ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion  (32)
  • Mt. Etna  (23)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (22)
  • 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous  (16)
  • Springer  (43)
  • Elsevier Science Limited  (28)
  • Istituto Nazionale di Geofisica e Vulcanologia  (9)
  • Cabildo Insular de Tenerife Fundación Canaria ITER  (6)
  • Blackwell Publishing Ltd
  • EGU
  • Essen : Verl. Glückauf
  • 2010-2014  (60)
  • 2005-2009  (29)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: The 2011 submarine eruption that took place in the proximity of El Hierro Island (Canary Islands, Spain) has raised the need to identify the most likely future emission zones even on volcanoes characterized by low frequency activity. Here, we propose a probabilistic method to build the susceptibility map of El Hierro, i.e. the spatial distribution of vent opening for future eruptions, based on the probabilistic analysis of volcano-structural data of the Island collected through newfieldworkmeasurements, bathymetric information, as well as analysis of geological maps, orthophotos and aerial photographs. These data have been divided into different datasets and converted into separate and weighted probability density functions, which were included in a non-homogeneous Poisson process to produce the volcanic susceptibility map. The most likely area to host new eruptions in El Hierro is in the south-western part of the West rift. High probability locations are also found in the Northeast and South rifts, and along the submarine parts of the rifts. This map represents the first effort to deal with the volcanic hazard at El Hierro and can be a support tool for decision makers in land planning, emergency measures and civil defense actions.
    Description: This work has been partially funded by the Spanish Geological Survey (IGME) through the MODEX Project (directed by Luis Laín) and a Research Grant for LB, and the Research grant program “Innova Canarias 2020®” from the “Fundación Universitaria de Las Palmas”.
    Description: Published
    Description: 21-30
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Susceptibility ; Volcanic hazard ; Eruptive vent ; Volcano-tectonics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We made a stratigraphic, structural and morphologic study of Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist all around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of the edifice of Amiata onto its weak substratum, formed by the late Triassic evaporites (Anidriti of Burano) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement forcing the outward flow and spreading of the ductile layers below the volcano. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a solution. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for the formation of trains of adjacent diapirs. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays’ exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh-water aquifer) and the rocks of the geothermal field, constitute ideal pathways for water recharge during vapour extraction for geothermal energy production. We think that volcanic spreading could maintain faults in a critically stressed state, facilitating the occurrence of triggered seismicity.
    Description: Published
    Description: 16-31
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Amiata volcano ; geology ; structure ; volcanic spreading ; spreding model ; geothermal traps formation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We investigate the transfer zone and linkage between divergent extensional seismogenic fault systems on the border amid the central and southern Apennines (central Italy). These regional NW-SE striking sets include large seismogenic sources that caused major historical earthquakes (Mw≤7). The faults in the northern part of the study area dip to the southwest; those in the southern part dip to the northeast. The SW-dipping system (Abruzzi Apennines) terminates with the Aremogna-Cinque Miglia source; the NE-dipping system (southern Apennines) terminates with the Boiano Basin source. To test whether the transfer zone model applies to the central-southern Apennines border, we analyzed and relocated seismicity that occurred from 2007 to 2011 between the Aremogna-Cinque Miglia and Boiano Basin sources, where we expect the transfer zone. Seismicity is made of independent events (Md〈3.5) and low-magnitude swarms. West of the Apennines, hypocenters are located within the uppermost 12-13 km. Events and swarms that occurred east of the axis affect the 13-25 km below. West of the chain, focal mechanisms show T-axes striking ~NNW-SSE. East of the chain, T-axes strike ~NE-SW. This trend is consistent with GPS data. The hypocentral distribution of swarms located between the Aremogna-Cinque Miglia and Boiano Basin sources shows a ~NNE-SSW trend, coincident with part of the Ortona-Roccamonfina Line, a regional transverse lineament. The spatial distribution of seismicity, the geometry and kinematics of active faulting in the region, and results from previous geophysical studies, allow us to contend the existence of a transfer zone between these seismogenic normal fault systems. Our data also allow us to recognize the activity of such transfer along the central part of the Ortona-Roccamonfina Line. We infer that reverse in dip polarity between the two normal fault systems could also result from the passage between the diverse tectonic units composing the border between central and southern Apennines.
    Description: Published
    Description: 18-31
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: seismogenic sources ; seismic swarms ; transverse lineaments ; fault polarity ; transfer zone ; southern italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-19
    Description: Starting from late May 2012, the Emilia region (Northern Italy) was severely shaken by an intense seismic sequence, originated from a ML 5.9 earthquake on May 20th, at a hypocentral depth of 6.3 km, with thrusttype focal mechanism. In the following days, the seismic rate remained high, counting 50 ML ≥ 2.0 earthquakes a day, on average. Seismicity spreads along a 30 km east–west elongated area, in the Po river alluvial plain, in the nearby of the cities Ferrara and Modena. Nine days after the first shock, another destructive thrust-type earthquake (ML 5.8) hit the area to the west, causing further damage and fatalities. Aftershocks following this second destructive event extended along the same east-westerly trend for further 20 km to the west, thus illuminating an area of about 50 km in length, on thewhole. After the first shock struck, on May 20th, a dense network of temporary seismic stations, in addition to the permanent ones, was deployed in the meizoseismal area, leading to a sensible improvement of the earthquake monitoring capability there. A combined dataset, including threecomponent seismic waveforms recorded by both permanent and temporary stations, has been analyzed in order to obtain an appropriate 1-D velocity model for earthquake location in the study area. Here we describe the main seismological characteristics of this seismic sequence and, relying on refined earthquakes location, we make inferences on the geometry of the thrust system responsible for the two strongest shocks.
    Description: Published
    Description: 44-55
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Seismology ; Hypocentral location ; Seismic sequence ; Velocity model ; Thrust fault system ; Po alluvial Plain ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-07
    Description: Recognizing the seismogenic source of major historical earthquakes, particularly when these have occurred offshore, is a long-standing issue across the Mediterranean Sea and elsewhere. The destructive earthquake (M ~7) that struck western Calabria (southern Italy) on the night of 8 September 1905 is one such case. having various authors proposed a seismogenic source, with apparently diverse hypotheses and without achieving a unique solution. To gain novel insight into the crustal volume where the 1905 earthquake took place and to seek a more robust solution for the seismogenic source associated with this destructive event, we carried out a well-targeted multidisciplinary survey within the Gulf of S. Eufemia (SE Tyrrhenian Sea), collecting geophysical data, oceanographic measurements, and biological, chemical and sedimentary samples. We identified three main tectonic features affecting the sedimentary basin in the Gulf of S. Eufemia: 1) a NE-SW striking, ca. 13-km-long, normal fault, here named S. Eufemia Fault; 2) a WNW-striking polyphased fault system; and 3) a likely E-W trending lineament. Among these, the normal fault shows evidence of activity witnessed by the deformed recent sediments and by its seabed rupture along which, locally, fluid leakage occurs. Features in agreement with the anomalous distribution of prokaryotic abundance and biopolymeric C content, resulted from the shallow sediments analyses. The numerous seismogenic sources proposed in the literature during the past 15 years make up a composite framework of this sector of western Calabria, that we tested against a) the geological evidence from the newly acquired dataset, and b) the regional seismotectonic models. Such assessment allows us to propose the NE-SW striking normal fault as the most probable candidate for the seismogenic source of the 1905 earthquake. Re-appraising a major historical earthquake as the 1905 one enhances the seismotectonic picture of western Calabria. Further understanding of the region and better constraining the location of the seismogenic source may be attained through integrated interpretation of our data together with a) on-land field evidence, and b) seismological modeling.
    Description: Published
    Description: 62-75
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: seismogenic source ; earthquake ; seismotectonics ; prokaryotes ; Calabrian Arc ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: A temporary seismic network composed of 11 stations was installed in the city of Potenza (Southern Italy) to record local and regional seismicity within the context of a national project funded by the Italian Department of Civil Protection (DPC). Some stations were moved after a certain time in order to increase the number of measurement points, leading to a total of 14 sites within the city by the end of the experiment. Recordings from 26 local earthquakes (Ml 2.2−3.8 ) were analyzed to compute the site responses at the 14 sites by applying both reference and non-reference site techniques. Furthermore, the Spectral Intensity (SI) for each local earthquake, as well as their ratios with respect to the values obtained at a reference site, were also calculated. In addition, a field survey of 233 single station noise measurements within the city was carried out to increase the information available at localities different from the 14 monitoring sites. By using the results of the correlation analysis between the horizontal-to-vertical spectral ratios computed from noise recordings (NHV) at the 14 selected sites and those derived by the single station noise measurements within the town as a proxy, the spectral intensity correction factors for site amplification obtained from earthquake analysis were extended to the entire city area. This procedure allowed us to provide a microzonation map of the urban area that can be directly used when calculating risk scenarios for civil defence purposes. The amplification factors estimated following this approach show values increasing along the main valley toward east where the detrital and alluvial complexes reach their maximum thickness.
    Description: Published
    Description: 493-516
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: site effect ; seismic noise ; spectral intensity ; correlation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: There is no abstract
    Description: Published
    Description: 631-637
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Ground motion ; Surveys ; measurements and monitoring ; Interments and techniques ; Seismological data ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: On 13 May 2008, an eruption began at Mt. Etna from an eruptive fissure that opened on the upper eastern flank of the volcano. During 12-13 May, 157 infrasonic events, together with the related seismic transients, were collected. We carried out several analyses to obtain dominant frequencies, pseudospectrograms, peak-to-peak amplitudes, source locations and time lags between infrasonic and seismic events. Spectra of the infrasonic events show two main spectral peaks in the frequency bands ~0.4-0.7 Hz and 1.5-2.0 Hz, respectively. Both infrasonic and seismic events were separately located below the North-East Crater, where no eruptive activity was observed. Moreover, significant changes in infrasound spectral content, as well as in the infrasonic-seismic lags, were found a few hours before the beginning of the eruption. On the basis of the collected information the infrasound source mechanism was modelled as a superposition of pipe and Helmholtz resonance, also leading to outline the geometry of the shallower portion of the North-East Crater plumbing system. The occurrence of these seismo-infrasonic events together with other geological and geophysical evidences, led us to inferring a direct link between North-East Crater activity and the eruptive fissure. Further, based on variations over time of both spectral features and seismicinfrasonic time lag, shallowing phenomena of the free magma column inside North-East Crater conduit were hypothesized. Such an uprise of magma was likely caused by a pressure increase inside the plumbing system occurring before the beginning of the 2008-2009 eruption.
    Description: Published
    Description: 53-68
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; Helmholtz resonator ; plumbing system geometry ; seismo-acoustic studies ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-06
    Description: Themajor elements, trace elements and Sr and Nd isotopes of selected Etnean primitive rocks (b15 ky BP) were studied in order to characterize their mantle source. The noble-gas geochemistry of fluid inclusions in minerals fromthe same lavaswas also investigated. Themajor element compositions ofwhole rocks and minerals showed that these products are among the most primitive atMt. Etna, comprising 6.3–17.5 wt.% MgO. The variable LREE (Light Rare Earth Elements) enrichment relative to MORB (Mid-Ocean Ridge Basalt) (Lan/Ybn = 11–26), togetherwith the patterns of certain trace-element ratios (i.e., Ce/Yb versus Zr/Nb and Th/Y versus La/Yb), can be attributed to varying degrees of melting of a common mantle source. Numerical simulations performed with the MELTS program allowed the melting percentages associated with each product to be estimated. This led us to recalculate the hypothetical parental trace-element content of the Etneanmantle source, whichwas common to all of the investigated rocks. The characteristics of the Sr, Nd and He isotopes confirmed the primitive nature of the rocks,with themost-depleted and primitive lava being that ofMt. Spagnolo (SPA; 143Nd/144Nd = 0.512908 87Sr/ 86Sr = 0.703317–0.703325 and 3He/4He = 7.6 Ra), and highlighted the similarity of the mantle sources feeding the volcanic activity of Mt. Etna and the Hyblean Plateau (a region to the south of Mt. Etna and characterized by oldermagmatismthan Mt. Etna). The coupling of noble gases and trace elements suggests an origin for the investigated Etnean lavas from melting of a Hyblean-like mantle, consisting of a two-component source where a peridotitic matrix is veined by 10% pyroxenite. A variable degree of mantle contamination by crustal-like fluids, probably related to subduction, is proposed to explain the higher Sr-isotope and lowerNd-isotope values in some rocks (143Nd/144Nd up to 0.512865 and 87Sr/86Sr up to 0.703707). This process probably occurred in the source prior tomagma generation, refertilizing some portions of themantle. Accordingly, the estimated degree of melting responsible for each magma appears to be related to its 87Sr/86Sr enrichment. In contrast, the decoupling between 3He/4He and 87Sr/86Sr ratios requires the occurrence in the crustal reservoirs of further processes capable of shifting the He isotope ratio towards slightly more radiogenic values, such as magma aging or a contribution of shallow fluid. Therefore, different residence times in the Etnean reservoir and/or various rates of magma ascent could be key parameters for preserving the original He isotope marker of the Etnean mantle source.
    Description: Published
    Description: 243-258
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; Hyblean Plateaux ; Primitive magma ; Mantle metasomatism ; Peridotite ; Pyroxenite ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-01
    Description: In this work, we tackle the problem of seismic hazard at Etna deriving from the recurrent seismogenic activity of local faults, by adopting two independent methods based on probabilistic approaches. We assess the hazard in terms of macroseismic intensity and represent the occurrence probability calculated for different exposure times both on maps and at fault scale. Seismic hazard maps obtained by applying the “site approach” through the SASHA code and a new probabilistic attenuation model, indicate the eastern flank of the volcano as the most hazardous, with expected intensity (Iexp) in 50 years (i.e. the standard exposure time adopted in the seismic regulations) ranging from degrees IX to X EMS. In shorter exposure periods (20, 10, 5 years), values of Iexp up to IX are also reached in the same area, but they are clearly determined by the earthquakes generated by the Timpe fault system. In order to quantify the contribution of local seismogenic sources to the hazard of the region, we reconstruct the seismic history of each fault and calculate with SASHA the probability that earthquakes of a given intensity may be generated in different exposure times. Results confirm the high level of hazard due to the S. Tecla, Moscarello and Fiandaca faults especially for earthquakes of moderate intensity, i.e. VI≤I0≤VII, with probabilities respectively exceeding 50% and 20% in 10 years, and 30% and 10% in 5 years. Occurrence probability of major events (I0≥VIII) at the fault scale has also been investigated by statistics on intertimes. Under stationary assumptions we obtain a probability of 6.8% in 5 years for each structure; by introducing the time-dependency (time elapsed since the last event occurred on each fault) through a BPT model, we identify the Moscarello and S. Tecla faults as the most probable sources to be activated in the next 5 years (2013–2017). This result may represent a useful indication to establish priority criteria for actions aimed at reducing seismic risk at a local scale.
