ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
  • Elsevier  (57)
  • American Geophysical Union  (31)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Public Library of Science
Collection
Keywords
Years
  • 1
    Publication Date: 2021-06-25
    Description: The geological record at rifts and margins worldwide often reveals considerable along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Main Ethiopian Rift (MER) in East Africa provides an excellent opportunity to address this dichotomy: it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of volcanic cone density and rift obliquity along strike in the MER. By synthesizing these new data in light of existing geophysical, geochemical, and petrological constraints on magma generation and emplacement, we are able to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rifted margin. The timing of rift sector development, the three-dimensional focusing of melt, and the ponding of plume material where the rift dramatically narrows each influence igneous intrusion and volcanism along the MER. However, rifting obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.
    Description: Published
    Description: 467-477
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Variationsinmeltproductioncausedby asynchronous rift sector development • Where the rift narrows, ponding of plume material may enhance melting • Three-dimensional migration of melt along the LAB focuses magma supply ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-04
    Description: We present a neotectonic model of ongoing lithosphere deformation and a corresponding estimate of long-term shallow seismicity across the Africa-Eurasia plate boundary, including the eastern Atlantic, Mediterranean region, and continental Europe. GPS and stress data are absent or inadequate for the part of the study area covered by water. Thus, we opt for a dynamic model based on the stress-equilibrium equation; this approach allows us to estimate the long-term behavior of the lithosphere (given certain assumptions about its structure and physics) for both land and sea areas. We first update the existing plate model by adding five quasi-rigid plates (the Ionian Sea, Adria, Northern Greece, Central Greece, and Marmara) to constrain the deformation pattern of the study area. We use the most recent datasets to estimate the lithospheric structure. The models are evaluated in comparison with updated datasets of geodetic velocities and the most compressive horizontal principal stress azimuths. We find that the side and basal strengths drive the present-day motion of the Adria and Aegean Sea plates, whereas lithostatic pressure plays a key role in driving Anatolia. These findings provide new insights into the neotectonics of the greater Mediterranean region. Finally, the preferred model is used to estimate long-term shallow seismicity, which we retrospectively test against historical seismicity. As an alternative to reliance on incomplete geologic data or historical seismic catalogs, these neotectonic models help to forecast long-term seismicity, although requiring additional tuning before seismicity rates are used for seismic hazard purposes.
    Description: Published
    Description: 5311–5342
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: open
    Keywords: Tectonics ; Earthquake rates ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: The transition from mechanical thinning toward focused magmatic intrusion during continental rifting is poorly constrained; the tectonically active Main Ethiopian Rift (MER) provides an ideal study locale to address this issue. The presence of linear magmatic-tectonic belts in the relatively immature central MER may indicate that the transition from mechanical to magmatic rifting is more spatially distributed and temporally protracted than has previously been assumed. Here we examine lava geochemistry and vent distribution of a Pliocene-Quaternary linear magmatic chain along the western margin of the central MER—the Akaki Magmatic Zone. Our results show limited variability in parental magma that evolve in a complex polybaric fractionation system that has not changed significantly over the past 3 Ma. Our results suggest the following: (1) channeling of plume material and the localization of shear- or topography-induced porosity modulates melt intrusion into the continental lithosphere. (2) Pre-existing lithospheric structures may act as catalysts for intrusion of magmas into the lithospheric mantle. (3) The midcrustal to upper crustal strain regime dictates the surface orientation of volcanic vents. Therefore, although linear magmatic belts like those in the central MER may young progressively toward the rift axis and superficially resemble oceanic style magmatism, they actually represent prebreakup magmatism on continental crust. The oldest linear magmatic belts observed seismically and magnetically at the edge of the ocean basins thus may not, as is often assumed, actually mark the onset of seafloor spreading.
    Description: Published
    Description: 875–897
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Precambrian lineaments control off-axis melt • Magmatic extension in Ethiopian rift is not ocean like • Magmatic belts at basins margins may not be seafloor spreading ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Geological, geodetic and seismological data have been analyzed in order to frame the Lipari–Vulcano complex (Aeolian archipelago, southern Italy) into the geodynamic context of the southeastern Tyrrhenian Sea. It is located at the northern end of a major NNW–SSE trending right-lateral strike-slip fault system named “Aeolian–Tindari–Letojanni” which has been interpreted as a lithospheric discontinuity extending from the Aeolian Islands to the Ionian coast of Sicily and separating two different tectonic domains: a contractional one to the west and an extensional one to the north-east. Structural field data consist of structural measurements performed on well-exposed fault planes and fractures. The mesostructures are mostly represented by NW–SE striking normal faults with a dextral-oblique component of motion. Minor structures are represented by N–S oriented joints and tension gashes widespread over the whole analyzed area and particularly along fumarolized sectors. The analyzed seismological dataset (from 1994 to 2013) is based on earthquakes with magnitude ranging between 1.0 and 4.8. The hypocenter distribution depicts two major alignments corresponding to the NNW–SSE trending Aeolian–Tindari–Letojanni fault system and to the WNW–ESE oriented Sisifo–Alicudi fault system. GPS data analysis displays ∼3.0 mm/yr of active shortening between the two islands, with a maximum shortening rate of about 1.0 × 10−13 s−1, between La Fossa Caldera and south of Vulcanello. This region is bounded to the north by an area where the maximum values of shear strain rates, of about 0.7 × 10−13 s−1 are observed. This major change occurs in the area south of Vulcanello that is also characterized by a transition in the way of the vertical axis rotation. Moreover, both the islands show a clear subsidence process, as suggested by negative vertical velocities of all GPS stations which exhibit a decrease from about −15 to −7 mm/yr from north to south. New data suggest that the current kinematics of the Lipari–Vulcano complex can be framed in the tectonic context of the eastward migrating Sisifo–Alicudi fault system. This is dominated by transpressive tectonics in which contractional and minor extensional structures can coexist with strike-slip motion.
    Description: Published
    Description: 150-167
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Southern Tyrrhenian sea ; Aeolian Archipelago ; Lipari–Vulcano complex ; Structural analysis ; GPS ; Seismological data ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The spatial distribution of monogenetic vents and the geochemistry of their erupted products can be used to probe heterogeneity in lithospheric strain across a rift. We show that Quaternary volcanic belts in the central Main Ethiopian Rift (MER) exhibit differences in vent fractal clustering with an exponent indicative of more clustering and a shallower magma reservoir for the Wonji Fault Belt (WFB), in comparison to the Silti-Debre Zeyit Fault Zone (SDFZ). The range of lengths that exhibit vent fractal clustering is bounded by (1) a lower cutoff of few hundreds of meters that correlates with the depth of emplacement of intrusive material and is likely linked to evolving silicic magma systems and (2) an upper cutoff which we interpret to scale with the depth from which dikes originate just prior to eruption: ~10 km for WFB and ~7 km for SDFZ. We attribute this difference to strain partitioning within the MER, which favors dike formation at greater depths beneath the more highly strained eastern margin of the MER (below the WFB), in comparison to the western rift margin (below the SDFZ). Statistical analysis of monogenetic fields in the MER show, when reviewed in light of a priori geophysical and geodetic data, that the plumbing system of monogenetic volcanism style is strongly controlled by crustal strain state. Such statistical techniques may have application in probing the magma systems of other environments where less geophysical or geochemical controls exist.
    Description: Published
    Description: 49-64
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Ethiopian RIft, Volcanism, crustal strain state ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We present high-resolution Vp and Vp/Vs models of the southern Apennines (Italy) computed using local earthquakes recorded from 2006 to 2011 with a graded inversion scheme that progressively resolves the crustal structure, from the large scale of the Apennines belt to the local scale of the normal-fault system. High-Vp bodies defined in the upper and mid crust under the external Apennines are interpreted as extensive mafic intrusions revealing anorogenic magmatism episodes that broadened on the Adriatic domain during Paleogene. Under the mountain belt, a low-Vp region, annular to the Neapolitan volcanic district, indicates the existence of a thermal/fluid anomaly in the mid crust, coinciding with a shallow Moho and diffuse degassing of deeply derived CO2. In the belt axial zone, low Vp/Vs gas-pressurized rock volumes under the Apulian carbonates correlate to high heat flow, strong CO2-dominated gas emissions of mantle origin and shallow carbonate reservoirs with pressurized CO2 gas caps. We hypothesize that the pressurized fluid volumes located at the base of the active fault system influence the rupture process of large normal-faulting earthquakes, like the 1980 Mw6.9 Irpinia event, and that major asperities are confined within the high-Vp Apulian carbonates. This study confirms once more that pre-existing structures of the Pliocene Apulian belt controlled the rupture propagation during the Irpinia earthquake. The main shock broke a 30 km long, NE-dipping seismogenic structure, whereas delayed ruptures (both the 20 s and the 40 s sub-events) developed on antithetic faults, reactivating thrust faults located at the eastern edge of the Apulian belt.
    Description: Published
    Description: 8283–8311
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: embargoed_20150609
    Keywords: The velocity structure of the southern Apennines is determined by a multi-scale tomography ; Large Cenozoic mafic intrusions are identified in the Apulian crust ; Pressurized CO2 reservoirs identified under the axial belt can affect crustal seismicity ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-17
    Description: The Lower Pliocene succession of the Crotone Basin (Calabrian Arc, Southern Italy) is mainly comprised of blue-grey marly clay with good magnetic properties. Here the bio-magnetostratigraphic data indicate a mean sedimentation rate of about 12–15 cm/kyr. Around 3.7–3.6 Ma a major change in the sedimentation regime occurred: the blue-grey hemipelagic marls grade rapidly into silty marls with a significant increase in the terrigenous fraction and with abundant siliceous remains throughout the whole interval. Magnetic properties of these sediments are very poor, but an integrated calcareous plankton biostratigraphy (foraminifera and nannofossils) infers a high average sedimentation rate (about 50–60 cm/kyr). The abrupt onset of this sedimentation regime in the Crotone Basin is contemporaneous with a major unconformity already recognized in the northern sector of the basin, part of amajor reorganization phase in the whole Apenninic–Maghrebid Chain known as “Globorotalia puncticulata event”. Reports of coeval siliceous sediments in other marginal basins of the Apennines (Southern Calabria, Southern and Northern Apennines) suggest that this “siliceous event” might have been regionally extensive, having important palaeoceanographical implications.We infer that the “siliceous event” is characterized by a combined tectonic- and climate-induced change in palaeoceanographic conditions. The tectonic triggering factors may have been linked to two synchronous events in the Tyrrhenian–Apennine system: 1) the shortening event also known as “G. puncticulata event”, and 2) the coeval opening of the Vavilov Basin in the Tyrrhenian Sea which yielded profound influences in terms of physiography and characteristics of the Crotone Basin. The consequent uplift of the Southern Apennines would have increased sediment supply and availability of silica, resulting in eutrophication and enhanced silica preservation. Strong winter mixing and possibly upwelling conditions could have increased primary productivity during heavy isotope stages Gi4, Gi2 and MG8, at the onset of the “siliceous event”. This important event, lasting from ca. 3.6 Ma to ca. 3.2 Ma, would have recorded a peculiar transitional period before further climatic deterioration and more drastic palaeoceanographic changes occurred around 3.1 Ma, leading to cyclic sapropel deposition in the whole of the Mediterranean sea.
    Description: Published
    Description: 398-410
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Biostratigraphy ; Magnetostratigraphy ; Pliocene ; Calabrian Arc ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-18
    Description: Along the Italian peninsula adjoin two crustal domains, peri-Tyrrhenian and Adriatic, whose boundary is not univocal in central Italy. In this area, we attempt to map the extent of the Moho in the two terrains from variations of the travel time difference between the direct P wave and the P-to-S wave converted at the crust-mantle boundary, called PsMoho. We use teleseismic receiver functions computed at 38 broad-band stations in this and previous studies, and assigned each of the recording sites to the Adriatic or peri-Tyrrhenian terrains based on station location, geologic and geophysical data and interpretation, and consistency of delays with the regional Moho trend. The results of the present study show that the PsMoho arrival time varies from 2.3 to 4.1 s in the peri-Tyrrhenian domain and from 3.7 to 5.5 s in the Adriatic domain. As expected, the lowest time difference is observed along the Tyrrhenian coastline and the largest values are observed in the axial zone of the Apennine chain. A key new result of this study is a sharp E-W boundary in the Adriatic domain that separates a deeper Moho north of about 42 N latitude from a shallower Moho to the south. This feature is constrained for a length of about 40 km by the observations available in this study. The E-W boundary requires a revision of prior mapping of the Moho in central Italy and supports previous hypotheses of lithosphere segmentation.
