ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (9,463)
  • Fluid Mechanics and Thermodynamics
  • Life and Medical Sciences
  • 2015-2019  (697)
  • 1950-1954  (9,906)
Collection
Years
Year
  • 1
    Publication Date: 2019-05-24
    Description: This article discusses the use of numerical optimization procedures to aid in the calibration of turbulence model coefficients. Such methods would increase the rigor and repeatability of the calibration procedure by requiring clearly defined and objective optimization metrics, and could be used to identify unique combinations of coefficient values for specific flow problems. The approach is applied to the re-calibration of an explicit algebraic Reynolds stress model for the incompressible planar mixing layer using the Nelder-Mead simplex algorithm and a micro-genetic algorithm with minimally imposed constraints. Three composite fitness functions, each based upon the error in the mixing layer growth rate and the normal and shear components of the Reynolds stresses, are investigated. The results demonstrate a significant improvement in the target objectives through the adjustment of three pressure-strain coefficients. Adjustments of additional coefficients provide little further benefit. Issues regarding the effectiveness of the fitness functions and the efficiency of the optimization algorithms are also discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220163 , E-19680 , GRC-E-DAA-TN65018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-24
    Description: This manual describes the installation and execution of FUN3D (Fully-UNstructured three-dimensional CFD (Computational Fluid Dynamics) code) version 13.5, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220271 , L-21013 , NF1676L-32825
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-11
    Description: A computational fluid dynamics code has been developed for large-eddy simulations (LES) of turbulent flow. The code uses high-order of accuracy and high-resolution numerical methods to minimize solution error and maximize the resolution of the turbulent structures. Spatial discretization is performed using explicit central differencing. The central differencing schemes in the code include 2nd- to 12th-order standard central difference methods as well as 7-, 9-, 11- and 13-point dispersion relation preserving schemes. Solution filtering and high-order shock capturing are included for stability. Time discretization is performed using multistage Runge-Kutta methods that are up to 4th order accurate. Several options are available to model turbulence including: Baldwin-Lomax and Spalart-Allmaras Reynolds-averaged Navier-Stokes turbulence models, and Smagorinsky, Dynamic Smagorinsky and Vreman sub-grid scale models for LES. This report presents the theory behind the numerical and physical models used in the code and provides a user's manual to the operation of the code.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220192 , GRC-E-DAA-TN67540
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-20
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSFC-E-DAA-TN69842-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-20
    Description: The Predictive Thermal Control (PTC) technology development project is a multiyear effort initiated in Fiscal Year (FY) 2017, to mature the Technology Readiness Level (TRL) of critical technologies required to enable ultra-thermally-stable telescopes for exoplanet science. A key PTC partner is Harris Corporation (Rochester NY).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSFC-E-DAA-TN69842-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-01
    Description: Experiments are being conducted in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to quantify the effects on turbulent convective heat transfer of surface roughness representative of a new class of 3D woven thermal protection system mRough-wall turbulent heat transfer measurements were obtained on ballistic-range models in hypersonic flight in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility. Each model had three different surface textures on segments of the conic frustum: smooth wall, sand roughness, and a pattern roughness, thus providing smooth-wall and sand-roughness reference data for each test. The pattern roughness was representative of a woven thermal protection system material developed by NASA's Heatshield for Extreme Entry Environment Technology project. The tests were conducted at launch speeds of 3.2 km/s in air at 0.15 atm. Roughness Reynolds numbers, k+, ranged for 12 to 70 for the sand roughness, and as high as 200 for the pattern roughness. Boundary-layer parameters required for calculating k+ were evaluated using computational fluid dynamics simulations. The effects of pattern roughness are generally characterized by an equivalent sand roughness determined with a correlation developed from experimental data obtained on specifically-designed roughness patterns that do not necessarily resemble real TPS materials. Two sand roughness correlations were examined: Dirling and van Rij, et al. Both gave good agreement with the measured heat-flux augmentation for the two larger pattern roughness heights tested, but not for the smallest height tested. It has yet to be determined whether this difference is due to limitations in the experimental approach, or due to limits in the correlations used. Future experiments are planned that will include roughness patterns more like those used in developing the equivalent sand roughness correlations.aterials being developed by NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Data were simultaneously obtained on sand-grain roughened surfaces and smooth surfaces, which can be compared with previously obtained data. Results are presented in this extended abstract for one roughness pattern. The full paper will include results from three roughness patterns representing virgin HEEET, nominal turbulent ablated HEEET, and twice the roughness of nominal turbulent ablated HEEET. Results will be used to compare with commonly used equivalent sand grain roughness correlations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN69052 , AIAA Aviation Forum 2019; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Over the last 5 years, the Heatshield for Extreme Entry Environment Technology (HEEET) project has been working to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. A key aspect of the project has been the development of the manufacturing and integration processes/procedures necessary to build a heat shield utilizing the HEEET 3D-woven material. This has culminated in the building of a 1-meter diameter Engineering Test Unit (ETU) representative of what would be used for a Saturn probe. The present talk provides an overview of recent testing of NASA's Heatshield for Extreme Entry Environment Technology (HEEET) 3D Woven TPS. Under the current program, the ETU has been subjected to Thermal and Mechanical loads typical of deep space mission to Saturn. Thermal testing of HEEET coupons has performance up to 4,500 watts per centimeter squared at 5 atmospheres stagnation pressure and successful shear performance up to 3000 pascals at 1,650 watts per centimeter squared at 2.6 atmospheres pressure.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN65177 , National Space & Missile Materials Joint Symposium (NSMMS 2019); Jun 24, 2019 - Jun 27, 2019; Henderson, NV; United States|Commercial and Government Responsive Access to Space Technology Exchange Joint Symposium (CRASTE 2019); Jun 24, 2019 - Jun 27, 2019; Henderson, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-20
    Description: Laser Rayleigh scattering was used to investigate clusters in the free-stream flow at Arnold Engineering Development Centers Tunnel 9 (T9). The facility was run at Mach-14, with a pure-N2 flow medium, and at several total pressures and temperatures. Using an excimer laser operating at 248 nm, the Rayleigh instrument imaged scattering from the focused laser beam in the free-stream. As a wind-tunnel flow is accelerated, it cools and approaches the condensation boundary. As a precursor to condensation, small clusters of molecules are first formed, but the individual clusters are too small to be spatially resolved in typical images of the beam. Thus clusters effectively add a spatially smooth background signal to the pure diatomic-molecule Rayleigh signal. The main result of the present work is that clustering was not significant. After correcting for interference by small particles imbedded in the T9 flow, cluster scattering was unobservable or smaller than one standard deviation (1-sigma) of the uncertainties for almost all tunnel runs. The total light scattering level was measured to be 1.05 +/- 0.15 (1-sigma) of the expected diatomic scattering, when averaged over the entire usable data set. This result included flow conditions that were supercooled to temperatures of ~ 20 K, about 25 K below the condensation limit of ~ 45 K. Thus the Mach-14 nozzle flow is essentially cluster-free for many supercooled conditions that might be used to extend the facility operating range to larger Reynolds numbers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220259 , L-21001 , NF1676L-32466
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Mission, landing and recovery operations for the Orion crew module involve reentry into the Earth's atmosphere and the deployment of three Nomex parachutes to slow the descent before landing along the west coast of the United States. Orion may have residual fuel (hydrazine, N2H4) or coolant (ammonia, NH3) on board which are both highly toxic to crew in the event of exposure. These risks were evaluated using a first principles analysis approach through fluid dynamics modeling. Plume calculations were first performed with the ANSYS Fluent computational fluid dynamics code. Data were then extracted at locations relevant to crew safety such as the snorkel fan inlet and the egress hatch. Mixing calculations were performed to quantify exposure concentrations within the crew bay before and during egress and departure. Finally, results included herein were used to inform the Orion post-landing Concept of Operations (ConOps) so that strategies could be formulated to maintain crew safety in the event of the loss of fuel or coolant.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-E-DAA-TN62706 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: During instrument-level or spacecraft-level ground testing, heat pipes may be placed in reflux mode, with condenser above evaporator. A liquid pool will form at the bottom of the heat pipe. If heat is applied to a site below the surface of the liquid pool in a vertical heat pipe, the heat pipe can work properly under reflux mode. A superheat is required for startup. If heat is applied to a site above the liquid pool, the heat pipe is not expected to work unless additional heat is applied to the liquid pool to provide the needed flow circulation. There are many reason to minimize the additional heater power. An experimental investigation was conducted to study the heat pipe behavior under this configuration.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN66142 , Spacecraft Thermal Control Workshop; Mar 26, 2019 - Mar 28, 2019; Torrance, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-20
    Description: In this report we have catalogued the flow regimes observed in microgravity, summarized correlations for the pressure drop and rate of heat transfer that are commonly used, and discuss the validation of a few correlations from available experimental results. Two-phase flow through some specific components such as bends, tees, filters and pumps are discussed from a physical perspective to guide the designer on how reduced gravity might affect their performance. Phase separation in zero gravity is addressed through the behavior and basic design concepts for devices based on passive centrifugal action, capillary forces, gas extraction through a membrane installed in a channel wall and the use of a syringe with a perforated piston to remove bubbles from small liquid volumes. We address the common instabilities that develop in flow loops owing exclusively to the two-phase nature of the flow, e.g., Ledinegg instability and concentration waves. Finally we briefly review flow metering and gauging; two-phase flow through porous media, where pressure drop and flow regime map correlations in zero-g are a current research topic; and basic operation principles of heat pipes and capillary pumped loops.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220147 , E-19668 , GRC-E-DAA-TN65638
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-20
