases collected between 25 and 100 cm depth provide evidence for methanotrophic processes within the soils. Methane output for the surveyed area was calculated in 2.5 t a-1 and extrapolated to about 5-10 t a-1 for the entire volcanic/hydrothermal system of the island. Previous higher estimates of the CH4 output at Pantelleria (Etiope et al., 2007 - J. Volcanol. Geotherm. Res., 165, 76 – 86) were based on soil CO2 output and CH4/CO2 ratios in fumarolic gases; the present work provides the first direct CH4 flux data and it suggests that methanotrophic activity in the soil could be substantial in reducing the CH4 emission to the atmosphere.
    Description: Published
    Description: 147-157
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: hydrothermal systems ; gas geochemistry ; isotope composition ; methane output ; methanotrophic consumption ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-10-29
    Description: Two sets of cooling experiments were run at atmospheric conditions for two anhydrous starting latitic and trachytic melts: 1) five cooling rates (25, 12.5, 3, 0.5, and 0.125 °C/min) between 1300° and 800 °C, and 2) a 11 0.5 °C/min cooling rate from 1300 °C with quench temperatures at 1200°, 1100°, 1000° and 900 °C. Trachytic run-products are invariably glassy. Nucleation is also suppressed in the latitic run-products at the three highest 13 cooling rates. Conversely, in the 0.5 and 0.125 °C/min runs, latites have a crystal content of 90 vol.%. The 14 phases are: plagioclase, clinopyroxene, glass and iron-bearing oxide (in order of abundance). The variable 15 quench temperatures, investigated by coupling experiments with Pt-wire and Pt- capsule sample containers inset 2,again did not produce crystallization of trachyte, whereas latitic samples are characterized by 10 vol.% of oxides, pyroxenes and plagioclase (in order of appearance), at temperature b1000 °C. Effects of (preferential) heterogeneous nucleation on sample holders, of superheating degree, and chemical species loss during cooling are absent for both melt compositions. The difference of solidification paths between these two silicate melts can be ascribed only to their small chemical differences. In comparison with calculated equilibrium conditions all the experimental latitic and trachytic run-products revealed strong kinetic effects, interpretable in the light of the nucleation theory. The glass- forming ability (GFA) of trachyte is higher, whereas their critical cooling rate (Rc) is lower (b0.125 °C/min), in comparison to latitic melts (RcN0.5 °C/min). The experimental results carried out in this study can be applied to lava flows and domes; trachytic lavas are able to flow for longer period with respect to latitic ones in a metastable condition. Glass-rich terrestrial lavas, i.e. obsidians, can be the result of sluggish nucleation kinetics due to the relative high polymerisation of evolved silicate melts.
    Description: Published
    Description: 91-101
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: crystallization ; lava flows ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-01-27
    Description: Northern Victoria Land is located at the boundary between an extended, presumably hot, region (West Antarctic Rift System) and the thick, possibly cold, East Antarctic craton. The style and timing of Tertiary deformation along with relationships with the magmatic activity are still unclear, and contrasting models have been proposed. We performed structural and morphotectonic analyses at the NE termination of northern Victoria Land in the Admiralty Mountains area, where the relationship between topography, tectonics, and magmatism is expected to be well pronounced. We found evidence of two subsequent episodes of faulting, occurring concurrently with the Neogene McMurdo volcanism. The first episode is associated with dextral transtension, and it is overprinted by extensional tectonics during the emplacement of large shield alkaline volcanoes. Upper mantle seismic tomography shows that the extensional regime is limited to regions overlying a low-velocity anomaly. We interpret this anomaly to be of thermal origin, and have tested the role of largescale upwelling on lithosphere deformation in the area. The results of this integrated analysis suggest that the morphotectonic setting of the region and the magmatism is likely the result of upwelling flow at the boundary between the cold cratonic and the hot stretched province (WARS), at work until recent time in this portion of the northern Victoria Land.
    Description: Published
    Description: TC4015
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Antarctica ; Admiralty Mountains ; Extensional Tectonics ; Mantle Upwelling ; Seismic Tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-01-07
    Description: The CO2 degassing process from a large area on the Tyrrhenian side of central Italy, probably related to the input into the upper crust of mantle fluids, was investigated in detail through the geochemical study of gas emissions and groundwater. Mass-balance calculations and carbon isotopes show that over 50% of the inorganic carbon in regional groundwater is derived from a deep source highlighting gas−liquid separation processes at depth. The deep carbonate−evaporite regional aquifer acts as the main CO2 reservoir and when total pressure of the reservoir fluid exceeds hydrostatic pressure, a free gas phase separates from the parent liquid and escapes toward the surface generating gas emissions which characterise the study area. The distribution of the CO2 flux anomalies and the location of high PCO2 springs and gas emissions suggest that the storage and the expulsion of the CO2 toward the atmosphere are controlled by the geological and structural setting of the shallow crust. The average CO2 flux and the total amount of CO2 discharged by the study area were computed using surface heat flow, enthalpy and CO2 molality of the liquid phase circulating in the deep carbonate−evaporite aquifer. The results show that the CO2 flux varies from 1×104 mol y−1 km−2 to 5×107 mol y−1 km−2, with an average value of 4.8×106 mol y−1 km−2, about five times higher than the value of 1×106 mol y−1 derived by Kerrick et al. [Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293] as baseline for terrestrial CO2 emissions. The total CO2 discharged from the study area is 0.9×1011 mol y−1, confirming that Earth degassing from Tyrrhenian central Italy is a globally relevant carbon source
    Description: Published
    Description: 89–102
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Earth degassing ; carbon dioxide ; CO2 flux ; groundwater ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-01-27
    Description: We report the first combined measurements of the composition and flux of gas emitted from Nyiragongo volcano by ground-based remote-sensing techniques. Ultraviolet spectroscopic measurements made in May/June 2005 and January 2006 indicate average SO2 emission rates of 38 kg s−1 and 23 kg s−1, respectively. Open-path Fourier transform infrared spectroscopic measurements obtained in May/June 2005, January 2006, and June 2007 indicate average molar proportions of 70, 24, 4.6, 0.87, 0.26, 0.11, and 0.0016% for H2O, CO2, SO2, CO, HCl, HF, and OCS, respectively. The composition of the plume was remarkably similar in 2005, 2006, and 2007, with little temporal variation in proportions of CO2, SO2, and CO, in particular, on the scale of seconds or days or even between the three field campaigns that span a period of 24 months. This stability persisted despite a wide range of degassing behaviors on the surface of the summit crater's lava lake (including discrete strombolian bursts and lava fountains) and variations in the SO2 emission rate. We explain these observations by a regime of steady state degassing in which bubbles nucleate and ascend in chemical equilibrium with the convecting magma. Short-term (seconds to minutes) temporal fluctuations in the SO2–HCl–HF composition were observed, and these are attributed to shallow degassing processes.
    Description: Published
    Description: Q02017
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Nyiragongo ; volcanic gas emissions ; FTIR ; DOAS ; remote sensing ; spectroscopy ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-05-17
    Description: Papandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772,only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano. At the present time, the activity is centered in the northeast crater with discharge of low temperature fumaroles and acid hot springs. Two types of acid fluids are emitted in the crater of Papandayan volcano: (1) acid sulfate-chloride waters with pH between 1.6 and 4.6 and (2) acid sulfate waters with pH between 1.2 and 2.5. The water samples collected after the eruption on January 2003 reveal an increase in the SO4/Cl and Mg/Cl ratios. This evolution is likely explained by an increase in the neutralization of acid fluids and tends to show that water–rock interactions were more significant after the eruption. The evolution in the chemistry observed since 2003 is the consequence of the opening of new fractures at depth where unaltered (or less altered) volcanic rocks were in contact with the ascending acid waters. The high δ34S values (9–17‰) observed in acid sulfatechloride waters before the November 2002 eruption suggest that a significant fraction of dissolved sulfates was formed by the disproportionation of magmatic SO2. On the other hand, the low δ34S (−0.3–7‰) observed in hot spring waters sampled after the eruption suggest that the hydrothermal contribution (i.e. the surficial oxidation of hydrogen sulfide) has increased.
    Description: Published
    Description: 276-286
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Papandayan volcano ; Indonesia ; phreatic eruption ; hydrothermal system ; fluid geochemistry ; advanced argillic alteration ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-11-17
    Description: TWODEE-2 is a FORTRAN 90 code based on previous code (TWODEE). It is designed to solve the shallow water equations for fluid depth, depth-averaged horizontal velocities and depth-averaged fluid density. The shallow layer approach used by TWODEE-2 is a compromise between the complexity of CFD models and the simpler integral models. It can be used for forecasting gas dispersion near the ground and/or for hazard assessment over complex terrains. The inputs to the model are topography, terrain roughness, wind measurements from meteorological stations and gas flow rate from the ground sources. Optionally the model can be coupled with the output of a meteorological processor which generates a zero-divergence wind field incorporating terrain effects. Model outputs are gas concentration, depth-averaged velocity, averaged cloud thickness and dose. The model can be a useful tool for gas hazard assessment by evaluating where and when lethal concentrations for humans and animals can be reached.
    Description: Published
    Description: 667-674
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Dense gas transport ; Fortran code ; Gas hazard ; Computational model ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Major and trace element and Sr–Nd–Hf–Pb isotopic data for the most primitive Tertiary lavas from the Veneto region (South-Eastern Alps, Italy) show the typical features of HIMU hotspot volcanism, variably diluted by a depleted asthenospheric mantle component (87Sr/86Sri=0.70306–0.70378; "Ndi=+3.9 to +6.8; "Hfi=+6.4 to +8.1, 206Pb/204Pbi=18.786–19.574). P-wave seismic tomography of the mantle below the Veneto region shows the presence of low-velocity anomalies at depth, which is consistent with possible upwellings of plume material. Between the depths of 100–250 km the velocity anomalies are approximately 2–2.5% slower than average, implying a temperature excess of about 220–280 K, in agreement with estimates for other mantle plumes in the world. In this context, the Veneto volcanics may represent the shallow expression of a mantle upflow. The presence of a HIMU-DM component in a collision environment has significant geodynamic implications. Slab detachment and ensuing rise of deep mantle material into the lithospheric gap is proposed to be a viable mechanism of hotspot magmatism in a subduction zone setting.
    Description: Published
    Description: 563–590
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: trace-element ; isotopic composition ; alkali basalts ; central-Europe ; slab break-off ; plume ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: One of the most challenging issues about the Tertiary–Quaternary alkaline magmatism spreading across the Euro-Mediterranean region is the assessment of both the nature of its mantle source and the mechanism responsible for the common HIMU-like (High μ=high 238U/204Pb) character of erupted lavas, enduring over about 100 million years in diverse tectonic environments. In this paper we try to reconcile geochemical and geophysical data through a multidisciplinary investigation on geochemistry, timing and locations of the main Na-rich alkaline volcanic centers, seismic tomographic images and plate kinematics. We propose that the common component of the Euro-Mediterranean mantle derives from a contamination episode triggered by the rise of the Central Atlantic Plume (CAP) head. Plate reconstruction shows that at late Cretaceous- Paleocene time the oldest magmatic centers of the Euro-Mediterranean region were located more than 2000 km SW of their present day position, in proximity of the CAP hot spot location, where seismic tomography detects a broad low seismic velocity region in the lower mantle. The northeastward migration of the Eurasian and African plates could have involved also part of the CAP contaminated mantle, which moved in the same direction being coupled to the lithospheric plates, thus explaining the presence of geochemically-uniform material spread in the sub-lithospheric Euro-Mediterranean mantle. During the Tertiary, regional-scale convection and related processes such as rifting, back-arc spreading, slab detachment/windows, may have favored upwelling and partial melting of the frayed plume head material via adiabatic decompression, shaping the spatial and temporal distribution of HIMU-like volcanics. The growing supply of subducted lithosphere may explain as well the increase of crustal isotopic signatures of alkaline magmas with time. In our opinion, the Euro-Mediterranean upper mantle contamination can be eventually related to a global event occurred during the Cretaceous as a consequence of a mantle avalanche caused by the Tethys closure.
    Description: MIUR 2005-2007, prot. n. 2005055415_002, Poli G.
    Description: Published
    Description: 15–27
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Cenozoic HIMU–OIB volcanism ; Euro-Mediterranean mantle ; geochemistry ; mantle tomography ; plate kinematics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The controversial relationship between the orogenic segments of the Western Alps and the Northern Apennines is here explored integrating recently published 3D tomographic models of subduction with new and re-interpreted geological observations from the eclogitic domain of the Voltri Massif (Ligurian Alps, Italy), where the two belts joint each other. The Voltri Massif is here described as an extensional domain accommodating the opposing outward migration of the Alpine and Apennine thrust fronts, since about 30–35 Ma. Using tomographic images of the upper mantle and paleotectonic reconstructions, we propose that this extensional setting represents the surface manifestation of an along strike change in polarity of the subducted oceanic slab whose polarity changed laterally in space and in time. Our tectonic model suggests that the westward shift of the Alpine thrust front from the Oligocene onward was the consequence of the toroidal asthenospheric flow induced by the retreat of the Apenninic slab.