    Description: Published
    Description: 3929–3938
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: teleseismic receiver functions ; Moho discontinuity ; central Italy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-07
    Description: Low-field anisotropy of magnetic susceptibility (AMS) analyses were performed on 532 samples col-lected in 36 (mostly lower Pliocene to lower Pleistocene) marine clay sites from the Crotone basin, afore-arc basin located on top of the external Calabrian accretionary wedge. The Crotone basin formedsince mid-late Miocene under a predominant extensional tectonic regime, but it was influenced there-after by complex interactions with NW–SE left-lateral strike-faults bounding the basin, which also yieldedpost-1.2 Ma ~30◦counterclockwise block rotations. The basin is filled by continental to marine sedimentsyielding one of the thickest and best-exposed Neogene succession available worldwide. The deep-marinefacies – represented by blue-grey marly clays gave the best results, as they both preserved a clear mag-netic fabric, and provided accurate chronology based on previously published magnetostratigraphy andcalcareous plankton (i.e. foraminifers and nannofossils) biostratigraphy. Magnetic susceptibility rangeand rock magnetic analyses both indicate that AMS reflects paramagnetic clay matrix crystal arrange-ment. The fabric is predominantly oblate to triaxial, the anisotropy degree low (〈1.06), and the magneticfoliation mostly subparallel to bedding. Magnetic lineation is defined in 30 out of 36 sites (where thee12 angle is 〈35◦). By also considering local structural analysis data, we find that magnetic fabric wasgenerally acquired during the first tectonic phases occurring after sediment deposition, thus validatingits use as temporally dependent strain proxy. Although most of the magnetic lineations trend NW–SE andare orthogonal to normal faults (as observed elsewhere in Calabria), few NE–SW compressive lineationsshow that the Neogene extensional regime of the Crotone basin was punctuated by compressive episodes.Finally, compressive lineations (prolate magnetic fabric) documented along the strike-slip fault boundingthe basin to the south support the significance of Pleistocene strike-slip tectonics. Thus the Crotone basinshows a markedly different tectonics with respect to other internal and western basins of Calabria, asit yields a magnetic fabric still dominated by extensional tectonics but also revealing arc-normal short-ening episodes and recent strike-slip fault activity. The tectonics documented in the Crotone basin iscompatible with a continuous upper crustal structural reorganization occurring during the SE-migrationof the Calabria terrane above the Ionian subduction system.
    Description: Published
    Description: 67-79
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Calabrian Arc, Anisotropy of magnetic susceptibility, Structural analysis, Fore-arc region ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We report the paleomagnetic and magnetic fabric results of 58 sites from Cretaceous-Miocene marine and continental strata from the Eastern Cordillera (EC) and the Cucuta zone, at the junction between the Santander Massif and the Merida Andes of Colombia. The EC is an intracontinental doubly vergent range inverting a Triassic to Early Cretaceous rift zone. Twenty-three sites reveal nonsystematic tectonic rotations, including unrotated areas of the EC range with respect to stable South America. Our data show that the EC inverted a NNE oriented rift zone and that the orientation of the Mesozoic rift and the mountain chain roughly correspond. Interestingly, magnetic lineations from anisotropy of magnetic susceptibility analysis do not trend parallel to the chain but rather are oblique to the main orogenic trend. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central western Colombia accommodated by the EC, we suggest that the Miocene-Recent deformation event of this belt arises from ENE oblique convergence reactivating a NNE oriented rift zone. Oblique shortening was likely partitioned into pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well known along both chain fronts) and by range-parallel right-lateral strike-slip faults, which have not been identified yet, but likely exist in the axial part of the EC. Finally, the 35° ± 9° clockwise rotation observed in four post-Miocene magnetically overprinted sites from the Cucuta zone reflects late Cenozoic and ongoing right-lateral strike-slip displacement occurring along faults parallel to the Boconó fault system, possibly connected with the right-lateral faults inferred to exist along the axial part of the EC.
    Description: Published
    Description: 2233–2260
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Paleomagnetism, magnetic fabric, Eastern Cordillera ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: We use 2.5 to 14 years long position time series from 〉800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ 0.7, we adopt a power law + white noise stochastic model in estimating the final vertical rates and find 95% of the velocities within ±2 mm/yr, with uncertainties from filtered time series ~40% smaller than from the unfiltered ones. We highlight the presence of statistically significant velocity gradients where the stations density is higher. We find undulations of the vertical velocity field at different spatial scales both in tectonically active regions, like eastern Alps, Apennines, and eastern Mediterranean, and in regions characterized by a low or negligible tectonic activity, like central Iberia and western Alps. A correlation between smooth vertical velocities and topographic features is apparent in many sectors of the study area. Glacial isostatic adjustment and weathering processes do not completely explain the measured rates, and a combination of active tectonics and deep-seated geodynamic processes must be invoked. Excluding areas where localized processes are likely, or where subduction processes may be active, mantle dynamics is the most likely process, but regional mantle modeling is required for a better understanding.
    Description: Published
    Description: 6003–6024
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 1R. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: GPS ; Geodynamics ; Mediterranean ; Vertical deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-24
    Description: Hule and Rı´o Cuarto are maar lakes located 11 and 18 km N of Poa´s volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Rı´o Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).
    Description: Published
    Description: e102456
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: bio activity, volcanic lakes, costa rica ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-10-26
    Description: In complex tectonics regions, seismological, geophysical, and geodynamic modeling require accurate definition of the Moho geometry. Various active and passive seismic experiments performed in the central Mediterranean region revealed local information on the Moho depth, in some cases used to produce interpolated maps. In this paper, we present a new and original map of the 3-D Moho geometry obtained by integrating selected high-quality controlled source seismic and teleseismic receiver function data. The very small cell size makes the retrieved model suitable for detailed regional studies, crustal corrections in teleseismic tomography, advanced 3-D ray tracing in regional earthquake location, and local earthquake tomography. Our results show the geometry of three different Moho interfaces: the European, Adriatic-Ionian, and Tyrrhenian. The three distinct Moho are fashioned following the Alpine and Apennines subduction, collision, and back-arc spreading and show medium- to high-frequency topographic undulations reflecting the complexity of the geodynamic evolution.
    Description: Published
    Description: Q09006
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Italy; controlled source seismology; crust; receiver function ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-04-07
    Description: Degassing activity from marine shallow-water hydrothermal vents represents a natural important source of trace elements of particular ecotoxicological concern, such as Hg, Cd, Pb, and As. In 2002, on November 3rd, a submarine area of the Aeolian Archipelago (Italy) was affected by an exceptional hydrothermal activity, presumably associated to a significant trace element release. This study developed in the highest impacted area, was focused on different environmental matrices (water, sediment, primary producers, and fishes) with the aim to evaluate on a statistical basis temporal dynamics involving trace elements closed to the emission source. Results evidenced that this event produced significant changes in water column, modifying the general assessment of the chemical descriptors selected (Na, K, Mg, Ca, Cl, Br, SO4 2-, HCO3 -). Furthermore, the degassing activity represents a significant input of Hg, Cd, Pb, and As for all of the sampled matrices, being it responsible of the higher levels observed in the study area compared to controls. Concentrations measured in sediments and biota (Cystoseira compressa, Serranus cabrilla) at temporal intervals of ten months distanced, supported the occurrence of different time scale dynamics which are both element and matrix-dependent. In particular, levels of Cd and As measured in liver tissues of S. cabrilla evidenced a significant trend to increase with the time, allowing to exclude a quick recovery of the study area. Measured values in edible fishes tissues are, also, notably higher than risk limits proposed by the 2001/22/CE Directive for human consumption, so, local-based caught have to be accurately regulated to avoid the occurrence of diet over-exposure.
    Description: Published
    Description: 10-28
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: N/A or not JCR
    Description: restricted
    Keywords: trace elements ; hydrothermal vents ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Detailed structural analysis of tourmaline-rich veins hosted in the contact aureole of the ∼6 Ma Porto Azzurro granite in southeastern Elba Island, northern Tyrrhenian Sea is presented. Using geometric features of the veins, the physical conditions at the time of vein formation are estimated, namely the stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)), driving stress ratio (R′ = (Pf − σ3)/(σ1 − σ3)) and fluid overpressure (ΔPo = Pf − σ3). Two vein sets (A veins and B veins) have been recognized based on orientation and thickness distributions and infilling material. Analysis of vein pole distributions indicates Φ = 0.57 and R′ = 0.24 for the A veins and Φ = 0.58 and R′ = 0.47 for the B veins, and fluid pressures less than the intermediate stress magnitude. Analysis of geometric features of the veins gives estimated fluid overpressures of between ∼16 MPa (A veins) and ∼32 MPa (B veins). We propose a model for the tectonic environment of vein development, in which formation of secondary permeability in the deforming thermal aureole of the Porto Azzurro pluton was controlled by ongoing development of fracture systems in the hinge zone of a regional NNW–SSE trending fold that favored transport and localization of hydrothermal fluids.
    Description: Published
    Description: 1509-1522
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Thermal aureole ; Upper crust ; Deformation ; Fluid circulation ; Northern Apennines ; Elba Island ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: A geochemical prospection of the fluids circulating over a volcanic island highlighted the existence of reservoirs of both fresh and thermal water although only a few natural manifestation, mainly occurring in submarine environment, provide clues of their existence. Coupling the information provided by the diffuse gas bubbling and the low-salinity waters discharged from the sea floor off the Island with those from the low-salinity and thermal waters collected from in-land wells drilled in recent times we found that a large amount of fresh and thermal waters are continuously discharged at the sea level. The thermal waters, collected at a temperature of 32-36°C, show a typical marine recharge with equilibrium temperatures estimated to be in the range of 120-160°C. As matter of fact, the small island holds relatively large reservoirs of both fresh and thermal waters. The geochemical features of the circulating fluids are driven by water-rock and gas-water interaction processes, while the heat supplied to the geothermal reservoir comes from volcanic rocks that are still cooling down after the end of the last volcanic activity supposed to be not older than 13ky.
    Description: Published
    Description: 39-49
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: N/A or not JCR
    Description: restricted
    Keywords: geochemistry ; thermal fluids ; volcanism ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Despite the clear evidence of active flank dynamics that is affecting the eastern side of Mount Etna, the contribution of tectonic processes has not been yet understood. So far, the various models proposed to explain the observed flank deformation have been based on onshore structural data, coming from the volcanic edifice. The Ionian offshore of Mount Etna has been only recently investigated using multichannel seismic profiles, and offers the opportunity to image the structural features of the substrate of the unstable flank of the volcano. This contribution aims at describing the deformation located offshore Mount Etna using multichannel seismic profiles recently acquired during three seismic surveys. The onshore flank deformation of Mount Etna appears to be laterally confined by two tectonic guidelines, trending roughly E–W, located to the north and south of the deforming flank; the northern guideline, in particular, takes the surface expression of a sharp fault (Pernicana Fault). Though often assumed that these boundary structures continue offshore as linear features, connected to a frontal thrust ramp, the occurrence of this simple offshore structural system has not been imaged. In fact, seismic data show a remarkable degree of structural complexity offshore Mount Etna. The Pernicana Fault, for instance, is not continuing offshore as a sharp feature; rather, the deformation is expressed as ENE–WSW folds located very close to the coastline. It is possible that these tectonic structures might have affected the offshore of Mount Etna before the Pernicana Fault system was developed, less than 15 ka ago. The southern guideline of the collapsing eastern flank of the volcano is poorly expressed onshore, and does not show up offshore; in fact, seismic data indicate that the Catania canyon, a remarkable E–W-trending feature, does not reflect a tectonic control. Seismic interpretation also shows the occurrence of a structural high located just offshore the edifice of Mount Etna. Whereas a complex deformation affects the boundary of this offshore bulge, it shows only limited internal deformation. Part of the topography of the offshore bulge pre-existed the constructional phase of Mount Etna, being an extension of the Hyblean Plateau. Only in the northern part, the bulge is a recent tectonic feature, being composed by Plio-Quaternary strata that were folded before and during the building of Mount Etna. The offshore bulge is bounded by a thrust fault that can be related to the intrusion of the large-scale magmatic body below Mount Etna.
    Description: Published
    Description: 50-64
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna offshore ; Volcano flank instability ; Active tectonics ; Multichannel reflection seismics ; Intrusive body ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-05-28
    Description: The Main Ethiopian Rift (MER) offers a complete record of the time–space evolution of a continental rift. We have characterized the brittle deformation in different rift sectors through the statistical analysis of a new database of faults obtained from the integration between satellite images and digital elevation models, and implemented with field controls. This analysis has been compared with the results of lithospheric-scale analogue models reproducing the kinematical conditions of orthogonal and oblique rifting. Integration of these approaches suggests substantial differences in fault architecture in the different rift sectors that in turn reflect an along-axis variation of the rift development and southward decrease in rift evolution. The northernmost MER sector is in a mature stage of incipient continental rupture, with deformation localised within the rift floor along discrete tectono-magmatic segments and almost inactive boundary faults. The central MER sector records a transitional stage in which migration of deformation from boundary faults to faults internal to the rift valley is in an incipient phase. The southernmost MER sector is instead in an early continental stage, with the largest part of deformation being accommodated by boundary faults and almost absent internal faults. The MER thus records along its axis the typical evolution of continental rifting, from fault-dominated rift morphology in the early stages of extension toward magma-dominated extension during break-up. The extrapolation of modelling results suggests that a variable rift obliquity contributes to the observed along-axis variations in rift architecture and evolutionary stage, being oblique rifting conditions controlling the MER evolution since its birth in the Late Miocene in relation to a constant post ca. 11 Ma ~ N100°E Nubia–Somalia motion.