    Description: Current turbulence models, such as those employed in Reynolds-averaged Navier-Stokes CFD, are unable to reliably predict the onset and extent of the three-dimensional separated flow that typically occurs in wing-fuselage junctions. To critically assess, as well as to improve upon, existing turbulence models, experimental validation-quality flow-field data in the junction region is needed. In this report, we present an overview of experimental measurements on a wing-fuselage junction model that addresses this need. The experimental measurements were performed in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The model was a full-span wing-fuselage body that was configured with truncated DLR-F6 wings, both with and without leading-edge extensions at the wing root. The model was tested at a fixed chord Reynolds number of 2.4 million, and angles-of-attack ranging from -10 degrees to +10 degrees were considered. Flow-field measurements were performed with a pair of miniature laser Doppler velocimetry (LDV) probes that were housed inside the model and attached to three-axis traverse systems. One LDV probe was used to measure the separated flow field in the trailing-edge junction region. The other LDV probe was alternately used to measure the flow field in the leading-edge region of the wing and to measure the incoming fuselage boundary layer well upstream of the leading edge. Both LDV probes provided measurements from which all three mean velocity components, all six independent components of the Reynolds-stress tensor, and all ten independent components of the velocity triple products were calculated. In addition to the flow-field measurements, static and dynamic pressures were measured at selected locations on the wings and fuselage of the model, infrared imaging was used to characterize boundary-layer transition, oil-flow visualization was used to visualize the separated flow in the leading- and trailing-edge regions of the wing, and unsteady shear stress was measured at limited locations using capacitive shear-stress sensors. Sample results from the measurement techniques employed during the test are presented and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220286 , NF1676L-33264
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: The InSight Mars Lander successfully landed on the surface on November 26, 2018. This poster will describe the methodologies and margins used in developing the aerothermal environments for design of the thermal protection systems (TPS), as well as a prediction of as-flown environments based on the best estimated trajectory. The InSight mission spacecraft design approach included the effects of radiant heat flux to the aft body from the wake for the first time on a US Mars Mission, due to overwhelming evidence in ground testing for the European ExoMars mission (2009/2010) [1] and 2010 tests in the Electric Arc Shock Tube (EAST) facility [2]. The radiant energy on an aftbody was also recently confirmed via measurement on the Schiaparelli mission [3]. In addition, the InSight mission expected to enter the Mars atmosphere during the dust storm season, so the heatshield TPS was designed to accommodate the extra recession due to the potential dust impact. This poster will compare the predicted aerothermal environments using the reconstructed best estimated trajectory to the design environments. Design Approach: The InSight spacecraft was planned to be a near-design-to-print copy of the Phoenix spacecraft. The determination of the heatshield TPS requirements was approached as if it was a new design due to the new requirement of flying through a dust storm. The baseline for aftbody was build-to-print, and all analyses focused on ensuring adequate margin. This proved to be a challenge because the Phoenix aftbody was designed to withstand only convective heating and the InSight aftbody was evaluated for both convective and radiative heating. Aerothermal environments were predicted using the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data Parallel Line Relaxation (DPLR) CFD codes, and the Nonequilibrium Radiative Transport and Spectra Program (NEQAIR) utilizing bounding design trajectories derived from Monte Carlo analyses from the Program to Optimize Simulated Trajectories II (POST2). In all cases, super-catalytic flowfields were assigned to ensure the most conservative heating results. Two trajectories were evaluated: 1) the trajectory with the maximum heat flux was utilized to determine the flowfield characteristics and the viability of the selection of TPS materials; and 2) the trajectory with the maximum heat load was used to determine the required thicknesses of the TPS materials. Evaluation of the MEDLI data [4], along with ground test data [5] led to the determination of whether or not the flow would transition from laminar to turbulent on the heatshield, which also determined the TPS sizing location for the heatshield. Aerothermal margins were added for the convective heating and developed for the radiative heating. TPS material sizing was determined with the Reaction Kinetic Ablation Program (REKAP) and the Fully Implicit Ablation and Thermal Analysis program (FIAT) using a three-branched approach to account for aerothermal, material response, and material properties uncertainties. In addition, the heatshield recession was augmented by an analysis of the effect of entry through a potential dusty atmosphere using a methodology developed in References [6] and [7]. These analyses resulted in an increase to the Phoenix heatshield TPS thickness. Reconstruction Efforts: Once the best estimated trajectory is reconstructed by the team, the LAURA/HARA (High-Temperature Aerothermo-dynamic Radiation model) and DPLR/NEQAIR code pairs will be used to predict the as-flown aerothermal conditions. In these runs, fully-catalytic flowfields will be assigned because it is a more physically accurate description of the chemistry in the flow. Once again, determination of the onset of turbulence on the heatshield will be evaluated. The as-flown aerothermal environments will then be compared to the design environments.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN66480 , International Planetary Probe Workshop - 2019; Jul 08, 2019 - Jul 12, 2019; Oxford, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-17
    Description: Abstract and not the Final document is attached. Low Lunar orbit presents a unique thermal environment with high planetary and high solar IR requirements. Orion requires a phase change material heat exchanger (PCM HX) to act as a supplemental heat rejection device (SHReD) during this orbit. As a result, Orion currently uses a PCMHX to meet heat rejection demands in low lunar orbit. This PCM HX weighs 145 lbs, a significant amount of weight on the Crew Module Adaptor. To reduce this weight, a new PCM HX and phase change material is being proposed. This new PCM HX, constructed by Mezzo technologies, was originally designed as a water based PCM HX but is now be repurposed for phase change materials with transition temperatures in Orion's set points and different freeze front propagations. Mezzo's PCM HX utilizes micro tubes which greatly increase the overall heat transfer efficiency allowing for a compact design and significant weight savings. A new phase change material is also being proposed which has a higher latent heat of fusion as well as a higher density. This paper investigates the design, testing, and analysis done on the new Mezzo PCM HX as well as the corresponding phase change material.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-E-DAA-TN62557 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: Computational ice shapes were generated on the boundary layer ingesting engine nacelle of the D8 Double Bubble aircraft. The computations were generated using LEWICE3D, a well-known CFD icing post processor. A 50-bin global drop diameter discretization was used to capture the collection efficiency due to the direct impingement of water onto the engine nacelle. These discrete results were superposed in a weighted fashion to generate six drop size distributions that span the Appendix C and O regimes. Due to the presence of upstream geometries, i.e. the fuselage nose, the trajectories of the water drops are highly complex. Since the ice shapes are significantly correlated with the collection efficiency, the upstream fuselage nose has a significant impact on the ice accretion on the engine nacelle. These complex trajectories are caused by the ballistic nature of the particles and are thus exacerbated as particle size increases. Shadowzones are generated on the engine nacelle, and due to the curvature of the nose of the aircraft the shadowzone boundary moves from lower inboard to upper outboard as particle size increases. The largest particle impinging one the engine nacelle from the 50-bin discretization was the 47 um drop diameter. As a result, the MVD greater than 40 um Appendix O conditions were characterized by extremely low collection efficiency on the engine nacelle for these direct impingement simulations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN66779 , International Conference on Icing of Aircraft, Engines, and Structures; Jun 17, 2019 - Jun 21, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: Radiative heating computations are performed for high speed lunar return experiments conducted in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The nonequilibrium radiative transport equations are solved via NASA's in-house radiation code NEQAIR using flow field input from US3D flow solver. The post-shock flow properties for the 10 km/s Earth entry conditions are computed using the stagnation line of a blunt-body and a full facility CFD (Computational Fluid Dynamics) simulation of the EAST shock tube. The shocked gas in the blunt-body flow achieves a thermochemical equilibrium away from the shock front whereas EAST flow exhibits a nonequilibrium behavior due to strong viscous dissipation of the shock by boundary layer. The full-tube flow calculations capture the influence of the boundary layer on the shocked gas state and provide a realistic fluid dynamic input for the radiative predictions. The integrated radiance behind the shock is calculated in NEQAIR for wavelength regimes from Vacuum-UltraViolet (VUV) to InfraRed (IR), which are pertinent to the emission characteristics of high enthalpy shock waves in air. These radiance profiles are validated against corresponding EAST shots. The full-tube simulations successfully predict a sharp radiance peak at the shock front which gets smeared in the test data due to the spatial resolution in the measurements. The full facility based radiance behind the shock shows a slightly better match with the test data in the VUV and Red spectral regions, as compared to that from a blunt-body based predictions. The UV radiance is very similar for both geometries and under-predicts the test behavior. The IR test data matches better with the blunt-body based predictions where the full-tube simulations show a significant over-prediction.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN57169 , AIAA SciTech Forum & Exposition (SciTech 2019); Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Numerical investigations of the flowfield inside NASA Ames' Electric Arc Shock Tube have been performed. The focus is to simulate the experiments designed to reproduce shock layer radiation layer relevant to Earth re-entry conditions. This paper assess the current computational capability in simulating time-accurate unsteady nonequilibrium flows in the presence of strong shock waves with state-of-the-art physical models. The technical approach is described with preliminary results presented for one specific flow condition. It was found that the axisymmetric source term generates a numerical instability that appears as shock bending. This instability is time dependent which greatly affects the shock speed. Post-shock conditions are discussed and compared to CEA equilibrium prediction and good agreement was obtained close to the test-section and just behind the shock.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN64558 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-03
    Description: The HEEET project was conceived to develop a heatshield with a high performance ablative thermal protection material that can withstand the extreme entry environment produced as a result of rapid deceleration during high speed entry into Venus, Saturn, Uranus or higher speed entry into Earth's atmosphere. Successful maturation of HEEET supports future New Frontiers and Discovery AO's, as well as Flagship and directed missions in the longer term. In addition, HEEET has the potential to evolve and to support re-entry to Earth, for missions such as Mars Sample Return.The primary goal of the HEEET Project was to develop an ablative TPS heat-shield based on woven TPS technology to Technology Readiness Level (TRL) 6. Key evidence to support the TRL evaluation includes: Demonstration of reproducible manufacturing of a dual layer material over a range of thicknesses and integrated on to a heatshield engineering test unit at a scale that is applicable to near term Discovery as the highest priority and future NF missions as secondary priority set of missions. Demonstration of predictable and stable performance of the dual layer TPS over a range of entry environments that are applicable to near term Discovery and NF missions of interest to SMD.Includes completion of coupon arc jet and laser testing and development of a mid-fidelity thermal response model that correlates with test results. Demonstration of flight heatshield system design for a range of sizes and loads that are relevant to near term Discovery and NF missions of interest to SMD. Includes completion of structural testing to validate analytic thermal/structural models and development of a material property database. Includes structural testing of a ~1m Engineering Test Unit under relevant entry loads.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN70346 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-03