    Description: Published
    Description: 158-169
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity ; Seismic history ; Occurrence probability ; Time-dependent renewal process ; Individual sources ; Seismic hazard ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-03-01
    Description: In this paper, we apply a probabilistic procedure to model the attenuation of the macroseismic intensity in the Mt. Etna region, which allows estimating probabilistic seismic scenarios. Starting from the local earthquake catalogue, we select a dataset of 47 events having epicentral intensity I0 from VI to IX–X EMS, and update the model parameters previously achieved for Italy according to the Bayesian paradigm. For each class of epicentral intensity I0, we then estimate the probability distribution of the intensity at a site conditioned on the epicentre-site distance through a binomial-beta model, under the assumption of a point seismic source and isotropic decay (circular). The mode of the distribution is taken as the expected intensity Is at that site. Since the strongest earthquakes show a preferential propagation of shaking along the fault strike and a rapid decrease in the perpendicular direction, we also consider the anisotropic decay (elliptical) of the intensity due to a linear source (finite fault). We therefore transform the plane so that the ellipse has the length of the fault rupture as maximum axis and its strike as azimuth is changed into a circle with fixed diameter; then we apply the probabilistic model obtained for the isotropic case to the modified data. The entire calculation procedure is implemented in the software PROSCEN which, given the location and the epicentral intensity (and eventually the fault parameters) of the earthquake to be simulated, generates the probabilistic seismic scenario according to the isotropic and anisotropic models of attenuation. The results can be plotted on grid maps representing (1) the intensity that can be exceeded with a fixed probability, or (2) the probability of exceeding a fixed intensity value. The first representation may also find application in seismic monitoring at Etna volcano, in order to produce real-time intensity ShakeMaps based on the instrumental parameters calculated by the automatic earthquake processing system.
    Description: Published
    Description: 149-157
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity ; Attenuation Probability distribution ; Source models ; Seismic scenario ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-03-01
    Description: An updated tectonic framework of Etna's unstable flank has been defined as a result of multidisciplinary analyses carried out by integrating geological and geophysical data. The different typologies of datasets have been analyzed and correlated in order to constrain the geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano and to better understand their complex relationship with the offshore morphostructures of the continental margin. In particular, we have considered as the main structural elements the following four fault systems: Pernicana, Ragalna, Tremestieri–Trecastagni and Timpe. Slip-rates and kinematics have been estimated in both long- and short-terms, respectively, from geological and seismotectonic/geodetic data. Data integration has allowed defining five kinematic domains in the sliding flank of Etna: (1) the NE block, bordered by the Pernicana fault and characterised by the highest deformation velocities; ground velocity progressively diminishes toward South, with a clockwise rotation of the vectors defining (2) the block embracing the central part of the Timpe system; (3) the Giarre wedge; (4) the Medium-East block, bounded by the S. Tecla and Trecastagni faults; and (5) the SE block bordered, by the hidden Belpasso-Ognina tectonic lineament. The dynamics of these blocks takes place through discontinuous movements: sudden short-term accelerations related to the magma intrusion are superimposed to a fairly constant mid-term ESE sliding. The proposed comprehensive model of the unstable flank provides the basic input parameters for applying analytical models to flank dynamics of Etna volcano.
    Description: Published
    Description: 5-15
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Faults, Seismotectonics, Ground deformation, Geodynamic model, Flank instability, Mt Etna ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-10-26
    Description: One of the main objectives of the ITACA (ITalian ACcelerometric Archive) strong motion database, promoted by the Italian Department of Civil Protection, was to improve the characterization of the recording sites from a geological and geophysical point of view and to provide their seismic classification according to the seismic norms pertinent to Italy, namely the Eurocode 8 and the National Technical Norms for Constructions. A standard format to summarize the available information for the recording stations was first produced, in terms of a technical report dynamically linked to the database, i.e., some of the relevant information is automatically updated when the corresponding fields of the database are modified. Then, an important activity of collection, qualification and synthesis of available data was carried out, especially for stations that recorded the strongest earthquakes in Italy in the last 40 years, and for which a relevant number of studies have been published. In spite of this activity, among the more than 700 strong motion stations present in the ITACA database, only a limited number of them could be characterized by quantitative information on subsurface soil properties. For this reason, a dual seismic site classification criterion was implemented, either based on the standard Vs,30 scheme, or, in the absence of such information, based on an expert opinion supported by shallow geology maps, mostly at 1:100,000 scale, and when available on the H/V ratios calculated on recordings. Owing to the relevance in the Italian geographic and morphological context, a special care was also given to the topographic classification of stations, based on suitable criteria developed within a GIS environment.
    Description: Published
    Description: 1779-1796
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: ITACA database ; Strong motion station ; General characterization ; Site classification ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Previous works based mainly on strong-motion recordings of large Japanese earthquakes showed that site amplification and soil fundamental frequency could vary over long and short time scales. These phenomena were attributed to non-linear soil behaviour: the starting fundamental frequency and amplification were both instantaneously decreasing and then recovering for a time varying from few seconds to several months. The recent April 6, 2009 earthquake (M W 6.3), occurred in the L’Aquila district (central Italy), gave us the possibility to test hypotheses on time variation of amplification function and soil fundamental frequency, thanks to the recordings provided by a pre-existing strong-motion array and by a large number of temporary stations. We investigated the intra- and inter-event soil frequency variations through different spectral analyses, including time-frequency spectral ratios and S-Transform (Stockwell et al. in IEEE Trans Signal Process 44:998–1001, 1996). Finally, analyses on noise recordings were performed, in order to study the soil behaviour in linear conditions. The results provided puzzling evidences. Concerning the long time scale, little variation was observed at the permanent stations of the Aterno Valley array. As for the short time-scale variation, the evidence was often contrasting, with some station showing a time-varying behavior, while others did not change their frequency with respect to the one evaluated from noise measurements. Even when a time-varying fundamental frequency was observed, it was difficult to attribute it to a classical, softening non-linear behaviour. Even for the strongest recorded shocks, with peak ground acceleration reaching 0.7 g, variations in frequency and amplitude seems not relevant from building design standpoint. The only exception seems to be the site named AQV, where the analyses evidence a fundamental frequency of the soil shifting from 3 Hz to about 1.5 Hz during the mainshock.
    Description: Published
    Description: 869-892
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Strong motion ; Subsoil non-linearity ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publication Date: 2017-04-04
    Description: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Description: Published
    Description: 170-186
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f^0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.
    Description: Published
    Description: 717-739
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Generalized Inversion Technique ; 2009 L'Aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: The selection of specific elastic response spectra according to soil categories is the easiest way to account for site effects in engineering projects and general-purpose hazard maps. Most of the international seismic codes make use of the average shear wave velocity of the upper 30 m (Vs,30) to discriminate soil categories, although some doubts arose about the capability of Vs,30 to predict actual soil amplification. In this work we propose two soil classifications in which the soil fundamental frequency (f0) becomes either an alternative or a complement to Vs,30. The performance of the derived categorizations is achieved through the estimation of the standard deviation associated to ground motion prediction equations of acceleration response spectra, considering recordings extracted from the Italian strong motion data base. The results indicate that there is a significant reduction of the standard deviation when the classification is based on the couple of variables Vs,30–f0, although a classification based of the single f0 also leads to satisfactory results, comparable with those obtained assuming a classification scheme based on Vs,30.
    Description: Published
    Description: 1877-1898
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: site effects ; soil classification ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-03
    Description: The April 3, 1998 Mw=5.1 Gualdo Tadino earthquake (central Italy) was the last significant event in the 6-month-long Umbria–Marche seismic crisis. This event and its aftershocks occurred in an area where active faulting produces no striking geological and geomorphological effects. In this study, we investigated the ruptured fault using detailed seismological data and a re-processed and re-interpreted seismic reflection profile. Aftershock location and focal mechanisms were used to constrain the geometry and kinematics of the ruptured fault and a comparison was made with the subsurface image provided by the seismic profile. We found that the 1998 Gualdo Tadino earthquake occurred on a WSW-dipping, normal fault, with a length of about 8 km and a relatively gentle dip (308–408), confined between 3.5 and 7 km in depth. Kinematics of the mainshock and aftershocks revealed a NE-trending extension, in agreement with the regional stress field active in the Northern Apennines belt. The Mw = 5.1 earthquake originated above the top of the basement and ruptured within the sedimentary cover, which consists of an evaporites–carbonates multilayer. We hypothesised that the active fault does not reach the surface (blind normal fault). D 2005 Elsevier B.V. All rights reserved.
    Description: Published
    Description: 233-247
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Aftershocks; Seismicity; Blind normal fault; Seismic reflection profile; Focal mechanisms; Umbria–Marche Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-03
    Description: Fluorine adsorption experiments were performed on 28 samples of the first 5 cm of topsoil collected on the flanks of Mt. Etna. The soil samples were equilibrated with F-rich rainwater (3.25 mg/L) at a soil/water weight ratio of 1/25. Aliquots of the supernatant were collected after 1, 7, 72, 720 and 5640 h and analysed for F content. The soil samples could be subdivided into three groups based on their F-adsorption behaviours after 1 h and at the end of the experiment: (1) negative adsorption (F released from the soil to the solution) after 1 h and negative or moderately positive adsorption at the end, (2) from negative after 1 h to strongly positive adsorption at the end, and (3) always strong positive adsorption. The adsorption capacity of the soils was positively correlated with the soil pH, the contents of finer granulometric fractions (clay and silt) and the weathering stage (as quantified by the chemical alteration index). The most F adsorbing soils are found at the periphery of the volcano where aquifers are more vulnerable to contamination due to the shallower depth of the water table. This study further evidences the importance of the Etnean soils in protecting groundwater from an excessive magmatic F input.
    Description: Published
    Description: 1179–1188
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic soils ; fluoride adsorption ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: A detailed archaeoseismological and geoarchaeological study performed in the archeological site of Caursulae, located at the base of Martani Mts, indicates that at least one earthquake occurred in the middle of the third century AD. Evidence of this earthquake comes from an inscription found near the investigated. This event which is not reported in the seismic catalogue did not cause any damage at the site. This study, despite provides a new data on seismic history of Umbria region, shows that the archaeological site of was not abruptly abandoned because of earthquakes or landslides triggered by earthquakes, but it suffered a slow abandon induced by a progressive impoverishment of the groundwater table with consequent reduction of water supplying to the whole town.
    Description: Published
    Description: 105-111
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: geoarchaeology, dolines, ground water circulation, Roman ruins, Carsulae, earthquake. ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/ are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSARwith soil gas prospectingmethods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.
    Description: This work was funded by the DPC-INGV project “Flank”
    Description: Published
    Description: 27-40
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 ; Radon ; InSAR ; Faults ; Etna ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-24
    Description: The S1 pecial Issue of the Bulletin of Earthquake Engineering devoted to the new 2 Italian strong motion database ITACA (ITalian ACelerometric Archive) is introduced in this 3 foreword. An overview of the papers published in this issue is presented, providing an idea of 4 the number of problems encountered in the compilation of a database as rich of information 5 as ITACA, of the solutions adopted and of the possible research and practical applications. 6 Most of the contents, though specifically addressed to ITACA and to its accelerograms, can 7 be usefully thought of as an exemplification of approaches and methods that can be used for, 8 and extended to, similar databases in other countries
    Description: Published
    Description: 1717-1721
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: reserved
    Keywords: Strong motion database ; ITACA ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0◦ –90◦ . Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding syn- thetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal compo-nents have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90◦ . The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.
    Description: Published
    Description: 761-781
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: site effect, 2D synthetic seismograms, spectral ratios, reversal of velocity, L'Aquila ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-03
    Description: Low-angle normal faults, LANF, (dip b 30°) have been proposed as key-structures for accommodating crustal Fault mechanics blocks affected by brittle processes. LANF act as preferential channels for fluid flow and in some cases they Seismicity promoted fluid overpressure. Fluid–rock interactions along some detachments favour the development of extension. In contrast, frictional fault reactivation theory predicts that slip on LANF is extremely unlikely: this prediction is consistent with the absence of moderate-to-large earthquakes on normal faults dipping less than 30°. In order to discuss this discrepancy I will analyse and integrate: 1) geological data from 9 LANF, 2) the dip- range of earthquake-ruptures in extensional environments, and 3) frictional fault mechanics. LANF fault zone structure is represented by two end members: a) a thick mylonitic shear zone superposed by cataclastic processes and some localization; 2) a discrete fault core separating hangingwall and footwall phyllosilicates that in general are characterised by low frictional strength, μb0.4, and inherently stable, velocity-strengthening frictional behaviour. The low friction coefficient of the phyllosilicates can explain movements on LANF and the velocity strengthening behaviour of the phyllosilicates implies fault creep and therefore can be used to explain the absence of moderate-to-large earthquakes on LANF in seismological records. However in my view, the integration of the three datasets does not provide a simple mechanical solution for the LANF paradox since it leaves two important open questions. First a widespread development of phyllosilicates does not seem to be a common feature for most of the exhumed LANF that on the contrary show the typical fault rocks of the brittle and seismogenic crust. Second, although some brittle detachments reactivated pre-existing ductile shear zones, others formed as gently dipping structures within a brittle crust characterised by a vertical σ1: a well constrained mechanical explanation for this second class of structures is lacking.