    Description: Published
    Description: 34–50
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Western Alps ; Northern Apennines ; Voltri Massif ; Tomography ; Kinematic reconstruction ; Extensional detachment ; Toroidal flow ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic results obtained from 27 sites sampled in the Plio-Pleistocene sequences at the external front of the central-northern Apennines. Previous analyses of Miocene (Messinian) sediments indicated that the present shape of the northern Apenninic arc is due to the oroclinal bending of an originally straight belt oriented around N320° and that vertical axis rotations accompanied the migration of the thrust fronts toward the Adriatic foreland [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153-3166]. We tried to provide new paleomagnetic constraints for the timing and rates of the oroclinal bending process during the Pliocene and the Pleistocene. The results suggest that CCW rotations observed in the northern part of the studied area are possibly younger than 3 Ma. No regional rotation is recorded in the Pliocene and Pleistocene sediments from the southern part of the study area, analogously to the Messinian sediments of the 'Acquasanta' domain of Speranza et al. [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153-3166]. A local significant CCW rotation (23° ± 10°) is identified in the Early Pleistocene sediments that crop out along the Adriatic coast between Ascoli and Pescara, indicating differential motion of the thrust sheets. This rotation must be younger than 1.43 Ma.
    Description: Published
    Description: 243-257
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: paleomagnetism ; Apennines ; tectonics ; Pliocene ; Pleistocene ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Description: Published
    Description: 79-95
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: The soil CO2 flux on Mt. Etna as recorded by the ETNAGAS network (an automatic system for measuring soil CO2 flux and meteorological parameters) started to increase strongly about 5 months prior to the onset of the 2004–2005 eruption and decreased a few months before the end of the eruption. Time delays in the occurrences of anomalies in soil CO2 flux at different sites in the geochemical network constrain the relationship between soil CO2 flux distributions and the tectonic framework of Etna volcano. The anomalies observed before the 2004–2005 eruption support the intrusion of new undegassed magma into the upper feeding system of the volcano (〈20 km below sea level). Magma subsequently rose slowly in the volcano conduits, thereby triggering the onset of the 2004–2005 eruption. The time delays in the occurrences of anomalies in combination with spectral analysis indicate the importance of tectonic and volcanotectonic structures in driving the ascent of deep gases within the crust. Moreover, greatest amplitude pulsations of the low-frequency components of the CO2 flux signals were correlated with the paroxystic activities of the 2004–2005 eruption. This study confirms that CO2 flux variation is a useful indicator for volcanic activity in the surveillance of the Mt. Etna and similar basaltic volcanoes.
    Description: Dipartimento Protezione Civile Ministero degli Interni
    Description: Published
    Description: B09206
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux ; Continuous monitoring of soil CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4=0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake,meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009±1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.
    Description: Published
    Description: 237–248
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: El Chichón volcano ; crater lake–Spring dynamics ; fluid geochemistry ; stable isotopes ; monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: In this paper we present a collection of good quality shear wave splitting measurements in Southern Italy. In addition to a large amount of previous splitting measurements, we present new data from 15 teleseisms recorded from 2003 to 2006 at the 40 stations of the CAT/SCAN temporary network. These new measurements provide additional constraints on the anisotropic behaviour of the study region and better define the fast directions in the southern part of the Apulian Platform. For our analysis we have selected wellrecorded SKS phases and we have used the method of Silver and Chan to obtain the splitting parameters: the azimuth of the fast polarized shear wave (φ) and delay time (δt). Shear wave splitting results reveal the presence of a strong seismic anisotropy in the subduction system below the region. Three different geological and geodynamic regions are characterized by different anisotropic parameters. The Calabrian Arc domain has fast directions oriented NNE–SSW and the Southern Apennines domain has fast directions oriented NNW–SSE. This rotation of fast axes, following the arcuate shape of the slab, is marked by a lack of resolved measurements which occurs at the transition zone between those two domains. The third domain is identified in the Apulian Platform: here fast directions are oriented almost N–S in the northern part and NNE–SSW to ENE–WSW in the southern one. The large number of splitting parameters evaluated for events coming from different back-azimuth allows us to hypothesize the presence of a depth-dependent anisotropic structure which should be more complicated than a simple 2 layer model below the Southern Apennines and the Calabrian Arc domains and to constrain at 50 km depth the upper limit of the anisotropic layer, at least at the edge of Southern Apennines and Apulian Platform. We interpret the variability in fast directions as related to the fragmented subduction system in the mantle of this region. The trench-parallel φ observed in Calabrian Arc and in Southern Apennines has its main source in the asthenospheric flow below the slab likely due to the pressure induced by the retrograde motion of the slab itself. The pattern of φ in the Apulian Platform does not appear to be the direct result of the rollback motion of the slab, whose influence is limited to about 100 km from the slab. The anisotropy in the Apulian Platform may be related to an asthenospheric flow deflected by the complicated structure of the Adriatic microplate or may also be explained as frozen-in lithospheric anisotropy.
    Description: Published
    Description: 49-67
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Shear wave splitting ; Subduction ; Mantle flow ; Southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Many of the mountain belts displaying a curved shape are "oroclines", i.e. are produced after progressive bending of an originally straight fold and thrust belt. The bending process was previously explained as a consequence of several possible events taking place in the crustal orogenic wedge, such as occurrence of obstacles, non-coaxial deformation, and mouvements on wrench faults. Recent paleomagnetic results from the northern Apenninic Arc document that this belt is properly an orocline and results from Late Messinian-Early Pliocene bending of a Messinian straight belt-foredeep system. Tomographic images in turn show the presence of a high-velocity body, interpreted as subducted slab, in the upper mantle beneath the northern Apennines, between 35 and 670 km depth. Down to 100 km, this body displays an arcuate shape which closely mirrors the geological outlines, while it appears to be straight (and parallel to the Messinian pre-rotated belt) at depth. We explore here the possibility that the arcuate shape of the northern Apennines is a consequence, closely following in time, on much deeper processes than previously suggested, i.e. the lateral bending of the subducting Adriatic plate.
    Description: Published
    Description: 53-64
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; seismic tomography ; Northern Apennines ; orocline ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: Three different methodologies were used to measure Radon (222Rn) in soil, based on both passive and active detection system. The first technique consisted of Solid State Nuclear Track Detectors (SSNTD), CR-39 type, and allowed integrated measurements. The second one consisted of a portable device for short time measurements. The last consisted of a continuous measurement device for extended monitoring, placed in selected sites. Soil 222Rn activity was measured together with soil Thoron (220Rn) and soil carbon dioxide (CO2) efflux, and it was compared with the content of radionuclides in the rocks. Two different soil gas horizontal transects were investigated across the Pernicana fault system (NE flank of Mount Etna), from November 2006 to April 2007. The results obtained with the three methodologies are in a general agreement with each other and reflect the tectonic settings of the investigated study area. The lowest 222Rn values were recorded just on the fault plane, and relatively higher values were recorded a few tens of meters from the fault axis on both of its sides. This pattern could be explained as a dilution effect resulting from high rates of soil CO2 efflux. Time variations of 222Rn activity were mostly linked to atmospheric influences, whereas no significant correlation with the volcanic activity was observed. In order to further investigate regional radon distributions, spot measurements were made to identify sites having high Rn emissions that could subsequently be monitored for temporal radon variations.. SSNTD measurements allow for extended-duration monitoring of a relatively large number of sites, although with some loss of temporal resolution due to their long integration time. Continuous monitoring probes are optimal for detailed time monitoring, but because of their expense, they can best be used to complement the information acquired with SSNTD in a network of monitored sites.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Soil Radon and Thoron activity ; soil CO2 efflux ; Pernicana fault system ; Mount Etna ; volcano-tectonic monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: In this paper we will discuss a simplified thermodynamic description for the saturation of FeS, either liquid or solid, in magmatic melts. The Conjugated-Toop–Samis–Flood–Grjotheim model [Moretti R. and Ottonello G., 2005. Solubility and speciation of sulfur in silicate melts, the Conjugated-Toop–Samis–Flood–Grjotheim (CTSFG) model. Geochimica et Cosmochimica Acta, 69, 801–823] has furnished the theoretical reference frame, since it already accounts for the solubility of gaseous sulfur and the speciation and oxidation state of sulfur in silicate melts. We provide a new model to predict the saturation of magmatic silicate melts with an FeS phase that is internally consistent with these previous parameterizations. The derived model provides an effective sulfogeobarometer, which is superior with respect to previous models. For magmas rising from depth to surface, our appraisal of molar volumes of sulfur-bearing species in silicate melts allows us to model oxidation–reduction processes at different pressures, and sulfur concentrations for saturationwith either liquid or solid phases. In this respect, the nature of the oxygen fugacity buffer is critical. On the basis of model results on some typical compositions of volcanological interest, the sulfur contents at sulfide saturation (SCSS) have been calculated and the results duplicate the experimental observations that the SCSS is positively correlatedwith pressure forwatersaturated acidic melts and negatively correlated with pressure for water-poor basaltic melts. This new model provides fO2–fS2 pairs of FeS saturation of natural silicatemelts. In caseswhere the redox constraint is lacking, the model can be used to investigate whether the dissolved sulfur content approaches SCSS or not, and if so, to estimate at which fO2 value the silicate melt is saturated with a sulfide phase
    Description: Published
    Description: 286–298
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Sulfur ; Silicate melt ; Iron sulfide ; Chemical thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: The 2002–2003 effusive eruption of Stromboli volcano represents an excellent opportunity to investigate the transition from effusive to explosive activity at an open-conduit basaltic system, when activity migrated from effusive vents, at the base of the craters, to summit explosions. The transition is investigated here through the analysis of very long period seismicity, delay times between infrasonic and thermal onsets of explosions, and SO2 flux recorded during a 1-year period. The synergy of the multiple geophysical observations points to a magma-driven migration of the magma column. Here the increased magma supply at the eruption onset lead to opening of effusive fissures, which draining the magma in the shallow conduit caused the decrease of the magma level. The decrease of the magma supply at the end of the effusion lead to sealing of effusive fissures, upraise of the magma level within the conduit, and reestablishment of explosive activity from the summit vents.
    Description: Unpublished
    Description: 11
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: reserved
    Keywords: Stromboli ; SO2 Flux ; Magma column ; Infrasound ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: Using constraints from literature data on the petrology and texture of erupted material from Stromboli and geochemical measurements of gas emissions together with a model of gas solubility we construct a conceptual model of quiescent degassing for this volcano. We find that within a pressure range between 100 MPa and 50 MPa (∼3.6 km and ∼1.8 km depth respectively) vesiculating magma ascending within the conduit becomes permeable to gas flow and a transition from closed- to open-system degassing takes place. Above the transition, gas, rich in the most insoluble gases, flows up through degassing magma, and thereby becomes enriched in more soluble gases during ascent to the surface. The final gas emission is therefore a superposition of gases released from magma above the percolation transition and gas that has evolved in closed-system below the transition. Steady-state gas release from Stromboli can only be sustained via magma circulation, driven by the density variation between ascending vesiculating magma and descending degassed magma. By balancing the buoyant force of ascending vesiculating magma against the viscous resistance produced by travelling through descending, degassed magma in a simple flow model we determine that a cylindrical conduit diameter of 2.5–2.9 m produces the magma mass flow rate of 575 kg s−1, required to account for the observed quiescent SO2 gas flux on Stromboli of ∼2.3 kg s−1 (200 td−1).
    Description: Published
    Description: 46–60
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; gas ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: Direct measurement of present day CH4 diffuse degassing from the soil represents an effective tool to better estimate the degassing rate of individual sources and to calibrate global Earth degassing estimates. While many data exist on CH4 emissions from ecosystems, agricultural soils and landfills, few estimates of CH4 emissions from volcanic-geothermal areas have been performed. The authors report results and discuss applications of accumulation-chamber measurements of soil CH4 and CO2 flux from Solfatara of Pozzuoli (Naples), Vulcano Island and Poggio dell’Olivo (Viterbo) volcanic-geothermal areas, and the Palma Campania landfill (Naples). Volcanic-geothermal study areas are characterised by vent discharges of fluids with different CH4/CO2 ratios (from 4.7X1E-5 to 7.5X1E-5, 4.7X1E-4 and 2.5X1E-3 by weight, for Solfatara of Pozzuoli, Vulcano island, and Poggio dell’Olivo areas, respectively). Soil CH4 fluxes range from 0.003 to 48 g m-2 day-1 in the volcanic-geothermal areas and from 0.0021 to 936 g m-2 day-1 in the landfill, with high spatial variability observed in all areas. Using statistical methods different flux populations were distinguished (i.e. background soil gases and deeply derived gases) and the total gas emissions from study sites calculated. The results of this work show that CH4/CO2 ratios of deep fluids, fumarolic fluids in the case of the volcanicgeothermal environment and biogas in landfills, are roughly maintained in the gas phase diffusely degassed by the soil. Due to high spatial variability, a large number of flux measurements and appropriate statistical methods are needed to estimate total gas discharge from study areas. Furthermore, the simultaneous measurement of diffuse CH4 and CO2 fluxes represents a strong constraint for interpretative models of deep processes associated with soil degassing.
