ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Radiative heating computations are performed for a range of high speed Earth entry experiments conducted in the Electric Arc Shock Tube at NASA Ames. The nonequilibrium radiative transport equations are solved in NEQAIR using flow field variables from the full facility CFD simulations of the EAST shock tube performed by US3D ow solver. These physics-based flow calculations lead to a significantly different post-shock gas state and associated radiation field as compared to that based on a simplified but computationally inexpensive calculation for flow over a blunt-body with appropriate initial conditions. The radiation spectra and radiance profiles are computed for an extensive range of wavelengths, from deep VUV to IR, which are pertinent to the emission characteristics of high enthalpy shock waves in air. The radiation properties of the shocked gas are calculated both in the nonequilibrium region at the shock, and in the equilibrium region behind the shock. Numerical predictions are found to be consistent with the experimental observations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN62943 , AIAA Aviation Forum 2018; Jun 23, 2018 - Jun 29, 2018; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Radiative heating computations are performed for high speed lunar return experiments conducted in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The nonequilibrium radiative transport equations are solved via NASA's in-house radiation code NEQAIR using flow field input from US3D flow solver. The post-shock flow properties for the 10 km/s Earth entry conditions are computed using the stagnation line of a blunt-body and a full facility CFD (Computational Fluid Dynamics) simulation of the EAST shock tube. The shocked gas in the blunt-body flow achieves a thermochemical equilibrium away from the shock front whereas EAST flow exhibits a nonequilibrium behavior due to strong viscous dissipation of the shock by boundary layer. The full-tube flow calculations capture the influence of the boundary layer on the shocked gas state and provide a realistic fluid dynamic input for the radiative predictions. The integrated radiance behind the shock is calculated in NEQAIR for wavelength regimes from Vacuum-UltraViolet (VUV) to InfraRed (IR), which are pertinent to the emission characteristics of high enthalpy shock waves in air. These radiance profiles are validated against corresponding EAST shots. The full-tube simulations successfully predict a sharp radiance peak at the shock front which gets smeared in the test data due to the spatial resolution in the measurements. The full facility based radiance behind the shock shows a slightly better match with the test data in the VUV and Red spectral regions, as compared to that from a blunt-body based predictions. The UV radiance is very similar for both geometries and under-predicts the test behavior. The IR test data matches better with the blunt-body based predictions where the full-tube simulations show a significant over-prediction.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN57169 , AIAA SciTech Forum & Exposition (SciTech 2019); Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: 2-D axisymmetric time accurate simulations of the EAST facility
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN46268 , Graduate Student Seminar; Sep 23, 2017; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...