    Description: This paper reports computational analyses and flow characterization studies in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using a wedge model placed in a free jet downstream of new 9-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. Both the nozzle and wedge model were specifically designed for testing in the new Laser-Enhanced Arc-jet Facility. Data were obtained using stagnation calorimeters and wedge models placed downstream of the nozzle exit. Two instrumented wedge calibration plates were used: one water-cooled and the other RCG-coated tile plate. Experimental surveys of arc-jet test flow with pitot and heat flux probes were also performed at three arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested, and comparisons with the experimental measurements. By taking into account nonuniform total enthalpy and mass flux profiles at the nozzle inlet as well as the expansion waves emanating from the nozzle exit and their effects on the model flowfields, these simulations approximately reproduce the probe survey data and predict the wedge model surface pressure and heat flux measurements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN68962 , AIAA & ASME Joint Thermophysics and Heat Transfer Conference; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-21
    Description: Recently, heat transfer correlations based on liquid nitrogen (LN2) and liquid hydrogen (LH2) pipe quenching data were developed to improve the predictive accuracy of lumped node codes like SINDA/FLUINT and the Generalized Fluid System Simulation Program (GFSSP). After implementing these correlations into both programs, updated model runs showed strong improvement in LN2 pipe chilldown modeling but only modest improvement in LH2 modeling. Due to large differences in thermal and fluid properties between the two fluids, results indicated a need to develop a separate set of LH2-only correlations to improve the accuracy of the simulations. This paper presents a new set of two-phase convection heat transfer correlations based on LH2 pipe quenching data. A correlation to predict the bulk vapor temperature was developed after analysis showed that high amounts of thermal nonequilibrium of the liquid and vapor phases occurred during film boiling of LH2. Implemented in a numerical model, the new correlations achieve a mean absolute error of 19.5 K in the predicted wall temperature when compared to recent LH2 pipe chilldown data, an improvement of 40% over recent GFSSP predictions. This correlation set can be implemented in simulations of the transient LH2 chilldown process. Such simulations are useful for predicting the chilldown time and boil-off mass of LH2 for applications such as the transfer of LH2 from a ground storage tank to the rocket vehicle propellant tank, or through a rocket engine feedline during engine startup.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN70773 , 2019 Space Cryogenics Workshop; Jul 17, 2019 - Jul 19, 2019; Southbury, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-21
    Description: Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better modeling approaches for these turbulent flow fields where accurate calculation of turbulent heat flux is important. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity as well as the mean temperature and root mean square (rms) temperatures in a film cooling flow field. In addition to off-body flow field measurements, infrared thermography (IR) and thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures (up to TR = 2.7) and Mach numbers (up to M0.9), across a 30.48 cm long plate equipped with three patches of 45 small (~1 mm) diameter cooling holes arranged in a staggered configuration. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 14 axial stations were collected in the same flows. Only a subset of the data collected in the test program is included in this Part I report and are available from the NASA STI office. The final portion of the data will be published in a future report, Part II, along with CFD predictions of the complex cooling film flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220227/PART1 , GRC-E-DAA-TN69722 , E-19711
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-17
    Description: This summer internship is focused on using CFD and fluid mechanics to optimize the SRL-ADEPT geometry in an attempt to increase drag and area-effectiveness, and reduce flow separation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN72164
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-08-13
    Description: ESA recently flew an entry, descent, and landing demonstrator module called Schiaparelli that entered the atmosphere of Mars on the 19th of October, 2016. The instrumentation suite included heatshield and backshell pressure transducers and thermocouples (known as AMELIA) and backshell radiation and direct heatflux-sensing sensors (known as COMARS and ICOTOM). Due to the failed landing of Schiaparelli, only a subset of the flight data was transmitted before and after plasma black-out. The goal of this paper is to present comparisons of the flight data with calculations from NASA simulation tools, DPLR/NEQAIR and LAURA/HARA. DPLR and LAURA are used to calculate the flowfield around the vehicle and surface properties, such as pressure and convective heating. The flowfield data are passed to NEQAIR and HARA to calculate the radiative heat flux. Comparisons will be made to the COMARS total heat flux, radiative heat flux and pressure measurements. Results will also be shown against the reconstructed heat flux which was calculated from an inverse analysis of the AMELIA thermocouple data performed by Astrium. Preliminary calculations are presented in this abstract. The aerodynamics of the vehicle and certain as yet unexplained features of the inverse analysis and forebody data will be investigated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN65889 , International Planetary Probe Workshop (IPPW); Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-29
    Description: NASA's Descent System Studies (DSS) Program is studying various concept vehicles to enable landing of heavy payloads on the surface of Mars. While it is desirable to run high-fidelity CFD simulations to accurately assess the aerodynamic and aerothermal effects of various design changes during EDL, it is usually difficult to quickly generate high-quality grids suitable for such analyses. One approach to address this bottleneck in mesh generation is through the use oversetting grids. Although the overset approach is efficient and powerful in solving partial differential equations on complex geometries, new users often find it challenging to apply overset concepts for their simulations. For example, generating hyperbolic grids with sufficient overlap; priority in hole-cutting on multiple overlapping grids; and fixes to assemble overlapping viscous grids at the body surface. The objective of this presentation is to introduce a simple process that combines the advantages of near-body, point-matched, structured grids with oversetting background grids suitable for grid alignment. This approach allows for grids that can be sequenced, reclustering of mesh spacing at the wall, and grid alignment with the bow shock. The current methodology is tested on a Mid-L/D configuration using the overset DPLR code.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN72528 , Thermal & Fluids Analysis Workshop (TFAWS 2019); Aug 26, 2019 - Aug 30, 2019; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-30
    Description: Electronics Boxes with high heat dissipations use a thermal interface material to increase heat transfer to the radiator in a vacuum/space environment. There are lots of materials to choose from, but for Spacecraft applications, there are more than high heat transfer metrics which must be met. Contamination (both particle generation and outgassing), ease of cutting, and removal are just as important metrics in material selection. However, vendor data of material thermal conductance is usually based on a 1" X 1" piece of material under high uniform pressures. Large Electronics boxes almost never have optimal pressures, as they are bolted along the perimeter and leave gaps in the center regions. In order to characterize the relative thermal conductance for large Electronics boxes, an 8" X 8" plate was fabricated to simulate an electronics box bottom and bolted around the perimeter to a cold plate. Various thermal interface materials were inserted between the box and cold plate, and overall thermal conductance's were calculated. A table was generated which compares the full gamut of thermal interface materials for large boxes, from a dry joint to a wet joint. Materials were placed in order of high to low conductance's, so an engineer can compare the benefit of each material in a real-world scenario.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN70827 , Thermal and Fluids Analysis Workshop (TFAWS 2019); Aug 26, 2019 - Aug 30, 2019; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-30
    Description: The intermediate wake region of a thick flat plate with a circular trailing edge (TE) is investigated with a direct numerical simulation (DNS). The upper and lower separating boundary layers are both turbulent and are statistically identical; the resulting wake is symmetric in the mean. Earlier research dealt with the near/very-near wake of the same plate (x/D 〈 13.0, x is the streamwise distance from the center of the circular TE and D is the plate-thickness/TE-diameter). In the present investigation the emphasis is on the evolution of shed-vortex structure and turbulence intensity distributions with increasing x; the focus is on the region 20.0 〈 x/D 〈 40.0. Profile similarity in wake velocity statistics is explored.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220338 , ARC-E-DAA-TN72722
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-31
    Description: Ammonia is used in the Starboard 1 (S1) and Port 1 (P1) External Active Thermal Control System (EATCS) to cool the pressurized modules, and some of the external electrical power distribution hardware. Leaks that develop in these critical cooling systems that deplete in-line tanks can ultimately result in loss of cooling, which can have devastating impacts to the mission, science and crew onboard the ISS. A slow ammonia leak was initially observed from the P1 EATCS in 2011, but later in 2013 the leak rate began to accelerate. The ammonia inventory eventually began to decay exponentially, raising concerns that the inventory could drop to levels where the system would not be operational.The Robotic External Leak Locator (RELL) was built and launched to the ISS to detect and help locate ammonia leaks using the ISS Robotic Arm and remote ground operator control without constant crew involvement. RELL pinpointed the ammonia leak to the two flexible jumper hose assemblies connecting one of two fluid loops in one of the three deployable radiators to the P1 EATCS. The ammonia inside the two hose assemblies and that radiator fluid loop was isolated and vented to space in 2017. This stopped the leak and an Extravehicular Activity was conducted to remove the two hose assemblies so they could be returned to ground for further Test, Teardown and Evaluation (TT&E). The purpose of this presentation is to discuss this leakage scenario and the TT&E efforts.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-E-DAA-TN70723 , 2019 Thermal and Fluids Analysis Workshop; Aug 26, 2019 - Aug 30, 2019; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-28
    Description: Normally, in order to characterize multilayer insulation installed onto a test tank, the boil-off of the tank is measured and then heat loads from structural and fluid penetrations are calculated from temperature measurements throughout the system. For the Structural Heat Intercept, Insulation, and Vibration Evaluation Rig testing, it was determined that this approach would have significant uncertainties (over 50%) and that another method was needed to characterize the heat load through the blanket. Heat flux sensors are widely used to measure heat loads and characterize insulation systems at room temperature, however, the heat fluxes measured are usually two orders of magnitude higher than high performance MLI. Three different heat flux sensors were initially checked out on a liquid hydrogen calorimeter. One was chosen for actual implementation and 20 sensors were ordered. Of those sensors, calibration was attempted on 7 of the sensors. The results from testing and calibration are discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN70640 , Cryogenic Engineering Conference; Jul 21, 2019 - Jul 25, 2019; Hartford, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-09-14