    Description: Published
    Description: 253-268
    Description: JCR Journal
    Description: reserved
    Keywords: Low-angle normal faults ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: The international debate in the field of geoethics focuses on some of the most important environmental emergencies, while highlighting the great responsibilities of geoscientists, whatever field they work in, and the important social, cultural and economic repercussions that their choices can have on society. The GeoItalia 2009 and 2011 conferences that were held in Rimini and Turin, respectively, and were organized by the Italian Federation of Earth Science, were two important moments for the promotion of geoethics in Italy. They were devoted to the highlighting of how, and with what tools and contents, can the geosciences contribute to the cultural renewal of society. They also covered the active roles of geoscientists in the dissemination of scientific information, contributing in this way to the correct construction of social knowledge. Geology is culture, and as such it can help to dispel misconceptions and cultural stereotypes that concern natural phenomena, disasters, resources, and land management. Geological culture consists of methods, goals, values, history, ways of thinking about nature, and specific sensitivity for approaching problems and their solutions. So geology has to fix referenced values, as indispensable prerequisites for geoethics. Together, geological culture and geoethics can strengthen the bond that joins people to their territory, and can help to find solutions and answers to some important challenges in the coming years regarding natural risks, resources, and climate change. Starting from these considerations, we stress the importance of establishing an ethical criterion for Earth scientists, to focus attention on the issue of the responsibility of geoscientists, and the need to more clearly define their scientific identity and the value of their specificities.
    Description: Published
    Description: 335-341
    Description: 5.9. Formazione e informazione
    Description: JCR Journal
    Description: open
    Keywords: Geoethics ; Education ; History of science ; Public issues ; General (Philosophy of Earth sciences) ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: In this work we propose a high performance parallelization of the software package COMPSYN, devoted to the production of syntethic seismograms, on a cluster of multicore processors with multiple GPUs. To design and implement the proposed high performance version, we started from a na¨ıve parallel version of COMPSYN. The na¨ıve version consists in a simple parallelization on both device side, obtained by exploiting CUDA, and host side, obtained by exploiting the MPI paradigm and OpenMP API. The proposed high performance version implements several practical techniques of CUDA programming and deeply exploits the GPU architecture, thus achieving a much better performance with respect to the na¨ıve version. We compare the performance of the proposed high performance version and that of the na¨ıve one with the performance of the version running on the cluster of multicore processors without invoking the GPUs. We obtain for the high performance GPU version a speedup of 25x over the version running on the cluster of multicore processors without GPUs against the 10x of the na¨ıve version. Regarding the sequential version, we estimate about 380x the speedup of the high performance GPU version against the about 140x of the na¨ıve version.
    Description: Collaboration Agreement between Dept. of Computer Science, Sapienza University of Rome and Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, 2011. Project n. C26G074ABJ, 2007, Cluster of multicore processor for advanced computation, Sapienza University of Rome.
    Description: Published
    Description: 966-975
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: restricted
    Keywords: GPU ; CUDA ; synthetic seismogram ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: Volcanic edifices are often unable to support their own load, triggering the instability of their flanks. Many analogue models have been aimed, especially in the last decade, at understanding the processes leading to volcano flank instability; general behaviors were defined and the experimental results were compared to nature. However, available data at well-studied unstable volcanoes may allow a deeper understanding of the specific processes leading to instability, providing insights also at the local scale. Etna (Italy) constitutes a suitable example for such a possibility, because of its well-monitored flank instability, for which different triggering factors have been proposed in the last two decades. Among these factors, recent InSAR data highlight the role played by magmatic intrusions and a weak basement, under a differential unbuttressing at the volcano base. This study considers original and recently published experimental data to test these factors possibly responsible for flank instability, with the final aim to better understand and summarize the conditions leading to flank instability at Etna. In particular, we simulate the following processes: a) the longterm activity of a lithospheric boundary, as the Malta Escarpment, separating the Ionian oceanic lithosphere from the continental Sicilian lithosphere, below the most unstable east flank of the volcano; b) spreading due to a weak basement, with different boundary conditions; c) the pressurization of a magmatic reservoir, as that active during the 1994–2001 inflation period; d) dike emplacement, as observed during the major 2001 and 2002–2003 eruptions. The experimental results suggest that: 1) the long-term activity of a lithospheric tectonic boundary may create a topographic slope which provides a differential buttressing at the volcano base, a preparing factor to drive longer-term (〉105 years) instability on the east flank of the volcano; 2) volcano spreading (b104 years) has limited effect on flank instability at Etna; 3) magmatic intrusions (b101 years), both in the form of Mogi-like sources or dikes, provide the most important conditions to trigger flank instability on the shorter-term.
    Description: Thisworkwas partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 98-111
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano instability ; analogue modeling ; Etna ; unbuttressing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Since January 2008, several geophysical parameters have evidenced a recharging phase at Mt. Etna volcano culminating with an effusive eruption that began on May 13, 2008. Seismic activity recorded at Mt. Etna from January 2007 to May 2008 was analyzed in order to provide seismological constraints to the volcano dynamics leading to the eruption. A total of 336 selected earthquakes, withML≥1.5, were used as data source for this study. Specifically, we calculated 3D velocity and attenuation tomography, including a 3D relocation of the events, and we computed 53 selected fault plane solutions (FPSs) that were used for stress tensor inversion. The most important result obtained from the joint analysis of VP, VP/VS and P-wave attenuation is an anomalous zone with normal to high VP (values between 3.5 and 4.5 km/s) and low VP/VS (values≤1.64), which partially overlaps with a low QP (values≤50) volume located along a NS trending channel beneath the central crater. This can be interpreted as a shallow volume characterized by high temperature where the magma is located with the presence of supercritical fluids. The analysis of seismic stress tensor evidenced an extensional regime in the depth range 3–13 km with a vertically oriented σ1. This finding may suggest an extensional stress regime, probably related to the kinematic response of the volcanic edifice to both a deep magmatic intrusion and a condition of decreased regional compressive stress facilitated by sliding processes of the eastern flank of the volcano.
    Description: Published
    Description: 50–63
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; Volcanic eruptions ; Stress Tensor ; Velocity tomography ; Attenuation tomography ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Because paleoseismology can extend the record of earthquakes back in time up to several millennia, it represents an opportunity to study how earthquakes recur through time and thus to provide innovative contributions to seismic hazard assessment. Based on a database of recurrence from paleoseismology we collected 19 sequences with 5 up to 14 dated events on a single fault. By using the age of the paleoearthquakes, with their associated uncertainty, and the historical earthquakes, we tested the null hypothesis that the observed inter-event times come from a uniform random distribution (Poisson model). We used the concept of likelihood for a speci!c sequence of events under a given occurrence model. The difference dlnL of the likelihoods estimated under two hypotheses gives an indication of which between the two hypotheses !ts better the observations. To take into account the uncertainties, we used a Monte Carlo procedure computing the average and the standard deviation of dlnL for 1000 inter-event sets by choosing the occurrence time of each event within the limits of uncertainty and estimating the probability that a value equal to or larger than an observed dlnL comes by chance from a Poisson distribution of inter-event times. These tests were carried out for the Log-normal, Gamma, Weibull, Double-exponential and Brownian Passage Time (BPT) distributions. Our results show that a renewal model, associated with a time dependent hazard, and some kind of predictability of the next large earthquake on a fault is signi!cantly better than a plain time-independent Poisson model only for four, out of the 19 sites examined in this study. The lack of regularity in the earthquake occurrence for more than 30% of the examined faults can be explained either by the large uncertainties in the estimate of paleoseismological occurrence times or by physical interaction between neighboring faults.
    Description: Published
    Description: 54-67
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Renewal model ; Seismic recurrence ; Statistical model ; Paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: We propose a very detailed picture of the seismicity occurring in the proximity of the Alto Tiberina Low Angle Normal Fault (ATF, Northern Italian Apennines) by presenting the pattern and evolution of a seismic sequence that occurred on the hanging wall of the ATF in the first months of 2010 and that was characterized by about 1000 events with ML ranging from -0.7 to 3.8. In order to capture the rupture kinematics of the investigated area, a cross-correlation technique was at first applied to calculate very accurate time shifts among the events of the sequence and then to relocate them. Considering the many factors that can affect the accuracy of a routine event location, the whole sequence was relocated with the double-difference method, including both absolute travel-time measurements and cross-correlation differential travel-times. The new locations confirm that seismic activity is mainly arranged along a NW-SE oriented structure, ranging in depth from 4 to 6 km and dipping towards North East with an angle of about 65°. A further analysis of waveforms similarity was performed at a reference station by merging the capability of the cross-correlation technique and the bridging algorithm. The analysis allows us to group events into several earthquake families (from now on multiplets), 11 of which include at least 10 events with a cross-correlation value higher than 0.9. The detected mutiplets allow us to emphasize the spatial and temporal migration of the sequence occurred along a 307°N strike direction with an averaged propagation velocity of about 0.4 km/day. The normal focal mechanisms obtained from the events with ML≥2 validate the supposed extensional tectonic regime of the investigated area. The main nodal planes, characterized by strikes ranging in 312°±12 and dips about -90°, are consistent with the spatial evolution of the aftershocks.
    Description: Published
    Description: 91-109
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: cross-correlation ; multiplets ; double-difference ; migration ; pattern ; Alto Tiberina Fault ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: We performed geodetic strain rate analyses in southern Italy, using new GPS velocities. Two-dimensional strain and rotation rate fields were estimated and results show that most of the shortening is distributed in the northern Sicily offshore. Extension becomes more evident and comparable with shortening on the eastern side of the same margin, and greater in the eastern Sicily offshore. Principal shortening and extension rate axes are consistent with longterm geological features: seismic reflection profiles show both active compressive and extensional faults affecting Pleistocene strata. We show evidence for contemporaneous extension and transtension in the Cefalu` Basin. Combining geodetic data and geological features point to the coexistence of independent geodynamic processes, i.e., the active E–W backarc spreading in the hangingwall of the Apennines subduction zone and shortening along the southern margin of the Tyrrhenian backarc basin operated by the NNW-motion of Africa relative to Eurasia.
    Description: Published
    Description: 1915-1924
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Southern Tyrrhenian Sea ; GPS-derived strain rate ; Seismic reflection profiles ; Coexisting tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Using a lava flow emplacement model and a satellite-based land cover classification, we produce a map to allow assessment of the type and quantity of natural, agricultural and urban land cover at risk from lava flow invasion. The first step is to produce lava effusion rate contours, i.e., lines linking distances down a volcano’s flank that a lava flow will likely extend if fed at a given effusion rate from a predetermined vent zone. This involves first identifying a vent mask and then running a downhill flow path model from the edge of every pixel around the vent mask perimeter to the edge of the DEM. To do this, we run a stochastic model whereby the flow path is projected 1,000 times from every pixel around the vent mask perimeter with random noise being added to the DEM with each run so that a slightly different flow path is generated with each run. The FLOWGO lava flow model is then run down each path, at a series of effusion rates, to determine likely run-out distance for channel-fed flow extending down each path. These results are used to plot effusion rate contours. Finally, effusion rate contours are projected onto a land classification map (produced from an ASTER image of Etna) to assess the type and amount of each land cover class falling within each contour. The resulting maps are designed to provide a quick look-up capability to assess the type of land at risk from lava extending from any location at a range of likely effusion rates. For our first (2,000 m) vent zone case used for Etna, we find a total of area of ~680 km2 is at risk from flows fed at 40 m3 s−1, of which ~6 km2 is urban, ~150 km2 is agriculture and ~270 km2 is grass/woodland. The model can also be run for specific cases, where we find that Etna’s 1669 vent location, if active today, would likely inundate almost 11 km2 of urban land, as well as 15.6 km2 of agricultural land, including 9.5 km2 of olive groves and 5.2 km2 of vineyards and fruit/nut orchards.
    Description: Published
    Description: 1001-1027
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Risk ; FLOWGO ; ASTER image ; Land classification ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-03
    Description: We report a new model of the upper mantle structure beneath Italy obtained by means of P-wave teleseismic tomography. Besides the recent and remarkable development of the Italian Seismic Network, a high model resolution has been achieved improving the inversion method upon the ACH method used in previous investigations and picking high quality arrival times with the Multi-Channel Cross-Correlation technique. The finer details of our Vp model yield new insights into the heterogeneous structure of the Adria continental lithosphere involved in the collision between the Africa and Europe plates. A wide low Vp anomaly located in the northern Adria mantle, facing the Alpine high Vp slab, supports the idea that the Adria lithosphere has been hydrated and thinned during the Alpine subduction. We argue that this mantle softening may have played a key role in favoring the subsequent delamination of the Adria lithosphere in the northern Apennines. We hypothesize that delamination of continental lithosphere previously thinned in a back-arc setting may be considered a key process to favor subduction polarity reversal and recycling of continental material into the mantle circulation. Conversely, in the central-southern Apennines, the velocity structure is consistent with the existence of a deeper oceanic slab that flattens at the base of the upper mantle, in agreement with the widely accepted geodynamic evolution of the central Mediterranean by slab retreat and back-arc spreading. The oceanic slab is discontinuously detached from the surface plate, suggesting a different structure of the Adria lithosphere, which resists subduction instead of favoring delamination.
    Description: Published
    Description: 531–543
    Description: JCR Journal
    Description: restricted
    Keywords: seismic tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: Crustal tectonic seismicity in the Southern Tyrrhenian Sea is characterized by the high occurrence rates of earthquakes to the west of the alignment of Salina, Lipari and Vulcano islands in the Aeolian archipelago. Only a few earthquakes affect the crustal region east of these islands, whereas intermediate and deep seismicity plays a relevant role. Based on this evidence, two aspects of the seismic swarm recorded at the Aeolian Island Seismic Network between June 6 and 17, 1999 looked anomalous. The first aspect concerned the number of earthquakes (78) that affected the Stromboli submarine edifice in a short time interval. Secondly, despite the low maximum magnitude Md 3.2 reached, the cumulative strain release was conspicuous in comparison with previous swarms in this region. We localized the swarm about 6 km northeast of Stromboli, at a depth between 8 and 12km. The source region was identified using standard methods of hypocentral location, as well as azimuth analysis. It is worth noting that the volcanic activity at Stromboli did not change significantly during the swarm nor throughout the following months. Therefore, the seismic swarm had no link with volcanic activity observed at the surface. Most of the earthquakes shared similar waveform and frequency content, and can be divided into families. We identified some earthquakes - with magnitude up to Md 3 - having relatively low frequency content at different seismic stations. This anomalous feature leads us to hypothesize the presence of fluid circulation and/or propagation of seismic waves in a ductile medium. Our hypothesis is in agreement with studies on marine geology, which highlight various forms of submarine volcanism in the southern basin of the Tyrrhenian Sea.
