ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (128)
  • AMS (American Meteorological Society)  (66)
  • American Meteorological Society
  • MDPI Publishing
  • Nature Publishing Group
  • 2015-2019  (114)
  • 1980-1984  (11)
  • 1970-1974  (3)
  • 1940-1944
Collection
Source
Publisher
Years
Year
  • 1
    Publication Date: 2020-02-06
    Description: Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 9321-9337.
    Publication Date: 2020-08-04
    Description: In the present study, the influence of some major tropical modes of variability on northern hemisphere regional blocking frequency variability during boreal winter is investigated. Reanalysis data and an ensemble experiment with the ECMWF model using relaxation towards the ERA-Interim reanalysis data inside the tropics are used. The tropical modes under investigation are El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO) and the upper tropospheric equatorial zonal-mean zonal wind . An early (late) MJO phase refers to the part of the MJO cycle when enhanced (suppressed) precipitation occurs over the western Indian Ocean and suppressed (enhanced) precipitation occurs over the Maritime Continent and the western tropical Pacific. Over the North Pacific sector, it is found that enhanced (suppressed) high latitude blocking occurs in association with El Niño (La Niña) events, late (early) MJO phases and westerly (easterly) . Over central to southern Europe and the east Atlantic, it is found that late MJO phases, as well as a suppressed MJO are leading to enhanced blocking frequency. Furthermore, early (late) MJO phases are followed by blocking anomalies over the western North Atlantic region, similar to those associated with a positive (negative) North Atlantic Oscillation. Over northern Europe, the easterly (westerly) phase of is associated with enhanced (suppressed) blocking. These results are largely confirmed by both the reanalysis and the model experiment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 48 (4). pp. 757-771.
    Publication Date: 2021-02-08
    Description: The Eddy Kinetic Energy (EKE) associated with the Subtropical Countercurrent (STCC) in the western subtropical South Pacific is known to exhibit substantial seasonal and decadal variability. Using an eddy-permitting ocean general circulation model, which is able to reproduce the observed, salient features of the seasonal cycles of shear, stratification, baroclinic production and the associated EKE, we investigate the decadal changes of EKE. We show that the STCC region exhibits, uniquely among the subtropical gyres of the world’s oceans, significant, atmospherically forced, decadal EKE variability. The decadal variations are driven by changing vertical shear between the STCC in the upper 300 m and the South Equatorial Current below, predominantly caused by variations in STCC strength associated with a changing meridional density gradient. In the 1970s, an increased meridional density gradient results in EKE twice as large as in later decades in the model. Utilizing sensitivity experiments, decadal variations in the wind field are shown to be the essential driver. Local wind stress curl anomalies associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling of the thermocline, inducing strengthening or weakening of the STCC and the associated EKE. Additionally, remote wind stress curl anomalies in the eastern subtropical South Pacific, which are not related to the IPO, generate density anomalies that propagate westward as Rossby waves and can account for up to 30–40 % of the density anomalies in the investigated region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 98 (8) (8). AMS (American Meteorological Society), Si-S280, 277 pp.
    Publication Date: 2020-10-21
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multi-decadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the 20th Century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multi-decadal variations associated with the Pacific Decadal Oscillation and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multi-decadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean Dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-24
    Description: Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-25
    Description: Naturally produced polybrominated diphenyl ethers (PBDEs) pervade the marine environment and structurally resemble toxic man-made brominated flame retardants. PBDEs bioaccumulate in marine animals and are likely transferred to the human food chain. However, the biogenic basis for PBDE production in one of their most prolific sources, marine sponges of the order Dysideidae, remains unidentified. Here, we report the discovery of PBDE biosynthetic gene clusters within sponge-microbiome-associated cyanobacterial endosymbionts through the use of an unbiased metagenome-mining approach. Using expression of PBDE biosynthetic genes in heterologous cyanobacterial hosts, we correlate the structural diversity of naturally produced PBDEs to modifications within PBDE biosynthetic gene clusters in multiple sponge holobionts. Our results establish the genetic and molecular foundation for the production of PBDEs in one of the most abundant natural sources of these molecules, further setting the stage for a metagenomic-based inventory of other PBDE sources in the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-08
    Description: The North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO) describe the dominant part of the variability in the Northern Hemisphere extratropical troposphere. Due to the strong connection of these patterns with surface climate, recent years have shown an increased interest and an increasing skill in forecasting them. However, it is unclear what the intrinsic limits of short-term predictability for the NAO and AO patterns are. This study compares the variability and predictability of both patterns, using a range of data and index computation methods for the daily NAO/AO indices. Small deviations from Gaussianity are found and characteristic decorrelation time scales of around one week. In the analysis of the Lyapunov spectrum it is found that predictability is not significantly different between the AO and NAO or between reanalysis products. Differences exist however between the indices based on EOF analysis, which exhibit predictability time scales around 12 - 16 days, and the station-based indices, exhibiting a longer predictability of 18 - 20 days. Both of these time scales indicate predictability beyond that currently obtained in ensemble prediction models for short-term predictability. Additional longer-term predictability for these patterns may be gained through local feedbacks and remote forcing mechanisms for particular atmospheric conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 98 (6). ES139-ES142.