    Description: The two decades old high order central differencing via entropy splitting and summation-by-parts (SBP) difference boundary closure of Ols- son & Oliger (1994), Gerritsen & Olsson (1996), and Yee et al. (2000) is revisited. The entropy splitting is a form of skew-symmetric splitting of the nonlinear Euler flux derivatives. Central differencing applied to the entropy splitting form of the Euler flux derivatives together with SBP difference operators will, hereafter, be referred to as entropy split schemes. This study is prompted by the recent growing interest in numerical methods for which a discrete entropy conservation law holds, a discrete global entropy conservation can be proved and/or the numerical method possesses a stable entropy in the framework of SBP difference operators and L2-energy norm estimate. The objective of this paper is to recast the entropy split scheme as the re- cent definition of an entropy stable method for central differencing with SBP operators for both periodic and non-periodic boundary conditions for non- linear Euler equations. Standard high order spatial central differencing as well as high order central spatial DRP (dispersion relation preserving) spatial differencing is part of the entropy stable methodology framework. Long time integration of 2D and 3D test cases is included to show the comparison of this efficient entropy stable method with the Tadmor-type of entropy conservative methods. Studies also include the comparison among the three skew-symmetric splittings on their nonlinear stability and accuracy performance without added numerical dissipations for smooth flows. These are, namely, entropy splitting, Ducros et al. splitting and the Kennedy & Grub- ber splitting.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN71641 , International Conference on Numerical Modeling of Space Plasma Flows (ASTRONUM); Jul 01, 2019 - Jul 05, 2019; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-09-06
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M19-7573-2 , Thermal and Fluids Analysis Workshop (TFAWS 2019); Aug 26, 2019 - Aug 30, 2019; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-09-06
    Description: This paper presents numerical models of boiling in a heated tube using the Generalized Fluid System Simulation Program (GFSSP), a finite-volume-based general-purpose flow network code developed at NASA/Marshall Space Flight Center. The heated tube is discretized into a one-dimensional array of nodes and branches to represent the flow of liquid and vapor in a tube with a prescribed pressure differential. The solid wall is also discretized into solid nodes and conductors to allow for heat transfer between the wall and the fluid. The conservation equations of mass, momentum, and energy of the fluid are solved simultaneously with the energy conservation equation for the solid wall. Two experimental configurations of fluid flowing in a vertical tube have been simulated, one with water and the other with liquid hydrogen. This paper compares experimental data with numerical predictions based on four different published correlations for boiling heat transfer coefficients. Three of these correlations are applicable to the saturated vertical flow conditions of the experiments. One of them is applicable to film boiling and has been used for the liquid hydrogen experiment, which was in film boiling regime. For the case of boiling water, the predictions of wall temperatures using the boiling heat transfer correlations agreed well with the experimental results. However, in the case of boiling hydrogen larger discrepancies were observed between the experimental data and numerical predictions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M19-7514 , Space Cryogenic Workshop; Jul 17, 2019 - Jul 19, 2019; Southbury, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-09-07
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M19-7565 , Thermal & Fluids Analysis Workshop (TFAWS 2019); Aug 26, 2019 - Aug 30, 2019; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-10-09
    Description: Free-Flight CFD capability has been implemented into the finite-volume solver US3D under the Entry Systems Modeling project. Several simulations of ballistic range experiments have been performed in order to validate the simulation software and methodology. Extension of the software to flight scale trajectories with varying freestream conditions has been carried out. Results show promising ability to predict vehicle behavior as compared to flight. Finally, a multi-body free-flight capability has been developed to generalize the single-body free-flight solver to study multiple bodies in proximal flight.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN73924 , International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR); Sep 30, 2019 - Oct 03, 2019; Monopoli; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-09-06
    Description: NASAs Flight Imagery Launch Monitoring Real-time System (FILMRS) cameras were originally developed for the Space Launch System (SLS) Core Stage. These Commercial Off the Shelf (COTS) cameras have been redesigned and reduced by an order of magnitude in size for the Exploration Upper Stage (EUS). The change in thermal environment has led to the application of various passive thermal control methods and the addition of a heater option. This paper will give a summary of the design and development test effort associated with adapting the COTS camera for the demands of the space environment and associated thermal mitigations applied as the project prepares to complete the design. The application of this camera for other space systems is discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M19-7573-1 , Thermal and Fluids Analysis Workshop (TFAWS 2019); Aug 26, 2019 - Aug 30, 2019; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-06
    Description: Active flow control (AFC) subscale experiments were conducted at the Lucas Wind Tunnel of the California Institute of Technology. Tests were performed on a generic vertical tail model at low speeds. Fluidic oscillators were used at the trailing edge of the main element (vertical stabilizer) to redirect the flow over the rudder and delay or prevent flow separation. Side force increases in excess of 50% were achieved with a 2% momentum coefficient (C(sub )) input. The results indicated that a collective C(sub ) of about 1% could increase the side force by 3050%. This result is achieved by reducing the spanwise flow on the swept back wings that contributes to early flow separation near their tips. These experiments provided the technical backdrop to test the full-scale Boeing 757 vertical tail model equipped with a fluidic oscillator system at the National Full-scale Aerodynamics Complex 40-by 80-foot Wind Tunnel, NASA Ames Research Center. The C(sub ) is shown to be an important parameter for scaling a fluidic oscillator AFC system from subscale to full-scale wind tunnel tests. The results of these tests provided the required rationale to use a fluidic oscillator AFC configuration for a follow-on flight test on the Boeing 757 ecoDemonstrator.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-29550 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 57; 8; 3322-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-10-11
    Description: Plant Water Management is a technology demonstration of recent advances in micro-g capillary fluidics research applied to plant growth systems. It has applications in long-term food production systems for missions to the Moon and Mars, as well as the immediate need for ISS food supplements to the crew diet. PWM will demonstrate the low-gravity role of surface tension, wetting, and system geometry to effectively replace the role of gravity in certain terrestrial plant growth systems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN73325 , Joint CSA/ESA/JAXA/NASA Increments 61 and 62 Science Symposium; Sep 17, 2019 - Sep 19, 2019; Telecon
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-11-06
    Description: Numerical investigations of the ow field inside NASA Ames' Electric Arc Shock Tube have been performed. The focus is to simulate the experiments designed to reproduce shock layer radiation layer relevant to Earth re-entry conditions. This paper assess the current computational capability in simulating unsteady nonequilibrium flows in the presence of strong shock waves with state-of-the-art physical models. The technical approach is described with preliminary results presented for one specific ow condition. The numerical problems encountered during the computation of these flows are detailed, along with the methods used to resolve them. Post-shock conditions are discussed and compared to CEA equilibrium prediction.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN64117 , AIAA SciTech Forum; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-11-06
    Description: In order to improve the cryogenic propellant management technologies for a liquid hydrogen rocket with high specific impulse, JAXA, the University of Tokyo, and the NASA Glenn Research Center have jointly organized a multi-agency model validation collaboration project. As part of this project, JAXA's boiling simulation was validated with NASA's experimental data on vertical pipeline chill-down. Simulation results were in good agreement with the experimental data obtained using an improved boiling model to reproduce the spray flow. This activity achieved liquid hydrogen turbo-pump simulation at JAXA for grasping the boiling flow phenomenon from engine cut-off to re-ignition. This joint research resulted in an international cooperative relationship for discussing the cryogenic propellant management technologies necessary to develop next-generation liquid rockets.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN71160 , AIAA Propulsion and Energy Forum; Aug 19, 2019 - Aug 22, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-11-14
    Description: "Heat pipes are being used on many spacecraft to acquire heat dissipated by the payload and transport the heat to a remote radiator. In instrument-level or spacecraft-level ground testing, many heat pipes are placed in a gravity-driven reflux mode where the condenser is well above the evaporator, resulting in the formation of a liquid pool at the bottom of the heat pipe. If a head load is applied to a site that is in contact with the liquid pool, the generated vapor will flow upward to the condenser and the condensate will fall back to the evaporator due the influence of gravity. Hence, the heat pipe can operate steadily under reflux mode because the heated site always has sufficient liquid supply to sustain the fluid flow. In contrast, when a heat load is applied to a site remote from the liquid pool, the heat pipe will be unable to transfer heat through liquid evaporation unless the heated site has a chance to be in contact with liquid. This can be accomplished by applying an additional heat load to the liquid pool to establish a reflux flow so that the remote site can capture the falling condensate. An experimental investigation was conducted to study the effect of gravity on the thermal performance of a heat pipe under reflux mode with multiple heat loads. An aluminum ammonia heat pipe with internal axial grooves was placed in a vertical position. Cooling was provided to the top of the heat pipe, and heat was applied to three sites below the condenser with various heat distributions. One of the heated sites was above the liquid pool, and two were in direct contact with the liquid pool. Test results showed that when a heat load was applied to either one or both of the lower sites, the heat pipe could run steadily under reflux mode. After a reflux flow had been established, a heat load could be applied to the upper site. If the upper site could capture sufficient liquid falling from the condenser to handle its heat load solely by liquid evaporation, the heat pipe could reach steady operation. Otherwise, the temperature of the upper site would oscillate due to its intermittent contact with the falling liquid. For a given heat load to the upper site, the amplitude of temperature oscillation decreased with an increasing heat load to the lower sites because there was more falling condensate available for the upper site to capture. Moreover, the temperature oscillation disappeared completely when the total heat loads to lower sites exceeded a threshold power, and the threshold power increased with an increasing heat load to the upper site."