    Description: Published
    Description: 45-54
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: methane flux ; accumulation chamber ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: We analyze the 1997–2006 seismicity of the transition zone between Southern and Central Apennines, which is one of the most active seismic areas of Italy. Our aim is to add information on the seismotectonic picture of this area. Seismic activity is characterized by single events with Mb3.0 and low magnitude (Mb4.0) seismic sequences (1997–98 and 2005) and swarms (1999, 2000 and 2001). Hypocenters are within the upper 15 km of the crust. The epicentral distribution of the relocated seismicity shows that single events prevalently align NW–SE along the Apennine chain axis. This seismicity is related to the main, NE–SW extension affecting the chain. Single events concentrate also: at the south of the seismogenetic source responsible for the 1915 earthquake, where the 2000 swarm occurred; between the faults of the 1984 and 1805 events, where the 2001 sequence developed; between the faults of the 1805 and 1688 events, where the 1997–1998 seismic sequence concentrated. The seismic swarms occurred in 1999, 2000 and 2005 are located inside the Ortona– Roccamonfina structural line, which strikes NNE–SSW and separates the Central Apennines from the Southern ones. The epicentral distribution of these swarms and focal mechanisms suggest the presence of active NE–SW faults moving in response to a NW–SE extension. The results of the strain analysis on 52 wellconstrained focal mechanisms evidence a prevailing NE–SW extension, corresponding to the large scale stress field acting in the Apennine Chain, and a second-order NW–SE extension. This last direction of extension was already observed in the 1997–98 and 2001 seismic sequences. The location of the NE–SW striking faults responsible for the seismic swarms suggest that some segments of the Ortona–Roccamonfina line are still active and move in response to both the NE–SW regional extension of Southern Apennines, and to a NW–SE striking longitudinal extension.
    Description: Published
    Description: 102-110
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Apennines ; seismicity ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: Repeated phenomena of flank instability accompanied the 28 December 2002 to 21 July 2003 eruption of Stromboli volcano. The major episodes were two tsunamigenic landslides on 30 December 2002, 2 d after the volcano unrest. After 30 December, sliding processes remodeled the area affected by slope instability.We propose analyses of 565 sliding episodes taking place from December 2002 to February 2003.We try to shed light on their main seismic features and links with the ongoing seismic and volcanic activity using variogram analysis as well. A characterization of the seismic signals in the time and frequency domains is presented for 185 sliding episodes. Their frequency content is between 1 Hz and 7 Hz. On the basis of the dominant peaks and shape of the spectrum, we identify three subclasses of signals, one of which has significant energy below 2 Hz. Low-frequency signatures were also found in the seismic records of the landslides of 30 December, which affected the aerial and submarine northwestern flank of the volcano. Accordingly, we surmise that spectral analysis might provide evidence of sliding phenomena with submarine runouts.We find no evidence of sliding processes induced by earthquakes. Additionally, a negative statistical correlation between sliding episodes and explosion quakes is highlighted by variogram analysis. Variograms indicate a persistent behavior, memory, of the flank instability from 5 to 10 d.We interpret the climax in the occurrence rate of the sliding processes between 24 and 29 January 2003 as the result of favorable conditions to slope instability due to the emplacement of NW-SE aligned, dike-fed vents located near the scarp of the landslide area. Afterward, the stabilizing effect of the lava flows over the northwestern flank of the volcano limited erosive phenomena to the unstable, loose slope not covered by lava.
    Description: This work was supported financially by Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile, project INGV-DPC V4/02.
    Description: Published
    Description: Q04022
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: rockfalls ; seismicity ; volcanoes ; volcano collapses ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: We applied the Multi-GAS technique to measure compositions of the volcanic plumes continuously discharged from summit craters of Voragine, Northeast and Bocca Nuova at Mount Etna, in an attempt to estimate compositions of the source volcanic gases. The estimated CO2/SO2 and H2O/CO2 ratios of the volcanic gases show a large variation ranging from 0.6 to 30 and from 1 to 18, respectively. This variability overlaps with the compositional range of dissolved volatiles in melt inclusions and their coexisting bubbles in a magma chamber and can be caused by the low-pressure degassing of a magma with variable bubble content ranging from 0.3 to 15 wt.%. The variable bubble content in the magma is likely a result of supply of deep-derived CO2-rich gas phase to the chamber and subsequent bubble-magma differentiation by bubble ascent in the magma chamber. In contrast, the variation of volcanic gas composition can also be caused by changes of degassing pressure (gas–magma separation pressure), ranging from 0 to 100 MPa, as a result of changes in the depth of the top of the convecting magma in volcanic conduits. Both mechanisms can cause similar compositional variations. However, the two mechanisms will result in contrasting correlations between the SO2 emission rates and the gas compositions that can be examined by parallel observations of the emission rates and compositions in the future.
    Description: Published
    Description: B09203
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Plume ; gas ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO2 flux (8.5 Mg d 1), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO2/SO2 ratio; by multiplying these data we compute a CO2 flux of 170 Mg d 1. Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydro-thermal systems, relative to SO2, the ability to remotely measure CO2 fluxes is significant, with promise to provide more profound geochemical insights, and earlier eruption forecasts, than possible with SO2 fluxes alone: the most ubiquitous current source of remotely sensed volcanic gas data.
    Description: Published
    Description: L06303
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Plume measurements ; carbon dioxide fluxes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: During 2001–2005, Mount Etna was characterized by intense eruptive activity involving the emission of petrologically different products from several vents, which involved at least two types of magma with different degrees of evolution. We investigated the ratios and abundances for noble-gas isotopes in fluid inclusions trapped in olivines and pyroxenes in the erupted products. We confirm that olivine has the most efficient crystalline structure for preserving the pristine composition of entrapped gases, while pyroxene can suffer diffusive He loss. Both the minerals also experience noble gas air contamination after eruption. Helium isotopes of the products genetically linked to the two different magmas fall in the isotopic range typical of the Etnean volcanism. This result is compatible with the metasomatic process that the Etnean mantle is undergoing by fluids from the Ionian slab during the last ten kyr, as previously inferred by isotope and trace element geochemistry. Significant differences were also observed among olivines of the same parental magma that erupted throughout 2001–2005, with 3He/4He ratios moving from about 7.0 Ra in 2001 volcanites, to 6.6 Ra in 2004–2005 products. Changes in He abundances and isotope ratios were attributed to variations in protracted degassing of the same magma bodies from the 2001 to the 2004–2005 events, with the latter lacking any contribution of undegassed magma. The decrease in 3He/4He is similar to that found from measurements carried out every fifteen days during the same period in gases discharged at the periphery of the volcano. To our knowledge this is the first time that such a comparison has been performed so in detail, and provides strong evidence of the real-time feeding of peripheral emissions by magmatic degassing.
    Description: Published
    Description: 683-690
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: fluid inclusions ; noble gases ; helium isotopes ; magma degassing ; olivine ; pyroxene ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: Tomographical results are commonly presented in the form of color images and not much statistical quantification has been carried out on the derived models. Correlation between different depths can shed important light concerning the dynamics. We have generalized the application of multidimensional wavelets to investigate the products of two field variables, such as the cross-spectrum, which is of paramount importance for quantifying the correlation between two depth levels of seismic tomography with a multiple-scale character. For two multidimensional fields A and B, we calculate the correlation C by projecting this as an Hermitian inner product in physical space with a two-dimensional (2D), fourth derivative of the Gaussian wavelet as the weighting function. The correlation function C becomes now a multi-scaled function, a map cast in terms of both the scale and location of the wavelet transform. Having calculated C, we can delineate the locations and length-scales of the prominent features in the landscape of the correlation function. This wavelet formulation is very general and can be extended to other types of statistical analysis, for example in a Kalman filter system. We have used a high-resolution (finer than 1◦) seismic tomographical model for analyzing the extent of mantle layering under Europe by focussing on the different length-scales in the correlation function involving the 3D seismic anomalies lying between 400 and 600 km depth. Between the depths of 500 and 600 km under Europe, the wavelet correlation analysis shows that an ellipse-shaped object exists with an area of 2000 km × 4000 km having a strong correlation for length-scales of around 400 km, and weaker correlation for shorter length scales of around 150 km. On the other hand, between depths of 400 and 600 km, the correlation deteriorates on the long length scales and becomes even worse at the short length scales. From the wavelet correlation spectra, we can extract an horizontal characteristic length scale of around 100 km, which may be related to the boundary interaction between the slab and the ambient mantle. The correlation results suggest that the thickness of the recumbent fast (cold) material in the transition zone is between 100 and 150 km. This large elliptical pattern of presumably cold material would act to inhibit the vigor of mantle convection locally beneath Europe today.
    Description: Published
    Description: 125–139
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: wavelets ; correlation ; tomography ; transition zone ; Mediterranean ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: Subduction zones appear primarily controlled by the polarity of their direction, i.e., W-directed or E- to NNE-directed, probably due to the westward drift of the lithosphere relative to the asthenosphere. The decollement planes behave differently in the two end-members. In the W-directed subduction zone, the decollement of the plate to the east is warped and subducted, whereas in the E- to NNE-directed, it is ramping upward at the surface. There are W-directed subduction zones that work also in absence of active convergence like the Carpathians or the Apennines. W-directed subduction zones have shorter life 30–40 Ma.than E- or NE-directed subduction zones even longer than 100 Ma.. The different decollements in the two end-members of subduction should control different PTt paths and, therefore, generate variable metamorphic assemblages in the associated accretionary wedges and orogens. These asymmetries also determine different topographic and structural evolutions that are marked by low topography and a fast ‘eastward’ migrating structural wave along W-directed subduction zones, whereas the topography and the structure are rapidly growing upward and expanding laterally along the opposite subduction zones. The magmatic pair calc-alkaline and alkaline–tholeiitic volcanic products of the island arc and the back-arc basin characterise the W-directed subduction zones. Magmatic rocks associated with E- or NE-directed subduction zones have higher abundances of incompatible elements, and mainly consist of calc-alkaline– shoshonitic suites, with large volumes of batholithic intrusions and porphyry copper ore deposits. The subduction zones surrounding the Adriatic plate in the central Mediterranean confirm the differences among subduction zones as primarily controlled by the geographic polarity of the main direction of the slab. The western margin of the Adriatic plate contemporaneously overridden and underthrust Europe toward the ‘west’ to generate, respectively, the Alps and the Apennines, while the eastern margin subducted under the Dinarides–Hellenides. These belts confirm the characters of the end-members of subduction zones as a function of their geographic polarity similarly to the Pacific subduction zones.
    Description: Published
    Description: 167–208
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: tectonics ; subduction zones ; orogens ; Mediterranean geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: We report on a high-resolution Vp, Vp/Vs and Qp model of the southern Tyrrhenian subduction zone, obtained by the inversion of P- and S wave arrival times and t* values from intraslab seismicity. The arcuate shape of the southern Apennines–Calabrian arc-Sicilian Maghrebides is perfectly mirrored by two rather continuous low and high Vp bands lying beneath the belt system at ca. 25 and 100 km, respectively. Between 100 and 300 km, two independent high Vp slabs lie beneath the Neapolitan region and the southern Tyrrhenian Sea, separated by unperturbed mantle. We suggest that the ca. 150 km-wide slab window beneath the southern Apennines opened after a tear occurring within a composite subduction system, formed by the Apulian continental lithosphere and the Ionian oceanic slab. The abrupt slab rupture induced ultrafast southeastward retreat of the Ionian slab, and the 19 cm/yr spreading of the back-arc oceanic Marsili basin between ca. 2.1 and 1.6 Ma ago. The 25 km low Vp zone beneath the arc denotes continental upper crustal rocks below the chain. Its striking continuity requires a unique orogenic wedge at 25 km depth below the southern Apennines, the Calabrian arc, and the Sicilian Maghrebides. The alternative explanation would imply the ubiquitous occurrence of autochthonous lower plate rocks at 25 km depth, i.e. a puzzling autochthonous continental Calabria. The Ionian slab beneath Calabria shows high Vp, high Qp and low Vp/Vs anomalies, typical of old oceanic lithosphere. Intermediate depth seismicity is concentrated within its thin oceanic crust, suggesting the occurrence of vigorous metamorphism. The slab dehydration promotes the melting of the overlying mantle, as testified by high Vp/Vs and low Qp anomalies between the slab and the Aeolian magmatic arc.