    Description: This work was financially supported by the EC project MULTIMO (Contract No. EVG1-CT-2000-00021).
    Description: Published
    Description: 121-136
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquakes ; Seismic swarm ; Volcanoes ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-03
    Description: The Adriatic foreland of the Apennines comes ashore only in Apulia (easternmost Italy). Its southern part, our study area, lacks any structural analysis devoted to define its recent-to-active tectonics. Throughout the Quaternary, this region was affected by mild brittle deformation with rare faults, characterized by small displacement, and widespread extension joints, frequently organized in sets. Therefore, we conducted a quantitative and systematic analysis of the joint sets affecting Quaternary deposits, by applying an inversion technique ad hoc to infer the orientation and ratio of the principal stress axes, R = (σ2 − σ3)/(σ1 − σ3). Within a general extensional regime, we recognized three deformational events of regional significance. The oldest event, constrained to the early and middle part of the Middle Pleistocene, is characterized by variable direction of extension and R between 0.64 and 0.99. The penultimate event, dated late Middle Pleistocene, is characterized by an almost uniaxial tension, with a horizontal σ3 striking ∼N43°E; R is high, between 0.85 and 0.99. The most recent event is characterized by the lowermost R values, that never exceed 0.47 and are frequently 〈0.30, indicating a sort of horizontal ‘radial’ extension. This event is not older than the Late Pleistocene and possibly reflects the active stress field still dominating the entire study area.
    Description: Study supported by the Project S2 funded in the framework of the 2004–2006 agreement between the Italian Department of Civil Protection and the INGV (Research Units 2.4-Burrato, 2.11-Mastronuzzi).
    Description: Published
    Description: 141-155
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Quaternary tectonics ; Brittle deformation ; Fracture ; Pleistocene ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: We analyzed crater SO2 fluxes from Mt Etna, together with soil CO2 effluxes from the volcano's flanks, in the period from 2001 to 2005. Between the 2001 and 2002–2003 eruptions, persistently low values of both parameters suggest that no new gas-rich magma was accumulating at shallow depth (b5 km) within Etna's central conduit, whereas very high SO2 sin-eruptive fluxes during the two eruptions indicated sudden decompression of an un-degassed magma rising along newly-formed eccentric conduits. In November 2003, soil CO2 data indicate migration of gas-rich magma from deep (〉10 km) to shallow (b5 km) portions of the feeding conduits, preceded by an increase in crater SO2 fluxes. A similar behavior was observed also during and after the following 2004–2005 eruption. This degassing style matches a period of increased structural instability of the volcanic edifice caused by acceleration of spreading that affected both its eastern and southern flanks. Spreading could have triggered progressively deeper depressurization in the central conduit, inducing release of the more soluble gas (SO2) first, and then of CO2, contrary to what was observed before the 2001 eruption. This suggests that the edifice has depressurized, promoting ascent of fresh-magma and increasing permeability favouring release of CO2 flux. By integrating geochemical and structural data, previous degassing models developed at Mt. Etna have been updated to advance the understanding of eruptive events that occurred in recent years.
    Description: This work was funded by grants from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and from the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 90-97
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemical modeling ; volcano monitoring ; volcanic gases ; Tectonics and magmatism ; flank collapse ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: The Pernicana–Provenzana Fault System is one of the most active tectonic systems of Mt. Etna and it plays an important role in the dynamic of the eastern flank of the volcano. Earthquakes occurring close to this structural trend have reached magnitudes up to 4.2, sometimes with coseismic surface faulting, and have caused severe damages to tourist resorts and villages in the vicinity of this structure. In the last decade, a large number of shocks, sometimes in the form of swarms, linked to Pernicana–Provenzana Fault System movements have been detected by the permanent local seismic network operating in eastern Sicily. In this paper, we report on the detailed study of the seismic activity occurring during the 2000–2009 time span in the Pernicana–Provenzana Fault System area. Firstly, we located 407 earthquakes using a standard location code and a 1D crustal velocity model. We then applied two different approaches to calculate precise hypocenter locations of the events. In particular, a non-linear code was adopted to obtain an estimate of the a posteriori Probability Density Function in 3D space for the hypocenter location. Moreover, a relative location of correlated event pairs was performed, using the double-difference method. These two different location approaches allowed defining with good accuracy, the most active and hazarding sectors of the structure. The results of these precise locations showed a tighter clustering in the epicenters and in focal depths, in comparison with standard locations. Earthquakes are located along the Pernicana–Provenzana Fault System, and are mainly clustered in two zones, separated by an area with very low rate of earthquakes occurrence, but characterized by the highest energy release. Depths of the foci are very shallow, ranging between the surface and about 3 km b.s.l. Kinematics of the Pernicana–Provenzana Fault System, revealed by the fault plane solutions computed for the most energetic earthquakes, highlights a predominant dip–slip and left strike movements along E–W oriented fault planes, in agreement with field observations.
    Description: Published
    Description: 16-26
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; Pernicana–Provenzana Fault System ; Earthquakes ; Precise location ; Fault plane solutions ; Seismic strain release ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-24
    Description: The 2009 Mw 6.3 L’Aquila event caused extensive damage in the city of L’Aquila and in some small towns in its vicinity. The most severe damage was recognized SE of L’Aquila town along the Aterno river valley. Although building vulnerability and near-source effects are strongly responsible for the high level of destruction, site effects have been invoked to explain the damage heterogeneities and the similarities between the 2009 macroseismic field with the intensities of historical earthquakes. The small village of Onna is settled on quaternary alluvium and suffered during the L’Aquila event an extremely heavy damage in the masonry structures with intensity IX–X on the Mercalli-Cancani-Sieberg (MCS) scale. The village of Monticchio, far less than 1.3 km from Onna, is mostly situated on Meso- zoic limestone and suffered a smaller level of damaging (VI MCS). In the present paper, we analyze the aftershock recordings at seismic stations deployed in a small area of the middle-Aterno valley including Onna and Monticchio. The aim is to investigate local ampli-fication effects caused by the near-surface geology. Because the seismological stations are close together, vulnerability and near-source effects are assumed to be constant. The wave- form analysis shows that the ground motion at Onna is systematically characterized by large high-frequency content. The frequency resonance is varying from 2 to 3 Hz and it is related to alluvial sediments with a thickness of about 40 m that overlay a stiffer Pleistocene substrate. The ground motion recordings of Onna are well reproduced by the predictive equation for the Italian territory.
    Description: Published
    Description: 783-807
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Description: reserved
    Keywords: L’Aquila 2009 earthquake · Site effects · Onna · Seismic microzoning · Ground motion prediction equations ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-06-05
    Description: A detailed analysis of the earthquake effects on the urban area of Rome has been conducted for the L’Aquila sequence, which occurred in April 2009, by using an on-line macroseismic questionnaire. Intensity residuals calculated using the mainshock and four aftershocks are analyzed in the light of a very accurate and original geological reconstruction of the subsoil of Rome based on a large amount of wells. The aim of this work is to highlight ground motion amplification areas and to find a correlation with the geological settings at a sub-regional scale, putting in evidence the extreme complexity of the phenomenon and the difficulty of making a simplified model. Correlations between amplification areas and both near-surface and deep geology were found. Moreover, the detailed scale of investigation has permitted us to find a correlation between seismic amplification in recent alluvial settings and subsiding zones, and between heard seismic sound and Tiber alluvial sediments.
    Description: Published
    Description: 425-443
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Earthquakes ; Intensity residuals ; Urban geosciences ; Macroseismic effects ; Amplification areas ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-07-09
    Description: Published and new sea level data are used to provide projections of sea level change in Italy for the year 2100 by adding new isostatic and tectonic component to the IPCC and Rahmstorf projections. Comparison of the observations from more than 130 sites (with different geomorphological and archaeological sea level markers) with the predicted sea level curves provides estimates of the vertical tectonic contribution to the relative sea level change. The results are based on the most recent ANU model for the ice sheets of both hemispheres, including an alpine deglaciation model. On the basis of the eustatic, tectonic and isostatic components to the sea level change, projections are provided for marine inundation scenarios for the Italian coastal plains for the year 2100, that today are at elevations close to current sea level.
    Description: Published
    Description: 250-257
    Description: JCR Journal
    Description: restricted
    Keywords: Sea level change ; Italian coasts ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2012-02-03
    Description: The Italian strong-motion database was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian Civil Protection). The aim of the project was the collection, homogenization and distribution of strong motion data acquired in Italy in the period 1972–2004 by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC. Recently the strong-motion data relative to the 23th December 2009, Parma (Mw = 5.4 and Mw = 4.9) and to the April 2009 L’Aquila sequences (13 earthquakes with 4.1 ≤ Mw ≤ 6.3) were included in the Italian Accelerometric Archive (ITACA) database (beta release). The database contains 7,038 waveforms from analog and digital instruments, generated by 1.019 earthquakes with magnitude up to 6.9 and can be accessed on-line at the web site http://itaca. mi.ingv.it. The strong motion data are provided in the unprocessed and processed versions. This article describes the steps followed to process the acceleration time series recorded by analogue and digital instruments. The procedures implemented involve: baseline removal, instrumental correction, band pass filtering with acausal filters, integration of the corrected acceleration in order to obtain velocity and displacement waveforms, computation of accel- eration response spectra and strong motion parameters. This procedure is applied to each accelerogram and it is realised to preserve the low frequency content of the records.
    Description: Published
    Description: 1175-1187
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: Strong motion ; processing ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: The Italian Accelerometic Archive (ITACA) was created in 2007 during a joint project between the Italian Institute for Geophysics and Vulcanology (Istituto Nazionale di Geofisica e Vulcanologia, INGV) and the Italian Civil Protection (Dipartimento della Protezione Civile, DPC). The project, started in 2006, had the aim of filling the data gap of existing strong motion databases and facilitating strong motion data users in obtaining good quality waveforms, through the collection, homogenization and distribution of strong motion data acquired during the period 1972–2004 in Italy by different institutions (Ente Nazionale per l’Energia Elettrica, ENEL, Italian electricity company; Ente per le Nuove tecnologie, l’Energia e l’Ambiente, ENEA, Italian energy and environment organizationDPC). The compiled database contains 2,182 three-component waveforms generated by 1,008 earthquakes with a maximum moment magnitude of 6.9 (1980 Irpinia earthquake) and can be accessed on-line at the portal denominated ITACAat the site http://itaca.mi.ingv.it,where a wide range of search tools enables the user to interactively retrieve events, recording stations and waveforms with particular characteristics, whose parameters can be specified, as needed, through user friendly interfaces. A range of display options allows users to view data in different contexts, extract and download time series and spectral data. This article describes the state of the art up to 2006 and the activities which led to the completion of the project.
    Description: Published
    Description: 1159-1174
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: strong motion ; database ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: We have investigated the mechanical response of a magnetically shielded room that hosts a magnetoencephalography system that is subject to external vibrations. This is a superconducting quantum interference device, which are the most sensitive sensors for magnetic flux variations. When the magnetoencephalography operates with people inside the room, the spectrum of the flux of the magnetic field shows anomalous peaks at several frequencies between 1 Hz and 20 Hz, independent of the experiment that is being run. As the variations in the flux of the magnetic field through the sensors might not only be related to the electrical currents circulating inside the brain, but also to non-damped mechanical oscillations of the room, we installed seismic instrumentation to measure the effective motion inside the room and to compare it to the external motion. For this analysis, we recorded the ambient seismic noise at two very close stations, one inside the magnetically shielded room, the other one outside in the room in which the magnetically shielded room is itself located. Data were collected over four days, including a week-end, to study the response of the magnetically shielded room subjected to different energy levels of external vibrations. The root mean square, Fourier spectra and power spectral density show significant differences between the signal recorded inside and outside the magnetically shielded room, with several anomalous peaks in the frequency band of 1 Hz to 20 Hz. The normalized spectral quantities (horizontal to vertical spectral ratio, and ratio between the internal and external spectra) show large amplification at several frequencies, reaching in some cases one order of magnitude. We concluded that the magnetically shielded room does not dampen the external vibrations, but it instead appears to amplify these across a broad frequency range.
    Description: Published
    Description: 223-233
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Seismic noise ; Spectral ratio analyses ; Magnetoencephalography ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: The Campi Flegrei caldera is a complex structure with a high population density, located west of the city of Naples. In addition of being an active volcano it is characterized by a high seismic hazard due to both Appennines regional earthquakes and to local earthquakes occurring during the bradyseismic crises. These unrest phenomena are characterized by slow ground vertical movements, particularly active in the central part of the caldera, and by a high number of low-magnitude earthquakes. In this context, the determination of the site transfer functions of the area has a strong relevance for the Civil Defense aimed to determine the hazard of the area. We have calculated the site transfer function with different techniques (H/V and Generalized Inversion technique) and have collected data on the local geology with the aim of correlating the site transfer functions with lithology and topography. This analysis has been performed on three areas: the Astroni crater, the Camaldoli hill and the Agnano plain. A future development will be to extend this analysis to the whole Campi Flegrei area.
    Description: Published
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: N/A or not JCR
    Description: open
    Keywords: Site effects ; Campi Flegrei ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: The individuation of areas that are more likely to be affected by new events in volcanic regions is of fundamental relevance for the mitigation of the possible consequences, both in terms of loss of human life and material properties. Here, we describe a methodology for defining flexible high-detail lava-hazard maps and a technique for the validation of the results obtained. The methodology relies on: (i) an accurate analysis of the past behavior of the volcano; (ii) a new version of the SCIARA model for lava-flow simulation (based on the macroscopic cellular automata paradigm); and (iii) high-performance parallel computing for increasing computational efficiency. The new release of the SCIARA model introduces a Bingham-like rheology as part of the minimization algorithm of the differences for the determination of outflows from a generic cell, and an improved approach to lava cooling. The method is here applied to Mount Etna, the most active volcano in Europe, and applications to landuse planning and hazard mitigation are presented.
