ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,939)
  • Rats  (2,076)
  • Cells, Cultured  (1,109)
  • American Association for the Advancement of Science (AAAS)  (2,939)
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer
  • Springer Nature
  • Wiley
  • 2010-2014  (234)
  • 2005-2009  (327)
  • 2000-2004  (482)
  • 1995-1999  (503)
  • 1985-1989  (549)
  • 1980-1984  (844)
  • 1960-1964
  • 1955-1959
  • 1935-1939
  • 1930-1934
  • Computer Science  (2,939)
  • Natural Sciences in General  (2,939)
  • Information Science and Librarianship
  • Geosciences
Collection
  • Articles  (2,939)
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (2,939)
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer
  • +
Years
  • 2010-2014  (234)
  • 2005-2009  (327)
  • 2000-2004  (482)
  • 1995-1999  (503)
  • 1985-1989  (549)
  • +
Year
Topic
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-09-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, John H -- Elledge, Stephen J -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1822-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228708" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; BRCA2 Protein/*chemistry/*metabolism ; Binding Sites ; Breast Neoplasms/genetics ; Crystallography, X-Ray ; DNA/*metabolism ; DNA Damage ; *DNA Repair ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; Female ; Genes, BRCA1 ; Genes, BRCA2 ; Genetic Predisposition to Disease ; Humans ; Mice ; Ovarian Neoplasms/genetics ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rad51 Recombinase ; Rats ; Recombination, Genetic ; Replication Protein A
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-03-23
    Description: Activity-dependent modulation of synaptic efficacy in the brain contributes to neural circuit development and experience-dependent plasticity. Although glia are affected by activity and ensheathe synapses, their influence on synaptic strength has largely been ignored. Here, we show that a protein produced by glia, tumor necrosis factor alpha (TNFalpha), enhances synaptic efficacy by increasing surface expression of AMPA receptors. Preventing the actions of endogenous TNFalpha has the opposite effects. Thus, the continual presence of TNFalpha is required for preservation of synaptic strength at excitatory synapses. Through its effects on AMPA receptor trafficking, TNFalpha may play roles in synaptic plasticity and modulating responses to neural injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beattie, Eric C -- Stellwagen, David -- Morishita, Wade -- Bresnahan, Jacqueline C -- Ha, Byeong Keun -- Von Zastrow, Mark -- Beattie, Michael S -- Malenka, Robert C -- DA00439/DA/NIDA NIH HHS/ -- MH063394/MH/NIMH NIH HHS/ -- NS 31193/NS/NINDS NIH HHS/ -- NS38079/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 22;295(5563):2282-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA. beattie.2@osu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11910117" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/pharmacology ; Astrocytes/*metabolism ; Cells, Cultured ; Culture Media, Conditioned/pharmacology ; Gene Expression Regulation/drug effects ; Hippocampus/cytology/metabolism ; Neuronal Plasticity/drug effects ; Neurons/drug effects/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/metabolism ; Receptors, Tumor Necrosis Factor ; Receptors, Tumor Necrosis Factor, Type I ; Synapses/drug effects/*metabolism ; Synaptic Transmission/drug effects ; Tumor Necrosis Factor-alpha/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-04-06
    Description: Higher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice. Although H2AX is not essential for irradiation-induced cell-cycle checkpoints, H2AX-/- mice were radiation sensitive, growth retarded, and immune deficient, and mutant males were infertile. These pleiotropic phenotypes were associated with chromosomal instability, repair defects, and impaired recruitment of Nbs1, 53bp1, and Brca1, but not Rad51, to irradiation-induced foci. Thus, H2AX is critical for facilitating the assembly of specific DNA-repair complexes on damaged DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Celeste, Arkady -- Petersen, Simone -- Romanienko, Peter J -- Fernandez-Capetillo, Oscar -- Chen, Hua Tang -- Sedelnikova, Olga A -- Reina-San-Martin, Bernardo -- Coppola, Vincenzo -- Meffre, Eric -- Difilippantonio, Michael J -- Redon, Christophe -- Pilch, Duane R -- Olaru, Alexandru -- Eckhaus, Michael -- Camerini-Otero, R Daniel -- Tessarollo, Lino -- Livak, Ferenc -- Manova, Katia -- Bonner, William M -- Nussenzweig, Michel C -- Nussenzweig, Andre -- Z99 CA999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2002 May 3;296(5569):922-7. Epub 2002 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11934988" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/physiology ; Base Sequence ; Cell Aging ; Cell Cycle ; Cells, Cultured ; *Chromosome Aberrations ; DNA Damage ; *DNA Repair ; Female ; Gene Targeting ; Histones/chemistry/*genetics/*physiology ; Immunoglobulin Class Switching ; Infertility, Male/genetics/physiopathology ; Lymphocyte Count ; Male ; Meiosis ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Phosphorylation ; *Recombination, Genetic ; Spermatocytes/physiology ; T-Lymphocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-08-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ingolia, Nicholas T -- Murray, Andrew W -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):948-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology and Bauer Center for Genomics Research, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169717" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biological Evolution ; *Cell Cycle Proteins ; Cells, Cultured ; Dual Specificity Phosphatase 1 ; *Feedback, Physiological ; Immediate-Early Proteins/*metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/*metabolism ; Models, Biological ; *Phosphoprotein Phosphatases ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallo, Robert C -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1728-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459576" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Serodiagnosis/history ; Acquired Immunodeficiency Syndrome/diagnosis/*history/immunology/virology ; CD4-Positive T-Lymphocytes/virology ; Cell Line ; Cells, Cultured ; France ; *HIV/classification/isolation & purification/physiology ; History, 20th Century ; Human T-lymphotropic virus 1/isolation & purification/physiology ; Human T-lymphotropic virus 2/isolation & purification/physiology ; Humans ; Interleukin-2/history/isolation & purification/physiology ; Patents as Topic/history ; RNA-Directed DNA Polymerase/history/isolation & purification/metabolism ; United States ; Virus Cultivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-04-12
    Description: Rapid turnover of the tumor suppressor protein p53 requires the MDM2 ubiquitin ligase, and both interact with p300-CREB-binding protein transcriptional coactivator proteins. p53 is stabilized by the binding of p300 to the oncoprotein E1A, suggesting that p300 regulates p53 degradation. Purified p300 exhibited intrinsic ubiquitin ligase activity that was inhibited by E1A. In vitro, p300 with MDM2 catalyzed p53 polyubiquitination, whereas MDM2 catalyzed p53 monoubiquitination. E1A expression caused a decrease in polyubiquitinated but not monoubiquitinated p53 in cells. Thus, generation of the polyubiquitinated forms of p53 that are targeted for proteasome degradation requires the intrinsic ubiquitin ligase activities of MDM2 and p300.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grossman, Steven R -- Deato, Maria E -- Brignone, Chrystelle -- Chan, Ho Man -- Kung, Andrew L -- Tagami, Hideaki -- Nakatani, Yoshihiro -- Livingston, David M -- CA15751/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):342-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690203" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/metabolism ; Animals ; Catalysis ; Cells, Cultured ; E1A-Associated p300 Protein ; Embryo, Mammalian ; Fibroblasts/metabolism ; Humans ; Ligases/antagonists & inhibitors/metabolism ; Mice ; Nuclear Proteins/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Trans-Activators/antagonists & inhibitors/*metabolism ; Transfection ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*metabolism ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-07-05
    Description: Raf kinases have been linked to endothelial cell survival. Here, we show that basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) differentially activate Raf, resulting in protection from distinct pathways of apoptosis in human endothelial cells and chick embryo vasculature. bFGF activated Raf-1 via p21-activated protein kinase-1 (PAK-1) phosphorylation of serines 338 and 339, resulting in Raf-1 mitochondrial translocation and endothelial cell protection from the intrinsic pathway of apoptosis, independent of the mitogen-activated protein kinase kinase-1 (MEK1). In contrast, VEGF activated Raf-1 via Src kinase, leading to phosphorylation of tyrosines 340 and 341 and MEK1-dependent protection from extrinsic-mediated apoptosis. These findings implicate Raf-1 as a pivotal regulator of endothelial cell survival during angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alavi, Alireza -- Hood, John D -- Frausto, Ricardo -- Stupack, Dwayne G -- Cheresh, David A -- CA45726/CA/NCI NIH HHS/ -- CA50286/CA/NCI NIH HHS/ -- CA75924/CA/NCI NIH HHS/ -- P01 CA78045/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):94-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cell Survival ; Cells, Cultured ; Chick Embryo ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/*cytology/drug effects ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Fibroblast Growth Factor 2/pharmacology ; Flavonoids/pharmacology ; Humans ; Intercellular Signaling Peptides and Proteins/pharmacology ; Lymphokines/pharmacology ; MAP Kinase Kinase 1 ; Mitochondria/metabolism ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Neovascularization, Pathologic ; *Neovascularization, Physiologic/drug effects ; Phosphorylation ; Point Mutation ; Protein Transport ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins B-raf ; Proto-Oncogene Proteins c-raf/chemistry/genetics/*metabolism ; Signal Transduction ; Umbilical Veins ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors ; p21-Activated Kinases ; src-Family Kinases/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-06-28