    Description: Published
    Description: 408-423
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: seismic tomography ; recent evolution of the Ionian slab ; deep earthquakes slab dehydration and magmatism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: In curved orogenic systems where thrusting and vertical-axis rotations have been documented, it is possible to determine whether the curvature is secondary or progressive based on the timing between the two motions. The South-Central Unit of the Southern Pyrenees provides an opportunity to investigate relationships between thrusting, folding, and vertical-axis rotation because of unusual preservation of Tertiary synorogenic sedimentary strata. Paleomagnetic samples were collected from 51 sites in the upper Eocene-lower Oligocene continental synorogenic strata of the Oliana anticline, a foreland fold along the eastern margin of the South-Central Unit. Site-mean characteristic remanent magnetization directions were determined from 17 sites through thermal demagnetization and principal component analysis. In addition, 72 samples were collected from 39 stratigraphic levels spanning the Upper Eocene marine marls and treated with thermal and alternating field demagnetization techniques. Of these, 53 samples yielded demagnetization trajectories that further constrained the rotation. Comparison of the observed mean paleomagnetic direction from the Oliana anticline with the expected direction indicates a counterclockwise rotation (R ± ΔR) of 20.3° ± 10.9°. Based on the stratigraphic horizons recording the rotation, the age of the rotation is younger than ~34 Ma (after deposition of Unit 3). Data covering the Upper Eocene-Lower Oligocene time interval indicate a similar magnitude of rotation, suggesting that late stage emplacement of thrust sheets hinterlandward of the Oliana anticline controlled the rotation, with rotation accommodated along regionally extensive evaporites. The well-constrained timing relationships between thrusting and rotation and the regional and local transport directions, suggest that the South-Central Unit is a progressive curve that formed through distributed shortening.
    Description: Published
    Description: 435-449
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pyrenees ; Oliana anticline ; synorogenic strata ; paleomagnetism ; salients ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Description: Published
    Description: 289-306
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: A new method combining measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux was developed in order to qualitatively and quantitatively characterise the CO2 source feeding the soil CO2 diffuse degassing. The method was tested in March 2007 at the Solfatara of Pozzuoli volcano degassing area (Naples, Italy) where more than 300 measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux were performed, surveying Solfatara crater and its surroundings. The wide range of CO2 flux and CO2 isotopic composition values (from 8.4 g m−2 d−1 to 28,834 g m−2 d−1, and from 0.73‰ to −33.54‰, respectively), together with their statistical distributions suggests the occurrence of multiple CO2 sources feeding soil degassing. The combined interpretation of flux and isotopic data allows us to identify and characterise two distinct gas sources: a hydrothermal and a biogenic source. The soil CO2 from the hydrothermal source is characterised by a mean δ13CCO2 of −2.3‰±0.9‰, hence close to the isotopic composition of the fumarolic CO2 (δ13CCO2=−1.48‰± 0.22‰) and by a mean CO2 flux of 2875 g m−2 d−1. The CO2 from the biogenic source is characterised by a mean δ13CCO2 of −19.4‰±2.1‰, and by a mean CO2 flux of 26 g m−2 d−1, which are both in the range of the typical values for biologic CO2 soil degassing. This reliable characterisation of the biogenic CO2 flux would not have been possible by solely applying a statistical analysis of the CO2 flux values, which is commonly applied in volcanological studies for the partitioning between background fluxes and anomalous CO2 fluxes. A map of the Solfatara diffuse degassing structure was derived from the estimated threshold for the biogenic CO2 flux, highlighting that soil degassing of hydrothermal CO2 mixed in different proportion with biogenic CO2 occurs over a large area (~0.8 km2), which extends over the inner part of the Solfatara crater as well as the eastern periphery, corresponding with a NW–SE fault system. The presented method and data analysis are important means of surveillance of the volcanic activity.
    Description: Published
    Description: 372–379
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 soil degassing ; CO2 flux ; carbon dioxide ; carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: We investigated the existence of a fractal law (power law) distribution of size pyroclastic fragments erupted during the fallout phase of the 79 A.D. Plinian eruption at Mt. Vesuvius. In particular, we performed a particle size distribution analysis on 18 white and grey pumice samples collected in six sites distributed in the SW sector of Mt. Vesuvius. Our measurements show that the fragmentation of samples in the investigated range (from 32 mm to 850 μm) follows a power law, guaranteeing the scale invariance of the process. The relationship frequency-size distribution of the fragments is verified independently from the nature (i.e., pumices and lithics) and stratigraphic height of the considered samples in the pyroclastic deposit. Therefore, the fractal fragmentation theory can be indicated for evaluating the relationship between the intensity of fragmentation (fractal dimension D) and eruption energy. In this way the apparent chaotic distribution of the particles in the fallout deposits hides a self-organized complexity revealed by the retrieved power law distribution. We further remark that a key aspect of our analysis is the founded evidence that the fractal dimension of the lithics is systematically greater than that of the pumices.
    Description: Published
    Description: 288–299
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: fragmentation ; power law distribution ; fractal dimension ; scale invariant ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: The recent eruption of Stromboli in February–April 2007 offered a unique chance to test our current understanding of processes driving the transition from ordinary (persistent Strombolian) to effusive activity, and the ability of instrumental geophysical and geochemical networks to interpret and predict these events. Here, we report on the results of two years of in-situ sensing of the CO2/SO2 ratio in Stromboli's volcanic gas plume, in the attempt to put constraints on the trigger mechanisms and dynamics of the eruption. We show that large variations of the plume CO2/SO2 ratio (range, 0.9–26) preceded the onset of the eruption (since December 2007), interrupting a period of relatively-steady and low ratios (time-averaged ratio, 4.3) lasting from at least May to November 2006. By contrasting our observations with numerical simulations of volcanic degassing at Stromboli, derived by use of an equilibrium saturation model, we suggest that the pre-eruptive increase of the ratio reflected an enhanced supply of deeply-derived CO2-rich gas bubbles to the shallowplumbing system. This larger-than-normal ascent of gas bubbles was likely sourced by a 1–3 km deep gas– melt separation region (probably a magma storage zone), and caused faster convective overturning of magmas in the shallow conduit; an increase in the explosive rate and in seismic tremor, and finally the collapse of the la Sciara del Fuoco sector triggering the effusive phase. The high CO2/SO2 ratios (up to 21) observed during the effusive phase, and particularly in the days and hours before a paroxysmal explosion on March 15, 2007, indicate the persistence of the same gas source; and suggest that de-pressurization of the same 1–3 km deep magma storage zone could have been the trigger mechanism for the paroxysm itself
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; plume chemistry ; magma degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: Two-dimensional cross sections of the sulphur dioxide (SO2) distribution in the volcanic gas plume of Mt. Etna were reconstructed using tomographic techniques. The data for these projections were generated by a network of five automated scanning spectrometers, positioned on the flanks of the volcano. These measure slant-column amounts of SO2 at 105 different angles, every four minutes. Stable wind conditions allow the plume to be monitored on 82% of days. A time-series of plume cross sections was computed, revealing the potential of this method to track variations in plume position and structure on timescales of minutes to hours, a result of potential importance for air traffic and civil defence in case of eruption, when copious amounts of fine ash can be transported.
    Description: Published
    Description: L17811
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: tomography ; SO2 ; DOAS ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: Video surveillance systems are consolidated techniques for monitoring eruptive phenomena in volcanic areas. Along with these systems, which use standard video cameras, people working in this field sometimes make use of infrared cameras providing useful information about the thermal evolution of eruptions. Real-time analysis of the acquired frames is required, along with image storing, to analyze and classify the activity of volcanoes. Human effort and large storing capabilities are hence required to perform monitoring tasks. In this paper we present a new strategy aimed at improving the performance of video surveillance systems in terms of human-independent image processing and storing optimization. The proposed methodology is based on real-time thermo-graphic analysis of the area considered. The analysis is performed by processing images acquired with an IR camera and extracting information about meaningful volcanic events. Two software tools were developed. The first provides information about the activity being monitored and automatically adapts the image storing rate. The second tool automatically produces useful information about the eruptive activity encompassed by a selected frame sequence. The software developed includes a suitable user interface allowing for convenient management of the acquired images and easy access to information about the volcanic activity monitored.
    Description: Published
    Description: 85-91
    Description: reserved
    Keywords: Volcano monitoring ; Image processing ; Smart storing rate ; Eruption data ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 483034 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: The development of the 2004–2005 eruption at Etna (Italy) is investigated by means of field surveys to define the current structural state of the volcano. In 2004–2005, a fracture swarm, associated with three effusive vents, propagated downslope from the SE summit crater towards the SE. Such a scenario is commonly observed at Etna, as a pressure increase within the central conduits induces the lateral propagation of most of the dikes downslope. Nevertheless, some unusual features of this eruption (slower propagation of fractures, lack of explosive activity and seismicity, oblique shear along the fractures) suggest a more complex triggering mechanism. A detailed review of the recent activity at Etna enables us to better define this possible mechanism. In fact, the NW–SE-trending fractures formed in 2004–2005 constitute the southeastern continuation of a N–S-trending fracture system which started to develop in early 1998 to the east of the summit craters. The overall 1998–2005 deformation pattern therefore forms an arcuate feature, whose geometry and kinematics are consistent with the head of a shallow flank deformation on the E summit of Etna. Similar deformation patterns have also been observed in analogue models of deforming volcanic cones. In this framework, the 2004–2005 eruption was possibly induced by a dike resulting from the intersection of this incipient fracture system with the SE Crater. A significant acceleration of this flank deformation may be induced by any magmatic involvement. The central conduit of the volcano is presently open, constantly buffering any increase in magmatic pressure and any hazardous consequence can be expected to be limited. A more hazardous scenario may be considered with a partial or total closing of the central conduit. In this case, magmatic overpressure within the central conduit may enhance the collapse of the upper eastern flank, triggering an explosive eruption associated with a landslide reaching the eastern lower slope of the volcano.
    Description: Published
    Description: 195–206
    Description: reserved
    Keywords: eruption triggering ; volcano-tectonics ; fracture fields ; flank spreading ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2594507 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: In this paper, we discuss the possibility that the North Anatolian fault (NAF) results from the deep deformation of the slab beneath the Bitlis–Hellenic subduction zone. We described the tectonic evolution of the Anatolia–Aegean area in three main steps, before, during and after the formation of the NAF. We remark that the tectonic conditions that are assumed to have triggered the formation of the NAF, i.e. collision to the east and extension to the west, was already achieved before the onset of that strike-slip fault system. We also highlight that the formation of the NAF was accompanied by the uplift of the Turkish–Iranian plateau and by a surge of volcanism in the eastern Anatolia collisional area and probably by the acceleration of the Aegean trench retreat. We show tomographic images from global P-wave model of Piromallo and Morelli [C. Piromallo, A. Morelli, P wave tomography of the mantle under the Alpine–Mediterranean area, J. Geophys. Res. 108 (2003) doi: 10.1029/2002JB001757.] showing that the slab beneath the Bitlis collisional belt is not continuous and that its possible rupture pursues to the west at least up to Cyprus and possibly up to the eastern end of the Hellenic trench. All these observations suggest that the plate tectonic re-organization occurred in the Late Miocene–Early Pliocene in the region results from slab break-off in the Bitlis area and from its lateral propagation to the West. This idea is tested in analogue laboratory experiments, which confirm that the break of the slab under the collisional belt may trigger, (1) the acceleration of slab retreat to the west due to the increase in slab pull force, (2) the indentation of the continent in the collisional area and (3) produce the conditions that permit the lateral escape of material towards the west and the formation of the NAF.
    Description: Published
    Description: 85-97
    Description: JCR Journal
    Description: reserved
    Keywords: Mediterranean ; subduction ; collision ; analogue experiments ; seismic tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: Soil temperature and total dissolved gas pressure(TDGP) data were recorded by two continuous monitoring stations on the volcano of Stromboli (Italy) between March and October 2006. During this period several TDGP and soil temperature anomalies, unrelated to external causes and characterized by a similar shape and occurrence time, were recorded. These anomalies were interpreted as transients due to changes in the degassing regime of the volcano,which was in turn related to changes in the partition ratio of the volcanic fluidsbetweenthe conduitandthe soil. In thesame period Stromboli experienced an anomalous phase of volcanic and tectonic activity. The close correlation found between volcano-tectonic activity and variations in anomalousmonitored parameters suggests that their continuous monitoring may be a useful tool for the surveillance of volcanic activity on the island.