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN71130 , International Mechanical Engineering Congress & Exposition (IMECE); Nov 08, 2019 - Nov 14, 2019; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-11-13
    Description: NEQAIR v15.0 provides the first steps to improved coupling between NEQAIR and the DPLR CFD code, which will be fully realized in v15.1. The plan is to release NEQAIR v15.1 and DPLR 4.05 at the same time. The improvements implemented in NEQAIR v15.0 have focused on improving stability, solution robustness, usability and providing different options for running the code. It is also the first version of the code to have a new input file and line of sight format since 2009. Backward compatibility with previous formats of the input files (neqair.inp and LOS.dat) has also been provided. NEQAIR v15.0 supersedes the prerelease of this version, as well as NEQAIR v14.0, v13.2, v13.1 and the suite of NEQAIR2009 versions. These updates have predominantly been performed by Brett Cruden and Aaron Brandis from AMA Inc at NASA Ames Research Center between 2016 and 2018. NEQAIR v15.0 is a standalone software tool for line-by-line spectral computation of radiative intensities and/or radiative heat flux, with one-dimensional transport of radiation. In order to accomplish this, NEQAIR v15.0, as in previous versions, requires the specification of distances (in cm), temperatures (in K) and number densities (in parts/cc) of constituent species along lines of sight. Therefore, it is assumed that flow quantities have been extracted from flow fields computed using other tools, such as CFD codes like DPLR or LAURA, and that lines of sight have been constructed and written out in the format required by NEQAIR v15.0. There are two principal modes for running NEQAIR v15.0. In the first mode NEQAIR v15.0 is used as a tool for creating synthetic spectra of any desired resolution (including convolution with a specified instrument/slit function). The first mode is typically exercised in simulating/interpreting spectroscopic measurements of different sources (e.g. shock tube data, plasma torches, etc.). In the second mode, NEQAIR v15.0 is used as a radiative heat flux prediction tool for flight projects. Correspondingly, NEQAIR has also been used to simulate the radiance measured on previous flight missions. This report summarizes the database updates, corrections that have been made to the code, changes to input files, parallelization, the current usage recommendations, including test cases, and an indication of the performance enhancements achieved.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN72963
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-09
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN65782 , Von Karman Institute for Fluid Dynamics (VKI) Lecture Series: Series on Pyrolysis Phenomena in Porous Media ; Apr 01, 2019 - Apr 04, 2019; Brussels; Belgium
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-10-29
    Description: A validated computational fluid-structure interaction method for simulating the complex interaction between the large deformation of very thin, highly deformable structures and compressible flows is extended to consider large-scale problems in supersonic flows using parallel computing. The coupled fluid-structure interaction system is solved in a partitioned, or weakly-coupled, manner. The foundations of the applied fluid-structure interaction method are a higher-order, block-structured Cartesian, sharp immersed boundary method for the compressible Navier-Stokes equations and a computational structural dynamics solver employing a geometrically nonlinear 3-node shell element based on the mixed interpolation of tensorial components formulation. The method is applied to large deformation fluid-structure interaction validation cases before being applied to the inflation of a supersonic parachute in the upper Martian atmosphere where the goal is to demonstrate the capabilities of the solver when considering large-scale problems in supersonic flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN69971 , AIAA Aviation 2019; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-01-18
    Description: The Mars Science Laboratory (MSL) was protected during entry into the Martian atmosphere by a thermal protection system that used NASAs Phenolic Impregnated Carbon Ablator (PICA). The heat shield of the probe was instrumented with the Mars Entry Descent and Landing Instrument (MEDLI) suite of sensors. MEDLI Integrated Sensor Plugs (MISP) included thermocouples that measured in-depth temperatures at various locations on the heatshield. The flight data has been used as a benchmark for validating ablation codes within NASA. This work seeks to refine the estimate of the material properties for the MSL heat shield and the aerothermal environment during Mars entry using estimation methods in DAKOTA on the temperature data obtained from MEDLI.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN73346 , Ablation Workshop; Sep 16, 2019 - Sep 17, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-01-04
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M19-7790_Presentation , APS Fluids Conference; Nov 23, 2019 - Nov 26, 2019; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-27
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN72260 , Research Group Presentation; Aug 20, 2019; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-11-09
    Description: The high power density of emerging electronic devices is driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which extracts dissipated heat on-site. Two-phase microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel within or between devices. Such coolers must work reliably in all orientations for a variety of applications (e.g., vehicle-based equipment), as well as in microgravity and high-g for aerospace applications, but the lack of acceptable models and correlations for orientation- and gravity-independent operation has limited their use. Reliable criteria for achieving orientation- and gravity-independent flow boiling would enable emerging systems to exploit this thermal management technique and streamline the technology development process. As a first step toward understanding the effect of gravity in two-phase microgap flow and transport, in an earlier effort, the authors studied the effects of evaporator orientation, mass flux, and heat flux on flow boiling of HFE7100 in a 1.01 mm tall by 13.0 mm wide by 12.7 mm long microgap channel. Orientation-independence, defined as achieving similar critical heat fluxes, heat transfer coefficients, and flow regimes across orientations, was achieved for mass fluxes of 400 kg/sq.m-s and greater (corresponding to a Froude number of about 0.8). In the present effort, the authors have studied the effects of gravity, mass flux, and subcooling on flow boiling of HFE7100 in a 0.17 mm tall by 13.0 mm wide by 12.7 mm long microgap channel. The Flow Boiling in Microgap Coolers payload experienced about three minutes of weightlessness and shorter periods of high-g (up to about 5 g) during two recent flights aboard the Blue Origin New Shepard reusable launch vehicle. The results from the flight experiments will be presented and compared with published criteria for achieving gravity-independence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN73788 , International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems (InterPACK); Oct 07, 2019 - Oct 09, 2019; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-12-11
    Description: An infrared (IR) camera provides a way of examining temperature trends associated with simulated microgravity flame spread in the Narrow Channel Apparatus (NCA). The IR camera measures the surface temperature of solid poly methyl methacrylate (PMMA) fuel. These tests examine the forward conduction of heat ahead of the flame front in the non-thermally thin fuel.The NCA is a combustion wind tunnel that simulates a microgravity flame spread environment by employing a narrow gap between the fuel and ceiling of the device, limiting the effects of buoyancy. Test conditions of a 5 mm gap, mean opposed flow velocity of 15 cm/s, and fuel thickness of 3 mm are used.PMMA is selected as the fuel due to repeatability of test results, ease of computational modeling, and known combustion mechanics. Using specific lens and bandpass filter combinations the PMMA can be imaged as effectively opaque. The spectral emissivity for PMMA was calculated and incorporated into the calibration of the camera.Surface temperatures from the IR camera are compared to results from thermocouples embedded in the surface of the fuel. The IR camera results show that nontrivial forward conduction occurs during tests, and therefore must be included in computational models of the process.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN75460 , 2019 WSSCI Fall Technical Meeting; Oct 14, 2019 - Oct 15, 2019; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: An efficient strategy for propagating sonic boom signatures from a near-field Computational Fluid Dynamics (CFD) solution to the mid-field is presented. The method is based on a high-order accurate finite-difference discretization of the 3D Euler equations on a specially designed curvilinear grid and a single sweep space marching solution algorithm. The new approach leads to more than a factor of two reduction in overall computational resources compared to the current method used to propagate near-field sonic booms to the ground. Accuracy and efficiency of the near-field to mid-field process is demonstrated using a selection of test cases from the AIAA Sonic Boom Prediction Workshops. Azimuthal dependence of nonlinear wave propagation from the near-field to mid-field is analyzed along with its effects on the ground level noise.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN69561 , AIAA Aviation 2019; Jun 17, 2019 - Jun 20, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube at NASA Ames Research Center for conditions relevant to Titan entry, with varying atmospheric composition, free-stream density (equivalently, altitude) and shock velocity. The test campaign measured radiation at velocities from 4.7 km/s to 8 km/s and free-stream pressures of 0.1, 0.28 and 0.47 Torr with a variety of compositions. Radiances measured in this work are substantially larger compared to that reported both in past EAST test campaigns and in other shock tube facilities. Depending on the metric used for comparison, the discrepancy can be as high as an order of magnitude. Due to the difference with previously reported data, a substantial effort was undertaken to provide confidence in the new results. The present work provides a new benchmark set of data to replace those published in previous studies. The effect of gas impurities identified in previous shock tube studies was also examined by testing in pure N2 and deliberate addition of air to the CH4/N2 mixtures. Furthermore, a test campaign in pure N2 was also conducted with the aim of providing data for improving fundamental understanding of high enthalpy flows containing N2, such as high-speed entries into Earth or Titan. These experiments cover conditions from approximately 6 km/s to 11 km/s at an initial pressure of 0.2 Torr. It is the intention of this paper to motivate code comparisons benchmarked against this data set.