    Description: Published
    Description: 479-492
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: continental rifting ; East African Rift ; Main Ethiopian Rift ; rift kinematics ; plate kinematics ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: We here exploit fundamental mode Rayleigh and Love seismic wave information and the high resolution satellite global gravity model GGM02C to obtain a 1° × 1° 3-D image of: (a) upper-mantle isotropic shear-wave speeds; (b) densities; and (c) density-vS coupling below the European plate (20°N–90°N) (40°W–70°E). The 3-D image of the density-vS coupling provides unprecedented detail of information on the compositional and thermal contributions to density structures. The accurate and high-resolution crustal model allows us to compute a reliable residual topography to understand the dynamic implications of our models. The correlation between residual topography and mantle residual gravity anomalies defines three large-scale regions where upper mantle dynamics produce surface expression: the East European Craton; the eastern side of the Arabian Plate; and the Mediterranean Basin. The effects of mantle convection are also clearly visible at: (1) the Eastern Sirt Embayment; (2) the West African Craton northern margins; (3) the volcanically active region of the Canarian Archipelago; (4) the northern edge of the Central European Volcanic Province; and (5) the Northeastern part of the Atlantic Ocean, between Greenland and Iceland. Strong connections are observed among areas of weak radial anisotropy and areas where the mantle dynamics show surface expression. Although both thermal and additional dependencies have been incorporated into the density model, convective down-welling in the mantle below the East European Craton is required to explain the strong correlation between the estimated negative mantle residual anomalies and the negative residual topography.
    Description: DATEC MERG-CT-2007-046522 and NERIES INFRAST-2.1-026130
    Description: Published
    Description: B09401
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Europe ; GRACE ; density-velocity scaling relationship ; dynamic topography ; surface waves ; upper mantle density ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-11-26
    Description: The volcano–hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-toneutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17–28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2– 30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (b0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid AS springs (Aq. 2) have parallel profile with total REE concentration from 9 to 98 μg/l. The highest REE concentration (207 μg/l) is observed in slightly acid shallow cold Ca-SO4 ground waters draining fresh and old pyroclastic deposits rich in magmatic anhydrite. It is suggested that the main mechanism controlling the concentration of REE in waters of El Chichón is the acidity. As low pH results from the shallow oxidation of H2S contained in hydrothermal vapors, REE distribution in thermal waters reflects the dissolution of volcanic rocks close to the surface or lake sediments as is the case for the crater lake.
    Description: -
    Description: Published
    Description: 55-66
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: hydrogeochemistry ; geothermal systems ; Sr isotopes ; REE ; El Chichón Volcano ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-01-27
    Description: A variety of atypical plume-like structures and focused upwellings that are not rooted in the lower mantle have recently been discussed, and seismological imaging has shown ubiquitous small-scale convection in the uppermost mantle in regions such as the Mediterranean region, the western US, and around the western Pacific. We argue that the three-dimensional return flow and slab fragmentation associated with complex oceanic subduction trajectories within the upper mantle can generate focused upwellings and that these may play a significant role in regional tectonics. The testable surface expressions of this process are the outsidearc alkaline volcanism, topographic swell, and low-velocity seismic anomalies associated with partial melt. Using three-dimensional, simplified numerical subduction models, we show that focused upwellings can be generated both ahead of the slab in the back-arc region (though ~five times further inward from the trench than arc-volcanism) and around the lateral edges of the slab (in the order of 100 km away from slab edges). Vertical mass transport, and by inference the associated decompression melting, in these regions appears strongly correlated with the interplay between relative trench motion and subduction velocities. The upward flux of material from the depths is expected to be most pronounced during the first phase of slab descent into the upper mantle or during slab fragmentation. We discuss representative case histories from the Pacific and the Mediterranean where we find possible evidence for such slab-related volcanism.
    Description: Published
    Description: 54-68
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: subduction ; magmatism ; upper mantle convection ; geodynamic modeling ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-02-03
    Description: Calabria represents an ideal site to analyze the topography of a subduction zone as it is located on top of a narrow active Wadati-Benioff zone and shows evidence of rapid uplift. We analyzed a pattern of surface deformation using elevation data with different filters and showed the existence of a long wavelength (〉100 km) relatively positive topographic signal at the slab edges. The elevation of MIS 5.5 stage marine terraces supports this pattern, although the record is incomplete and partly masked by the variable denudation rate. We performed structural analyses along the major active or recently reactivated normal faults showing that the extensional direction varies along the Calabrian Arc and laterally switches from arc-normal, within the active portion of the slab, to arc-oblique or even arc-parallel, along the northern and southern slab edges. This surface deformation pattern was compared with a recent high resolution P wave tomographic model showing that the high seismic velocity anomaly is continuous only within the active Wadati-Benioff zone, whereas the northern and southwestern sides are marked by low velocity anomalies, suggesting that large-scale topographic bulges, volcanism, and uplift could have been produced by mantle upwelling. We present numerical simulations to visualize the three-dimensional mantle circulation around a narrow retreating slab, ideally similar to the one presently subducting beneath Calabria. We emphasize that mantle upwelling and surface deformation are expected at the edges of the slab, where return flows may eventually drive decompression melting and the Mount Etna volcanism.
    Description: Published
    Description: TC1003
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: topography ; Calabrian Arc ; subduction ; tomography ; mantle flow ; uplift ; retreat ; anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-05-09
    Description: A geochemical survey of 197 fluid discharges (cold and thermal waters and bubbling pools) and 15 gas emissions from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (Latium, Central Italy) was carried out in 2007–2008. The chemical and isotopic compositions of the fluid discharges indicate the occurrence of two main sources: 1) relatively shallow aquifers with Ca(Na,K)–HCO3 and Ca(Mg)–HCO3 compositions when trapped in volcanic and sedimentary formations, respectively; and 2) a deep reservoir, which is hosted in the Mesozoic carbonate sequence, rich in CO2 and having a Ca–SO4(HCO3) composition. Dissolution of a CO2-rich gas phase into the shallow aquifers produces high-TDS and high-pCO2 cold waters, while oxidation of deep-derived H2S to SO4 2− generates low-pH (b4) sulfate waters. The δ13C–CO2 values for gas emissions (from−2.8 to+2.7‰vs. VPDB) suggest that the origin of CO2 associated with the deep fluids ismainly related to thermo-metamorphic reactions within the carbonate reservoir, although significant mantle contribution may also occur. However, R/Ra values (0.37–0.62) indicate that He is mainly produced by a crustal source, with a minor component from a crust-contaminated mantle. On the basis of the δ13C–CH4 and δD–CH4 values (from −25.7 to −19.5‰ vs. VPDB and from −152 to −93.4‰ vs. VSMOW, respectively) CH4 production is associated with thermogenic processes, possibly related to abiogenic CO2 reduction within the carbonate reservoir. The δ34S–H2S values (from+9.3 to +10.4‰ vs. VCDT) are consistent with the hypothesis of a sedimentary source of sulfur from thermogenic reduction of Triassic sulfates. Geothermometric evaluations based on chemical equilibria CO2–CH4 and, separately, H2S suggest that the reservoir equilibriumtemperature is up to ~300 °C. The δDand δ18O data indicate thatwater recharging both the shallow and deep aquifers has a meteoric origin. Fluid geochemistry, coupled with gravimetric data and tectonic lineaments, supports the idea that significant contributions from a deep-seated geothermal brine are present in the Stigliano thermal fluid discharges. Exploration surveys investigated this area during 70's–90's for geothermal purposes. Nevertheless, presently the area is still under-exploited. The presence of thermal waters and anomalous heat flow together with the demographic growth of the last years,makes this site a suitable location for direct applications of the geothermal resource.
    Description: Published
    Description: 160-181
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemistry Water Gas Stable isotope Geothermometry Central Italy ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-01-07
    Description: The quaternary volcanic complex of Mount Amiata is located in southern Tuscany (Italy) and represents the most recent manifestation of the Tuscan Magmatic Province. The region is characterised by a large thermal anomaly and by the presence of numerous CO2-rich gas emissions and geothermal features, mainly located at the periphery of the volcanic complex. Two geothermal systems are located, at increasing depths, in the carbonate and metamorphic formations beneath the volcanic complex. The shallow volcanic aquifer is separated from the deep geothermal systems by a low permeability unit (Ligurian Unit). A measured CO2 discharge through soils of 1.8 109 mol a 1 shows that large amounts of CO2 move from the deep reservoir to the surface. A large range in d13CTDIC ( 21.07 to +3.65) characterises the waters circulating in the aquifers of the region and the mass and isotopic balance of TDIC allows distinguishing a discharge of 0.3 109 mol a 1 of deeply sourced CO2 in spring waters. The total natural CO2 discharge (2.1 109 mol a 1) is slightly less than minimum CO2 output estimated by an indirect method (2.8 109 mol a 1), but present-day release of 5.8 109 mol a 1 CO2 from deep geothermal wells may have reduced natural CO2 discharge. The heat transported by groundwater, computed considering the increase in temperature from the infiltration area to the discharge from springs, is of the same order of magnitude, or higher, than the regional conductive heat flow (〉200 mWm 2) and reaches extremely high values (up to 2700mWm 2) in the north-eastern part of the study area. Heat transfer occurs mainly by conductive heating in the volcanic aquifer and by uprising gas and vapor along fault zones and in those areas where low permeability cover is lacking. The comparison of CO2 flux, heat flow and geological setting shows that near surface geology and hydrogeological setting play a central role in determining CO2 degassing and heat transfer patterns.
    Description: Published
    Description: 860–875
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon dioxide degassing ; Monte Amiata ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-01-27
    Description: Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between −7.2‰ and −5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).
    Description: Published
    Description: 49-56
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: CO2-rich thermomineral waters ; mantle volatiles ; isotopes ; Chaves geothermal system ; N-Portugal ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between −7.2‰ and −5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).
    Description: In press
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: open
    Keywords: CO2-rich thermomineral waters ; mantle volatiles ; isotopes ; Chaves geothermal 9 system ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Long duration time-series of the chemical composition of fumaroles and of soil CO2 flux reveal that important variations in the activity of the Solfatara fumarolic field, the most important hydrothermal site of Campi Flegrei, occurred in the 2000-2008 period. A continuous increase of the CO2 concentrations, and a general decrease of the CH4 concentrations are interpreted as the consequence of the increment of the relative amount of magmatic fluids, rich in CO2 and poor in CH4, hosted by the hydrothermal system. Contemporaneously, the H2O-CO2-He-N2 gas system shows remarkable compositional variations in the samples collected after July 2000 with respect to the previous ones, indicating the progressive arrival at the surface of a magmatic component different from that involved in the 1983-84 episode of volcanic unrest (1983-1984 bradyseism). The change starts in 2000 concurrently with the occurrence of relatively deep, long-period seismic events which were the indicator of the opening of an easy-ascent pathway for the transfer of magmatic fluids towards the shallower, brittle domain hosting the hydrothermal system. Since 2000, this magmatic gas source is active and causes ground deformations, seismicity as well as the expansion of the area affected by soil degassing of deeply derived CO2. Even though the activity will most probably be limited to the expulsion of large amounts of gases and thermal energy, as observed in other volcanoes and in the past activity of Campi Flegrei, the behavior of the system in the future is, at the moment, unpredictable.
    Description: Published
    Description: B03205
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; CO2 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Mercury is outstanding among the global environmental pollutants of continuing concern. Although degassing of active volcanic areas represents an important natural source of mercury into the atmosphere, still little is known about the amount and behaviour of Hg in volcanic aquifers, especially regarding its chemical speciation. In order to assess the importance of mercury emissions from active volcanoes, thermal waters were sampled in the area surrounding La Solfatara, Pozzuoli bay. This is the most active zone of the Phlegrean Fields complex (coastal area north–west of Naples), with intense hydrothermal activity at present day. Studied groundwaters show total Hg (THg) concentrations range from 56 to 171 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization (WHO, 1993). We also carefully discriminated the different aqueous species of Hg in the collected water samples. Besides, original data on Hg determination in gaseous manifestations at La Solfatara crater are also reported. We measured volcanogenic mercury concentration and Hg/Stot ratio both in the volcanic plume and in fumarolic condensates in order to better constrain Hg reactivity once emitted into the atmosphere. Data on Hg/Stot reveal that there is no significant difference between Hg volcanic composition at the venting source (fumaroles) and in near-vent diluted volcanic plumes (1.6×10−5 and 1.9×10−5, respectively), suggesting that there is limited Hg chemical processing in volcanic fumarole plumes, at least on the timescales of a few seconds investigated here. Combining the mean fumaroles Hg/CO2 mass ratio of about 1.3×10−8 (molar ratio: 2.1×10−9) with the hydrothermal soil diffuse CO2 degassing of the area, the annual Hg flux from La Solfatara is estimated as 7 kg y−1 (0.007 t y−1). Current mercury emission from La Solfatara volcano represents a very small contribution to the estimated global volcanic budget for this element, and the estimated Hg flux is considerably lower than that estimated from open-conduit active basaltic volcanoes.