    Description: In the mammalian CNS, N-methyl-D-aspartate (NMDA) receptors serve prominent roles in many physiological and pathophysiological processes including pain transmission. For full activation, NMDA receptors require the binding of glycine. It is not known whether the brain uses changes in extracellular glycine to modulate synaptic NMDA responses. Here, we show that synaptically released glycine facilitates NMDA receptor currents in the superficial dorsal horn, an area critically involved in pain processing. During high presynaptic activity, glycine released from inhibitory interneurons escapes the synaptic cleft and reaches nearby NMDA receptors by so-called spillover. In vivo, this process may contribute to the development of inflammatory hyperalgesia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahmadi, Seifollah -- Muth-Selbach, Uta -- Lauterbach, Andreas -- Lipfert, Peter -- Neuhuber, Winfried L -- Zeilhofer, Hanns Ulrich -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2094-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Universitat Erlangen-Nurnberg, Fahrstrasse 17, D-91054 Erlangen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829784" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics/pharmacology ; Animals ; Anterior Horn Cells/drug effects/metabolism ; Diffusion ; Electric Stimulation ; Evoked Potentials/drug effects ; Excitatory Postsynaptic Potentials/drug effects ; Glycine/*metabolism/pharmacology ; In Vitro Techniques ; Interneurons/metabolism ; Neural Inhibition/drug effects ; Opioid Peptides/pharmacology ; Pain Measurement ; Patch-Clamp Techniques ; Posterior Horn Cells/drug effects/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Serine/pharmacology ; Spinal Cord/drug effects/metabolism ; Synapses/*metabolism ; *Synaptic Transmission/drug effects ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-11-01
    Description: Mutations in MeCP2, which encodes a protein that has been proposed to function as a global transcriptional repressor, are the cause of Rett syndrome (RT T), an X-linked progressive neurological disorder. Although the selective inactivation of MeCP2 in neurons is sufficient to confer a Rett-like phenotype in mice, the specific functions of MeCP2 in postmitotic neurons are not known. We find that MeCP2 binds selectively to BDNF promoter III and functions to repress expression of the BDNF gene. Membrane depolarization triggers the calcium-dependent phosphorylation and release of MeCP2 from BDNF promoter III, thereby facilitating transcription. These studies indicate that MeCP2 plays a key role in the control of neuronal activity-dependent gene regulation and suggest that the deregulation of this process may underlie the pathology of RT T.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wen G -- Chang, Qiang -- Lin, Yingxi -- Meissner, Alexander -- West, Anne E -- Griffith, Eric C -- Jaenisch, Rudolf -- Greenberg, Michael E -- HD 18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):885-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*genetics ; Calcium/*metabolism ; Cell Membrane/physiology ; Cells, Cultured ; *Chromosomal Proteins, Non-Histone ; Cloning, Molecular ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/*metabolism ; Electrophoretic Mobility Shift Assay ; *Gene Expression Regulation ; Gene Silencing ; Histones/metabolism ; Methyl-CpG-Binding Protein 2 ; Methylation ; Mice ; Mice, Knockout ; Neurons/metabolism/physiology ; Phosphorylation ; Potassium Chloride/pharmacology ; Precipitin Tests ; Promoter Regions, Genetic ; Rats ; *Repressor Proteins ; Rett Syndrome/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-03-08
    Description: The mechanisms underlying experience-dependent plasticity in the brain may depend on the AMPA subclass of glutamate receptors (AMPA-Rs). We examined the trafficking of AMPA-Rs into synapses in the developing rat barrel cortex. In vivo gene delivery was combined with in vitro recordings to show that experience drives recombinant GluR1, an AMPA-R subunit, into synapses formed between layer 4 and layer 2/3 neurons. Moreover, expression of the GluR1 cytoplasmic tail, a construct that inhibits synaptic delivery of endogenous AMPA-Rs during long-term potentiation, blocked experience-driven synaptic potentiation. In general, synaptic incorporation of AMPA-Rs in vivo conforms to rules identified in vitro and contributes to plasticity driven by natural stimuli in the mammalian brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, Takuya -- Svoboda, Karel -- Malinow, Roberto -- NS032827/NS/NINDS NIH HHS/ -- NS038259/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1585-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jones Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624270" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electrophysiology ; Gene Transfer Techniques ; Long-Term Potentiation ; *Neuronal Plasticity ; Neurons/*metabolism/virology ; Patch-Clamp Techniques ; Rats ; Receptors, AMPA/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sindbis Virus/genetics ; Somatosensory Cortex/*metabolism/virology ; Synapses/*metabolism ; *Synaptic Transmission ; Touch ; Vibrissae/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...