    Description: Published
    Description: L08301
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Dissolved gases ; Soil temperature ; Total dissolved gas pressure ; Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: The Lower Paleozoic assemblages in the E. Meditterranean comprise a Southern (Tauride-Anatolide,SE Anatolia and Central Iranian terranes) and a Northern (Carpathian-Balkan, Istanbul, Zonguldak and the Main Range terranes) Zone. A detailed stratigrapic account is given for these terranes for the Early Paleozoic and their paleogeographical settings are discussed to evaluate the Early Paleozoic geodynamic interpretation of this critical area between Gondwana-Perigondwana and Laurussia..
    Description: Published
    Description: 315-323
    Description: JCR Journal
    Description: open
    Keywords: Palaeozoic, evolution, Turkey ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: Several sites with anomalous emissions of carbon dioxide were investigated in the region south of Mt. Etna volcano in order to assess the types of emission (focused and/or diffuse), their surface extension and the total output of CO2. Most of the studied emissions are located on the southwest boundary of Mt. Etna, near the town of Paternò. They consist of three mud volcanoes (known as Salinelle), one spring with bubbling gas (Acqua Grassa) and one area of diffuse degassing (Peschería). Another site (Naftía Lake) with remarkable gas emissions (bubbling gas into a lake as well as adjacent areas of diffuse soil degassing) is located further southwest of Mt. Etna in an area of extinct Quaternary volcanism on the northwest margin of Hyblean Mts. In all of these areas the origin of the highest CO2 emissions is clearly magmatic, and degassing to the atmosphere occurs mostly through tectonic structures, probably at a regional scale. The magmatic source that feeds anomalous degassing in the above areas is likely to be the same that feeds volcanic activity at Mt. Etna. Focused degassing was measured at each emission vent using devices that measure the air speed, whereas diffuse soil degassing was measured using the accumulation chamber method. In total, 712 measurements were carried out (146 in focused degassing vents, 566 on diffuse degassing areas). Single CO2 output values ranged from 1.8 10−5 to 1.68 kg s−1. In the case of diffuse degassing areas, statistical analyses allowed to discriminate between biogenic CO2 and CO2 deriving from a magmatichydrothermal source. Only the efflux values from the latter source were considered in the output estimates. The total estimated output thus obtained was about 2.61 kg s−1, relevant to a total surface of about 146,500 m2 (which includes only the magmatic CO2 emissions). This value is comparable with that of most non-volcanic emissions from geothermal and/or faulted areas of centralsouthern Italy, as well with the CO2 output from some of the volcanic areas of Italy.
    Description: Istituto Nazionale di Geofisica e Vulcanologia; Dipartimento per la Protezione Civile.
    Description: Published
    Description: 46–63
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; mud volcanoes ; soil CO2 effluxes ; magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: The sustained and uninterrupted plume degassing at Mount Etna volcano, Southern Italy, represents the troposphere’s most prominent natural source of fluorine. Of the ~ 200 Mg of fluorine (as HFg) emitted daily by the volcano, 1.6±2.7 Mg are deposited by wet and dry deposition. Fluorine-deposition via volcanic ash, here characterised for the first time, can be quite significant during volcanic eruptions (i.e. 60 Mg of fluorine were deposited during the 2001 eruption through volcanic ash, corresponding to ~ 85% of the total fluorine deposition). Despite the fact that these depositions are huge, the fate of the deposited fluorine and its impact on the environment are poorly understood. We herein present original data on fluorine abundance in vegetation (Castanea Sativa and Pinus Nigra) and andosoils from the volcano’s flank, in the attempt to reveal the potential impact of volcanogenic fluorine emissions. Fluorine contents in chestnut leaves and pine needles are in the range 1.8-35 µg/g and 2.1-74 µg/g respectively; they exceed the typical background concentrations in plants growing in rural areas, but fall within the lower range of typical concentrations in plants growing near high fluorine anthropogenic emission sources. The rare plume fumigations on the lower flanks of Mt Etna (distance 〉 4 km from summit craters) are probably the cause of the “undisturbed” nature of Etnean vegetation: climatic conditions, which limit the growth of vegetation on the upper regione deserta, are a natural limit to the development of more severe impacts. High fluorine contents, associated with visible symptoms, were only measured in pine needles at three sites, located near recently-active (2001 to 2003) lateral eruptive fractures. Total fluorine contents (FTOT) in the Etnean soils have a range of 112-341 µg/g, and fall within the typical range of undisturbed soils; fluorine extracted with distilled water (FH2O) have a range of 5.1 to 61 µg/g and accounts for 2-40 % of FTOT. FH2O is higher in topsoils from the eastern flank (downwind), while it decreases with depth in soil profiles and on increasing soil grain size (thereby testifying to its association with clay-mineral-rich, fine soil fractions). The fluorine adsorption capacity of the andosoils acts as a natural barrier that protects the groundwater system.
    Description: Published
    Description: 87-101
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Fluorine ; environmental volcanology ; impact of volcanic F ; soils ; vegetation ; volcanic ash ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: Introduction of a special issue of the journal
    Description: no abstract
    Description: Published
    Description: 1-4
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Earth's degassing ; volcanic areas ; seismic areas ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: We provide new data on relative sea-level change from the late Holocene for two locations in the central Mediterranean: Sardinia and NE Adriatico. They are based on precise measures of submerged archaeological and tide notch markers that are good indicators of past sea-level elevation. Twelve submerged archaeological sites were studied: six, aged between 2.5 and 1.6 ka BP, located along the Sardinia coast, and a further six, dated 2.0 ka BP, located along the NE Adriatic coast (Italy, Slovenia and Croatia). For Sardinia, we also use beach rock and core data that can be related to Holocene sea level. The elevations of selected significant archaeological markers were measured with respect to the present sea level, applying corrections for tide and atmospheric pressure values at the time of surveys. The interpretation of the functional heights related to sea level at the time of their construction provides data on the relative changes between land and sea; these data are compared with predictions derived from a new glacio–hydro-isostatic model associated with the Last Glacial cycle. Sardinia is tectonically relatively stable and we use the sea-level data from this island to calibrate our models for eustatic and glacio–hydro-isostatic change. The results are consistent with those from another tectonically stable site, the Versilia Plain of Italy. The northeast Adriatic (Italy, Slovenia and Croatia) is an area of subsidence and we use the calibrated model results to separate out the isostatic from the tectonic contributions. This indicates that the Adriatic coast from the Gulf of Trieste to the southern end of Istria has Q1 tectonically subsided by 1.5m since Roman times.
    Description: Published
    Description: 2463-2486
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: sea level, archaeology, tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: A physical model based on the advective–diffusion theory was developed in order to describe the mixing between a deep gas source and the atmosphere. The model was used to predict the isotopic fractionation of carbon in soil CO2. Gas samples were collected at different depths in areas characterized by different geological settings and CO2 fluxes. The relative theoretical and experimental isotopic profiles were compared and a good agreement was found. These profiles show how the isotopic composition of CO2 changes through the upper few decimeters of soil and how the amount of the isotopic fractionation is strongly influenced by soil CO2 flux. Finally, the model was used to derive the carbon isotopic composition of unfractioned deep CO2 source for all the investigated sites
    Description: Published
    Description: 3016–3027
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon isotope fractionation ; soil degassing ; gas transport ; D13C(CO2) ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-03
    Description: Mount Etna has developed at the intersection of two regional tectonic lineaments, the NNW–SSE trending Hybleo–Maltese escarpment, which separates the thick inland continental crust of the African platform from the Ionian Mesozoic oceanic crust, and the NE–SW Messina–Fiumefreddo fault that marks a rift zone between south Calabria and north-eastern Sicily, extending as far as the Mt. Etna area. All tectonic features affect, with outstanding surface features, the eastern side of the volcano. The eastern flank of the volcano is affected by a long-term motion toward ESE. In 1997, in order to increase the detail of the ground deformation pattern on the lower eastern flank of Mt. Etna, a new GPS network, the “Ionica” network, was installed on this sector of the volcano. This GPS network consists of 24 stations and covers the lower eastern flank of the volcano from the town of Catania to Taormina and from the coastline up to an altitude of about 1300 m. All the new stations consist in self-centring benchmarks; this kind of benchmark allows all station set-up errors to be avoided. Before the merging of the Ionica network to the frame of the global GPS network of Mt. Etna (in June 2001), three surveys were carried out on this network: in September 1997, August 1998 and January 2001. From the ground deformation pattern, it is possible to distinguish two different sectors, showing different characteristics of deformation. The southern part of the network shows a more uniform distribution of the vertical motion with a mean SE-ward horizontal component while the northern one shows an heterogeneous vertical motion with a ESE-ward horizontal component. Furthermore, a higher velocity is detected between 1997 and 1998, due to the additional stress induced by a shallow intrusion on the NW flank of the volcano. The model resulting from data inversions defines a wide sliding plane beneath the entire eastern flank of the volcano with a low dip angle. The expected velocity vectors fit well the observed ones, even if the measured velocities are still quite higher than expected, at lowermost stations. The vertical inclination of the velocity vectors measured during the 1998–2001 period, gradually decreases from West to East suggesting a sort of rotational movement of the south-eastern flank, interrupted by some anomalous vectors on the lower part, that show higher vertical velocities. These anomalies, being located on a wedge defined by the intersection of the main NNW–SSE and NE–SW fault systems and near the Timpe faults, are probably due to the activity of the vertical faults cutting the lower eastern flank of Mt. Etna. Stations lying on the hanging wall and on the footwall of the Timpe fault system are affected by similar horizontal displacements, meaning that these structures are moving eastwards together with the sliding flank; this evidence suggests that the Timpe faults are probably second order structures, with respect to the detachment surface. These results depict a structural framework of the eastern flank of Mt. Etna in which the low angle dislocation can be considered as a first order approximation of an actual listric plane and the current active part of the Timpe fault system is confined above the detachment surface.
    Description: Published
    Description: 357-369
    Description: reserved
    Keywords: ground deformation ; flank dynamics ; volcano–tectonics ; Etna volcano ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 813929 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: Our knowledge of the degassing pattern of sulphur, chlorine and fluorine during ascent and eruption of basaltic magmas is still fragmental and mainly limited to water-poor basalts. Here we model and discuss the pressure-related degassing behaviour of S, Cl and F during ascent, differentiation and extrusion of H2O–CO2-rich alkali basalt on Mount Etna (Sicily) as a function of eruptive styles. Our modelling is based on published and new melt inclusion data for dissolved volatiles (CO2, H2O, S, Cl, F) in quenched explosive products from both central conduit (1989–2001) and lateral dyke (2001 and 2002) eruptions. Pressures are obtained from the dissolved H2O and CO2 concentrations, and vapour–melt partition coefficients of S, Cl and F are derived from best fitting of melt inclusion data for each step of magma evolution. This allows us to compute the compositional evolution of the gas phase during either open or closed system degassing and to compare it with the measured composition of emitted gases. We find that sulphur, chlorine and fluorine begin to exsolve at respective pressures of ∼140 MPa, ∼100 MPa and ≤10 MPa during Etna basalt ascent and are respectively degassed at 〉95%, 22–55%, and ∼15% upon eruption. Pure open system degassing fails to explain gas compositions measured during either lateral dyke or central conduit eruptions. Instead, closed-system ascent and eruption of the volatile-rich basaltic melt well accounts for the time-averaged gas composition measured during 2002-type lateral dyke eruptions (S/Cl molar ratio of 5±1, 35% bulk Cl loss). Extensive magma fragmentation during the most energetic fountaining phases enhances Cl release (55%) and produces a lower S/Cl ratio of 3.7, as actually measured. Comparatively slower magma rise in the central conduits of Etna favours both sulphide saturation of the melt and greater chlorine release (55%), resulting in a distinct S/Cl evolution path and final ratio in eruptive gas. In both eruption types, any previous bubble–melt separation at depth leads to increased S/Cl and S/F ratios in emitted gas. High S/Cl ratios measured during some discrete eruptive events can thus be explained by transitions from closed (deep) to open (shallow) system degassing, with differential gas transfer extending down to ∼2 km depth below the vents. This depth coincides with the base of the volcanic pile where structural discontinuities and the high magma vesicularity (60%) may favour separate gas flow. Finally, the excess S–Cl–F gas discharge through Etna summit craters during non-eruptive periods requires a mixed supply from shallow magma degassing in the volcanic conduits and deeper-derived SO2-rich bubbles from the sub-volcano plumbing system. Our modelling provides a useful reference framework for interpreting the monitored variations of S, Cl and F in Mount Etna gas emissions as a function of volcanic activity. More broadly, the observations made for S, Cl and F degassing on Etna may apply to other basaltic volcanoes with water-rich magmas, such as in arcs.