    Description: Published
    Description: 250–260
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: hydrothermal waters ; total mercury ; mercury speciation ; fumaroles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Long time series of fumarolic compositions at Campi Flegrei (Italy), Mammoth Mountain (California), Panarea (Italy) and Nisyros (Greece) show rapid increases, up to orders of magnitude, of the CO2/CH4 ratio systematically with the occurrence of volcanic unrest periods. These easily detected anomalies originate with the arrival of CH4-poor magmatic fluids in the shallower levels of the volcanoes. The data suggest that volcanoes are characterized by magmatic activity at depth also in periods of apparent quiescence. The activity is constituted by the pulsing release of large amount of fluids which either cause unrest periods (seismicity and ground deformation) or possibly could precede volcanic eruption. This type of volcanic activity can be monitored trough the classical geophysical techniques together with the systematic sampling and analysis of fumaroles.
    Description: Published
    Description: L02302
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: CO2/CH4 ; magma degassing ; quiescent volcanoes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: We re-evaluate the possibility that Earth's rotation contributes to plate tectonics on the basis of the following observations: 1) plates move along a westerly polarized flow that forms an angle relative to the equator close to the revolution plane of the Moon; 2) plate boundaries are asymmetric, being their geographic polarity the first order controlling parameter; unlike recent analysis, the slab dip is confirmed to be steeper along W-directed subduction zones; 3) the global seismicity depends on latitude and correlates with the decadal oscillations of the excess length of day (LOD); 4) the Earth's deceleration supplies energy to plate tectonics comparable to the computed budget dissipated by the deformation processes; 5) the Gutenberg–Richter law supports that the whole lithosphere is a self-organized system in critical state, i.e., a force is acting contemporaneously on all the plates and distributes the energy over the whole lithospheric shell, a condition that can be satisfied by a force acting at the astronomical scale. Assuming an ultra-low viscosity layer in the upper asthenosphere, the horizontal component of the tidal oscillation and torque would be able to slowly shift the lithosphere relative to the mantle.
    Description: Hungarian Scientific Research Fund OTKA in the framework of project K 60394
    Description: Published
    Description: 60-73
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Plate tectonics ; Earth's rotation ; Tidal despinning ; Earth's energy budget ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: The soil CO2 degassing is affected by processes of isotope exchange and fractionation during transport across the soil, which can deeply modify the pristine isotope composition. This has been observed in the Solfatara volcano, upon a field survey of 110 points, where the CO2 flux was measured, together with temperature, CO2 concentration and oxygen and carbon isotopes within the soil. Furthermore, in some selected sites, the measurements were made at different depths, in order to analyze vertical gradients. Oxygen isotope composition appears controlled by exchange with soil water (either meteoric or fumarolic condensate), due to the fast kinetic of the isotopic equilibrium between CO2 and water. Carbon isotope composition is reliably controlled by transport-driven fractionation, due to the differences in diffusion coefficients between 13C16O2 and 12C16O2. We model the processes affecting CO2 transport across the soil in La Solfatara volcano by means of the Dusty Gas Model applied to a multicomponent system, to evaluate the reciprocal effect on diffusion of involved gases, i.e. 12C16O2, 13C16O2, N2 and O2 in our case. Both numerical and simplified analytical solutions of the equations based on the Dusty Gas Model are given. The modeling results fit well with the experimental data and put in evidence an isotope fractionation of carbon up to about þ4:4& with respect to the source value in the soil gas. This fractionation is independent from the entity of the CO2 flux, and occurs as long as a concentration gradient exists within the soil. On these grounds, the Dusty Gas Model can be applied to whichever diffusing gas mixture to evaluate the extent of chemical and/or isotopic fractionation that can affect ascending gases upon diffusion in any geothermal, volcanic or tectonic area.
    Description: Published
    Description: 3521-3528
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: isotope exchange ; degassing ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: Accepted for publication in Journal of Geophysical Research. Copyright (2010) American Geophysical Union.
    Description: A semi-permanent global positioning system (GPS) network of 30 vertices known as the Victoria Land Network for Deformation Control (VLNDEF) was set-up in the Austral summer of 1998 in Northern Victoria Land (NVL), including Terra Nova Bay (TNB), Antarctica. The locations were selected according to the known Cenozoic fault framework that is characterized by a system of NW-SE regional faults with right-lateral, strike-slip kinematics. The TNB1 permanent GPS station is within the VLNDEF, and following its installation on a bedrock monument in October 1998 it has been recording almost continuously. The GPS network has been surveyed routinely every two summers, using high-quality, dual-frequency GPS receivers. In this study, we present the results of a distributed session approach applied to the processing of the GPS data of the VLNDEF. An improved reference frame definition was implemented, including a new Euler pole, to compute the Antarctic intra-plate residual velocities. The projection of the residual velocities on the main faults in NVL show present-day activities for some faults, including the Tucker, Leap Year, Lanterman, Aviator, and David faults, with rightlateral strike-slip kinematics and local extensional/ compressional components. This active fault pattern divides NVL into eight rigid blocks, each characterized by their relative movements and rigid rotations. These show velocities of up to several mm/yr, which are comparable to those predicted by plate tectonic theory at active plate margins.
    Description: All researches were carried out in the framework of the Programma Nazionale di Ricerche in Antartide (PNRA) and financially supported by PNRA S.C.r.l.
    Description: Published
    Description: B12421
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: ANTARCTICA ; GEODESY ; MONITORING NETWORKS ; CRUSTAL DEFORMATION ; CONTINENTAL NEOTECTONICS ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-10-10
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Monitoring of quiescent volcanoes, such as Campi Flegrei (Italy), involves the measurement of geochemical and geophysical parameters that are expected to change as eruptive conditions approach. Some of these changes are associated with the hydrothermal activity that is driven by the release of heat and magmatic fluids. This work focuses on the properties of the porous medium and on their effects on the signals generated by the circulating fluids. The TOUGH2 porous media flow model is applied to simulate a shallow hydrothermal system fed by a source of magmatic fluids. The simulated activity of the source, with periods of increased fluid discharge, generates changes in gas composition, gravity, and ground deformation. The same boundary conditions and source activity were applied to simulate the evolution of homogeneous and heterogeneous systems, characterized by different rock properties. Phase distribution, fluid composition, and the related signals depend on the nature and properties of the rock sequence through which the fluids propagate. Results show that the distribution of porosity and permeability affects all the observable parameters, controlling the timing and the amplitude of their changes through space and time. Preferential pathways for fluid ascent favor a faster evolution, with larger changes near permeable channels. Slower changes over wider areas characterize less permeable systems. These results imply that monitoring signals do not simply reflect the evolution of the magmatic system: intervening rocks leave a marked signature that should be taken into account when monitoring data are used to infer system conditions at depth.
    Description: This work was carried out within the research project V1-UNREST, founded by the Italian Civil Protection Department
    Description: Published
    Description: B09213
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: hydrothermal circulation ; observable ; volcanic unrest ; permeability ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: We investigate the role of the Africa-Eurasia convergence in the recent tectonic evolution of the central Mediterranean. To this end we focused on two sectors of the Adriatic-Hyblean foreland of the Apennine-Maghrebian chain as they allow tectonic evidence for relative plate motions to be analyzed aside from the masking effect of other more local tectonic phenomena (e.g., subduction, chain building, etc.). We present a thorough review of data and interpretations on two major shear zones cutting these foreland sectors: the E-W Molise-Gondola in central Adriatic and the N-S Vizzini-Scicli in southern Sicily. The selected foreland areas exhibit remarkable similarities, including an unexpectedly high level of seismicity and the presence of the investigated shear zones since the Mesozoic. We analyze the tectonic framework, active tectonics, and seismicity of each of the foreland areas, highlighting the evolution of the tectonic understanding. In both areas, we find that current strains at midcrustal levels seem to respond to the same far-field force oriented NNW-SSE to NW-SE, similar to the orientation of the Africa-Eurasia convergence. We conclude that this convergence plays a primary role in the seismotectonics of the central Mediterranean and is partly accommodated by the reactivation of large Mesozoic shear zones.
    Description: The work has been funded by project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali,” by the Italian Ministry of Education and Research (MIUR), and by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: B12404
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Molise-Gondola shear zone ; Vizzini-Scicli shear zone ; Gargano Promontory ; Hyblean Plateau ; slip reversal ; 1627 earthquake ; 1693 earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Description: Published
    Description: 246-254
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: The origin of forces driving the deformation of the continental crust near subduction zones and especially in backarc regions is debated. Thiswork is based on a compilation of SKS fast splitting directions that give an image of flowlines in themantle around theMediterranean subduction zones and a comparisonwith stretching and shear directions in metamorphic core complexes that show the pattern of deformation at the scale of the middle and lower crusts.We find that : (1) the two sets of directions are parallel in the three main backarc regions, namely the Alboran Sea, the Tyrrhenian Sea and the Aegean Sea showing that the lithosphere deformswith the samedirection of stretching in the crust and themantle, suggesting that (2) crustal deformation ismainly driven frombelowby slab retreat, and (3) the lithospheric fabric is reset within a few millions of years in backarc environments.
    Description: Published
    Description: 198–209
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: subduction ; seismic anisotropy ; backarc extension ; slab retreat ; stretching lineation ; metamorphic core complexes ; Mediterranean ; Aegean ; Tyrrhenian ; Alboran ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: Nitrogen isotopes , N2/36Ar and 3He/4He were measured in volcanic fluids within different geodynamic settings. Subduction zones are represented by Aeolian archipelago, Mexican volcanic belt and Hellenic arc, spreading zones – by Socorro island in Mexico and Iceland and hot spots by Iceland and Islands of Cabo Verde. The δ15N values, corrected for air contamination of volcanic fluids, discharged from Vulcano Island (Italy), highlighted the presence of heavy nitrogen (around +4.3 ±0.5‰). Similar 15N values (around +5‰), have been measured for the fluids collected in the Jalisco Block, that is a geologically and tectonically complex forearc zone of the northwestern Mexico [1]. Positive values (15N around +3‰) have been also measured in the volcanic fluids discharged from Nysiros island located in the Ellenic Arc characterized by subduction processes. All uncorrected data for the Socorro island are in the range of -1 to -2‰. The results of raw nitrogen isotope data of Iceland samples reveal more negative isotope composition (about -4.4‰). On the basis of the non-atmospheric N2 fraction (around 50%) the corrected data of 15N for Iceland are around -16‰, very close to the values proposed by [2]. In a volcanic gas sample from Fogo volcano (Cabo Verde islands) we found a very negative value: -9.9‰ and -15‰ for raw and corrected values, respectively.
    Description: Geochimica et Cosmochimica Acta
    Description: Published
    Description: Davos, Switzerland
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: Nitrogen Isotopes ; Helium Isotopes ; Volcanic fluids ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-01-27
    Description: Northern Victoria Land is located at the boundary between an extended, presumably hot, region (West Antarctic Rift System) and the thick, possibly cold, East Antarctic craton. The style and timing of Tertiary deformation along with relationships with the magmatic activity are still unclear, and contrasting models have been proposed. We performed structural and morphotectonic analyses at the NE termination of northern Victoria Land in the Admiralty Mountains area, where the relationship between topography, tectonics, and magmatism is expected to be well pronounced. We found evidence of two subsequent episodes of faulting, occurring concurrently with the Neogene McMurdo volcanism. The first episode is associated with dextral transtension, and it is overprinted by extensional tectonics during the emplacement of large shield alkaline volcanoes. Upper mantle seismic tomography shows that the extensional regime is limited to regions overlying a low-velocity anomaly. We interpret this anomaly to be of thermal origin, and have tested the role of largescale upwelling on lithosphere deformation in the area. The results of this integrated analysis suggest that the morphotectonic setting of the region and the magmatism is likely the result of upwelling flow at the boundary between the cold cratonic and the hot stretched province (WARS), at work until recent time in this portion of the northern Victoria Land.