    Description: This study was sponsored by the Italian National Civil Defence Department and the Istituto Nazionale di Geofisica e Vulcanologia (INGV), project V3_6/09 "V3_6 – Etna".
    Description: Published
    Description: 568-578
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: volcanic risk ; cellular automata ; Algorithms and implementation ; Statistical analysis ; Data processing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-02-24
    Description: Mount Etna produces frequent eruptions from its summit craters and from fissures on its flanks. The flank fissures trend approximately radially to the summit, and are mainly concentrated in three rift zones that are located on the NE, S and W flanks. Many flank eruptions result from lateral magma transfer from the central conduit into fractures intersecting the flanks, although some eruptions are fed through newly formed conduits that are not directly linked to the central conduit. We analyzed the structural features of eruptions from 1900 to the present, one of the most active periods in the documented eruptive history of Etna, which comprised 35 summit and 33 flank events. Except for a small eruption on the W flank in 1974, all of the flank eruptions in this interval occurred on or near the NE and S rifts. Eruptions in the NE sector were generally shorter, but their fissure systems developed more rapidly and were longer than those in the S sector. In contrast, summit eruptions had longer mean durations, but generally lower effusion rates (excluding paroxysmal events characterized by very high effusion rates that lasted only a few hours). This database was examined considering the main parameters (frequency and strike) of the eruptive fissures that were active over the last ~2 ka. The distribution in time and space of summit and flank eruptions appears to be closely linked to the dynamics of the unstable E to S flank sector of Etna, which is undergoing periodic displacements induced by subvolcanic magma accumulation and gravitational pull. In this framework, magma accumulation below Etna exerts pressure against the unbuttressed E and S flanks, which have moved away from the rest of the volcano. This has caused an extension to the detachment zones, and has facilitated magma transfer from the central conduit into the flanks.
    Description: This work was sponsored by the Italian National Civil Defence Department and INGV (Istituto Nazionale di Geofisica e Vulcanologia), project V3-LAVA (RU01–Team 01C).
    Description: Published
    Description: 464-479
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: JCR Journal
    Description: open
    Keywords: dike ; magmas ; tectonics ; structural geology ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: Italy is a country characterized by high seismic hazard so strong-motion monitoring represents a relevant issue. Several strong-motion networks have been installed in the Italian territory during the last decades, with the aim of recording the ground motion generated by moderate to strong events or to monitor single regions. The collection of the strong-motion recordings of the Italian earthquakes was recently fulfilled and data are distributed through the ITACA database (http://itaca.mi.ingv.it). The new data set was used to develop a set of ground motion prediction equations (hereinafter GMPEs) for the Italian territory (Bindi et al., 2009), in order to update the well known GMPEs developed by Sabetta and Pugliese. The recent Mw 6.3 earthquake that occurred in central Italy on April 2009 and the upgrades of the ITACA database gave us the possibility to validate the predictive capability of the newly developed GMPEs and to explore the regional variability inside the Italian territory.
    Description: Published
    Description: 53-70
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: strong motion data ; Prediction equation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: A temporary network of 33 seismic stations was deployed in the area struck by the 6th April 2009, Mw 6.3, L’Aquila earthquake (central Italy), with the aim to investigate the site amplification within the Aterno river Valley. The seismograms of 18 earthquakes recorded by 14 of the 33 stations were used to evaluate the average horizontal to vertical spectral ratio (HVSR) for each site and the standard horizontal spectral ratio (SSR) between a site and a reference station. The obtained results have been compared to the geological and geophysical information in order to explain the resonance frequencies and the amplification levels with respect to surface geology of the valley. The result indicate that there is no uniform pattern of amplification, due to the complex geologic setting, as the thickness and degree of cementation of the deposits is highly variable. As consequence, a large number of the local site response is observed, therefore it is very difficult to elaborate a unique model that can explain such a variability of the amplification.
    Description: Published
    Description: 697-715
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: partially_open
    Keywords: l'Aquila earthquake ; microzoning ; ground shaking ; site effects ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-24
    Description: The April 6, 2009 L’Aquila earthquake was responsible for an “anomalous”, relatively high degree of damage (i.e. Is 7 MCS scale) at Castelvecchio Subequo (CS). Indeed, the village is located at source-to-site distance of about 40 km, and it is surrounded by other inhabited centres to which considerably lower intensities, i.e. Is 5-6, have been attributed. Moreover, the damage was irregularly distributed within CS, being mainly concentrated in the uppermost portion of the old village. Geophysical investigations (ambient seismic noise and weak ground motions analyses) revealed that site effects occurred at CS. Amplifications of the ground motion, mainly striking NE-SW, have been detected at the uppermost portion of the carbonate ridge on which the village is built. Geological/structural and geomechanical field surveys defined that the CS ridge is affected by sets of fractures, joints and shear planes – mainly roughly NW-SE and N-S trending – that are related to the deformation zone of the Subequana valley fault system and to transfer faults linking northward the mentioned tectonic feature with the Middle Aterno Valley fault system. In particular, our investigations highlight that seismic amplifications occur where joints set NW-SE trending are open. On the other hand, no amplification is seen in portions of the ridge where the bedrock is densely fractured but no open joints occur. The fracture opening seems related to the toppling tendency of the bedrock slabs, owing to the local geomorphic setting. These investigations suggest that the detected amplification of the ground motion is probably related to the polarization of the seismic waves along the Castelvecchio Subequo ridge, with the consequent oscillation of the rock slabs perpendicularly to the fractures azimuth.
    Description: Published
    Description: 841-868
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Site effects ; Rock site ; Ambient seismic noise ; Structural characteristics ; Geomechanical analyses ; Jointing ; Castelvecchio Subequo ; 2009 L'Aquila earthquake ; central Italy ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-11-16
    Description: Active volcanoes characterized by open conduit conditions generate sonic and infrasonic signals, whose investigation provides useful information for both monitoring purposes and studying the dynamics of explosive processes. In this work, we discuss the automatic procedures implemented for a real-time application to the data acquired by a permanent network of five infrasound stations running at Mt. Etna volcano. The infrasound signals at Mt. Etna consist in amplitude transients, called infrasound events. The adopted procedure uses a multi-algorithm approach for event detection, counting, characterization and location. It is designed for an efficient and accurate processing of infrasound records provided by single-site and array stations. Moreover, the source mechanism of these events can be investigated off-line or in near real-time by using three different models: i) Strombolian bubble; ii) resonating conduit and iii) Helmholtz resonator. The infrasound waveforms allow us to choose the most suitable model, to get quantitative information about the source and to follow the time evolution of the source parameters.
    Description: Published
    Description: 1215–1231
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; monitoring system ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: Studies on volcanic degassing have recently shown the important role of volatile release from active volcanoes in understanding magmatic processes prior to eruptions. Here we present and discuss the evolution of magmatic degassing that preceded and accompanied the 2008 Mt. Etna eruption. We tracked the ascent of magma bodies by high-temporal resolution measurements of SO2 emission rates and discrete sampling of SO2/HCl and SO2/HF molar ratios in the crater plume, as well as by periodic measurement of soil CO2 emission rates. Our data suggest that the first signs of upward migration of gas-rich magma before the 2008 eruption were observed in June 2007, indicated by a strong increase in soil CO2 efflux followed by a slow declining trend in SO2 flux and halogens. This degassing behavior preceded the mid-August 2007 summit activity culminated with the September 4th paroxysmal event. Five months later, a new increase in both soil CO2 and SO2 emission rates occurred before the November 23rd paroxysm, to drop down in late December. In the following months, geochemical parameters showed high variability, characterized by isolated sudden increases occurred in early December 2007 and late March 2008. In early May soil CO2, SO2 emission rates and S/Cl molar ratio gradually increased. Crater degassing peaked on May 13th marking the onset of the eruption. Eruptive activity was accompanied by a general steady-state of SO2 flux characterized by two main degassing cycles. These cycles preceded explosive activity at the eruptive vents, indicating terminal new-arrival of deep gas-rich magma bodies in the shallow plumbing system of Mt Etna. Conversely, halogens described a slight increasing trend till the end of 2008. These observations suggest an impulsive syn-eruptive dynamics of magma transfer from depth to the surface. Differently from the SO2 emission rates, the S/Cl ratio and the soil CO2 efflux values showed an increasing trend from mid-April to mid-July 2008, indicating steady-increasing input of deeper, gas-rich magma. Since August, geochemical parameters decreased, suggesting that new magma has not arrived from depth. According to our interpretation, both the CO2 efflux and the S/Cl ratio increases observed in early November may indicate a new input of fresh magma form depth. Finally, the estimated volume of degassing magma showed substantial equilibrium between degassed and erupted magma suggesting an “eruptive” steady-state of the volcano.
    Description: INGV, Sezione di Catania; INGV, Sezione di Pisa; University of Cambridge, Cambridge, UK
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; plume gases ; soil CO2 ; eruption ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: Concurrent measurement of soil radon, soil thoron and soil CO2 efflux is based on the method developed by Giammanco et al. (Geochem. Geophys. Geosys., 8(10), Q 10001, doi:10.1029/2007GC001644, 2007). An empirical relationship links the 222Rn/220Rn ratio to the CO2 efflux: deep sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. This relationship is more constraining on the type and depth of the gas source than using the 222Rn/220Rn ratio alone.We studied the temporal variation of the ratio between CO2 efflux and (222Rn/220Rn), that we define as a Soil Gas Disequilibrium Index (SGDI). Since June 2006, periodical measurements of the SGDI were carried out in ten sites located on the flanks of Mt. Etna, with sampling frequency of about ten days. Remarkable variations in this parameter were recorded during the period 2006-2008 likely associated with changes in the activity level of Mt. Etna. In particular, one of the sites located in the area called Primoti (on the lower east flank of the volcano) has shown significant anomalous changes of the SGDI in time, possibly correlated with the eruptive/tectonic activity. For this reason, in this site we set up an automatic monitoring station made of a Radon/Thoron monitor (model RTM 2100, SARAD GmbH, Germany) coupled with a soil CO2 efflux station (model ACE, ADC BioScientific Ltd., UK). The sampling frequency was set at 30 minutes, in order to allow for a sufficient decay equilibration in the radon isotopes. Air temperature and barometric pressure were recorded as well, with the same sampling rate as for the soil gases. The site chosen for testing the monitoring station is located on the east flank of Mt. Etna at an altitude of about 520 a.s.l., in an area known for widespread diffuse emissions of CO2 and other gases of magmatic origin. The preliminary data acquired so far showed an average soil CO2 efflux of 10 g m􀀀2 d􀀀1 (std dev of about 7 g m􀀀2 d􀀀1) and average 222Rn and 220Rn activities of about 3.3 103 Bq/m3 (std dev of about 1140 Bq/m3) and about 2.0 103 Bq/m3 (std dev of about 620 Bq/m3), respectively. The corresponding values of the SGDI thus obtained varied in the range from about -1.5 to about 70.1, with an average of about 7 and standard deviation of about 6.3. The apparent baseline of the parameter is around the value of 3, and daily variations are clearly detected due to the combined influence of air temperature and barometric pressure. No clear influence from rainfall was observed. Some spikes were also detected, whose origin has to be studied by correlating the SGDI with other environmental parameters as well as with changes in the volcanic/tectonic activity of Mt. Etna.
    Description: INGV, Sezione di Catania
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil radon ; CO2 ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: Moderate-magnitude shallow earthquakes in the Atlantic Ocean, hundreds of kilometres southwest of Lisbon, can generate efficient suboceanic Rayleigh waves (SRW) that are well recorded in Portugal. Here we compare moderate-size earthquakes recorded by seismic stations in Portugal with the Tyrrhenian Sea earthquakes recorded in peninsular Italy where SRW were recently observed. In spite of a different behaviour of high frequencies due to the different tectonic setting of the two areas, similar results are found in the intermediate-period range, suggesting that this effect, if extrapolated to a magnitude larger than 8, could be devastating at regional distance in terms of ground motion amplitude and duration. Through 1D models, we explore the hypothesis that the high level of destruction and the long duration of shaking felt during the Great 1755 Lisbon earthquake were caused by SRW. In this preliminary study, we check the role of critical model parameters. We find that duration and amplitude are largest when the average thickness of the water layer is 2 km and shear-wave velocity of the ocean floor is close to the speed of sound in the water. Both conditions are realistic for a source in the Atlantic Ocean, few hundreds of kilometres southwest of Lisbon. Moreover, the propagation of SRW at regional distances accounts for durations of more than ten minutes as the effect of a single large earthquake.