    Description: Published
    Description: 772-786
    Description: reserved
    Keywords: Mt Etna ; volatiles ; magma degassing ; eruptive mechanisms ; modelling ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 663124 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: Knowledge of the physical, chemical and thermodynamic properties of silicate melts and glasses is required to understand magma formation and evolution at all scales of observation. As is illustrated by the papers published in this special issue of Chemical Geology, there is a complex interplay between microscopic and macroscopic features. Whereas determining the microscopic structure of glasses and melts is useful to understand how macroscopic properties vary with pressure, temperature and composition, studies of macroscopic properties in turn put strong constraints on which microscopic aspects are actually relevant to a given problem. In this issue this approach is successfully applied to a variety of topics which range from melt rheology to volatile solubility or from spectroscopic investigations of silicate speciation to computer simulation studies of melt/glass structure. These papers were originally presented and discussed in April 2005 at the Vienna meeting of the European Union of Geosciences. They represent an up-to-date overview of current research in the field, ranging from classical approaches to new science and technology solutions which will help expand our research possibilities. We thank the Chemical Geology staff and all contributors and colleagues who made this volume possible.
    Description: Published
    Description: 1
    Description: open
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 45270 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: It has recently been demonstrated that methane emission from lithosphere degassing is an important component of the natural greenhouse-gas atmospheric budget. Globally, the geological sources are mainly due to seepage from hydrocarbon-prone sedimentary basins, and subordinately from geothermal/volcanic fluxes. This work provides a first estimate of methane emission from the geothermal/volcanic component at European level. In Europe, 28 countries have geothermal systems and at least 10 countries host surface geothermal manifestations (hot springs, mofettes, gas vents). Even if direct methane flux measurements are available only for a few small areas in Italy, a fair number of data on CO2, CH4 and steam composition and flux from geothermal manifestations are today available for 6 countries (Czech Republic, Germany, Greece, Iceland, Italy, Spain). Following the emission factor and area-based approach, the available data have been analyzed and have led to an early and conservative estimate of methane emission into the atmosphere around 10,000 ton/yr (4000–16,000 ton/yr), basically from an area smaller than 4000 km2, with a speculative upper limit in the order of 105 ton/yr. Only 4–18% of the conservative estimate (about 720 ton/yr) is due to 12 European volcanoes, where methane concentration in volcanic gases is generally in the order of a few tens of ppmv. Volcanoes are thus not a significant methane source. While the largest emission is due to geothermal areas, which may be situated next to volcanoes or independent. Here inorganic synthesis, thermometamorphism and thermal breakdown of organic matter are substantial. Methane flux can reach hundreds of ton/yr from small individual vents. Geothermal methane is mainly released in three countries located in the main high heat flow regions: Italy, Greece, and Iceland. Turkey is likely a fourth important contributor but the absolute lack of data prevents any emission estimate. Therefore, the actual European geothermal–volcanic methane emission could be easily projected to the 105 ton/yr levels, reaching the magnitude of some other natural sources such as forest fires or wild animals.
    Description: Published
    Description: 76-86
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; volcanoes ; Geothermal vents ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: Northern Apulia is an emerged portion of the Adriatic microplate, representing the foreland–foredeep area of a stretch of the Apennine chain in southern Italy. The interaction between the relatively rigid microplate and the contiguous more deformable domains is responsible for the intense seismicity affecting the chain area. However strong, sometimes even disastrous, earthquakes have also hit northern Apulia on several occasions. The identification of the causative faults of such events is still unclear and different hypotheses have been reported in literature. In order to provide guidelines and constraints in the search for these structures, a comprehensive re-examination and reprocessing of all the available seismic data has been carried out taking into consideration 1) the characteristics of historical events, 2) the accurate relocation of events instrumentally recorded in the last 20 years, 3) the determination of focal mechanisms and of the regional stress tensor. The results obtained bring to light a distinction between the foreland and foredeep areas. In the first region there is evidence of a regional stress combining NWcompression and NE extension, thus structures responsible for major earthquakes should be searched for among strike–slip faults, possibly with a slight transpressive character. These structures could be either approximately N–S oriented sinistral or E–Wdextral faults. In the foredeep region there is a transition toward transtensive mechanisms,with strikes similar to those of the previous zone, or maybe also towardsNWoriented normal faults,more similar to those prevailing in the southern Apennine chain in relation to a dominant NE extension; this appears to be the effect of a reduction of the NW compression, probably due to a decrease in efficiency of stress transmission along the more tectonised border of the Adriatic microplate.
    Description: Published
    Description: 9 - 35
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Northern Apulia ; Historical earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: It is generally accepted, but not experimentally proven, that a quantitative prediction of volcanic eruptions is possible from the evaluation of volcanic gas data. By discussing the results of two years of real-time observation of H2O, CO2, and SO2 in volcanic gases from Mount Etna volcano, we unambiguously demonstrate that increasing CO2/SO2 ratios can allow detection of the pre-eruptive degassing of rising magmas. Quantitative modeling by the use of a saturation model allows us to relate the pre-eruptive increases of the CO2/SO2 ratio to the refilling of Etna's shallow conduits with CO2-rich deep-reservoir magmas, leading to pressurization and triggering of eruption. The advent of real-time observations of H2O, CO2, and SO2, combined with well-constrained models of degassing, represents a step forward in eruption forecasting.
    Description: Published
    Description: 1115-1118
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: degassing ; volatiles ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: An application of light detection and ranging (lidar) intensity for the identification and mapping of different lava flows from the Mount Etna (Italy) active volcano is described. In September 2004 an airborne lidar survey was flown over summit sectors of Mount Etna. The information derived from lidar intensity values was used to compare the lava flows with respect to their age of emplacement. Analyzed lava flows vary in age between those dating prior to A.D. 1610 and those active during the survey (2004–2005 eruptions). The target-emitter distance, as well as surface roughness and texture at the lidar footprint scale, is the main parameter controlling the intensity response of lava flows. Variations in the roughness and texture of surfaces at a meter scale result from two main processes, initial lava cooling and subsequent surface weathering; both lead to variations in the original surface roughness of the flow. In summary: (1) initially, from the time of emplacement, the lidar intensity of lava flow surfaces decreases and (2) about 6 years after emplacement the lidar intensity of lava surfaces starts to increase with the age of flows. Lidar capability in terms of geometric (accuracy of ∼1 m in plan position and less than 1 m in elevation) and spectral (lidar intensity depends on surface reflection at λ = 1.064 μm) information can thus be effectively used to map lava flows and to define a relative chronology of lava emplacement.
    Description: Published
    Description: B02201
    Description: 3.6. Fisica del vulcanismo
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: lava flows ; mapping ; lidar ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: Recent studies suggested that Alban Hills (Rome) is a quiescent and not an extinct volcano, as it produced Holocene eruptions and several lahars until Roman times by water overflow fromthe Albano crater lake. Alban Hills are presently characterized by high PCO2 in groundwaters and by several cold gas emissions usually in sites where excavations removed the superficial impervious cover. Gas consists mostly of CO2 with minor H2S and the diffuse CO2 soil flux is locally very high. Accidental gas blowouts, occurred during shallow well drillings (tens to hundreds m depth) in zones with no surface gas manifestations, indicate the presence of gas pressurized aquifers confined underneath impermeable layers, within both the volcanic rock pile and the underlying Pleistocene loose sediments. Degassing mostly occurs in correspondence of bordering faults of buried horsts cut in the Mesozoic carbonate basement, hosting the main aquifer. Carbon isotopic composition (δ13CCO2) suggests that CO2 is at least partly originated by thermal decarbonation of these limestones. 3He/4He isotopic ratio of the gas (up to 1.9 Ra) is the same or even slightly higher than that of olivine and clinopyroxene fluid inclusions of the Alban Hills volcanic products, indicating a possible magmatic source for the gas. Low R/Ra values, compared to MORB and island arc magmas, are characteristic of the potassic Roman Comagmatic Province and reflect a deep involvement of crustal material in the magma genesis. The lack of high temperature fumaroles can be explained by an efficient meteoric cold water penetration and circulation in the volcano permeable terrains.
    Description: Published
    Description: 5-16
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Alban Hills ; magma degassing ; CO2 fluxes ; gas blowouts ; C and He isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-10-18
    Description: We studied the surface deformations affecting the southeastern sector of the Po Plain sedimentary basin, in particular the area of Bologna. To this aim an advanced DInSAR technique, referred to as DInSAR–SBAS (Small BAseline Subset), has been applied. This technique allows monitoring the temporal evolution of a deformation phenomenon, via the generation of mean deformation velocity maps and displacement time series from a data set of acquired SAR images. In particular, we have processed a set of SAR data acquired by the European Remote Sensing Satellite (ERS) sensors and compared the achieved results with optical levelling measurements, assumed as reference. The surface displacements detected by DInSAR SBAS from 1992 to 2000 are between 10 mm/year in the historical part of Bologna town, and up to 59 mm/year in the NE industrial and agricultural areas. Former measurements from optical levelling referred to 1897 show 2–3 mm/year vertical movements. This trend of displacement increased in the second half of the 20th century and the subsidence rate reached 60 mm/year. We compared the more recent levelling campaigns (in 1992 and late 1999) and DInSAR results from 1992 to 1999. The standard deviation of the difference between levelling data, projected onto the satellite Line Of Sight, and DInSAR results is 2 mm/year. This highlights a good agreement between the measurements provided by two different techniques. The explanation of soil movements based on interferometric results, ground data and geological observations, allowed confirming the anthropogenic cause (surface effect due to the overexploitation of the aquifers) and highlights a natural, tectonic, subsidence.
    Description: Published
    Description: 304-316
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: InSAR ; surface deformation ; SAR interferometry ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-04-04
    Description: Sulphur speciation in volcanic gases acts as a major redox buffer, and H2S/SO2 ratios represent a valuable indicator of magmatic conditions and interactions between magmatic and hydrothermal fluids. However, measurement of H2S/SO2 even by direct sampling techniques, is not straightforward. We report here on application of a small ultraviolet spectrometer for real-time field measurement of H2S and SO2 concentrations, using open-path and extractive configurations. The device was tested at fumaroles on Solfatara and Vulcano, Italy, in November 2002. H2S concentrations of up to 220ppmm(400 ppmv) were measured directly above the Bocca Grande fumarole at Solfatara, and H2S/SO2 molar ratios of 2 and 2.4, respectively, were determined for the ‘F11’ and ‘F0’ fumaroles at Vulcano. In comparison with other optical techniques capable of multiple volcanic gas measurements, such as laser and FTIR spectroscopy, this approach is considerably simpler and cheaper, with the potential for autonomous, sustained hightime resolution operation.
    Description: Published
    Description: 1652
    Description: partially_open
    Keywords: Remote monitoring ; Plume chemistry ; sulphur species ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 124998 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-04-04
    Description: Postseismic relaxation is modeled for the Irpinia earthquake, which struck southern Italy in 1980. Our goal is to understand the mechanism of surface deformation due to stress relaxation in the deep portion of the crust-lithosphere system for a shallow normal fault source and to infer the rheological properties of the lithosphere in the extensional environment of peninsular Italy. The modeling is carried out within the framework of our normal mode viscoelastic theory at high spatial resolution in order to accurately resolve the vertical surface displacements for a seismic source. The slip distribution over the faults is first inverted from coseismic leveling data, the misfit between observed and modeled vertical displacements being minimized by means of the L2 norm. Slip distribution is then used within the viscoelastic model to invert for the viscosities of the lower crust and generally of the lithosphere. Inversion is based on leveling data sampled along three lines crossing the epicentral area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.
    Description: Published
    Description: 1-16
    Description: partially_open
    Keywords: Lithospheric rheology ; Irpinia earthquake ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 419 bytes
    Format: 623618 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-04-04
    Description: A Conjugated Toop-Samis-Flood-Grjotheim (CTSFG) model is developed by combining the framework of the Toop-Samis polymeric approach with the Flood-Grjotheim theoretical treatment of silicate melts and slags. Electrically equivalent ion fractions are computed over the appropriate matrixes (anionic and cationic) in a Temkin notation for fused salts, and are used to weigh the contribution of the various disproportionation reactions of type: M2/pO(melt)+ 1/2S(gas)+M2/pS(melt)+1/2O2(gas) M2/po(melt)+1/2S2(gas)+3/2O2(gas)-M2/pSO4(melt)v being the charge of the generic Mp-1 cation. The extension of the anionic matrix is calculated in the framework of a previously developed polymeric model (Ottonello et al., 2001), based on a parameterization of Lux-Flood acid-base properties of melt components. Model activities follow the Raoultian behavior implicit in the Temkin notation, without the needs of introducing adjustable parameters. The CTSFG model is based on a large amount of data available in literature and exhibits a satisfactory heuristic capability, with virtually no compositional limits, as long as the structural role given to each oxide holds. The model may be employed to compute gas-melt equilibria involving sulfur and allows computing sulfide and sulfate contents of silicate melts whenever the fugacity of a gaseous sulfur species and oxygen are known. Alternatively, the model calculates the oxidation state of the system (i.e., oxygen fugacity), whenever an analytical determination of either sulfide/sulfate or ferrous/ferric ratios in the melt is provided. Calculated sulfide and sulfate capacities allow the estimates of sulfur abundance in various melts of geological interest, both under anhydrous and hydrous conditions or, alternatively, of fS2, given fO2 and the bulk sulfur content. In this case, fSO2 and fH2S may be eventually computed along the water-sulfur-melt boundary provided fH2O is known.