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN61964 , International Workshop on Radiation of High Temperature Gases in Atmospheric Entry; Mar 25, 2019 - Mar 29, 2019; Madrid; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Modifications to key coefficients in a k E based explicit algebraic stress model (EASM) are examined with the objective of improving the prediction of turbulent jet flows. The pressure strain coefficient, C2 and the turbulent diffusion coefficients, k and E were investigated. For a series of benchmark subsonic jets at heated and unheated conditions, lowering C2 from the default value of 0.36 to 0.10 resulted in a significant improvement in the jet mixing, when compared to experimental data. Changing k and E from default values of 1.00 and 1.4489, respectively, to 0.50 and 0.7244, respectively, improved the initial mixing rate, while reducing the farfield mixing rate and the peak turbulent kinetic energy along the centerline. A high-speed mixing layer was also investigated for performance of baseline and modified EASM coefficients, with similar results as for the jet cases. A flat plate boundary layer was briefly examined to determine the effects of changing the coefficients on the turbulent skin friction coefficient. The change to the pressure strain coefficient, C2 = 0.10 is recommended for future EASM calculation of jets flow; however, it is also recommended that the diffusion coefficients remain at their default values.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM—2019-219978 , AIAA Paper 2019–0325 , E-19661 , GRC-E-DAA-TN65223 , 2019 Science and Technology Forum (SciTech); Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Two full seven-equation turbulence models available in the FUN3D code are evaluated for their ability to improve the computation of challenging mixing flows encountered in aerospace propulsion. These models are the SSG/LRR and Wilcox full second-moment Reynolds stress models. They solve equations for the six components of the Reynolds stress and a seventh equation for the turbulent length scale. Two standard eddy viscosity models are also evaluated for comparison, the Spalart-Allmaras (SA) one-equation model and the Menter Shear Stress Transport (SST-V) two-equation turbulence model. Flow through an axisymmetric reference nozzle is examined at three flow conditions: subsonic unheated, subsonic heated, and near sonic unheated. Centerline profiles of velocity and turbulent kinetic energy and radial profiles of velocity, turbulent kinetic energy and turbulent stresses are examined. Results showed that the SA model did well at predicting the jet potential core length, but over-mixed the downstream flow, whereas the SST-V model over-predicted the potential core length. The Wilcox-model significantly over-predicted the potential core length and under-predicted the mixing and was not well-suited for the jet flows evaluated, however the SSG/LRR Reynolds stress model did well at predicting the mixing rate and mean velocity for all cases examined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM—2019-220067 , AIAA Paper 2019–2332 , E-19657 , GRC-E-DAA-TN64966 , 2019 Science and Technology Forum (SciTech); Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-09-17
    Description: Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better modeling approaches for these turbulent flow fields where accurate calculation of turbulent heat flux is important. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity as well as the mean temperature and root mean square (rms) temperatures in a film cooling flow field. In addition to off-body flow field measurements, infrared thermography (IR) and thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures (up to TR = 2.7) and Mach numbers (up to M0.9), across a 30.48 cm long plate equipped with three patches of 45 small (~1 mm) diameter cooling holes arranged in a staggered configuration. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 14 axial stations were collected in the same flows. Only a subset of the data collected in the test program is included in this Part I report and are available from the NASA STI office. The final portion of the data will be published in a future report, Part II, along with CFD predictions of the complex cooling film flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220227/PART1/SUPP , E-19711 , GRC-E-DAA-TN69722
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-09-14
    Description: The two decades old high order central differencing via entropy splitting and summation-by-parts (SBP) difference boundary closure of Olsson & Oliger, Gerritsen & Olsson, and Yee et al. (15, 7, 37) is revisited. The objective of this paper is to prove for the first time that the entropy split scheme is an entropy stable method for central differencing with SBP operators for both periodic and non-periodic boundary conditions for nonlinear Euler equations. Standard high order spatial central differencing as well as high order central spatial DRP (dispersion relation preserving) spatial differencing is part of the entropy stable methodology framework. The proof is to replace the spatial derivatives by summation-by-parts (SBP) difference operators in the entropy split form of the equations using the physical entropy of the Euler equations. The numerical boundary closure follows directly from the SBP operator. No additional numerical boundary procedure is required. In contrast, Tadmor-type entropy conserving schemes (31) using mathematical entropies and more recently in (35], do not naturally come with a numerical boundary closure and a generalized SBP operator has to be developed (18). Long time integration of 2D and 3D test cases is included to show the comparison of this efficient entropy stable method with the Tadmor-type of entropy conservative methods. Studies also include the comparison among the three skew-symmetric splittings on their nonlinear stability and accuracy performance without added numerical dissipations for smooth flows. These are, namely, entropy splitting, Ducros et al. splitting and the Kennedy & Grubber splitting.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN71834 , U.S. National Congress on Computational Mechanics; Jul 28, 2019 - Aug 01, 2019; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-09-12
    Description: Arc-jets are unique facilities used in research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and planetary entry systems. Thermochemical non-equilibrium computational fluid dynamics simulations have been carried out for the Hypersonic Materials Environmental Test System arc-jet facility to determine the size of a capsule model before arc-jet testing by better understanding of the physical phenomena. The results show the effect of the test article geometry and the importance of high-quality grids for accurate solutions. Accurate computational modeling of hypersonic flow fields inside arc-jets under simulated planetary entry conditions would help improve the design of thermal protection systems that may enable human exploration of the Moon, Mars, and beyond.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN69900 , AIAA AVIATION Forum 2019; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-26
    Description: A system and method for determining a change in a thickness and temperature of a surface of a material are disclosed herein. The system and the method are usable in a thermal protection system of a space vehicle, such as an aeroshell of a space vehicle. The system and method may incorporate micro electric sensors arranged in a ladder network and capacitor strip sensors. Corrosion or ablation causes a change in an electrical property of the sensors. An amount of or rate of the corrosion or the ablation and a temperature of the material is determined based on the change of the electrical property of the sensors.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-09-21
    Description: In this presentation, the theory and application of multi-layer insulation (MLI) behavior, with a specific focus on lower temperature applications (〈180K), is discussed. Many parameters can affect the performance of MLI (i.e. construction method, size, materials, grounding, penetrations, etc.) and these factors can make the prediction of MLI performance a challenge. Often, MLI performance is measured in terms of estar, and analysts commonly apply bias between a high and a low estar value. However, this approach can be dangerous when a mission goes through a wide range of temperatures during its lifetime (such as our mission, L'Ralph) due to temperature dependence of estar, with estar values increasing exponential as temperatures get colder. Many research papers and correlations have been published about MLI behavior, showing how estar values can rapidly rise at low temperatures. These correlations also show how the different parameters of MLI can affect and amplify this growth. Various correlations are presented as well as how L'Ralph is approaching the MLI problem. L'Ralph thermal model is built with Thermal Desktop (TD), and a discussion of how to apply the temperature dependent MLI behavior within TD is included. The presentation also includes reviews of different methods of mitigating heat leaks through MLI, touching briefly on topics such as integrated-MLI (IMLI), Dacron vs silk netting, and using multi-layered meshes to improve estar performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN70495 , Thermal & Fluids Analysis Workshop (TFAWS 2019); Aug 26, 2019 - Aug 30, 2019; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-11-07
    Description: A discussion of the impact of gravity on boiling and condensation phenomena especially related to space flight and the concept of gravity independence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-E-DAA-TN74235 , NASA SLPSRA Fluid Physics Workshop; Oct 16, 2019 - Oct 17, 2019; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-06
    Description: This poster provides a glimpse of the aerothermal analysis and TPS design work for the Mars Sample Retrieval Lander (SRL), part of the Mars Sample Return (MSR) architecture.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN70488 , International Planetary Probe Workshop 2019 (IPPW 2019); Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-05-19
    Description: 0Genetic polymorphism by means of biochemical genetic markers using polyacrylamide gel electrophoresis system in four barbus fish species has been investigated. Species scientific name were Barbus sharpeyi ; Gunther, 1847 , Barbus grypus ; Heckel, 1843, Barbus xanthopterus ; Heckel, 1843 and Barbus esocinus ; Heckel, 1843.Sampling site and location were mainly in the rivers located in Khoozestan province such as Karoon and Karkheh rivers and the Dez dam. Different organs such as blood, muscle, kidney, eye and heart were sampled and analysed for the presence of tf, es, sod and pgm alleles. High polymorphism and presence of different alleles scored, but populations were not in the H-W equilibrium. Considring results, using current and avaiable genetic markers such as microsattelits is recommended for future works.