    Description: Published
    Description: 283-295
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: ground motion ; surface waves ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: In 2009, Mt. Etna (Italy) activity was characterised by the end of a long-lasting flank eruption started on 13 May 2008 and by the opening of a new summit degassing vent on the E flank of the South-East crater on 6 November. This was preceded by a sequence of significant anomalies in volcanic degassing, detected by periodic measurements of soil CO2 efflux on the east flank of the volcano, continuous measurements of SO2 flux from five fixed monitoring stations, and periodic FTIR measurements of the SO2/HCl and SO2/HF molar ratios in the volcanic plume. Since April 2009, soil and crater emissions showed a progressive increase marked at least by two major steps, in April-May and September-October. Increases were not observed simultaneously; in fact, they were detected first in soil CO2 emissions and then, a few days/weeks later, in crater SO2 flux. Only minor increases of HCl and HF crater fluxes were observed between November and December. The highest SO2 and halogens fluxes were recorded in coincidence with the opening of the November 6 vent. The degassing behaviour of the volcano in 2009 is consistent with the differential release of magmatic gas species, according to their different solubilities, from a magma body rising from ~5 km depth to the surface. Our results suggest the start of a new phase in Etna’s activity, in which the new vent might reflect improved efficiency in the release of magmatic gas through the main feeding system, supplied by a magma body stored at depths between 4 and 2 km. If degassing at the new vent will remain steadystate, thus forming a stable feeding system, then its opening might represent the eastward migration of the South-East crater activity with the likely formation of a new stable summit cone.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; crater degassing ; soil gases ; volcanic activity ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: Mount Etna in Sicily (973 km2), the most active European volcano, is known as one of the largest contributors of magmatic CO2 released to the atmosphere. A significant part of this gas is released in diffuse form through the volcano’s flanks, along faults and fractured zones, particularly around its summit (about 3350 m). Etna is also characterized by significant and often dramatic slope failure of its eastern flank, which is thought to trigger summit collapses and some lateral eruptions. In order to map the faulted areas near Etna’s summit and to study possible weak zones, a diffuse CO2 efflux survey was carried out at Mt. Etna in October, 2008. A total of 1442 sites were surveyed for soil CO2 efflux and soil temperature over an area of about 9 km2 that included most of the summit part of Mt. Etna above 2600 m a.s.l. The results show the presence of several degassing faults in all of the surveyed area except its west part, which seems to be structurally stable. Most of the degassing faults start from the summit craters and run parallel to the borders of the eastward collapsing sector of the volcano. Many of them are related to the development of the South-East Crater, but others seem to be related to a large buried crater rim, probably a remnant of the 1669 collapse crater formed during the largest eruption in the last 2000 years. Some degassing faults are not accompanied by thermal anomalies, thus suggesting that the gas source is too deep and/or the ground permeability is too low to allow high-enthalpy fluids to reach the surface before their condensation. These “cold” faults bound the anomalous degassing areas to the west, therefore they would be relatively new and shallow, suggesting a progressive westward shift of slope failure.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil CO2 effluxes ; hidden faults ; soil temperature ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: During the period 2007-2009, the volcanic activity of Mt. Etna (Italy) was characterized by a series of paroxysmal events in 2007 that preceded a long-lasting (419 days) flank eruption. Four months after the end of that eruption, the opening of a new summit degassing vent marked the beginning of a new phase of activity, so far characterized only by degassing phenomena. Soil radon activity and soil temperature were monitored every 15 minutes at a low-temperature fumarole near the summit craters of Etna starting from late May 2007. The temporal pattern of these parameters showed in general their significant cross-correlation, thus pointing to a common gas transport mechanism. Magmatic/ hydrothermal fluids in the sub-surface ground are convectively transported towards the surface along a major fault that runs from Etna’s summit towards SSE and partly marks the boundary of an eastward sliding sector of the volcano that is involved into phenomena of flank collapse. Both of the monitored parameters indicate the occurrence of three long-term cycles of soil degassing during the period investigated, each one characterized by high average values of temperature and radon. The first cycle started in June 2007 and lasted until early April 2008, thus accompanying the recharge of the volcano. The second cycle lasted from late April 2008 to mid-May 2009, thus preceding and accompanying the first phase of the 13 May 2008 – 5 July 2009 flank eruption. The third cycle started in mid-July 2009 and it’s still ongoing. It marked a new recharge of the volcano that culminated in the opening of the new summit degassing vent in early November 2009. Therefore, continuous monitoring of soil radon and soil temperature near the summit of Mt. Etna has proven helpful in determining states of volcanic unrest related to recharge and/or pre-eruptive magma ascent.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil radon ; active faults ; volcanic activity
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: Active volcanoes can influence surrounding vegetation both through passive degassing during quiescent periods and through eruptive degassing, by introducing into the atmosphere several metals as gases and particles. The chemical composition of tree-rings has been generally used to investigate the effects of anthropogenic gas emissions and dendrochemical methods have successfully recorded variations in the pollution levels. The use of tree-rings analysis in active volcanic areas has shown that vascular plants could be used as archives of volcanogenic metals deposition. Tree cores of Pinus Nigra and Populus tremula were collected in sites located both on the downwind (Citelli and Mt. Fontane sites) and on the upwind (Mt. Intraleo site) sectors of Mt. Etna in June 2008. Individual and composited tree-rings were analyzed by inductively-coupled-plasma mass-spectrometry for the determination of several trace elements (As, Cd, Li, Mn, Mo, Ni, Se, Sr, Pb, V). Tree cores were dated dendrochronologically before analysis, and their ages date back to 1915. The preliminary results show that some elements have significant differences in concentration between the two tree species analyzed, and in general metals are more concentrated in the samples from the downwind sites, hence more exposed to crater gas emissions. Furthermore, the temporal patterns of metal contents show some evident peaks likely related to some of the major flank eruptions of the volcano, particularly those occurred after 1945. This method can be used in many active volcanoes to reconstruct their past degassing rate and recognize possible eruptive cycles, thus helping forecast their future behaviour.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; tree rings ; trace metals ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: This work reports the first estimation of total CO2 emission to the atmosphere (visible and non-visible) from Etna volcano, Sicily, by means of direct methods. Until present, only direct measurements of the CO2 emitted by the volcanic plume of Etna had been performed, and not data of direct soil CO2 efflux from surface environment of this volcano were available. To estimate the total CO2 emission, 4075 soil CO2 efflux measurements were performed by means of the accumulation chamber method in October-November 2008. Most of the study area showed background levels of soil CO2 efflux (0.53 g·m-2·d-1), while peak values (〉1725 g·m-2·d-1) were mainly identified inside the summit craters and at Torre del Filosofo area. Other zones with relatively high CO2 efflux values were identified at Paternó, Zafferana Etnea and Trecastagni-Viagrande. The total output of CO2 diffuse emission from the study area (973 km2) was computed in 20320 t·d-1, where 1671 t·d-1, about 8.3% of CO2 diffuse emission, was emitted by an area of 87 km2 which includes the summit craters and Torre del Filosofo. To evaluate the visible/diffuse CO2 emission ratio, plume CO2 emission rate was estimated by multiplying SO2 emission rate times observed CO2/SO2 plume ratio following the methodology described by Shinohara (2005). Total CO2 visible emission was estimated about 31.5 kt·d-1, value is in the range reported for Etna volcano (0.9-67.5 kt·d-1; Aiuppa et al., 2006). The total output of CO2 diffuse emission represents 39% of the total CO2 emission from Etna volcano to the atmosphere. These results agree with the observations of Allard et al. (1991), who reported that diffuse and visible CO2 emissions were in the same order of magnitude. This study demonstrates the importance of measuring diffuse CO2 emissions from active volcanoes like Mt. Etna in order to have a better approach on the global estimate of CO2 emission to the atmosphere from subaerial volcanoes
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil CO2 effluxes ; CO2 budget ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2 and Rn surveys have been performed, in order to get insights upon active tectonic structures in a densely populated sector of the South-Eastern flank of Mt Etna, which seems to be involved in the flank dynamics, as highlighted by satellite data (INSAR). The investigated area extends about 150 km2, in an area, where INSAR data detected several lineaments not known from geological surveys. The method adopted to perform the 345 soil CO2 measurements is the “dynamic concentration” method (Gurrieri and Valenza, 1988; Camarda et al., 2006), which provides a proxy for soil CO2 fluxes. The gas measurements have been performed along transects roughly orthogonal to the lineaments, with measurement points spaced about 100m. The method appeared more efficient than a regular grid, which would have requested much more measurements and a time-consuming field work. CO2 data show the highest values, along each transect, very close to the lineaments evidenced by INSAR observations. Anomalous values also occur in correspondence of eruptive fractures. In some portions of the investigated area, rather broad anomalies are observed, and this would imply that, instead of a single well-defined lineament, a wider fault zone probably exists. A set of both CO2 and Rn measurements, performed at about 900m of altitude, are worth of note, because they allow identifying the lengthening of detected lineaments at higher elevation, where the INSAR data are poorly informative. Finally, at the base of the volcanic edifice, the soil gas anomalies strikingly define the active structures until almost the coastline through the northern periphery of Catania town. The coupling of the two methods thus revealed as a powerful tool to detect buried active structures, which conversely do not show significant field evidences.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Mt. Etna ; soil gases ; gravitational spreading ; INSAR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: Experimental data and numerical modelling were used to study the effect of local geology on the seismic response of the Catania area. The town extends on a marly clays bedrock and terraced deposits made up by coastal sands and alluvial conglomerates. This sedimentary substratum is deeply entrenched by paleo-valleys filled by lava flows and pyroclastics. Available borehole data and elastic parameters were used to reconstruct a geotechnical model in order to perfome 1D numerical modeling. Seismic urban scenarios were simulated considering destructive (Mw = 7.0), strong (Mw = 6.2) and moderate (Mw = 5.7) earthquakes to assess the shaking level of the different outcropping formations. For each scenario seven real accelerograms were selected from the European Strong Motion Database to assess the expected seismic input at the bedrock. PGA and spectral acceleration at different periods were obtained in the urban area through the equivalent linear numerical code EERA, and contour maps of different levels of shaking were drawn. Standard and horizontal-to-vertical spectral ratios were achieved making use of a dataset of 172 seismic events recorded at ten sites located on the main outcropping lithotypes. Spectral ratios inferred from earthquake data were compared with theoretical transfer functions. Both experimental and numerical results confirm the role of the geological and morphologic setting of Catania. Amplification of seismic motion mainly occurs in three different stratigraphic conditions: (a) sedimentary deposits mainly diffused in the south of the study area; (b) spots of soft sediments surrounded by lava flows; (c) intensely fractured and scoriaceous basaltic lavas.
    Description: In press
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Scenario earthquake ; 1D modelling ; PGA values ; Earthquake records ; spectral ratios ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-11-16
    Description: Geological, geophysical and geotechnical investigations, for the characterization of the strong-motion recording sitesmanaged by the ItalianCivil Protection, have been carried out in the framework of the project “Italian strong-motion database in the period 1972–2004”. The project aimed at creating an updated database of strong-motion data acquired in Italy by different institutions in the time span 1972–2004, and at improving the quality of disseminated data. This article illustrates the state of the recording site characterization before the beginning of the project, explains the criteria adopted to select the sites where geophysical/ geotechnical investigation have been performed and describes the results of the promoted field surveys.
    Description: Published
    Description: 1189–1207
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: site ; characterization ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: The Italian strong-motion database was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian Civil Protection). The aim of the project was the collection, homogenization and distribution of strong motion data acquired in Italy in the period 1972-2004 by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC. Recently the strong-motion data relative to the 23th December 2009, Parma (Mw=5.4 and Mw=4.9) and to the 2009 L’Aquila sequence (13 earthquakes with 4.1Mw6.3) were included in the ITACA database (beta release). The database contains 7038 waveforms from analog and digital instruments, generated by 1019 earthquakes with magnitude up to 6.9 and can be accessed on-line at the web site http://itaca.mi.ingv.it. The strong motion data are provided in the unprocessed and processed versions. This article describes the steps followed to process the acceleration time series recorded by analogue and digital instruments. The procedures implemented involve: baseline removal, instrumental correction, band pass filtering with acausal filters, integration of the corrected acceleration in order to obtain velocity and displacement waveforms, computation of acceleration response spectra and strong motion parameters. This procedure is applied to each accelerogram, is realised to preserve the low frequency content of the records.
    Description: In press
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: strong-motion ; processing ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: A revised Italian strong motion archive has become available since July 2007, including all the records of the strongest events occurred from 1972 to 2004. It contains the uncorrected and corrected accelerograms and the metadata relevant to seismic events, recording stations and instruments added after a careful revision. The availability of this archive allowed us to perform a first step towards an update of the reference ground motion prediction equations for Italy, which were evaluated by Sabetta and Pugliese in (Bull Seismol Soc Am 77:1491–1513, 1987), for peak ground acceleration and velocity, and subsequently extended to the 5% damped pseudovelocity response spectra in 1996. A subset with the 27 major earthquakes occurred in Italy from 1972 to 2002, in the magnitude range 4.6–6.9, was extracted and 235 good quality waveforms were selected, recorded at distances up to 183 km. The goodness of fit of the Sabetta and Pugliese (Bull Seismol Soc Am 86:337–352, 1996) model was explored using two independent statistical approaches (Spudich et al. Bull Seismol Soc Am 89:1156–1170, 1999 and Scherbaum et al. Bull Seismol Soc Am 94:2164– 2185, 2004). The results obtained show that the Sabetta and Pugliese (Bull Seismol Soc Am 77:1491–1513, 1987) does not adequately fit the new strong-motion data set, for its small standard deviation and its non-zero bias. In particular, the most noteworthy result is that the Sabetta and Pugliese (Bull Seismol Soc Am 77:1491–1513, 1987) over-predicts peak ground acceleration and velocity at rock sites. New coefficients for the prediction of horizontal peak ground acceleration, peak ground velocity and acceleration response spectra, adopting the same functional form in Sabetta and Pugliese (Bull Seismol Soc Am 77:1491–1513, 1987), were then evaluated in order to fit the new data set. This paper illustrates the steps made to update the existing ground motion prediction equations for Italy, discusses their limitations and provides the basis for future developments.
    Description: Published
    Description: 591–608
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: ground motion prediction ; equation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: The Italian Accelerometic Archive (ITACA) was created in 2007 during a joint project between the Italian Institute for Geophysics and Vulcanology (Istituto Nazionale di Geofisica e Vulcanologia, INGV) and the Italian Civil Protection (Dipartimento della Protezione Civile, DPC). The project, started in 2006, had the aim of filling the data gap of existing strong motion databases and facilitating strong motion data users in obtaining good quality waveforms, through the collection, homogenization and distribution of strong motion data acquired during the period 1972-2004 in Italy by different institutions (Ente Nazionale per l’Energia Elettrica, ENEL, Italian electricity company; Ente per le Nuove tecnologie, l’Energia e l’Ambiente, ENEA, Italian energy and environment organization DPC). The compiled database contains 2182 three-component waveforms generated by 1008 earthquakes with a maximum moment magnitude of 6.9 (1980 Irpinia earthquake) and can be accessed on-line at the portal denominated ITACA at the site http://itaca.mi.ingv.it, where a wide range of search tools enables the user to interactively retrieve events, recording stations and waveforms with particular characteristics, whose parameters can be specified, as needed, through user friendly interfaces. A range of display options allows users to view data in different contexts, extract and download time series and spectral data. This article describes the state of the art up to 2006 and the activities which led to the completion of the project.