    Description: Published
    Description: 801-823
    Description: partially_open
    Keywords: sulfur ; silicate melts ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 568 bytes
    Format: 1278538 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: Despite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at midocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas,as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223–18251.] to CO2–He–Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01–0.5 m/s), slightly faster rates of energetic effusions (0.1–1 m/s), up to rates of 1–10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine deposits where they are collected. Enhanced knowledge of a number of physical properties of gas-bearing MOR magmas is also required, mainly noble gas diffusivities, to describe multicomponent bubble growth at a higher confidence level.
    Description: Published
    Description: 138-158
    Description: partially_open
    Keywords: Bubble growth ; MORB ; Noble gas ; Kinetic fractionation ; Modeling ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 695380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: Combining tectonics, with seismological and geochemical data, we reconstruct the deformation history of the presently narrow Calabrian slab and the path of mantle circulation during the last 10 Ma. We show that during the slab deformation the mantle laterally flowed inside the back arc region permitting its retrograde motion and giving a seismological and volcanological record after 1–2 myr.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: mantle circulation ; Calabrian slab ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 458 bytes
    Format: 255992 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: Thermal springs with a maximum measured temperature of 89°C discharge hot water and gas from a depth of 11 m, 400 m offshore of Punta Pantoque, located in the northern part of Bahìa de Banderas, near Puerto Vallarta, Mexico. The composition of all water samples collected from the sea bottom is close to that of sea water. Nevertheless, it was possible to estimate the thermal endmember composition by extrapolating the sulfate concentration to zero. This endmember is similar in chemical composition both to waters of the Rio Purificacion and La Tuna thermal springs, located to the South along the Pacific coast of the Jalisco Block, and to pore waters from the deep-sea drilling cores from some accretionary complexes. Gas composition as well as isotopic composition of He and carbon from CO2, CH4 and C2H6 suggests an essentially thermo-biogenic origin for the gas and the presence of a high proportion of radiogenic, crustal helium. Isotopic composition of He in the Punta de Mita gas (0.4 Ra) is the lowest ever measured in Mexican hydrothermal gases. These findings do not support the idea that there exists a direct connection between the Punta de Mita springs and the last volcanic events which occurred in this area at V3 Ma. Rather, this hydrothermal activity is related to deep active faulting and the existence of a deep regional aquifer or local aquifers of connate waters underlying the granites of the Jalisco Block.
    Description: Published
    Description: 329-338
    Description: partially_open
    Keywords: submarine springs ; hydrothermal systems ; geothermometry ; He-isotopes ; formation waters ; Jalisco Block ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 269561 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Elsevier
    In:  Taran Y. A., Inguaggiato S., Marin M., and Yurova L. M. (2002) Geochemistry of fluids from submarine hot springs at Punta de Mita, Nayarit, Mexico. J. Volcanol. Geoth. Res. 115, 329-338.
    Publication Date: 2017-04-04
    Description: We thank R.M. Prol-Ledesma for her comment on the paper by Taran et al. (2002a) and the new data presented on the water composition of the Punta de Mita (PM) submarine springs. Prol-Ledesma (2003) comments refer to a supposedly wrong citation, superficial description of the geological background, incorrect method of water sampling, wrong approach for the estimation of the end-member composition, irrelevant discussion on the origin of fluids and, lastly, the using of someone else’s ideas and conclusions. In addition, she claims that our data on the fluid chemistry of the springs are not the first (original)ones. The Comment is supported by numerous references to publications by Prol-Ledesma et al. The text below follows the rubrics in the Comment.
    Description: Published
    Description: 319-322
    Description: partially_open
    Keywords: submarine springs ; hydrothermal systems ; geothermometry ; He-isotopes ; formation waters ; Jalisco Block ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 164856 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-01-08
    Description: For an improvement in the quality of conduit flow and dome-related explosive eruption models, knowledge of the preeruption or precollapse density of the rocks involved is necessary. As close investigation is impossible during eruption, the best substitute comes from quantitative investigation of the eruption deposits. The porosity of volcanic rocks is of primary importance for the eruptive behaviour and, accordingly, a key-parameter for realistic models of dome stability and conduit flow. Fortunately, this physical property may be accurately determined via density measurements. We developed a robust, battery-powered device for rapid and reliable density measurements of dry rock samples in the field. The density of the samples (sealed in plastic bags at 250 mbar) is determined using the Archimedean principle. We have tested the device on the deposits of the 1990–1995 eruption of Unzen volcano, Japan. Short setup and operation times allow up to 60 measurements per day under fieldwork conditions. The rapid accumulation of correspondingly large data sets has allowed us to acquire the first statistically significant data set of clast density distribution in block-and-ash flow deposits. More than 1100 samples with a total weight of 2.2 tons were measured. The data set demonstrates that the deposits of the last eruptive episode at Unzen display a bimodal density distribution, with peaks at 2.0F0.1 and 2.3F0.1 g/cm3, corresponding to open porosity values of 20 and 8 vol.%, respectively. We use this data set to link the results of laboratory-based fragmentation experiments to field studies at recently active lava domes.
    Description: Published
    Description: 65-75
    Description: partially_open
    Keywords: field-based density measurements ; dome ; Unzen volcano ; explosive eruption ; block-and-ash flow ; fragmentation behaviour ; volcanology ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 710471 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-12-03
    Description: A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP),Italy, is presented together with 87Sr/86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/4He = 5.2 Ra and 87Sr/86Sr = 0.7056 in south Campania, to 3He/4He = 0.44 Ra and 87Sr/86Sr = 0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma–crust interaction. The 3He/4He–87Sr/86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (f30 Ma), can ingrowth in the mantle wedge account for the 3He/4He of the most radiogenic basalts.
    Description: - European Social Fund - Scottish Universities - Carnegie Trust for the Universities of Scotland.
    Description: Published
    Description: 295–308
    Description: partially_open
    Keywords: Roman Comagmatic Province ; fluid inclusions ; helium ; strontium ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 516427 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-10-29
    Description: We have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.
    Description: Published
    Description: 93-108
    Description: partially_open
    Keywords: trachytic magma ; conduit flow ; eruption dynamics and numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 455753 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-06-25
    Description: We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius. Vesuvius groundwaters are dilute (mean TDS 2800 mg/L) hypothermal fluids (mean T 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. D and 18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions. The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/12C and 3He/4He measurements indicate the contribution of a magmatic component with a 13C 0‰ and R/Ra of 2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts. A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata–Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO2 depleted, despite in some cases containing significant concentrations of magmaderived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.
    Description: -European Union, -Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica; -CNR–Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 963–981
    Description: partially_open
    Keywords: isotopes ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1032453 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece,and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH4) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH4 in both systems is controlled by aquifer temperature. N2/3He and CH4/3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO2 by H2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely. CO2/3He ratios and 13CCO2 values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism.
    Description: European community
    Description: Published
    Description: 2321–2334
    Description: partially_open
    Keywords: fumarolic gases ; hydrothermal systems ; chemical and isotopic equilibrium ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 829360 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-04
    Description: In order to improve the microscopic understanding of the water-magma interaction process during explosive volcanism,volcanic glasses representative of deposits with sedimentological characteristics suggesting different water/melt ratios were studied by a combination of the nuclear magnetic resonance (NMR) and TIMS methods. The glasses were separated from pumices of two surge layers and one fallout bed of the Cretaio Tephra (Ischia Island,Italy), which is the product of an explosive eruption that occurred at Ischia in the second century BC. The 29Si CP^MAS NMR experiments indicate the occurrence of 1H^29Si dipolar couplings in glasses from the phreatomagmatic activity, suggesting the presence of hydrogen atoms in proximity of silicon atoms. This feature is not detected in the glass from the deposit of the magmatic explosion. 1H MAS NMR spectra reveal different peaks attributed to different hydrous species characterized by different motional properties. These include ‘rigid’ H2O groups isolated in the glass structure, more mobile water species and possibly structural hydroxyl groups. 1H MAS NMR spectra recorded after deuteration experiments of the glass at a temperature up to 300‡C revealed that the exchange reactions of the D2O vapor with hydrogen were limited to the most mobile water species,possibly on vesicle surfaces or in channels. The hydrogen concentration linearly correlates with the 87Sr/86Sr isotope ratio in glasses,suggesting isotopic tracer exchanges between the Sr dissolved in the water vapor and the Sr in the silicon-oxygen network during hydration. It is proposed that the uprising melt interacted with a hydrothermal system of seawater-derived fluids,characterized by relatively high Sr isotopic composition.
    Description: Published
    Description: 311-320
    Description: partially_open
    Keywords: Ischia ; Cretaio Tephra ; Water-melt interaction ; Nuclear magnetic resonance ; Sr isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 487 bytes
    Format: 352732 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: The western Mediterranean subduction zone (WMSZ) extends from the northern Apennine to southern Spain and turns around forming the narrow and tight Calabrian and Gibraltar Arcs. The evolution of the WMSZ is characterized by a first phase of orogenic wedging followed, from 30 Ma on, by trench retreat and back-arc extension. Combining new and previous geological data, new tomographic images of the western Mediterranean mantle, and plate kinematics, we describe the evolution of the WMSZ during the last 35 Myr. Our reconstruction shows that the two arcs form by fragmentation of the 1500 km long WMSZ in small, narrow slabs. Once formed, these two narrow slabs retreat outward, producing back-arc extension and large scale rotation of the flanks, shaping the arcs. The Gibraltar Arc first formed during the middle Miocene, while the Calabrian Arc formed later, during the late Miocene-Pliocene. Despite the different paleogeographic settings, the mechanism of rupture and backward migration of the narrow slabs presents similarities on both sides of the western Mediterranean, suggesting that the slab deformation is also driven by lateral mantle flow that is particularly efficient in a restricted (upper mantle) style of mantle convection.
    Description: Published
    Description: 1-21
    Description: reserved
    Keywords: Mediterranean ; subduction ; arcuate belt ; tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1716267 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: The recent eruption of Mount Etna (July 2001) offered the opportunity to analyze magma-derived volatiles emitted during preand syn-eruptive phases, and to verify whether their composition is affected by changes in volcanic dynamics. This paper presents the results of analyses of F, Cl and S in the volcanic plume collected by filter-packs, and interprets variations in the composition based on contrasting solubility in magmas. A Rayleigh-type degassing mechanism was used to fit the acquired data and to estimate Henryâ s solubility constant ratios in Etnean basalt. This model provided insights into the dynamics of the volcano. Abundances of sulfur and halogens in eruptive plumes may help predict the temporal evolution of an ongoing effusive eruption.
    Description: -Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 1559
    Description: partially_open
    Keywords: magmatic degassing ; acidic gases ; plume chemistry ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 275912 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: Volcanic gas emissions from fumaroles on the rim of La Fossa crater, Vulcano Island, Italy, were measured simultaneously using direct sampling (for H2O, CO2, total sulfur, HCl and HF), filter packs (for SO2, HCl, HF) and short-path active-mode FTIR measurements (for H2O, CO2,SO2, HCl and HF) in an intercomparison study in May 2002. The results show that Cl/F ratios were in good agreement between all three methods, and that FTIR and direct sampling determined comparable proportions of CO2 and H2O. Amounts of total S observed in direct sampling data were approximately double the amounts of SO2 measured with filter packs and FTIR. This difference could be attributed either to the fact FTIR and filter packs do not measure reduced sulfur species (e.g., H2S) or to sublimation of elemental S upon exit from the fumarole, after collection by direct sampling but before detection with FTIR and filter packs.
    Description: Published
    Description: L02610
    Description: partially_open
    Keywords: volcanic gas techniques ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 434088 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-04-04
    Description: Chemical and isotopic data have been used as geochemical tracers for a genetic characterization of hydrocarbon gases from a total of eleven manifestations located in Eastern and Central-Southern Sicily (Italy). The molecular analysis shows that almost all the samples are enriched in methane (up to 93.2% Vol.), with the exception of four gas samples collected around Mt. Etna showing high mantle-derived CO2 content. Methane isotope signatures suggest that these are thermogenic gases or a mixture between thermogenic gases and microbial gases. Although samples from some mud volcanoes in Southern Sicily (Macalube di Aragona) show isotope signatures consistent with a mixing model between thermogenic and microbial, by combining the molecular compositions (C1/(C2 + C3))and the methane isotope ratios (d13C1), such a process seems to be excluded. Therefore, the occurrence of secondary post-genetic processes should be invoked. Two main hypotheses have been considered: the first hypothesis includes that the gas is produced by microbial activity and altered post-genetically by microbial oxidation of methane, while according to the second hypothesis thermogenic gas have modified their molecular ratios due to vertical migration.