    Description: Published
    Description: TC4015
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Antarctica ; Admiralty Mountains ; Extensional Tectonics ; Mantle Upwelling ; Seismic Tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: Major and trace element and Sr–Nd–Hf–Pb isotopic data for the most primitive Tertiary lavas from the Veneto region (South-Eastern Alps, Italy) show the typical features of HIMU hotspot volcanism, variably diluted by a depleted asthenospheric mantle component (87Sr/86Sri=0.70306–0.70378; "Ndi=+3.9 to +6.8; "Hfi=+6.4 to +8.1, 206Pb/204Pbi=18.786–19.574). P-wave seismic tomography of the mantle below the Veneto region shows the presence of low-velocity anomalies at depth, which is consistent with possible upwellings of plume material. Between the depths of 100–250 km the velocity anomalies are approximately 2–2.5% slower than average, implying a temperature excess of about 220–280 K, in agreement with estimates for other mantle plumes in the world. In this context, the Veneto volcanics may represent the shallow expression of a mantle upflow. The presence of a HIMU-DM component in a collision environment has significant geodynamic implications. Slab detachment and ensuing rise of deep mantle material into the lithospheric gap is proposed to be a viable mechanism of hotspot magmatism in a subduction zone setting.
    Description: Published
    Description: 563–590
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: trace-element ; isotopic composition ; alkali basalts ; central-Europe ; slab break-off ; plume ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: One of the most challenging issues about the Tertiary–Quaternary alkaline magmatism spreading across the Euro-Mediterranean region is the assessment of both the nature of its mantle source and the mechanism responsible for the common HIMU-like (High μ=high 238U/204Pb) character of erupted lavas, enduring over about 100 million years in diverse tectonic environments. In this paper we try to reconcile geochemical and geophysical data through a multidisciplinary investigation on geochemistry, timing and locations of the main Na-rich alkaline volcanic centers, seismic tomographic images and plate kinematics. We propose that the common component of the Euro-Mediterranean mantle derives from a contamination episode triggered by the rise of the Central Atlantic Plume (CAP) head. Plate reconstruction shows that at late Cretaceous- Paleocene time the oldest magmatic centers of the Euro-Mediterranean region were located more than 2000 km SW of their present day position, in proximity of the CAP hot spot location, where seismic tomography detects a broad low seismic velocity region in the lower mantle. The northeastward migration of the Eurasian and African plates could have involved also part of the CAP contaminated mantle, which moved in the same direction being coupled to the lithospheric plates, thus explaining the presence of geochemically-uniform material spread in the sub-lithospheric Euro-Mediterranean mantle. During the Tertiary, regional-scale convection and related processes such as rifting, back-arc spreading, slab detachment/windows, may have favored upwelling and partial melting of the frayed plume head material via adiabatic decompression, shaping the spatial and temporal distribution of HIMU-like volcanics. The growing supply of subducted lithosphere may explain as well the increase of crustal isotopic signatures of alkaline magmas with time. In our opinion, the Euro-Mediterranean upper mantle contamination can be eventually related to a global event occurred during the Cretaceous as a consequence of a mantle avalanche caused by the Tethys closure.
    Description: MIUR 2005-2007, prot. n. 2005055415_002, Poli G.
    Description: Published
    Description: 15–27
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Cenozoic HIMU–OIB volcanism ; Euro-Mediterranean mantle ; geochemistry ; mantle tomography ; plate kinematics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: The controversial relationship between the orogenic segments of the Western Alps and the Northern Apennines is here explored integrating recently published 3D tomographic models of subduction with new and re-interpreted geological observations from the eclogitic domain of the Voltri Massif (Ligurian Alps, Italy), where the two belts joint each other. The Voltri Massif is here described as an extensional domain accommodating the opposing outward migration of the Alpine and Apennine thrust fronts, since about 30–35 Ma. Using tomographic images of the upper mantle and paleotectonic reconstructions, we propose that this extensional setting represents the surface manifestation of an along strike change in polarity of the subducted oceanic slab whose polarity changed laterally in space and in time. Our tectonic model suggests that the westward shift of the Alpine thrust front from the Oligocene onward was the consequence of the toroidal asthenospheric flow induced by the retreat of the Apenninic slab.
    Description: Published
    Description: 34–50
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Western Alps ; Northern Apennines ; Voltri Massif ; Tomography ; Kinematic reconstruction ; Extensional detachment ; Toroidal flow ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic results obtained from 27 sites sampled in the Plio-Pleistocene sequences at the external front of the central-northern Apennines. Previous analyses of Miocene (Messinian) sediments indicated that the present shape of the northern Apenninic arc is due to the oroclinal bending of an originally straight belt oriented around N320° and that vertical axis rotations accompanied the migration of the thrust fronts toward the Adriatic foreland [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153-3166]. We tried to provide new paleomagnetic constraints for the timing and rates of the oroclinal bending process during the Pliocene and the Pleistocene. The results suggest that CCW rotations observed in the northern part of the studied area are possibly younger than 3 Ma. No regional rotation is recorded in the Pliocene and Pleistocene sediments from the southern part of the study area, analogously to the Messinian sediments of the 'Acquasanta' domain of Speranza et al. [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153-3166]. A local significant CCW rotation (23° ± 10°) is identified in the Early Pleistocene sediments that crop out along the Adriatic coast between Ascoli and Pescara, indicating differential motion of the thrust sheets. This rotation must be younger than 1.43 Ma.
    Description: Published
    Description: 243-257
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: paleomagnetism ; Apennines ; tectonics ; Pliocene ; Pleistocene ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: The Albano Lake is the deepest volcanic lake in Italy (−167 m) and fills the youngest maar of the quiescent Colli Albani volcano. The lake has undergone significant level changes and lahar generating overflows occurred about 5800 yrs B.P. and likely in 398 b.C., when Romans excavated a tunnel drain through the maar wall. Hazardous lake rollovers and CO2 release are still possible because the Albano volcano shows active ground deformation, gas emission and periodic seismic swarms. On November 2005, the first high resolution bathymetric survey of the Albano Lake was performed. Here we present the results provided by a Digital Elevation Model and 2-D and 3-D images of the crater lake floor, which is made by coalescent and partly overlapping craters and wide flat surfaces separated by some evident scarps. Submerged shorelines are identified at depths between −20 m and −41 m and indicate the occurrence of significant lake level changes, likely between 7.1 and 4.1 ka. The current lake volume is ~447.5×106 m3 and the total quantity of dissolved CO2 is 6850 t estimated by chemical analyses of samples collected on May 2006. A decrease of nearly one order of magnitude of the CO2 dissolved in the lake water below −120 m, observed from December 1997 to May 2006 (from 4190 to 465 t respectively), has been attributed to lake water overturn. The observed oscillations of the dissolved CO2 concentrations justify the efforts of monitoring the chemical and physical characteristics of the lake. At present the quantity of dissolved CO2 is very far from saturation and Nyostype events cannot presently occur.
    Description: DPC-INGV Project V3_1
    Description: Published
    Description: 258–268
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Albano maar ; lake bathymetry ; geochemistry ; crater lake hazard ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: In this paper we present a collection of good quality shear wave splitting measurements in Southern Italy. In addition to a large amount of previous splitting measurements, we present new data from 15 teleseisms recorded from 2003 to 2006 at the 40 stations of the CAT/SCAN temporary network. These new measurements provide additional constraints on the anisotropic behaviour of the study region and better define the fast directions in the southern part of the Apulian Platform. For our analysis we have selected wellrecorded SKS phases and we have used the method of Silver and Chan to obtain the splitting parameters: the azimuth of the fast polarized shear wave (φ) and delay time (δt). Shear wave splitting results reveal the presence of a strong seismic anisotropy in the subduction system below the region. Three different geological and geodynamic regions are characterized by different anisotropic parameters. The Calabrian Arc domain has fast directions oriented NNE–SSW and the Southern Apennines domain has fast directions oriented NNW–SSE. This rotation of fast axes, following the arcuate shape of the slab, is marked by a lack of resolved measurements which occurs at the transition zone between those two domains. The third domain is identified in the Apulian Platform: here fast directions are oriented almost N–S in the northern part and NNE–SSW to ENE–WSW in the southern one. The large number of splitting parameters evaluated for events coming from different back-azimuth allows us to hypothesize the presence of a depth-dependent anisotropic structure which should be more complicated than a simple 2 layer model below the Southern Apennines and the Calabrian Arc domains and to constrain at 50 km depth the upper limit of the anisotropic layer, at least at the edge of Southern Apennines and Apulian Platform. We interpret the variability in fast directions as related to the fragmented subduction system in the mantle of this region. The trench-parallel φ observed in Calabrian Arc and in Southern Apennines has its main source in the asthenospheric flow below the slab likely due to the pressure induced by the retrograde motion of the slab itself. The pattern of φ in the Apulian Platform does not appear to be the direct result of the rollback motion of the slab, whose influence is limited to about 100 km from the slab. The anisotropy in the Apulian Platform may be related to an asthenospheric flow deflected by the complicated structure of the Adriatic microplate or may also be explained as frozen-in lithospheric anisotropy.
    Description: Published
    Description: 49-67
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Shear wave splitting ; Subduction ; Mantle flow ; Southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: Many of the mountain belts displaying a curved shape are "oroclines", i.e. are produced after progressive bending of an originally straight fold and thrust belt. The bending process was previously explained as a consequence of several possible events taking place in the crustal orogenic wedge, such as occurrence of obstacles, non-coaxial deformation, and mouvements on wrench faults. Recent paleomagnetic results from the northern Apenninic Arc document that this belt is properly an orocline and results from Late Messinian-Early Pliocene bending of a Messinian straight belt-foredeep system. Tomographic images in turn show the presence of a high-velocity body, interpreted as subducted slab, in the upper mantle beneath the northern Apennines, between 35 and 670 km depth. Down to 100 km, this body displays an arcuate shape which closely mirrors the geological outlines, while it appears to be straight (and parallel to the Messinian pre-rotated belt) at depth. We explore here the possibility that the arcuate shape of the northern Apennines is a consequence, closely following in time, on much deeper processes than previously suggested, i.e. the lateral bending of the subducting Adriatic plate.
    Description: Published
    Description: 53-64
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; seismic tomography ; Northern Apennines ; orocline ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity.
    Description: Published
    Description: 393-416
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: hydrothermal fluids ; unrest ; modeling ; caldera ; monitoring ; volcanic hazard ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: We analyze the 1997–2006 seismicity of the transition zone between Southern and Central Apennines, which is one of the most active seismic areas of Italy. Our aim is to add information on the seismotectonic picture of this area. Seismic activity is characterized by single events with Mb3.0 and low magnitude (Mb4.0) seismic sequences (1997–98 and 2005) and swarms (1999, 2000 and 2001). Hypocenters are within the upper 15 km of the crust. The epicentral distribution of the relocated seismicity shows that single events prevalently align NW–SE along the Apennine chain axis. This seismicity is related to the main, NE–SW extension affecting the chain. Single events concentrate also: at the south of the seismogenetic source responsible for the 1915 earthquake, where the 2000 swarm occurred; between the faults of the 1984 and 1805 events, where the 2001 sequence developed; between the faults of the 1805 and 1688 events, where the 1997–1998 seismic sequence concentrated. The seismic swarms occurred in 1999, 2000 and 2005 are located inside the Ortona– Roccamonfina structural line, which strikes NNE–SSW and separates the Central Apennines from the Southern ones. The epicentral distribution of these swarms and focal mechanisms suggest the presence of active NE–SW faults moving in response to a NW–SE extension. The results of the strain analysis on 52 wellconstrained focal mechanisms evidence a prevailing NE–SW extension, corresponding to the large scale stress field acting in the Apennine Chain, and a second-order NW–SE extension. This last direction of extension was already observed in the 1997–98 and 2001 seismic sequences. The location of the NE–SW striking faults responsible for the seismic swarms suggest that some segments of the Ortona–Roccamonfina line are still active and move in response to both the NE–SW regional extension of Southern Apennines, and to a NW–SE striking longitudinal extension.
    Description: Published
    Description: 102-110
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Apennines ; seismicity ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: Tomographical results are commonly presented in the form of color images and not much statistical quantification has been carried out on the derived models. Correlation between different depths can shed important light concerning the dynamics. We have generalized the application of multidimensional wavelets to investigate the products of two field variables, such as the cross-spectrum, which is of paramount importance for quantifying the correlation between two depth levels of seismic tomography with a multiple-scale character. For two multidimensional fields A and B, we calculate the correlation C by projecting this as an Hermitian inner product in physical space with a two-dimensional (2D), fourth derivative of the Gaussian wavelet as the weighting function. The correlation function C becomes now a multi-scaled function, a map cast in terms of both the scale and location of the wavelet transform. Having calculated C, we can delineate the locations and length-scales of the prominent features in the landscape of the correlation function. This wavelet formulation is very general and can be extended to other types of statistical analysis, for example in a Kalman filter system. We have used a high-resolution (finer than 1◦) seismic tomographical model for analyzing the extent of mantle layering under Europe by focussing on the different length-scales in the correlation function involving the 3D seismic anomalies lying between 400 and 600 km depth. Between the depths of 500 and 600 km under Europe, the wavelet correlation analysis shows that an ellipse-shaped object exists with an area of 2000 km × 4000 km having a strong correlation for length-scales of around 400 km, and weaker correlation for shorter length scales of around 150 km. On the other hand, between depths of 400 and 600 km, the correlation deteriorates on the long length scales and becomes even worse at the short length scales. From the wavelet correlation spectra, we can extract an horizontal characteristic length scale of around 100 km, which may be related to the boundary interaction between the slab and the ambient mantle. The correlation results suggest that the thickness of the recumbent fast (cold) material in the transition zone is between 100 and 150 km. This large elliptical pattern of presumably cold material would act to inhibit the vigor of mantle convection locally beneath Europe today.