    Description: In press
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: strong-motion ; database ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: A set of Ground Motion Prediction Equations (GMPEs) for the Italian territory is proposed, exploiting a new strong-motion data set become available since July 2007 through the Italian Accelerometric Archive (ITACA). The data set is composed by 561 three-component waveforms from 107 earthquakes with moment magnitude in the range 4.0–6.9, occurred in Italy from 1972 to 2007 and recorded by 206 stations at distances up to 100 km. The functional form used to derive GMPEs in Italy (Sabetta and Pugliese in Bull Seismol Soc Am 86(2):337–352, 1996) has been modified introducing a quadratic term for magnitude and a magnitude-dependent geometrical spreading. The coefficients for the prediction of horizontal and vertical peak ground acceleration, peak ground velocity and 5% damped acceleration response spectra are evaluated. This paper illustrates the new data set, the regression analysis and the comparisons with recently derived GMPEs in Europe and in the Next Generation Attenuation of Ground Motions (NGA) Project.
    Description: In press
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: ground motion ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: Large variations of the CO2 flux through the soil were observed between November 2002 and January 2006 at Mt. Etna volcano. In many cases, the CO2 flux was strongly influenced by changes in air temperature and atmospheric pressure. A new filtering method was then developed to remove the atmospheric influences on soil CO2 flux and, at the same time, to highlight the variations strictly related to volcanic activity. Successively, the CO2 corrected data were quantitatively compared with the spectral amplitude of the volcanic tremor by cross correlation function, cross-wavelet spectrum and wavelet coherence. These analyses suggested that the soil CO2 flux variations preceded those of volcanic tremor by about 50 days. Given that volcanic tremor is linked to the shallow (a few kilometer) magma dynamics and soil CO2 flux related to the deeper (*12 km b.s.l.) magma dynamics, the “delayed similarity” between the CO2 flux and the volcanic tremor amplitude was used to assess the average speed in the magma uprising into the crust, as about 170–260 m per day. Finally, the large amount of CO2 released before the onset of the 2004–2005 eruption indicated a deep ingression of new magma, which might have triggered such an eruption.
    Description: In press
    Description: N/A or not JCR
    Description: reserved
    Keywords: Mt. Etna ; Soil CO2 flux ; Volcanic tremor ; Cross-wavelet spectrum ; Wavelet coherence ; Cross correlation function ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: Following the 2001 and 2002–2003 flank eruptions, activity resumed at Mt. Etna on 7 September 2004 and lasted for about 6 months. This paper presents new petrographic, major and trace element, and Sr–Nd isotope data from sequential samples collected during the entire 2004–2005 eruption. The progressive change of lava composition allowed defining three phases that correspond to different processes controlling magma dynamics inside the central volcano conduits. The compositional variability of products erupted up to 24 September is well reproduced by a fractional crystallization model that involves magma already stored at shallow depth since the 2002–2003 eruption. The progressive mixing of this magma with a distinct new one rising within the central conduits is clearly revealed by the composition of the products erupted from 24 September to 15 October. After 15 October, the contribution from the new magma gradually becomes predominant, and the efficiency of the mixing process ensures the emission of homogeneous products up to the end of the eruption. Our results give insights into the complex conditions of magma storage and evolution in the shallow plumbing system of Mt. Etna during a flank eruption. Furthermore, they confirm that the 2004–2005 activity at Etna was triggered by regional movements of the eastern flank of the volcano. They caused the opening of a complex fracture zone extending ESE which drained a magma stored at shallow depth since the 2002–2003 eruption. This process favored the ascent of a different magma in the central conduits, which began to be erupted on 24 September without any significant change in eruptive style, deformation, and seismicity until the end of eruption.
    Description: Published
    Description: 781–793
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemistry ; Isotopic compositions ; Magma feeding system ; Magma mixing ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: Mount Etna is an open conduit volcano, characterised by persistent activity, consisting of degassing and explosive phenomena at summit craters, frequent flank eruptions, and more rarely, eccentric eruptions. All eruption typologies can give rise to lava flows, which represent the greatest hazard by the volcano to the inhabited areas. Historical documents and scientific papers related to the 20th century effusive activity have been examined in detail, and volcanological parameters have been compiled in a database. The cumulative curve of emitted lava volume highlights the presence of two main eruptive periods: (a) the 1900–1971 interval, characterised by a moderate slope of the curve, amounting to 436 · 106 m3 of lava with average effusion rate of 0.2 m3/s and (b) the 1971–1999 period, in which a significant increase in eruption frequency is associated with a large issued lava volume (767 · 106 m3) and a higher effusion rate (0.8 m3/s). The collected data have been plotted to highlight different eruptive behaviour as a function of eruptive periods and summit vs. flank eruptions. The latter have been further subdivided into two categories: eruptions characterised by high effusion rates and short duration, and eruptions dominated by low effusion rate, long duration and larger volume of erupted lava. Circular zones around the summit area have been drawn for summit eruptions based on the maximum lava flow length; flank eruptions have been considered by taking into account the eruptive fracture elevation and combining them with lava flow lengths of 4 and 6 km. This work highlights that the greatest lava flow hazard at Etna is on the south and east sectors of the volcano. This should be properly considered in future land-use planning by local authorities.
    Description: Published
    Description: 407–443
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; effusive activity ; database ; lava flow length ; eruptive fractures ; vent elevation ; hazard zonation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.
    Description: INGV-DPC V3_6 project UR V3_6/07
    Description: In press
    Description: on line first
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; unconformity ; tephostratigraphy ; 40Ar/39Ar age determination ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: Recent geological studies performed at Etna allow reassessing the stratigraphic frame of the volcano where distinct evolutionary phases are defined. This stratigraphic reconstruction was chronologically constrained on the basis of a limited number of U–Th and K–Ar age determinations whose uncertainty margins are sometimes too wide. For this reason, we successfully adopted at Etna the 40Ar/39Ar technique that allowed obtaining more precise age determinations. The incremental heating technique also gives information on sample homogeneity, and potential problems of trapped argon. Five samples were collected from stratigraphically well-controlled volcanic units in order to chronologically define the transition between the fissure-type volcanism of the Timpe phase to the central volcanism of the Valle del Bove Centers. Isotopic ages with an uncertainty margin of 2–4% have been obtained emphasizing that this transition occurred (130– 126 ka) without significant temporal hiatus.
    Description: University of Catania grants (COFIN- 2002, resp. F. Lentini); CNR-IDPA and INGV-Sezione di Catania grants.
    Description: Published
    Description: 292-298
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: 40Ar/39Ar dating ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: Kostrov's (1974) algorithm for seismic-strain tensor computations, in the version implemented by Wyss et al. (1992a) for error estimates, has been applied to shear-type earthquakes occurring beneath the Etna volcano during 1990-1996. Space-time variations of strain orientations and amplitudes have been examined jointly with ground-deformation and gravimetric data collected in the same period and reported in the literature. Taking also into account the information available from volcanological observations and structural geology, we propose a model assuming that hydraulic pressure by magma emplaced in nearly north-south vertical structures produces the E-W orientation of the maximum compressive strain found in the upper 10 km beneath the crater area. In contrast, regional tectonics deriving from the slow, north-south convergence between the African and European plates appear to play a dominant role in the generation of stress and strain fields at crustal depths deeper than 10 km below the volcano. According to our interpretation, the progressive ascent of magma through the upper crust prior to eruption produces the observed gravity changes, cone inflation and unusual seismic strain rate in the upper 10 km associated with a more sharply defined seismic deformation regime (i.e. very small confidence limits of the epsilon 1 orientation). In agreement with this model, deflation revealed by ground-deformation data during the course of the major 1991-1993 eruption was accompanied by a practically nil level of shallow seismicity.
    Description: Published
    Description: 318-330
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; Italy ; Earthquakes ; Seismic strain ; Stress inversion ; Volcanic processes ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: Mt. Etna, in Sicily (Italy), is one of the world’s most frequent emitters of volcanic plumes. During the last ten years, Etna has produced copious tephra emission and fallout that have damaged the inhabited and cultivated areas on its slopes and created serious hazards to air traffic. Recurrent closures of the Catania International airport have often been necessary, causing great losses to the local economy. Recently, frequent episodes of ash emission, lasting from a few hours to days, occurred from July to December 2006, necessitating a look at additional monitoring techniques, such as remote sensing. The combination of a ground monitoring system, with polar satellite data represents a novel approach to monitor Etna’s eruptive activity and makes Etna one of the few volcanoes for which this surveillance combination is routinely available. In this work, ash emission information derived from an integrated approach, based on comparing ground and NOAA-AVHRR polar satellite observations, is presented. This approach permits us to define the utility of real time satellite monitoring systems for both sporadic and continuous ash emissions. Using field data (visible observations, collection of tephra samples and accounts by local inhabitants), the duration and intensity of most of the tephra fallout events were evaluated in detail and, in some cases, the order of magnitude of the erupted volume was estimated. The ground data vs. satellite data comparison allowed us to define five different categories of Etna volcanic plumes according to their extension and length, while taking into account plume height and wind intensity. Using frequent and good quality satellite data in real time, this classification scheme could prove helpful for investigations into a possible correlation between eruptive intensity and the presence and concentration of ash in the volcanic plume. The development and improvement of this approach may constitute a powerful warning system for Civil Protection, thus preventing unnecessary airport closures.
    Description: FIRB B5 Italian project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali” funded by MIUR
    Description: Published
    Description: 135–147
    Description: JCR Journal
    Description: open
    Keywords: volcanic ash ; Mt. Etna ; ground monitoring ; NOAA–AVHRR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-11-04
    Description: The terrestrial 3D Laser Scanning technique has been applied to analyse the surface roughness of pyroclastic deposits on volcanic surfaces at Mt. Etna. This technique allowed the construction of high accuracy digital elevation models of small surfaces, about 1 m across. Sampled surfaces differ for percentage of coverage and for grain size of the pyroclastic deposits. The change in grain size distribution for the pyroclastic unconsolidated deposits affects the surface roughness. The roughness of the site where the finest pyroclastic deposits occur is mainly governed by large scale wavelength morphology (Hurst exponent H = 0.77 for lengths larger than 16 mm). The other sampled surfaces have self-affine characters with low (0.15) to intermediate (0.35 - 0.38) Hurst exponents for lengths higher than 10 – 22 mm. Here we show results of the analysis of the surface roughness of the pyroclastic deposits emplaced during the 2001 and 2002-2003 eruptions at Mt. Etna. Grain size and thickness of pyroclastic deposits mainly control the overall roughness of such as volcanic surface.
    Description: Published
    Description: 813-822
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: surface roughness ; pyroclastic deposits ; Laser 3D ; Mount Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-06-21
    Description: Earthquake early warning systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in re- ducing vulnerability and/or exposure of buildings and lifelines. Indeed, seismologists have recently developed efficient methods for real-time es- timation of an event’s magnitude and location based on limited informa- tion of the P-waves. Therefore, when an event occurs, estimates of magni- tude and source-to-site distance are available, and the prediction of the structural demand at the site may be performed by Probabilistic Seismic Hazard Analysis (PSHA) and then by Probabilistic Seismic Demand Analysis (PSDA) depending upon EEWS measures. Such an approach contains a higher level of information with respect to traditional seismic risk analysis and may be used for real-time risk management. However, this kind of prediction is performed in very uncertain conditions which may affect the effectiveness of the system and therefore have to be taken into due account. In the present study the performance of the EWWS under development in the Campania region (southern Italy) is assessed by simu- lation. The earthquake localization is formulated in a Voronoi cells ap- proach, while a Bayesian method is used for magnitude estimation. Simu- lation has an empirical basis but requires no recorded signals. Our results, in terms of hazard analysis and false/missed alarm probabilities, lead us to conclude that the PSHA depending upon the EEWS significantly improves seismic risk prediction at the site and is close to what could be produced if magnitude and distance were deterministically known.
    Description: Published
    Description: 211-232
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Earthquake Early ; Campania Region ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-04-04
    Description: In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events,MW ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996–2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2. The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q( f ) = 310 f 0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bilinear geometrical spreading seems to be more appropriate at higher frequencies (f 〉 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at Mw 4.8, we used σ = 50MPa. A regional distanceindependent attenuation parameter is obtained (κ0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes. In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory.
    Description: Published
    Description: 315-333
    Description: JCR Journal
    Description: reserved
    Keywords: Attenuation ; Ground motion ; Western Alps ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: Published
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: open
    Keywords: rock physics, geomechanics, thermo-hydro-mechanical coupling, natural hazards ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: For early-warning applications in particular, the reliability and efficiency of rapid scenario generation strongly depend on the availability of reliable strong ground-motion prediction tools. If shake maps are used to represent patterns of potential damage as a consequence of large earthquakes, attenuation relations are used as a tool for predicting peak ground-motion parameters and intensities. One of the limitations in the use of attenuation relations is that these have only rarely been retrieved from data collected in the same tectonic environment in which the prediction has to be performed. As a consequence, strong ground motion can result in underestimations or overestimations with respect to the recorded data. This also holds for Italy, and in particular for the Southern Apennines, due to limitations in the available databases, both in terms of distances and magnitude. Moreover, for “real-time” early-warning applications, it is important to have attenuation models for which the parameters can be easily upgraded when new data are collected, whether this has to be done during the earthquake rupture occurrence or in the post-event, when all the strong motion waveforms are available. Here we present a strong-motion attenuation relation for early-warning applications in the Campania region (Southern Apennines), Italy. The model has a classical analytical formulation, and its coefficients were retrieved from a synthetic strong-motion database created by using a stochastic approach. The input parameters for the simulation technique were obtained through the spectral analysis of waveforms of earthquakes recorded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) network for a magnitude range Md (1.5,5.0) in the last fifteen years, and they have been extrapolated to cover a larger range. To validate the inferred relation, comparisons with two existing attenuation relations are presented. The results show that the calibration of the attenuation parameters, i.e., geometric spreading, quality factor Q, static stress drop values along with their uncertainties, are the main concern.