    Description: Published
    Description: L06607
    Description: partially_open
    Keywords: Isotopic composition/chemistry ; Organic geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 1041380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: On July 18, 2001, two main eruptive vents opened on the southern flank of Mount Etna volcano (Italy) at ~2100 m and ~2550 m a.s.l., respectively. The former vent fed mild strombolian activity and lava flows, while the latter represented the main explosive vent, producing strong phreato-magmatic explosions. Explosions at this latter vent, however, shifted to a strombolian style in the following days, before switching back to phreato-magmatic activity towards the end of the eruption, which ended on August 9, 2001. On August 3, a small seismoacoustic array was deployed close to the eruptive vents. The array was composed of three stations, which recorded seismic and infrasonic waves coming from both of the eruptive vents. A further seismoacoustic station, equipped with a thermal-infrared sensor, was also installed several kilometers north of the first array. Seismic signals relating to the strombolian activity at the 2100-m vent were characterized by a strong decompression at the source. Analysis of the time delays between seismic, infrasonic and infrared event onsets also revealed that ejection velocities during explosions from both vents were subsonic. Time delays between the onset of explosive events apparent in the infrared and infrasound data indicated that the explosion source at the 2550-m vent was located 220–250 m below the crater rim. In comparison, the depth of the seismic source was estimated to be between 230 and 335 m below the rim. This converts to 120–150 and 130–235 m below the preexisting ground surface. In addition, time delays between seismic and infrasonic signals recorded for the lower (2100 m) vent also revealed a seismic source that was no more than a few tens of meters deeper than the fragmentation surface.
    Description: Published
    Description: 219-230
    Description: partially_open
    Keywords: Mt. Etna ; explosive eruptions ; arrays ; seismic ; infrasonic and thermal data ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 590708 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-04-04
    Description: We present here new measurements of sulfur dioxide and hydrogen sulfide emissions from Vulcano, Etna, and Stromboli (Italy), made by direct sampling at vents and by filter pack and ultraviolet spectroscopy in downwind plumes. Measurements at the F0 and FA fumaroles on Vulcano yielded SO2/H2S molar ratios of 0.38 and 1.4, respectively, from which we estimate an H2S flux of 6 to 9 for the summit crater. For Mt. Etna and Stromboli, we found SO2/H2S molar ratios of 20 and 15, respectively, which combined with SO2 flux measurements, suggest H2S emission rates of 50 to 113 and 4 to 8, respectively. We observe that source and plume SO2/H2S ratios at Vulcano are similar, suggesting that hydrogen sulfide is essentially inert on timescales of seconds to minutes. This finding has important implications for estimates of volcanic total sulfur budget at volcanoes since most existing measurements do not account for H2S emission.
    Description: Published
    Description: 1861–1871
    Description: partially_open
    Keywords: H2S atmospheric budget ; volcanic degassing ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 665710 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-04-04
    Description: Constraining fluxes of volcanic bromine and iodine to the atmosphere is important given the significant role these species play in ozone depletion. However, very few such measurements have been made hitherto, such that global volcanic fluxes are poorly constrained. Here we extend the data set of volcanic Br and I degassing by reporting the first measurements of bromine and iodine emissions from Mount Etna. These data were obtained using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr 1 and 0.01 kt yr 1 for Br and I, respectively, from April to October 2004, from which we estimate global Br and I fluxes of order 13 (range, 3â 40) and 0.11 (range, 0.04â 6.6) kt yr 1. Observed changes in plume composition highlight the coherent geochemical behavior of HCl, HF, HBr, and HI during magmatic degassing, and strong fractionation of these species with respect to SO2.
    Description: Published
    Description: Q08008
    Description: partially_open
    Keywords: bromine and iodine in volcanic gases ; halogen atmospheric chemistry ; volcanic degassing ; volcanic plumes ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 242159 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-04-04
    Description: Hydrothermal systems and related vents can exhibit dramatic changes in their physico-chemical conditions over time as a response to varying activity in the feeding magmatic systems. Massive steam condensation and gas scrubbing processes of thermal fluids during their ascent and cooling cause further compositional changes that mask information regarding the conditions evolving at depth in the hydrothermal system. Here we propose a new stability diagram based on the CO2-CH4-CO-H2 concentrations in vapor, which aims at calculating the temperatures and pressures in hydrothermal reservoirs. To filter gas scrubbing effects, we have also developed a model for selective dissolution of CO2-H2S-N2-CH4-He-Ne mixtures in fresh and/or air-saturated seawater. This methodology has been applied to the recent (November 2002) crisis that affected the geothermal field off the island of Panarea (Italy), where the fluid composition and fluxes have been monitored for the past two decades. The chemical and isotopic compositions of the gases suggest that the volatile elements originate from an active magma, which feeds a boiling saline solution having temperatures of up to 350 C and containing 12 mol CO2 in vapor. The thermal fluids undergo cooling and re-equilibration processes on account of gas-water-rock interactions during their ascent along fracture networks. Furthermore, steam condensation and removal of acidic species, partial dissolution in cold air-saturated seawater and stripping of atmospheric components, affect the composition of the geothermal gases at shallow levels. The observed geochemical variations are consistent with a new input of magmatic fluids that perturbed the geothermal system and caused the unrest event. The present-state evolution shows that this dramatic input of fluids is probably over, and that the system is now tending towards steady-state conditions on a time scale of months.
    Description: Published
    Description: 3045-3059
    Description: partially_open
    Keywords: Submarine degassing ; geothermal system ; gas-water interaction ; gas geothermometry ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 627284 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-04
    Description: A new method for extracting dissolved gases in natural waters has been developed and tested, both in the laboratory and in the field. The sampling device consists of a polytetrafluroethylene (PTFE) tube (waterproof and gas permeable) sealed at one end and connected to a glass sample holder at the other end. The device is pre-evacuated and subsequently dipped in water, where the dissolved gases permeate through the PTFE tube until the pressure inside the system reaches equilibrium. A theoretical model describing the time variation in partial gas pressure inside a sampling device has been elaborated, combining the mass balance and ‘‘Solution-Diffusion Model’’ which describes the gas permeation process through a PTFE membrane). This theoretical model was used to predict the temporal evolution of the partial pressure of each gas species in the sampling device. The model was validated by numerous laboratory tests. The method was applied to the groundwater of Vulcano Island (southern Italy). The results suggest that the new sampling device could easily extract the dissolved gases from water in order to determine their chemical and isotopic composition.
    Description: - European Social Fund.
    Description: Published
    Description: Q09005
    Description: partially_open
    Keywords: dissolved gases ; helium isotope ; PTFE membrane ; Vulcano Island ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 446781 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-04-04
    Description: Ground-based measurements of volcanic sulfur dioxide fluxes are important indicators of volcanic activity, with application in hazard assessment, and understanding the impacts of volcanic emissions upon the environment and climate. These data are obtained by making traverses underneath the volcanic plume a few kilometers from source with an ultraviolet spectrometer, measuring integrated SO2 concentrations across the plume’s cross section, and multiplying by the plume’s transport speed. However, plume velocities are usually derived from ground-based anemometers, located many kilometers from the traverse route and hundreds of meters below plume altitude, complicating the experimental design and introducing large flux (can be 〉100%) errors. Here we present the first report of a single instrument capable of (accurate) volcanic SO2 flux measurements. This device records integrated SO2 concentrations and plume heights during traverses. Between traverses, two in-plume SO2 time series are measured from underneath the plume with the instrument, corresponding to zenith and inclined (user-specified angle from vertical in the direction of the volcano) fields of view, respectively. The distance between the points of intersection of the two views with the plume is found on the basis of the determined plume height, and the two signals are cross-correlated to determine the lag between them, enabling accurate derivation of the wind speed. We present flux data (with errors ±12%) obtained in this way at Mt. Etna during July 2004.
    Description: Published
    Description: Q02003
    Description: partially_open
    Keywords: DOAS ; volcanic SO2 emissions. ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 185006 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-04
    Description: The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high CO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol) with an appreciable content of H2S (0.8). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February-March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8/25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.
    Description: - GNV funded research project Gas Hazard of Colli Albani
    Description: Published
    Description: 81^94
    Description: partially_open
    Keywords: Colli Albani ; CO2 flux ; H2S ; gas hazard ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 660932 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-04
    Description: A systematic survey of soil CO2 concentrations was carried out on the flanks of Somma^Vesuvius volcano in order to constrain possible pathways responsible of carbon dioxide diffuse degassing taking place during the present state of quiescence. Measurements were performed at 1162 sites in late winter^spring 2000,highlighting that soil CO2 concentrations range from 50 to 10500 ppmV. A statistical analysis was developed in order to define the threshold value of anomaly and separate the biogenic CO2 component,produced by soil respiration,from the inorganic component of deep provenance. A computer routine was also elaborated to interpret the grid of CO2 anomalous concentration values and define the actual location,orientation and length of degassing structures. The results obtained by this procedure reveal a main control of the regional stress field on the patterns of gas migration. The identified degassing lineaments are typically oriented along the Apenninic (NW^SE) and anti-Apenninic (NE^SW)trends,which are known to govern the past geological and structural evolution of the Campanian Plain and present seismicity and deformation pattern of Mount Vesuvius. A main degassing area was recognized on the eastern and southern flanks of the volcano,which likely relates to the geometry of the underlying carbonate basement,reaching its top (500 m depth) in this sector of the volcano.
    Description: Published
    Description: 55-79
    Description: partially_open
    Keywords: Somma-Vesuvius ; CO2 degassing ; Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 908960 bytes
    Format: 532 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-04-04
    Description: This paper reports the use of diffusive tubes in determining HF, HCl, and SO2 in the volcanic plume of Mount Etna in an attempt to highlight the potential of this method in studying volcanoes. In a first application a network of 18 diffusive tubes was installed on Etna flanks, aimed at evaluating the atmospheric dispersion of the volcanic plume on a local scale. Results showed a monotonic decrease in volatile air concentrations with distance from the craters (HF from 0.15 to 〈0.003 mmol m3, HCl from 2 to 〈0.01 mmol m3, and SO2 from 11 to 0.04 mmol m3), revealing the prevalently volcanic contribution. Matching of SO2/HCl and HCl/HF volatile ratios with contemporaneous measurements at the summit craters validated the use of diffusive tubes in tracing the chemical features of a volcanic plume from remote locations. A first tentative assessment of dry deposition rates of volcanogenic acidic gases was also made, yielding 2.5 74 t d1 (SO2), 0.6 17 t d1 (HCl), and 0.02 0.6 t d1 (HF) and revealing the potential environmental impact of gas emissions. In a second experiment, carried out during the recent October 2002 to February 2003 eruption of Etna, diffusive tubes provided a continuous record of the chemical composition of the eruptive plume from a safe distance of 1 km from the vents, thus considerably decreasing the risks involved in sampling. This highlighted a clear time decrease in SO2 concentrations and SO2/HCl ratios, which was interpreted as due to progressive exhaustion of volatile degassing and eruption energy.
    Description: Published
    Description: D21308
    Description: partially_open
    Keywords: volcanic plumes ; impact of volcanic emissions ; sulfur and halogens chemistry ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 597469 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-04
    Description: In the last 13 years gas emissions from both the summit and the flanks of Mount Etna volcano have been monitored using remote sensing techniques (COSPEC, and FTIR since 2000) and on-site monitoring devices. The SO2 flux variations (600 to 25,000 Mg/day) indicated: (i) low values coinciding with deep seismicity prior to eruptions or/and preceding increases in summit volcanic activity; (ii) increasing trends tracking the ascent of fresh magma within the shallow feeding system and whose rate seems proportional to the speed of magma rise; (iii) decreasing trends related to progressive degassing of magma batches; (iv) an imbalance between the amount of magma erupted and that which contributed the SO2 emission (~ 13 % of the degassing magma having been erupted during the studied period), implying that magma degassing is dominantly intrusive; (v) a seasonal component, probably due to variations in solar zenith angle, meteorological parameters and, possibly, tidal forces.FTIR monitoring allowed to recognize significant variations of SO2/HCl and SO2/HF ratios in the volcanic plume which, combined with COSPEC data, provided new insight into the dynamics of ascent and degassing of discrete magma bodies. Strong variations in CO2-rich soil degassing are interpreted as markers of gradual magma ascent from great depth (〉10 km) to the upper (〈5 km) feeding system of Mt. Etna. These changes appear to precede increases in SO2 plume flux at the craters and, so, provide additional constraints upon the interpretation of COSPEC data and the modeling of magma rise at that volcano.
    Description: Published
    Description: 111-128
    Description: partially_open
    Keywords: Gas emissions ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 2782375 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...