    Description: Published
    Description: 125–139
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: wavelets ; correlation ; tomography ; transition zone ; Mediterranean ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: Subduction zones appear primarily controlled by the polarity of their direction, i.e., W-directed or E- to NNE-directed, probably due to the westward drift of the lithosphere relative to the asthenosphere. The decollement planes behave differently in the two end-members. In the W-directed subduction zone, the decollement of the plate to the east is warped and subducted, whereas in the E- to NNE-directed, it is ramping upward at the surface. There are W-directed subduction zones that work also in absence of active convergence like the Carpathians or the Apennines. W-directed subduction zones have shorter life 30–40 Ma.than E- or NE-directed subduction zones even longer than 100 Ma.. The different decollements in the two end-members of subduction should control different PTt paths and, therefore, generate variable metamorphic assemblages in the associated accretionary wedges and orogens. These asymmetries also determine different topographic and structural evolutions that are marked by low topography and a fast ‘eastward’ migrating structural wave along W-directed subduction zones, whereas the topography and the structure are rapidly growing upward and expanding laterally along the opposite subduction zones. The magmatic pair calc-alkaline and alkaline–tholeiitic volcanic products of the island arc and the back-arc basin characterise the W-directed subduction zones. Magmatic rocks associated with E- or NE-directed subduction zones have higher abundances of incompatible elements, and mainly consist of calc-alkaline– shoshonitic suites, with large volumes of batholithic intrusions and porphyry copper ore deposits. The subduction zones surrounding the Adriatic plate in the central Mediterranean confirm the differences among subduction zones as primarily controlled by the geographic polarity of the main direction of the slab. The western margin of the Adriatic plate contemporaneously overridden and underthrust Europe toward the ‘west’ to generate, respectively, the Alps and the Apennines, while the eastern margin subducted under the Dinarides–Hellenides. These belts confirm the characters of the end-members of subduction zones as a function of their geographic polarity similarly to the Pacific subduction zones.
    Description: Published
    Description: 167–208
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: tectonics ; subduction zones ; orogens ; Mediterranean geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: We report on a high-resolution Vp, Vp/Vs and Qp model of the southern Tyrrhenian subduction zone, obtained by the inversion of P- and S wave arrival times and t* values from intraslab seismicity. The arcuate shape of the southern Apennines–Calabrian arc-Sicilian Maghrebides is perfectly mirrored by two rather continuous low and high Vp bands lying beneath the belt system at ca. 25 and 100 km, respectively. Between 100 and 300 km, two independent high Vp slabs lie beneath the Neapolitan region and the southern Tyrrhenian Sea, separated by unperturbed mantle. We suggest that the ca. 150 km-wide slab window beneath the southern Apennines opened after a tear occurring within a composite subduction system, formed by the Apulian continental lithosphere and the Ionian oceanic slab. The abrupt slab rupture induced ultrafast southeastward retreat of the Ionian slab, and the 19 cm/yr spreading of the back-arc oceanic Marsili basin between ca. 2.1 and 1.6 Ma ago. The 25 km low Vp zone beneath the arc denotes continental upper crustal rocks below the chain. Its striking continuity requires a unique orogenic wedge at 25 km depth below the southern Apennines, the Calabrian arc, and the Sicilian Maghrebides. The alternative explanation would imply the ubiquitous occurrence of autochthonous lower plate rocks at 25 km depth, i.e. a puzzling autochthonous continental Calabria. The Ionian slab beneath Calabria shows high Vp, high Qp and low Vp/Vs anomalies, typical of old oceanic lithosphere. Intermediate depth seismicity is concentrated within its thin oceanic crust, suggesting the occurrence of vigorous metamorphism. The slab dehydration promotes the melting of the overlying mantle, as testified by high Vp/Vs and low Qp anomalies between the slab and the Aeolian magmatic arc.
    Description: Published
    Description: 408-423
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: seismic tomography ; recent evolution of the Ionian slab ; deep earthquakes slab dehydration and magmatism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: In curved orogenic systems where thrusting and vertical-axis rotations have been documented, it is possible to determine whether the curvature is secondary or progressive based on the timing between the two motions. The South-Central Unit of the Southern Pyrenees provides an opportunity to investigate relationships between thrusting, folding, and vertical-axis rotation because of unusual preservation of Tertiary synorogenic sedimentary strata. Paleomagnetic samples were collected from 51 sites in the upper Eocene-lower Oligocene continental synorogenic strata of the Oliana anticline, a foreland fold along the eastern margin of the South-Central Unit. Site-mean characteristic remanent magnetization directions were determined from 17 sites through thermal demagnetization and principal component analysis. In addition, 72 samples were collected from 39 stratigraphic levels spanning the Upper Eocene marine marls and treated with thermal and alternating field demagnetization techniques. Of these, 53 samples yielded demagnetization trajectories that further constrained the rotation. Comparison of the observed mean paleomagnetic direction from the Oliana anticline with the expected direction indicates a counterclockwise rotation (R ± ΔR) of 20.3° ± 10.9°. Based on the stratigraphic horizons recording the rotation, the age of the rotation is younger than ~34 Ma (after deposition of Unit 3). Data covering the Upper Eocene-Lower Oligocene time interval indicate a similar magnitude of rotation, suggesting that late stage emplacement of thrust sheets hinterlandward of the Oliana anticline controlled the rotation, with rotation accommodated along regionally extensive evaporites. The well-constrained timing relationships between thrusting and rotation and the regional and local transport directions, suggest that the South-Central Unit is a progressive curve that formed through distributed shortening.
    Description: Published
    Description: 435-449
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pyrenees ; Oliana anticline ; synorogenic strata ; paleomagnetism ; salients ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Description: Published
    Description: 289-306
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: A new method combining measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux was developed in order to qualitatively and quantitatively characterise the CO2 source feeding the soil CO2 diffuse degassing. The method was tested in March 2007 at the Solfatara of Pozzuoli volcano degassing area (Naples, Italy) where more than 300 measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux were performed, surveying Solfatara crater and its surroundings. The wide range of CO2 flux and CO2 isotopic composition values (from 8.4 g m−2 d−1 to 28,834 g m−2 d−1, and from 0.73‰ to −33.54‰, respectively), together with their statistical distributions suggests the occurrence of multiple CO2 sources feeding soil degassing. The combined interpretation of flux and isotopic data allows us to identify and characterise two distinct gas sources: a hydrothermal and a biogenic source. The soil CO2 from the hydrothermal source is characterised by a mean δ13CCO2 of −2.3‰±0.9‰, hence close to the isotopic composition of the fumarolic CO2 (δ13CCO2=−1.48‰± 0.22‰) and by a mean CO2 flux of 2875 g m−2 d−1. The CO2 from the biogenic source is characterised by a mean δ13CCO2 of −19.4‰±2.1‰, and by a mean CO2 flux of 26 g m−2 d−1, which are both in the range of the typical values for biologic CO2 soil degassing. This reliable characterisation of the biogenic CO2 flux would not have been possible by solely applying a statistical analysis of the CO2 flux values, which is commonly applied in volcanological studies for the partitioning between background fluxes and anomalous CO2 fluxes. A map of the Solfatara diffuse degassing structure was derived from the estimated threshold for the biogenic CO2 flux, highlighting that soil degassing of hydrothermal CO2 mixed in different proportion with biogenic CO2 occurs over a large area (~0.8 km2), which extends over the inner part of the Solfatara crater as well as the eastern periphery, corresponding with a NW–SE fault system. The presented method and data analysis are important means of surveillance of the volcanic activity.
    Description: Published
    Description: 372–379
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 soil degassing ; CO2 flux ; carbon dioxide ; carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: Lake Averno is situated in the homonymous crater in the northwestern sector of the Campi Flegrei active volcanic system in Campania region, Italy. In February 2005 a fish kill event was observed in the lake, prompting a geochemical survey to ascertain the possible cause. In February 2005 a geochemical survey revealed that the lake water was unstratified chemically and isotopically, presumably, as a result of lake overturn. This fish kill phenomenon was recorded at least two other times in the past. In contrast to the February 2005 results, data collected in October 2005, shows the Lake Averno to be stratified, with an oxic epilimnion (surface to 6 m) and an anoxic hypolimnion (6 m to lake bottom at about 33 m). Chemical and isotopic compositions of Lake Averno waters suggest an origin by mixing of shallow waters with a Na–Cl hydrothermal component coupled with an active evaporation process. The isotopic composition of Dissolved Inorganic Carbon, as well as the composition of the non-reactive dissolved gas species again supports the occurrence of this mixing process. Decreasing levels of SO4 and increasing levels of H2S and CH4 contents in lake water with depth, strongly suggests anaerobic bacterial processes are occurring through decomposition of organic matter under anoxic conditions in the sediment and in the water column. Sulfate reduction and methanogenesis processes coexist and play a pivotal role in the anaerobic environment of the Lake Averno. The sulfate reducing bacterial activity has been estimated in the range of 14–22 μmol m−2 day−1. Total gas pressure of dissolved gases ranges between 800 and 1400 mbar, well below the hydrostatic pressure throughout the water column, excluding the possibility, at least at the survey time, of a limnic eruption. Vertical changes in the density of lake waters indicate that overturn may be triggered by cooling of epilimnetic waters below 7 °C. This is a possible phenomenon in winter periods if atmospheric temperatures remain frosty for enough time, as occurred in February 2005. The bulk of these results strongly support the hypothesis that fish kill was caused by a series of events that began with the cooling of the epilimnetic waters with breaking of the thermal stratification, followed by lake overturn and the rise of toxic levels of H2S from the reduced waters near the lake bottom.
    Description: Published
    Description: 305–316
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: lake Averno ; dissolved gases ; stable isotopes ; stable isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: The development of the 2004–2005 eruption at Etna (Italy) is investigated by means of field surveys to define the current structural state of the volcano. In 2004–2005, a fracture swarm, associated with three effusive vents, propagated downslope from the SE summit crater towards the SE. Such a scenario is commonly observed at Etna, as a pressure increase within the central conduits induces the lateral propagation of most of the dikes downslope. Nevertheless, some unusual features of this eruption (slower propagation of fractures, lack of explosive activity and seismicity, oblique shear along the fractures) suggest a more complex triggering mechanism. A detailed review of the recent activity at Etna enables us to better define this possible mechanism. In fact, the NW–SE-trending fractures formed in 2004–2005 constitute the southeastern continuation of a N–S-trending fracture system which started to develop in early 1998 to the east of the summit craters. The overall 1998–2005 deformation pattern therefore forms an arcuate feature, whose geometry and kinematics are consistent with the head of a shallow flank deformation on the E summit of Etna. Similar deformation patterns have also been observed in analogue models of deforming volcanic cones. In this framework, the 2004–2005 eruption was possibly induced by a dike resulting from the intersection of this incipient fracture system with the SE Crater. A significant acceleration of this flank deformation may be induced by any magmatic involvement. The central conduit of the volcano is presently open, constantly buffering any increase in magmatic pressure and any hazardous consequence can be expected to be limited. A more hazardous scenario may be considered with a partial or total closing of the central conduit. In this case, magmatic overpressure within the central conduit may enhance the collapse of the upper eastern flank, triggering an explosive eruption associated with a landslide reaching the eastern lower slope of the volcano.
    Description: Published
    Description: 195–206
    Description: reserved
    Keywords: eruption triggering ; volcano-tectonics ; fracture fields ; flank spreading ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2594507 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: In this paper, we discuss the possibility that the North Anatolian fault (NAF) results from the deep deformation of the slab beneath the Bitlis–Hellenic subduction zone. We described the tectonic evolution of the Anatolia–Aegean area in three main steps, before, during and after the formation of the NAF. We remark that the tectonic conditions that are assumed to have triggered the formation of the NAF, i.e. collision to the east and extension to the west, was already achieved before the onset of that strike-slip fault system. We also highlight that the formation of the NAF was accompanied by the uplift of the Turkish–Iranian plateau and by a surge of volcanism in the eastern Anatolia collisional area and probably by the acceleration of the Aegean trench retreat. We show tomographic images from global P-wave model of Piromallo and Morelli [C. Piromallo, A. Morelli, P wave tomography of the mantle under the Alpine–Mediterranean area, J. Geophys. Res. 108 (2003) doi: 10.1029/2002JB001757.] showing that the slab beneath the Bitlis collisional belt is not continuous and that its possible rupture pursues to the west at least up to Cyprus and possibly up to the eastern end of the Hellenic trench. All these observations suggest that the plate tectonic re-organization occurred in the Late Miocene–Early Pliocene in the region results from slab break-off in the Bitlis area and from its lateral propagation to the West. This idea is tested in analogue laboratory experiments, which confirm that the break of the slab under the collisional belt may trigger, (1) the acceleration of slab retreat to the west due to the increase in slab pull force, (2) the indentation of the continent in the collisional area and (3) produce the conditions that permit the lateral escape of material towards the west and the formation of the NAF.
