ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-11-02
    Description: Exploration of intermediates that enable chemoselective cycloaddition reactions and expeditious construction of fused- or bridged-ring systems is a continuous challenge for organic synthesis. As an intermediate of interest, the oxyallyl cation has been harnessed to synthesize architectures containing seven-membered rings via (4+3) cycloaddition. However, its potential to access five-membered skeletons is underdeveloped, largely due to the thermally forbidden (3+2) pathway. Here, the combination of a tailored precursor and a Pd(0) catalyst generates a Pd-oxyallyl intermediate that cyclizes with conjugated dienes to produce a diverse array of tetrahydrofuran skeletons. The cycloaddition overrides conventional (4+3) selectivity by proceeding through a stepwise pathway involving a Pd-allyl transfer and ring closure sequence. Subsequent treatment of the (3+2) adducts with a palladium catalyst converts the heterocycles to the carbocyclic cyclopentanones.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...