ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Twelfth Thermal and Fluids Analysis Workshop; NASA/CP-2002-211783
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator, formerly SINDA '85) is a computer code used to analyze thermal/fluid systems that can be represented in lumped parameter form. In addition to conduction and radiation heat transfer, the code is capable of modeling both single- and two-phase flow networks, their associated hardware, and their heat transfer processes. In this paper, recent improvements to SINDA/FLUINT are described, as are those in progress that will be available in the fall of 1992 in Version 2.5. Also, a preview of planned enhancements is provided. This paper also introduces SINAPS (SINDA Application Programming System), a powerful graphical pre- and postprocessor that will also be available in the fall of 1992.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Fourth Annual Thermal and Fluids Analysis Workshop; p 95-107
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.
    Keywords: Man/System Technology and Life Support
    Type: Two-Phase Technology 1999; May 17, 1999 - May 19, 1999; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Post-test examination and data analysis that followed a two week long vacuum test showed that numerous self-stick thermocouples became detached from the test article. The thermocouples were reattached with thermally conductive epoxy and the test was repeated to obtain the required data. Because the thermocouple detachment resulted in significant expense and rework, it was decided to investigate the temporary attachment methods used around NASA and to perform a test to assess their efficacy. The present work describes the original test and the analysis that showed that the thermocouples had become detached, temporary thermocouple attachment methods assessed in the retest and in the thermocouple attachment test, and makes a recommendation for attachment methods for future tests.
    Keywords: Instrumentation and Photography
    Type: JSC-CN-36428 , Thermal and Fluids Analysis Workshop (TFAWS 2016); Aug 01, 2016 - Aug 05, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company (Webster, TX), is a unique propulsion system that could change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduces the propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station (ISS). The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster core generates 27 kW of waste heat during its 15 minute firing time. The rocket core will be maintained between 283 and 573 K by a pumped thermal control loop. The design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient-based radiator design. The paper will describe the radiator design option selected for the VASIMR thermal control system for use on ISS, and how the system relates to future exploration vehicles.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-26065 , International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24526-1 , NASA Tech Briefs, April 2013; 35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23317 , NASA Tech Briefs, June 2004; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: When components of the International Space Station ammonia External Active Thermal Control System are replaced on-orbit, they must be vented immediately after removal from the system. Venting ensures that the component is not hard packed with liquid and thus does not pose a hazard. An extravehicular activity (EVA) vent tool has been developed to perform this function. However, there were concerns that the tool could whip, posing a hazard to the EVA astronaut, or would freeze. The ammonia vent tool was recently tested in a thermal/vacuum chamber to demonstrate that it would operate safely and would not freeze during venting. During the test, ammonia mimicking the venting conditions for six different heat exchanger initial conditions was passed through representative test articles. In the present work, the model that was used to develop the ammonia state and flow for the test points is discussed and the test setup and operation is described. The qualitative whipping and freezing results of the test are discussed and vent plume pressure measurements are described and interpreted.
    Keywords: Space Transportation and Safety
    Type: JSC-CN-6375 , 2000 20th International Mechanical Engineering Congress and Exposition; Nov 05, 2000 - Nov 10, 2000; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) is used for fluid transfer in many types of experiments. Reagents are handled in the MSG to prevent their accidental release into the cabin. However, the MSG is currently over-subscribed, creating a backlog of users in flight. As a recourse, current experiments are underway to assess the possibility of moving certain science operations from the MSG into the open cabin of the ISS. The experiments are designed to assess the efficacy of exploiting surface tension as a control to prevent the unwanted release of liquids. Dyed water currently serves as an ersatz for potentially more hazardous liquids. Common wet-lab operations such as de/mating wetted Luer-Lok fittings, liquid-bearing container lid removal, and pipetting between well plates are performed illustrating the facility and challenges imposed by the microgravity environment. Concerning the latter, various pipette cannula sizes are deployed at various injection, withdrawal, and translations rates to map the existence, size, velocity, and trajectory of satellite droplets expected to form when breaking contact between the water surface and the pipette tip. Though such drops frequently form in terrestrial operations, they are nearly imperceptible and inconsequentialdue in part to their speed and because gravity quickly returns them to the well plate from which they came. The use of airflow to capture and collect such satellite droplets is demonstrated. The dynamic stability of the liquid-filled well plates is quantified in response to a variety of crew-imparted disturbances. From a safety perspective, the results from the STCE are of immediate practical value. If such routine low-gravity capillary fluidic operations can be established as mundane, their performance may be moved out of the MSG and into the cabin, significantly increasing the efficiency of experiments performed on ISS.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN58986 , Annual Meeting of the American Society for Gravitational and Space Research; 31 Oct. 3 Nov. 2018; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum; Feb 10, 2008 - Feb 14, 2008; Albuquerque; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...