    Description: Iranian Fisheries Science Research Institute
    Description: Published
    Keywords: Chemistry ; Genetics ; Genetics Markers ; Distinguish ; Barbus ; Species ; Barbus sharpeyi ; Barbus xanthopterus ; Barbus esocinus
    Repository Name: AquaDocs
    Type: Report , Refereed
    Format: 62pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-05-19
    Description: Cheshmehkileh River and adjacent mountainous streams, play a strategic role as a historical axis for anthropogenic civilization, human welfare also habitat and migration pathway of commercial – biologic valuable fishes e.g. Caspian trout, Caspian kuttum, members of Cyprinidae family in south Caspian Sea drainage. Treats such as overfishing of Caspian trout and Red spotted trout stocks in mountainous headwaters, barriers construction and manipulations those are out of river carrying capacity developed by human activities, affected normal function of river as well. Sand mining big factories establishment next to the river, legal and illegal trade of river sediments, direct entry of Tonekabon landfill leakage into the river, development of Rainbow trout farms since 3 decades and huge effluents into the river containing dead fish and types of solids, escapement of cultured Rainbow trouts into the river, … are major minimum factors which needs basic information for integrating inclusively drainage management system. Cheshmehkileh River contains Headwaters of Dohezar (Daryasar & Nusha), Sehezar and Valamroud rivers during 13 monthly sampling phases between September 2009 and October 2010 based on macrozoobenthoses investigations by EPT, EPT/C EPA protocols, measurements of nominated physic-chemical and microbiologic parameters. Probability of Rainbow trouts escapement and invasion, existence, nutrition in Cheshmehkileh environment indeed investigated. Data analysis explained significant differences (P〈0.05) between groups of measured parameters in different sampling stations. Dendogram of clustered analysis based on consolidation of major biologic/ physic-chemical and microbiologic parameters, separated stations No. 1, 3, 2, 4 in one group and remained classified in different groups. Station 8 and 9 similarly separated which expressed general similarities according to Sehezar river environment which were differs in comparison with other stations. Station 11 separated according to its natural quality of water and environment. Similarities between station 10 to Sehezar river stations 8 and 9 expressed general influence of Sehezar River more than Dohezar River in Cheshmehkileh condition especially in station No. 10. High scores of EPT and EPT/C indices in upstream stations 1, 3 and 8 also low score of indices in stations 7, 13 and 6 expressed levels of environment quality between these groups of stations. Maximum average biomass of macroinvertebrates belongs to Trichoptera order in Cheshmehkileh River. Significant decrease of biomass in stations 11, 12 and 13 in comparison with other stations stated environment degradation in mentioned stations relevant to excessive sand mining as well. Pollution resistant groups of invertebrates significantly increased in downstreams against upstream stations. Also disappearing of Plecoptera order in station No. 7, 9, 10 and 13 stated low quality of environment in comparison with upstream stations. Confirmation of effects quality and quantity for point and non-point sources of imported pollutants require specific management considerations in order to present exploitations, pollutants control and emergencies for river monitoring in forthcoming years.
    Description: Iranian Fisheries Science Research Institute
    Description: Published
    Keywords: River ; Pollution ; Aquaculture ; EPTC ; Assessment ; Macroinvertebrates ; Chemistry ; Microbiology
    Repository Name: AquaDocs
    Type: Report , Refereed
    Format: 138pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2018
    Description: Many chemical constituents are removed from the ocean by attachment to settling particles, a process referred to as “scavenging.” Radioisotopes of thorium, a highly particle-reactive element, have been used extensively to study scavenging in the ocean. However, this process is complicated by the highly variable chemical composition and concentration of particles in oceanic waters. This thesis focuses on understanding the cycling of thorium as affected by particle concentration and particle composition in the North Atlantic. This objective is addressed using (i) the distributions 228,230,234Th, their radioactive parents, particle composition, and bulk particle concentration, as measured or estimated along the GEOTRACES North Atlantic Transect (GA03) and (ii) a model for the reversible exchange of thorium with particles. Model parameters are either estimated by inversion (chapter 2-4), or prescribed in order to simulate 230Th in a circulation model (chapter 5). The major findings of this thesis follow. In chapters 2 and 3, I find that the rate parameters of the reversible exchange model show systematic variations along GA03. In particular, 𝑘1, the apparent first-order rate "constant" of Th adsorption onto particles, generally presents maxima in the mesopelagic zone and minima below. A positive correlation between 𝑘1 and bulk particle concentration is found, consistent with the notion that the specific rate at which a metal in solution attaches to particles increases with the number of surface sites available for adsorption. In chapter 4, I show that Mn (oxyhydr)oxides and biogenic particles most strongly influence 𝑘1 west of the Mauritanian upwelling, but that biogenic particles dominate 𝑘1 in this region. In chapter 5, I find that dissolved 230Th data are best represented by a model that assumes enhanced values of 𝑘1 near the seafloor. Collectively, my findings suggest that spatial variations in Th radioisotope activities observed in the North Atlantic reflect at least partly variations in the rate at which Th is removed from the water column.
    Description: This work was supported by the US National Science Foundation. Two US NSF grants have supported the research in this thesis (OCE-1232578 and OCE-155644).