    Description: Published
    Description: 133-152
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: A Strong Motion ; Earlywarning ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: In the framework of an ongoing project financed by the Campania Region, a prototype system for seismic early and post-event warning is being developed and tested, based on a dense, wide dynamic seismic network (ISNet) and under installation in the Apennine belt region. This paper reports the characteristics of the seismic network, focussing on the required technological innovation of the different seismic network components (data-logger, sensors and data communication). To ensure a highly dynamic recording range, each station is equipped with two types of sensors: a strong-motion accelerometer and a velocimeter. Data acquisition at the seismic stations is performed using Osiris-6 model data-loggers made by Agecodagis. Each station is supplied with two (120 W) solar panels and two 130 Ah gel cell batteries, ensuring 72-h autonomy for the seismic and radio communication equipment. The site is also equipped with a GSM/GPRS programmable control/alarm system connected to several environmental sensors (door forcing, solar panel controller, battery, fire, etc) and through which the site status is known in real time. The data are stored locally on the hard-disk and, at the same time, continuously transmitted by the SeedLink protocol to local acquisition/analysis nodes (Local Control Center) via Wireless LAN bridge. At each LCC site runs a linux Earthworm system which stores and manages the acquired data stream. The real-time analysis system will perform event detection and localization based on triggers coming from data-loggers and parametric information coming from the other LCCs. Once an event is detected, the system will performs automatic magnitude and focal mechanism estimations. In the immediate post-event period, the RISSC performs shaking map calculations using parameters from the LCCs and/or data from the event database. The recorded earthquake data are stored into an event database, to be available for distribution and visualization for further off-line analyses. The seismic network will be completed in two stages: • Deployment of 30 seismic stations along the southern Apennine chain (to date almost completed) • Setting up a carrier-class radio communication system for fast and reliable data transmission, and installation of 10 additional seismic stations.
    Description: Published
    Description: 325 - 341
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Monitoring Infrastructure ; Early-warning Applications ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: The area of Serravalle, sited in the northern part of the town of Vittorio Veneto (TV), NE Italy, has been the target of a seismic microzonation campaign. 10 seismic stations have been deployed for a 7 months period to record in continuous mode. Three stations were installed on bedrock outcrops and seven on sedimentary sites with variable cover thickness. Spectral analyses have been performed on the collected data-set using the Generalized Inversion Technique (GIT, e.g. Andrews, 1986). In particular, spectral ratios have been calculated for each station relatively to the average of the three reference, bedrock sites. The spectral ratios provide quantitative estimates of the seismic motion amplifications which occur in each of the monitored sites. Two sites show high values of amplification, 5 times larger than signal amplitude at the reference sites, in correspondence of well discernible peak frequencies of 5 Hz. Results for the other stations show smaller amounts of site amplification spreading over a broad range of frequencies. Sites where the highest amplifications were recorded all lie on the left bank of the Meschio River and in areas farther away from its outlet into the plain correlating with the presence of thick layers of Quaternary deposits.
    Description: Published
    Description: 31-49
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: spectral ratios ; reference sites ; site effects ; earthquake grounf motion ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-04
    Description: In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earth- quakeswithin 24 hours followed by an onemonth long aftershocks sequence. Soon after the ?rstmainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 〈 ML 〈 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks de?ne two sub-vertical dextral strike-slip fault segments in agreementwith themainshock fault plane solutions. P- and T -axes retrieved from170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T -axes, respectively. Fora small percentage of focal mechanisms (~10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and signi?cant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identi?ed. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.
    Description: Published
    Description: 487-494
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Molise seismic sequence ; strike slip fault system ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: In this article the implementation and potential of the Seismotectonic Information System of the Campania Region (SISCam) are described, in particular an application of this Web-based GIS system to the seismotectonic analysis of the Sannio area (Southern Apennines) is performed. WEB-GIS technologies greatly contribute to both the environmental monitoring and the disaster management of areas affected by high natural risks. Specifically the SISCam system has been developed with the aim of providing easy access and fast diffusion, through Internet technology, of the most significant geological, geophysical, and territorial data relative to the Campania Region. The Sannio area has been selected as our application example because it is among the most active seismic regions in Italy. This portion of the Southern Apennines which was hit by the June 5, 1688 strong earthquake (MW = 6.7, CPTI 1999) and by some low- and moderate-energy seismic sequences (1990–1992, 1997), is characterized by a complex inherited tectonic setting and low-tectonic deformation rates that hide the seismogenic sources position. Since this case study turned out to be complicated, the use of the SIScam WEB-GIS has become indispensable because it allowed us to visualize, integrate and analyze all the data available, in order to obtain an accurate and direct picture of the seismotectonic setting of the area. Moreover, a different approach of data analysis was necessary, due to the lack of up-todate neotectonic and structural data; therefore, the operation of this GIS system enabled us to process and generate some original informative layers, through image analysis, such as new structural lineaments represented on a map of the potential active faults of the area, which has been the final result of our application, as a contribution to new knowledge about the local seismic risk parameters.
    Description: Published
    Description: on line first
    Description: 5.4. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: Web-based GIS ; Seismotectonic data ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994– 1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano’s summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred ‘‘passively’’ within a fracture system opened by external forces.
    Description: Published
    Description: 769-790
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; microgravity ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: A prototype system for earthquake early warning and rapid shake map evaluation is being developed and tested in southern Italy based on a dense, dynamic seismic network (accelerometers + seismometers) under installation in the Apenninic belt region (Irpinia Seismic Network). It can be classified as a regional Earthquake Early Warning System consisting of a broad-based seismic sensor network covering a portion or the entire area which is threatened by the quake's strike. The real time magnitude estimate will take advantage from the high spatial density of the network in the source region and the broad dynamic range of installed instruments. Based on the offline analysis of high quality strong-motion data bases recorded in Italy, several methods are envisaged, using different observed quantities (peak amplitude, dominant frequency, square velocity integral, …) to be measured on seismograms, as a function of time, both on P and early-S wave signals. Results from the analysis of the Italian strong motion database point out the possibility of using low-pass filtered displacement and velocity peak amplitudes measured in time windows lasting less than 3-4 sec after the first P- or S-wave arrivals. These parameters show they are robustly correlated with moment magnitude. The correlation found of 3Hz low-pass filtered PGV and PGD with magnitude is discussed and interpreted in terms of plausible dynamic models of the earthquake rupture process during its initial stage.
    Description: Published
    Description: 45-63
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Real-time Estimation ; Magnitude ; Seismic Early Warning ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: Various authors, analysing the set of accelerograms recorded at Gubbio Piana (GBP) (central Italy), have demonstrated that strong amplification occurs at this accelerometric station, which is installed within an alluvial basin. In particular, Ambraseys et al. [(2005a), Bull Earthq Eng 3:1–53; (2005b), Bull Earth Eng 3:55–73] observed that the strong motion peaks at GBP greatly exceed the median values predicted by the attenuation relationships they derived for Europe. In this work, we analyse and discuss some characteristics of the ground motion recorded at the GBP station. We show that the ground motion parameters, such as peak-ground acceleration and peak-ground velocity, are strongly influenced by the presence of locally induced surface waves that produce both a lengthening of the significant shaking duration and an increase in the peak values with respect to a nearby bedrock site. The basin-induced surface waves are observed in the three components of motion and their effects on the peak values are particularly evident in the vertical component. In the frequency domain, the energy of the surface waves is mostly restricted to the frequency band 0.4–0.8Hz for both the horizontal and vertical components. The horizontal and vertical Fourier amplitudes are also very similar, and this indicates that the H/V spectral ratio technique is not applicable to describing the site response due to the propagation of seismic wave in a complex 2D/3D geological structure. Finally, a preliminary polarization analysis shows that the directions of polarization, as well as the degree of elliptical polarization, exhibit a strong variability with time, that may be related to a complex propagation of Love and Rayleigh waves within the basin.
    Description: Published
    Description: 27-43
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: partially_open
    Keywords: site amplification ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: We present an updated geological evolution of Mount Etna volcano based on new 40Ar/39Ar age determinations and stratigraphic data integrating the previous K/Ar ages. Volcanism began at about 500 ka ago through submarine eruptions on the Gela–Catania Foredeep basin. About 300 ka ago fissure-type eruptions occurred on the ancient alluvial plain of the Simeto River forming a lava plateau. From about 220 ka ago the eruptive activity was localised mainly along the Ionian coast where fissure-type eruptions built a shield volcano. Between 129 and 126 ka ago volcanism shifted westward toward the central portion of the present volcano (Val Calanna–Moscarello area). Furthermore, scattered effusive eruptions on the southern periphery of Etna edifice occurred until about 121 ka ago. The stabilization of the plumbing system on the Valle del Bove area is marked by the building of two small polygenic edifices, Tarderia and Rocche volcanoes. Their eruptive activity was rather coeval ending 106 and 102 ka ago, respectively. During the investigated time-span volcanism in Etna region was controlled by a main E–W extensional tectonic related to the reactivation of Malta Escarpment fault system in eastern Sicily.
    Description: Published
    Description: On line First
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; 40Ar/39Ar dating ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: Because of its location, Antarctica represents an observation point of special interest to global seismology. Also, seismology can greatly contribute to the knowledge of Antarctic neotectonics through the study of continental seismicity and lithospheric structure. The sporadic distribution of seismographic stations south of latitude -45 both restricts our knowledge of the Antarctic continent, and leads to a bias in the interpretation of global geophysical properties of the Earth. Installation of seismographic stations should therefore be a priority for an Antarctic program having access to infrastructure in the area and there are particular activities carried on in the framework of the Italian Antarctic program (Programma Nazionale di Ricerche in Antartide, PNRA). In fact, the previously held notion that Antarctica is essentially aseismic has been disproved by using records from established Global Seismic Network stations and recently deployed temporary stations on the Antarctic continent. However, the seismicity observed in Antarctica is very low in comparison with other continental intraplate regions. In the continental intraplate region of Antarctica, earthquakes occur in three settings. Two are likely to have distributions with a tectonic control (although the level may be suppressed by ice-cover); those in the Transantarctic Mountains and scattered events in the interior. Finally, seismicity in the coastal zone and continental margin is likely to be most strongly controlled by the interaction between glacial isostatic adjustment and lithospheric thickness, with a regional tectonic component in some locations.
    Description: INGV
    Description: Published
    Description: 90
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: antarctic ; seismicity ; passive margin ; glacial isostatic adjustment ; magnitude threshold ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-24
    Description: Various authors, analysing the set of accelerograms recorded at Gubbio Piana (GBP) (central Italy), have demonstrated that strong amplification occurs at this accelerometric station, which is installed within an alluvial basin. In particular, Ambraseys et al. [(2005a), Bull Earthq Eng 3:1–53; (2005b), Bull Earth Eng 3:55–73] observed that the strong motion peaks at GBP greatly exceed the median values predicted by the attenuation relationships they derived for Europe. In this work, we analyse and discuss some characteristics of the ground motion recorded at the GBP station. We show that the ground motion parameters, such as peak-ground acceleration and peak-ground velocity, are strongly influenced by the presence of locally induced surface waves that produce both a lengthening of the significant shaking duration and an increase in the peak values with respect to a nearby bedrock site. The basin-induced surface waves are observed in the three components of motion and their effects on the peak values are particularly evident in the vertical component. In the frequency domain, the energy of the surface waves is mostly restricted to the frequency band 0.4–0.8Hz for both the horizontal and vertical components. The horizontal and vertical Fourier amplitudes are also very similar, and this indicates that the H/V spectral ratio technique is not applicable to describing the site response due to the propagation of seismic wave in a complex 2D/3D geological structure. Finally, a preliminary polarization analysis shows that the directions of polarization, as well as the degree of elliptical polarization, exhibit a strong variability with time, that may be related to a complex propagation of Love and Rayleigh waves within the basin.
    Description: Published
    Description: JCR Journal
    Description: reserved
    Keywords: Strong motion ; Alluvial basin effects ; Site effects ; Gubbio plain ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: A modelling of the observed macroseismic intensity of historical and instrumental earthquakes in southern Spain is proposed, with the aim of determining the macroseismic parameters for seismic hazard evaluation in a region in which the characterization of intensity distribution of seismic events shows different levels of difficulty referable to the complex faults system of the area in study. The adopted procedure allows an analytical determination of epicenters and principal attenuation directions of earthquakes with a double level of verification with reference to the maximum shaking area and structural lineaments of the region, respectively. The analyses, carried out on a suitable number of events, highlight, therefore, some elements for a preliminary characterization of a seismic zonation on the basis of the consistency between seismic intensity distribution of earthquakes and corresponding structural framework.
    Description: Published
    Description: 747-760
    Description: partially_open
    Keywords: Attenuation directions ; southern Spain ; macroseismic intensity ; virtual intensity ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 477378 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: Flank instability and collapse are observed at many volcanoes. Among these, Mt. Etna is characterized by the spreading of its eastern and southern flanks. The eastern spreading area is bordered to the north by the EW-trending Pernicana Fault System (PFS). During the 20022003 Etna eruption, ground fracturing along the PFS migrated eastward from the NE Rift, to as far as the 18 km distant coastline. The deformation consisted of dextral en-echelon segments, with sinistral and normal kinematics. Both of these components of displacement were one order of magnitude larger (~1 m) in the western, previously known, portion of the PFS with respect to the newly surveyed (~9 km long) eastern section (~0.1 m). This eastern section is located along a pre-existing, but previously unknown, fault, where displaced man-made structures give overall slip rates (11.9 cm/year), only slightly lower than those calculated for the western portion (1.42.3 cm/year). After an initial rapid motion during the first days of the 20022003 eruption, movement of the western portion of the PFS decreased dramatically, while parts of the eastern portion continued to move. These data suggest a model of spreading of the eastern flank of Etna along the PFS, characterized by eruptions along the NE Rift, instantaneous, short-lived, meter-scale displacements along the western PFS and more long-lived centimeter-scale displacements along the eastern PFS. The surface deformation then migrated southwards, reactivating, one after the other, the NNWSSE-trending Timpe and Trecastagni faults, with displacements of ~0.1 and ~0.04 m, respectively. These structures, along with the PFS, mark the boundaries of two adjacent blocks, moving at different times and rates. The new extent of the PFS and previous activity over its full length indicate that the sliding eastern flank extends well below the Ionian Sea. The clustering of seismic activity above 4 km b.s.l. during the eruption suggests a deep décollement for the moving mass. The collected data thus suggests a significant movement (volume 〉1,100 km3) of the eastern flank of Etna, both on-shore and off-shore.
    Description: Published
    Description: 417-430
    Description: partially_open
    Keywords: Volcano spreading ; Fracturing ; Mt. Etna ; Pernicana Fault System ; NE Rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 998206 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...