    Description: Published
    Description: 85-97
    Description: JCR Journal
    Description: reserved
    Keywords: Mediterranean ; subduction ; collision ; analogue experiments ; seismic tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: The Lower Paleozoic assemblages in the E. Meditterranean comprise a Southern (Tauride-Anatolide,SE Anatolia and Central Iranian terranes) and a Northern (Carpathian-Balkan, Istanbul, Zonguldak and the Main Range terranes) Zone. A detailed stratigrapic account is given for these terranes for the Early Paleozoic and their paleogeographical settings are discussed to evaluate the Early Paleozoic geodynamic interpretation of this critical area between Gondwana-Perigondwana and Laurussia..
    Description: Published
    Description: 315-323
    Description: JCR Journal
    Description: open
    Keywords: Palaeozoic, evolution, Turkey ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: Integration of high-resolution geophysical and hydrogeological investigations at Solfatara Volcano, Campi Flegrei, Italy, allowed us to (1) image the shallow and intermediate subsurface to the crater, (2) elucidate patterns in the shallow subsurface degassing, and (3) refine and upgrade volcano-monitoring strategies for this dynamic area. Our results show that the subsurface to the crater can be divided roughly into two zones: a dry, outcropping layer overlying a horizon saturated by hydrothermal fluids. Within this saturated zone, intersections of dominant NW- and ENE-striking structural lineaments act as preferential escape conduits for the fluids which generate high microseismic noise amplitudes in the southeastern part of the crater. Hydrogeological data suggest an uprising of the isotherms below Solfatara crater, and a marked increment of fluid degassing, over the last 40 years. Sudden variations of both seismic noise level and noise cycling are positively correlated with early stages of ground inflation during the AD 2000 uplift. We believe therefore that monitoring of seismic noise can be used for upgrading early warning strategies in this sector of the Campi Flegrei volcanic system.
    Description: Published
    Description: B06201
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Geophysical ; hydrogeological ; experiments ; Solfatara ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: We provide new data on relative sea-level change from the late Holocene for two locations in the central Mediterranean: Sardinia and NE Adriatico. They are based on precise measures of submerged archaeological and tide notch markers that are good indicators of past sea-level elevation. Twelve submerged archaeological sites were studied: six, aged between 2.5 and 1.6 ka BP, located along the Sardinia coast, and a further six, dated 2.0 ka BP, located along the NE Adriatic coast (Italy, Slovenia and Croatia). For Sardinia, we also use beach rock and core data that can be related to Holocene sea level. The elevations of selected significant archaeological markers were measured with respect to the present sea level, applying corrections for tide and atmospheric pressure values at the time of surveys. The interpretation of the functional heights related to sea level at the time of their construction provides data on the relative changes between land and sea; these data are compared with predictions derived from a new glacio–hydro-isostatic model associated with the Last Glacial cycle. Sardinia is tectonically relatively stable and we use the sea-level data from this island to calibrate our models for eustatic and glacio–hydro-isostatic change. The results are consistent with those from another tectonically stable site, the Versilia Plain of Italy. The northeast Adriatic (Italy, Slovenia and Croatia) is an area of subsidence and we use the calibrated model results to separate out the isostatic from the tectonic contributions. This indicates that the Adriatic coast from the Gulf of Trieste to the southern end of Istria has Q1 tectonically subsided by 1.5m since Roman times.
    Description: Published
    Description: 2463-2486
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: sea level, archaeology, tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l−1 and from 2.6 to 3800 μg·l−1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwatersbsteam-heated groundwatersbNaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water–rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite+pyrite+pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.
    Description: Published
    Description: 313–330
    Description: reserved
    Keywords: Arsenic geochemistry ; Hydrothermal systems ; Water–rock interaction ; Hydrogeochemistry ; Arsenopyrite ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1251413 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: The first measurements of volcanic/hydrothermal water vapor and heat flux using eddy covariance (EC) were made at Solfatara crater, Italy, June 8–25, 2001. Deployment at six different locations within the crater allowed areas of focused gas venting to be variably included in the measured flux. Turbulent (EC) fluxes of water vapor varied between 680 and 11200g H2O m−2 d−1. Heat fluxes varied diurnally with the solar input, and the volcanic component of sensible heat ranged from ∼25 to 238W m−2. The highest measurements of both sensible and latent heat flux were made downwind of hot soil regions and degassing pools and during mid-day. The ratio of average volcanic heat (both latent and sensible) to CO2 flux resulted in an equivalent H2O/CO2 flux ratio of 2.2 by weight, which reflects the deep source H2O/CO2 gas ratio. The amount latent heat flux/evaporation was determined to be consistent both with what would be expected from the magnitude of CO2 fluxes and the fumarolic H2O/CO2 ratio, as well as with observed surface temperatures and wind speeds given a moist soil. This suggests that the water vapor that condenses in the shallow subsurface is remobilized at the soil–atmosphere interface through variable evaporation dependent on the deep heat flux and surface temperature. The results suggest that EC provides a quick and easy method to monitor average H2O/CO2 ratios continuously in volcanic regions, providing another important tool for volcanic hazards monitoring.
    Description: Published
    Description: 72–82
    Description: reserved
    Keywords: eddy covariance ; volcanic ; heat flux ; water vapor ; hydrothermal ; degassing ; flux ; emissions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 653195 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: Northern Apulia is an emerged portion of the Adriatic microplate, representing the foreland–foredeep area of a stretch of the Apennine chain in southern Italy. The interaction between the relatively rigid microplate and the contiguous more deformable domains is responsible for the intense seismicity affecting the chain area. However strong, sometimes even disastrous, earthquakes have also hit northern Apulia on several occasions. The identification of the causative faults of such events is still unclear and different hypotheses have been reported in literature. In order to provide guidelines and constraints in the search for these structures, a comprehensive re-examination and reprocessing of all the available seismic data has been carried out taking into consideration 1) the characteristics of historical events, 2) the accurate relocation of events instrumentally recorded in the last 20 years, 3) the determination of focal mechanisms and of the regional stress tensor. The results obtained bring to light a distinction between the foreland and foredeep areas. In the first region there is evidence of a regional stress combining NWcompression and NE extension, thus structures responsible for major earthquakes should be searched for among strike–slip faults, possibly with a slight transpressive character. These structures could be either approximately N–S oriented sinistral or E–Wdextral faults. In the foredeep region there is a transition toward transtensive mechanisms,with strikes similar to those of the previous zone, or maybe also towardsNWoriented normal faults,more similar to those prevailing in the southern Apennine chain in relation to a dominant NE extension; this appears to be the effect of a reduction of the NW compression, probably due to a decrease in efficiency of stress transmission along the more tectonised border of the Adriatic microplate.
    Description: Published
    Description: 9 - 35
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Northern Apulia ; Historical earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: Postseismic relaxation is modeled for the Irpinia earthquake, which struck southern Italy in 1980. Our goal is to understand the mechanism of surface deformation due to stress relaxation in the deep portion of the crust-lithosphere system for a shallow normal fault source and to infer the rheological properties of the lithosphere in the extensional environment of peninsular Italy. The modeling is carried out within the framework of our normal mode viscoelastic theory at high spatial resolution in order to accurately resolve the vertical surface displacements for a seismic source. The slip distribution over the faults is first inverted from coseismic leveling data, the misfit between observed and modeled vertical displacements being minimized by means of the L2 norm. Slip distribution is then used within the viscoelastic model to invert for the viscosities of the lower crust and generally of the lithosphere. Inversion is based on leveling data sampled along three lines crossing the epicentral area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.
    Description: Published
    Description: 1-16
    Description: partially_open
    Keywords: Lithospheric rheology ; Irpinia earthquake ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 419 bytes
    Format: 623618 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-04-04
    Description: Hydrothermal fluids and sediments from subaerial and shallow submarine sites at Vulcano Island, Italy were investigated for relations between the thermophilic microbial communities, as analysed by fluorescence in situ hybridization, and their geochemical environment, as assessed by photometry, chromatography, and in situ microsensor measurements. Mixing between hydrothermal fluids and seawater in the sediment pore space was reflected in the chemical composition of the emitted fluids, in depth profiles of pore water oxygen and sulfide concentrations, and in the structure of the benthic microbial community. Organic compounds did not accumulate in the vent fluids (b10 AM fatty acids) or in the sediments (b0.1% Corg), suggesting that efficient utilization supported microbial populations on the order of 104 cells per ml fluid and 108 cells per cm3 sediment. Groups of thermophiles that typically gain metabolic energy from the fermentation of organic matter (Thermococcales, Thermotoga/Thermosipho spp., and Bacillus sp.)were detected in significant abundances at all study sites. Also abundant were thermophiles capable of oxidizing organic acids with oxygen, nitrate, or sulfate. Aerobic thermophiles (Aquificales and Thermus sp.) were more abundant at oxic sites than at anoxic sites. Increasingly oxygenated habitats were associated with decreasing abundance of anaerobic (hyper)thermophiles belonging to the order Archaeoglobales.
    Description: Published
    Description: 169– 182
    Description: partially_open
    Keywords: Biogeochemistry ; Hydrothermal system ; Marine sediment ; Microbial ecology ; Microsensor ; Thermophiles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 315050 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-04-04
    Description: Combining tectonics, with seismological and geochemical data, we reconstruct the deformation history of the presently narrow Calabrian slab and the path of mantle circulation during the last 10 Ma. We show that during the slab deformation the mantle laterally flowed inside the back arc region permitting its retrograde motion and giving a seismological and volcanological record after 1–2 myr.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: mantle circulation ; Calabrian slab ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 458 bytes
    Format: 255992 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-12-03
    Description: A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP),Italy, is presented together with 87Sr/86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/4He = 5.2 Ra and 87Sr/86Sr = 0.7056 in south Campania, to 3He/4He = 0.44 Ra and 87Sr/86Sr = 0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma–crust interaction. The 3He/4He–87Sr/86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (f30 Ma), can ingrowth in the mantle wedge account for the 3He/4He of the most radiogenic basalts.
    Description: - European Social Fund - Scottish Universities - Carnegie Trust for the Universities of Scotland.
    Description: Published
    Description: 295–308
    Description: partially_open
    Keywords: Roman Comagmatic Province ; fluid inclusions ; helium ; strontium ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 516427 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-06-25
    Description: We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius. Vesuvius groundwaters are dilute (mean TDS 2800 mg/L) hypothermal fluids (mean T 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. D and 18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions. The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/12C and 3He/4He measurements indicate the contribution of a magmatic component with a 13C 0‰ and R/Ra of 2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts. A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata–Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO2 depleted, despite in some cases containing significant concentrations of magmaderived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.
    Description: -European Union, -Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica; -CNR–Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 963–981
    Description: partially_open
    Keywords: isotopes ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1032453 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: This work presents the results of hydrogeochemical studies carried out at Vesuvius during the period May 1998 - December 2001, mostly focusing on compositional time variations observed during this time. Based on their chemistry, groundwater samples are distinguished into two groups, 1 and 2, representative of water circulation in the southern and northern sectors of the volcano, respectively. Waters from group 1 are typically more acidic, warmer,and more saline than those of group 2. They also have higher CO2 and CH4 contents, attributed to enhanced input of deep-rising volatiles and prolonged water-rock interactions. Time-series highlight the fairly constant chemical composition of the entire aquifer. Groundwater temperature, pH, bicarbonate content and dissolved CO2 display quite stable values in the study period, particularly in deep wells (piezometric level more than 100 m deep). Shallower water bodies present more evident temporal variations, related to seasonal and anthropogenic effects. This paper also describes some important variations in water chemistry which had occurred by the time of the seismic event in early October 1999, particularly in the Olivella spring located on the northern flank of the volcano. At this site, a great decrease in water pH and redox potential, and increased dissolved CO2 contents and 3He/4He ratios were observed. These changes in chemical and isotope composition support the hypothesis of an input of magma-derived helium and carbon dioxide into the aquifer feeding the Olivella spring by the time of the earthquake.
    Description: Published
    Description: 81-104
    Description: partially_open
    Keywords: Vesuvius ; volcanic surveillance ; groundwater ; hydro-geochemistry ; oxygen-18 ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1457387 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece,and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH4) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH4 in both systems is controlled by aquifer temperature. N2/3He and CH4/3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO2 by H2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely. CO2/3He ratios and 13CCO2 values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism.