    Keywords: Thorium ; Chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-02-16
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-02-16
    Description: The comment and response concerning the report of oxidation of methane to methanol by water (Reports, 5 May 2017, p. 523) do not fully capture the implications of thermodynamic limitations. A nonisothermal process in which each cycle requires a large temperature swing and permits only substoichiometric methane conversion surely could not be carried out on any practical scale.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-02-16
    Description: Labinger argues that stepwise reaction of methane with water to produce methanol and hydrogen will never be commercially feasible because of its substoichiometric basis with respect to the active site and the requirement of a large temperature swing. This comment is not touching any new ground, beyond describing the thermodynamic feasibility, thermal cycling, and the role of water as discussed previously. Most important, it does not have a solid numerical basis.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-07-27
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-07-27
    Description: Vinyl carbocations have been the subject of extensive experimental and theoretical studies over the past five decades. Despite this long history in chemistry, the utility of vinyl cations in chemical synthesis has been limited, with most reactivity studies focusing on solvolysis reactions or intramolecular processes. Here we report synthetic and mechanistic studies of vinyl cations generated through silylium–weakly coordinating anion catalysis. We find that these reactive intermediates undergo mild intermolecular carbon-carbon bond–forming reactions, including carbon-hydrogen (C–H) insertion into unactivated sp 3 C–H bonds and reductive Friedel-Crafts reactions with arenes. Moreover, we conducted computational studies of these alkane C–H functionalization reactions and discovered that they proceed through nonclassical, ambimodal transition structures. This reaction manifold provides a framework for the catalytic functionalization of hydrocarbons using simple ketone derivatives.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-22
    Description: It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-06-29
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-12-14
    Description: Theory has established the importance of geometric phase (GP) effects in the adiabatic dynamics of molecular systems with a conical intersection connecting the ground- and excited-state potential energy surfaces, but direct observation of their manifestation in chemical reactions remains a major challenge. Here, we report a high-resolution crossed molecular beams study of the H + HD -〉 H 2 + D reaction at a collision energy slightly above the conical intersection. Velocity map ion imaging revealed fast angular oscillations in product quantum state–resolved differential cross sections in the forward scattering direction for H 2 products at specific rovibrational levels. The experimental results agree with adiabatic quantum dynamical calculations only when the GP effect is included.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Description: The chemistry of the carbonyl group is essential to modern organic synthesis. The preparation of substituted, enantioenriched 1,3- or 1,5-dicarbonyls is well developed, as their disconnection naturally follows from the intrinsic polarity of the carbonyl group. By contrast, a general enantioselective access to quaternary stereocenters in acyclic 1,4-dicarbonyl systems remains an unresolved problem, despite the tremendous importance of 2,3-substituted 1,4-dicarbonyl motifs in natural products and drug scaffolds. Here we present a broad enantioselective and stereodivergent strategy to access acyclic, polysubstituted 1,4-dicarbonyls via acid-catalyzed [3,3]-sulfonium rearrangement starting from vinyl sulfoxides and ynamides. The stereochemistry at sulfur governs the absolute sense of chiral induction, whereas the double bond geometry dictates the relative configuration of the final products.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Description: With the recent soaring production of natural gas, the use of methane and other light hydrocarbon feedstocks as starting materials in synthetic transformations is becoming increasingly economically attractive, although it remains chemically challenging. We report the development of photocatalytic C–H amination, alkylation, and arylation of methane, ethane, and higher alkanes under visible light irradiation at ambient temperature. High catalytic efficiency (turnover numbers up to 2900 for methane and 9700 for ethane) and selectivity were achieved using abundant, inexpensive cerium salts as photocatalysts. Ligand-to-metal charge transfer excitation generated alkoxy radicals from simple alcohols that in turn acted as hydrogen atom transfer catalysts. The mixed-phase gas/liquid reaction was adapted to continuous flow, enabling the efficient use of gaseous feedstocks in scalable photocatalytic transformations.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-24
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-24
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-31
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-31
    Description: Intrigued by the potential of nanoscale machines, scientists have long attempted to control molecular motion. We monitored the individual 0.7-nanometer steps of a single molecular hopper as it moved in an electric field along a track in a nanopore controlled by a chemical ratchet. The hopper demonstrated characteristics desired in a moving molecule: defined start and end points, processivity, no chemical fuel requirement, directional motion, and external control. The hopper was readily functionalized to carry cargos. For example, a DNA molecule could be ratcheted along the track in either direction, a prerequisite for nanopore sequencing.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-09-21
    Description: Phosphorothioate nucleotides have emerged as powerful pharmacological substitutes of their native phosphodiester analogs with important translational applications in antisense oligonucleotide (ASO) therapeutics and cyclic dinucleotide (CDN) synthesis. Stereocontrolled installation of this chiral motif has long been hampered by the systemic use of phosphorus(III) [P(III)]–based reagent systems as the sole practical means of oligonucleotide assembly. A fundamentally different approach is described herein: the invention of a P(V)-based reagent platform for programmable, traceless, diastereoselective phosphorus-sulfur incorporation. The power of this reagent system is demonstrated through the robust and stereocontrolled synthesis of various nucleotidic architectures, including ASOs and CDNs, via an efficient, inexpensive, and operationally simple protocol.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-09-21
    Description: Here we report an anomalous porous molecular crystal built of C–H···N-bonded double-layered roof-floor components and wall components of a segregatively interdigitated architecture. This complicated porous structure consists of only one type of fully aromatic multijoint molecule carrying three identical dipyridylphenyl wedges. Despite its high symmetry, this molecule accomplishes difficult tasks by using two of its three wedges for roof-floor formation and using its other wedge for wall formation. Although a C–H···N bond is extremely labile, the porous crystal maintains its porosity until thermal breakdown of the C–H···N bonds at 202°C occurs, affording a nonporous polymorph. Though this nonporous crystal survives even at 325°C, it can retrieve the parent porosity under acetonitrile vapor. These findings show how one can translate simplicity into ultrahigh complexity.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-28
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-28
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-09-28
    Description: Some of the simplest and most powerful carbon-carbon bond forming strategies take advantage of readily accessible ubiquitous motifs: carbonyls and olefins. Here we report a fundamentally distinct mode of reactivity between carbonyls and olefins that differs from established acid-catalyzed carbonyl-ene, Prins, and carbonyl-olefin metathesis reaction paths. A range of epsilon, zeta-unsaturated ketones undergo Brønsted acid–catalyzed intramolecular cyclization to provide tetrahydrofluorene products via the formation of two new carbon-carbon bonds. Theoretical calculations and accompanying mechanistic studies suggest that this carbocyclization reaction proceeds through the intermediacy of a transient oxetane formed by oxygen atom transfer. The complex polycyclic frameworks in this product class appear as common substructures in organic materials, bioactive natural products, and recently developed pharmaceuticals.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-28
    Description: Alkene aminoarylation with a single, bifunctional reagent is a concise synthetic strategy. We report a catalytic protocol for the addition of arylsulfonylacetamides across electron-rich alkenes with complete anti-Markovnikov regioselectivity and excellent diastereoselectivity to provide 2,2-diarylethylamines. In this process, single-electron alkene oxidation enables carbon-nitrogen bond formation to provide a key benzylic radical poised for a Smiles-Truce 1,5-aryl shift. This reaction is redox-neutral, exhibits broad functional group compatibility, and occurs at room temperature with loss of sulfur dioxide. As this process is driven by visible light, uses readily available starting materials, and demonstrates convergent synthesis, it is well suited for use in a variety of synthetic endeavors.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-05
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-05
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-10-05
    Description: Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-12
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-12
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-12
    Description: Single-electron reduction of a carbonyl to a ketyl enables access to a polarity-reversed platform of reactivity for this cornerstone functional group. However, the synthetic utility of the ketyl radical is hindered by the strong reductants necessary for its generation, which also limit its reactivity to net reductive mechanisms. We report a strategy for net redox-neutral generation and reaction of ketyl radicals. The in situ conversion of aldehydes to α-acetoxy iodides lowers their reduction potential by more than 1 volt, allowing for milder access to the corresponding ketyl radicals and an oxidative termination event. Upon subjecting these iodides to a dimanganese decacarbonyl precatalyst and visible light irradiation, an atom transfer radical addition (ATRA) mechanism affords a broad scope of vinyl iodide products with high Z -selectivity.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-10-12
    Description: Reactions that form a product with the same reactive functionality as that of one of the starting compounds frequently end in oligomerization. As a salient example, selective aldol coupling of the smallest, though arguably most useful, enolizable aldehyde, acetaldehyde, with just one partner substrate has proven to be extremely challenging. Here, we report a highly enantioselective Mukaiyama aldol reaction with the simple triethylsilyl (TES) and tert -butyldimethylsilyl (TBS) enolates of acetaldehyde and various aliphatic and aromatic acceptor aldehydes. The reaction is catalyzed by recently developed, strongly acidic imidodiphosphorimidates (IDPi), which, like enzymes, display a confined active site but, like small-molecule catalysts, have a broad substrate scope. The process is scalable, fast, efficient (0.5 to 1.5 mole % catalyst loading), and greatly simplifies access to highly valuable silylated acetaldehyde aldols.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-12-21
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-12-21
    Description: Single-molecule magnets (SMMs) containing only one metal center may represent the lower size limit for molecule-based magnetic information storage materials. Their current drawback is that all SMMs require liquid-helium cooling to show magnetic memory effects. We now report a chemical strategy to access the dysprosium metallocene cation [(Cp i Pr5 )Dy(Cp*)] + (Cp i Pr5 , penta-iso-propylcyclopentadienyl; Cp *, pentamethylcyclopentadienyl), which displays magnetic hysteresis above liquid-nitrogen temperatures. An effective energy barrier to reversal of the magnetization of U eff = 1541 wave number is also measured. The magnetic blocking temperature of T B = 80 kelvin for this cation overcomes an essential barrier toward the development of nanomagnet devices that function at practical temperatures.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-19
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-19
    Description: The development of highly reactive and stereoselective catalytic systems is required not only to improve existing synthetic methods but also to invent distinct chemical reactions. Herein, a homogenized combination of nickel-based Lewis acid–surfactant-combined catalysts and single-walled carbon nanotubes is shown to exhibit substantial activity in water. In addition to the enhanced reactivity, stereoselective performance and long-term stability were demonstrated in asymmetric conjugate addition reactions of aldoximes to furnish chiral nitrones in high yields with excellent selectivities. The practical and straightforward application of the designed catalysts in water provides an expedient, environmentally benign, and highly efficient pathway to access optically active compounds.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-11-02
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-12-14
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-26
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-11-02
    Description: Exploration of intermediates that enable chemoselective cycloaddition reactions and expeditious construction of fused- or bridged-ring systems is a continuous challenge for organic synthesis. As an intermediate of interest, the oxyallyl cation has been harnessed to synthesize architectures containing seven-membered rings via (4+3) cycloaddition. However, its potential to access five-membered skeletons is underdeveloped, largely due to the thermally forbidden (3+2) pathway. Here, the combination of a tailored precursor and a Pd(0) catalyst generates a Pd-oxyallyl intermediate that cyclizes with conjugated dienes to produce a diverse array of tetrahydrofuran skeletons. The cycloaddition overrides conventional (4+3) selectivity by proceeding through a stepwise pathway involving a Pd-allyl transfer and ring closure sequence. Subsequent treatment of the (3+2) adducts with a palladium catalyst converts the heterocycles to the carbocyclic cyclopentanones.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-11-16
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...