    Description: European community
    Description: Published
    Description: 2321–2334
    Description: partially_open
    Keywords: fumarolic gases ; hydrothermal systems ; chemical and isotopic equilibrium ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 829360 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: The western Mediterranean subduction zone (WMSZ) extends from the northern Apennine to southern Spain and turns around forming the narrow and tight Calabrian and Gibraltar Arcs. The evolution of the WMSZ is characterized by a first phase of orogenic wedging followed, from 30 Ma on, by trench retreat and back-arc extension. Combining new and previous geological data, new tomographic images of the western Mediterranean mantle, and plate kinematics, we describe the evolution of the WMSZ during the last 35 Myr. Our reconstruction shows that the two arcs form by fragmentation of the 1500 km long WMSZ in small, narrow slabs. Once formed, these two narrow slabs retreat outward, producing back-arc extension and large scale rotation of the flanks, shaping the arcs. The Gibraltar Arc first formed during the middle Miocene, while the Calabrian Arc formed later, during the late Miocene-Pliocene. Despite the different paleogeographic settings, the mechanism of rupture and backward migration of the narrow slabs presents similarities on both sides of the western Mediterranean, suggesting that the slab deformation is also driven by lateral mantle flow that is particularly efficient in a restricted (upper mantle) style of mantle convection.
    Description: Published
    Description: 1-21
    Description: reserved
    Keywords: Mediterranean ; subduction ; arcuate belt ; tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1716267 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-04
    Description: Chemical and isotopic data have been used as geochemical tracers for a genetic characterization of hydrocarbon gases from a total of eleven manifestations located in Eastern and Central-Southern Sicily (Italy). The molecular analysis shows that almost all the samples are enriched in methane (up to 93.2% Vol.), with the exception of four gas samples collected around Mt. Etna showing high mantle-derived CO2 content. Methane isotope signatures suggest that these are thermogenic gases or a mixture between thermogenic gases and microbial gases. Although samples from some mud volcanoes in Southern Sicily (Macalube di Aragona) show isotope signatures consistent with a mixing model between thermogenic and microbial, by combining the molecular compositions (C1/(C2 + C3))and the methane isotope ratios (d13C1), such a process seems to be excluded. Therefore, the occurrence of secondary post-genetic processes should be invoked. Two main hypotheses have been considered: the first hypothesis includes that the gas is produced by microbial activity and altered post-genetically by microbial oxidation of methane, while according to the second hypothesis thermogenic gas have modified their molecular ratios due to vertical migration.
    Description: Published
    Description: L06607
    Description: partially_open
    Keywords: Isotopic composition/chemistry ; Organic geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 1041380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: This paper discusses the abundance, speciation and mobility of As in groundwater systems from active volcanic areas in Italy. Using literature data and new additional determinations, the main geochemical processes controlling the fate of As during gas–water–rock interaction in these systems are examined. Arsenic concentrations in the fluids range from 0.1 to 6940 mg/l, with wide differences observed among the different volcanoes and within each area. The dependence of As content on water temperature, pH, redox potential and major ions is investigated. Results demonstrate that As concentrations are highest where active hydrothermal circulation takes place at shallow levels, i.e. at Vulcano Island and the Phlegrean Fields. In both areas the dissolution of As-bearing sulphides is likely to be the main source of As. Mature Cl-rich groundwaters, representative of the discharge from the deep thermal reservoirs, are typically enriched in As with respect to SO4-rich ‘‘steam heated groundwaters’’. In the HCO3 groundwaters recovered at Vesuvius and Etna, aqueous As cycling is limited by the absence of high-temperature interactions and by high-Fe content of the host rocks, resulting in oxidative As adsorption. Thermodynamic modelling suggests that reducing H2S-rich groundwaters are in equilibrium with realgar, whereas in oxidising environments over-saturation with respect to Fe oxyhydroxides is indicated. Under these oxidising conditions, As solubility decreases controlled by As co-precipitation with, or adsorption on, Fe oxy-hydroxides. Consistent with thermodynamic considerations, As mobility in the studied areas is enhanced in intermediate redox environments, where both sulphides and Fe hydroxides are unstable.
    Description: Published
    Description: 1283–1296
    Description: partially_open
    Keywords: Hydrogeochemistry ; Arsenic ; volcanic groundwaters ; speciation ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 703456 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: The Neapolitan volcanic region is located within the graben structure of the Campanian Plain (CP), which developed between the western sector of the Appenine Chain and the eastern margin of the Tyrrhenian Sea. Two volcanic areas, spaced less than 10 km apart, are situated within the CP: the Somma-Vesuvius Volcano (SVV) and the Phlegraean Volcanic District (PVD). SVV is a typical stratovolcano, whereas PVD, including Campi Flegrei, Procida, and Ischia, is composed mostly of monogenetic centers. This contrast is due to different magma supply systems: a widespread fissure-type system beneath the PVD and a central-type magma supply system for the SVV. Volcanological, geophysical, and geochemical data show that magma viscosity, magma supply rate, and depth of magma storage are comparable at PVD and SVV, whereas different structural arrangements characterize the two areas. On the basis of geophysical data and magma geochemistry, an oblique-extensional tectonic regime is proposed within the PVD, whereas in the SVVarea a compressive stress regime dominates over extension. Geophysical data suggest that the area with the maximum deformation rate extends between the EW-running 41st parallel and the NE-running Magnaghi-Sebeto fault systems. The PVD extensional area is a consequence of the Tyrrhenian Sea opening and is decoupled from the surrounding areas (Roccamonfina and Somma-Vesuvius) which are still dominated by Adriatic slab dynamics. Spatially, we argue that the contribution of the asthenospheric wedge become much less important from W-NW to E-SE in the CP. The development of the two styles of volcanism in the CP reflects the different tectonic regimes acting in the area.
    Description: Published
    Description: 1-25
    Description: partially_open
    Keywords: Volcanic styles ; Tectonic setting ; Neapolitan volcanic region ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 428 bytes
    Format: 1655376 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: The Jalisco Block (JB) is a geologically and tectonically complex part of northwestern Mexico characterized by active subduction-type volcanism, rifting, and old stable structures. Thermal springs and groups of springs are widely distributed over JB. Bubbling gas from seven thermal springs located within different tectonic environments of the JB was analyzed for He, 20Ne, and N2 concentrations and d15N ratios. All gases are N2-dominant (〉84%) with the exception of one sample (Rio´ Purificacio´n), which has a significant CH4 content (about 50%). All collected gas samples are relatively high in He, up to 1500 ppm vol and with 3He/4He values ranging from 0.6 to 4.5 Ra. All measured nitrogen isotope ratios are heavier than air with d15N values ranging from 0.5 to 5.0%. The relative N2 excess with respect to air-saturated water computed on the basis of N2 and 20Ne contents indicates the contribution of a nonatmospheric N2 source. All the samples show a good correlation between d15N and the relative excess of N2 with d15N +5.3% for the maximum N2 excess of 100%. Due to a presumed lack of seafloor sediment involved in the subduction process, such a d15N positive value seems to reflect the addition to the fluids of a heavy nitrogen originating from metamorphism processes of rocks occurring within the overlying continental crust.
    Description: Published
    Description: 1-9
    Description: partially_open
    Keywords: bubbling gases ; forearc region ; Jalisco Block-Mexico ; nitrogen isotopes ; subduction-related volcanism ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 532399 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: This survey proposes a new approach to identify buried caldera boundaries of a volcanic cone, combining (1) a systematic elliptic Fourier functions (EFF) analysis on the contour lines based on the external shape of the edifice with (2) self-potential (SP) measurements on volcano flanks. The methodology of this approach is to investigate the relationships between (1) vertical morphological changes inferred from EFF analysis and (2) lateral lithological transition inside the edifice inferred from SP/elevation gradients. The application of these methods on Misti volcano in southern Peru displays a very good correlation. The three main boundaries evidenced by hierarchical cluster analysis on the contour lines coincide with the two main boundaries characterised by SP signal and with a secondary SP signature related with a summit caldera. In order to explain these results showing a very good correlation between morphologic and lithologic changes as function of elevation, caldera boundaries have been suggested. The latter would be located at an average elevation of (1) 4350–4400 m, (2) 4950–5000 m, and (3) 5500– 5550 m. For the lowest boundary in elevation, the coincidence with the lateral extension of the hydrothermal system inferred from SP measurements suggests that caldera walls act as a barrier for lateral extension of hydrothermal systems. In the summit area, the highest boundary has been related with the summit caldera, inferred by a secondary SP minimum and geological evidence.
    Description: - Institut de Recherche pour le Développement (IRD) - Instituto Geofisico del Peru´ (IGP).
    Description: Published
    Description: 283– 297
    Description: partially_open
    Keywords: caldera ; elliptic Fourier functions ; geomorphology ; self-potential ; Misti volcano ; Peru ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 756700 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: We present the first regional map of CO2 Earth degassing from a large area (most of central and south Italy) derived from the carbon of deep provenance dissolved in the main springs of the region. The investigation shows that a globally significant amount of deeply derived CO2 (10% of the estimated global CO2 emitted from subaerial volcanoes) is released by two large areas located in western Italy. The anomalous flux of CO2 suddenly disappears in the Apennine in correspondence to a narrow band where most of seismicity concentrates. Here, at depth, the gas accumulates in crustal traps generating CO2 overpressurized reservoirs which induce seismicity.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Carbon dioxide ; Central Italy ; Southern Italy ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 426 bytes
    Format: 284605 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-04
    Description: This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande-Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP^CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41‡ and N64‡, and decoupled from the volcanic structures.
    Description: Published
    Description: 1^18
    Description: partially_open
    Keywords: Stromboli ; hydrothermal system ; self-potential ; soil gas ; carbon dioxide ; Aeolian islands ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1106054 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: We report results on the measured high 3He/4He isotope ratio in western Sicily, interpreted together with the heat data. The study of this sector of the Europe-Africa interaction is crucial to a better understanding of the tectonics and the geodynamical evolution of the central Mediterranean area. The estimated mantle-derived helium fluxes in the investigated areas are up to 2–3 orders of magnitude greater than those of a stable continental area. The highest flux, found in the southernmost area near the Sicily Channel, where recent eruptions of the Ferdinandea Island occurred 20 miles out to sea off Sciacca, has been associated with a clear excess of heat flow. Our results indicate that there is an accumulation of magma below the continental crust of western Sicily that is possibly intruding and out-gassing through roughly N-S trending deep fault systems linked to the mantle, that have an extensional component. Although the identification of these faults is not sufficiently constrained by our data, they could possibly be linked to the pre-existing faults that originated during the Mesozoic extensional-transtensional tectonic phases.
    Description: Published
    Description: L04312
    Description: partially_open
    Keywords: helium isotopes ; heat production ; tectonics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 134391 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: Here, a new technique for the determination of dissolved He isotope ratios in ground-waters is presented. This method is based on the extraction and subsequent equilibrium of dissolved gases in an added ‘‘host’’ gas phase. Ultra pure N2 is placed in glass flasks (250 cc), containing water samples, that were hermetically sealed after their collection. After shaking in an ultrasonic bath for 10 min, an aliquot of the separated gas phase was removed from the flask for MS analysis. 3He/4He ratios are measured by using a modified double collector mass spectrometer (VG 5400-TFT). Helium and Ne concentrations are calculated by comparing the partial pressures of masses 4 and 20 of the samples with those of the air-standard measured by a quadrupole mass spectrometer (QMS;VG Quartz). Using He and Ne equilibrium partitioning coefficients, it is possible to calculate the amount of gas originally dissolved in the water. The technique was tested on both air-saturated waters (ASW) and thermal waters from Stromboli (Aeolian Islands, South Italy), the results of which confirmed good reproducibility (ffi5%) and accuracy (ffi3%) of the data. The method was then applied to three thermal water samples collected from the same volcanic area and the results compared with those of a fumarolic and a soil gas. The isotope ratios for dissolved He gave values of 4.06–4.23 Ra, which are significantly higher than those previously reported in the literature (3.0, 3.5 and 2.9 Ra) and that measured at the fumarole (3.09 Ra), suggesting a newer and higher isotopic signature for the volcanic system. The proposed method appears to be a useful tool in the determination of 3He/4He ratios in ground-water systems, especially when free gases are not available or are dangerous to collect.
    Description: Published
    Description: 665–673
    Description: partially_open
    Keywords: dissolved helium isotopes ; gas water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 439948 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas–water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80–1008 C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO2 in the springs was also detected and associated with high CO2 degassing.
    Description: Published
    Description: 91– 108
    Description: partially_open
    Keywords: Popocatepetl volcano ; helium isotope composition ; carbon isotope composition ; dissolved gases ; gas–water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 899823 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...