    Publication Date: 2020-07-16
    Description: The 13th European Polar Low Workshop was organized by the European Polar Low Working Group (www.uni-trier.de/index.php?id=20308)and gathered scientists from nine countries focusing on polar mesocyclones in both hemispheres and other mesoscale weather phenomena such as katabatic winds, tip jets, boundary layer fronts, cold air outbreaks, and weather extremes in polar regions. Topics included experimental, climatological, theoretical, modeling, and remote sensing studies. The aim was to bring together scientists and forecasters to present their latest work and recent findings on these topics and to encourage discussions on improving forecasting and understanding of these phenomena.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 8913-8927.
    Publication Date: 2020-02-06
    Description: The regional climate model COSMOin Climate Limited-AreaMode (COSMO-CLM or CCLM) is used with a high resolution of 15km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 208C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice.Also, the 30-km version of theArctic SystemReanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 18C for the ocean and sea ice area. Thus,ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.58Cyr21 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 708N; for CCLM the warming amounts to an average of almost 58C for 2002/03–2011/12.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 75 (8). pp. 2815-2826.
    Publication Date: 2021-02-08
    Description: The formation of secondary ice in clouds, i.e. ice particles that are created at temperatures above the limit for homogeneous freezing without the direct involvement of a heterogeneous ice nucleus is one of the longest standing puzzles in cloud physics. Here we present comprehensive laboratory investigations on the formation of small ice particles upon the freezing of drizzle-sized cloud droplets levitated in an electrodynamic balance. Four different categories of secondary ice formation (bubble bursting, jetting, cracking, breakup) could be detected and their respective frequencies of occurrence as a function of temperature and droplet size are given. We find that bubble bursting occurs more often than droplet splitting. While we do not observe the shattering of droplets into many large fragments, we find that the average number of small secondary ice particles released during freezing is strongly droplet-size dependent and may well exceed unity for droplets larger than 300 μm in diameter. This leaves droplet fragmentation an important secondary ice process effective at temperatures around -10 °C in clouds where large drizzle droplets are present.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-02-01
    Description: Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (8). pp. 2921-2935.
    Publication Date: 2020-02-06
    Description: The ratio of global mean surface air temperature change to cumulative CO2 emissions, referred to as transient climate response to cumulative CO2 emissions (TCRE), has been shown to be approximately constant on centennial time scales. The mechanisms behind this constancy are not well understood, but previous studies suggest that compensating effects of ocean heat and carbon fluxes, which are governed by the same ocean mixing processes, could be one cause for this approximate constancy. This hypothesis is investigated by forcing different versions of the University of Victoria Earth System Climate Model, which differ in the ocean mixing parameterization, with an idealized scenario of 1% annually increasing atmospheric CO2 until quadrupling of the preindustrial CO2 concentration and constant concentration thereafter. The relationship between surface air warming and cumulative emissions remains close to linear, but the TCRE varies between model versions, spanning the range of 1.2°–2.1°C EgC−1 at the time of CO2 doubling. For all model versions, the TCRE is not constant over time while atmospheric CO2 concentrations increase. It is constant after atmospheric CO2 stabilizes at 1120 ppm, because of compensating changes in temperature sensitivity (temperature change per unit radiative forcing) and cumulative airborne fraction. The TCRE remains approximately constant over time even if temperature sensitivity, determined by ocean heat flux, and cumulative airborne fraction, determined by ocean carbon flux, are taken from different model versions with different ocean mixing settings. This can partially be explained with temperature sensitivity and cumulative airborne fraction following similar trajectories, which suggests ocean heat and carbon fluxes scale approximately linearly with changes in vertical mixing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-06
    Description: The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Reviews Microbiology, 13 (8). pp. 509-523.
    Publication Date: 2020-06-23
    Description: Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and fungi to identify and induce the expression of such silent BGCs, and we briefly summarize methods for the isolation and structural characterization of their metabolic products.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 47 (7). pp. 1685-1699.
    Publication Date: 2020-02-06
    Description: Seasonal variability in pathways of warm water masses toward the Kangerdlugssuaq Fjord-Glacier system (KF/KG), southeast Greenland, is investigated by backtracking Lagrangian particles seeded at the fjord mouth in a high-resolution regional ocean model simulation in the ice-free and the ice-covered seasons. The waters at KF are a mixture of Atlantic-origin water advected from the Irminger Basin (FF for Faxaflói), the deep waters from the Denmark Strait and the waters from the Arctic Ocean, both represented by the Kögur section (KO). Below 200m depth, the warm water is a mixture of FF and KO water masses, and is warmer in winter than in summer. We find that seasonal differences in pathways double the fraction of FF particles in winter, causing the seasonal warming and salinification. Seasonal temperature variations at the upstream sections (FF and KO) have a negligible impact on temperature variations near the fjord. Successful monitoring of heat flux to the fjord therefore needs to take place close to the fjord, and cannot be inferred from upstream conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-12-21
    Description: Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens ( Lichina confinis and L. pygmaea ; from intertidal and subtidal zones) and one littoral lichen ( Roccella fuciformis ; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 72 (7). pp. 2786-2805.
    Publication Date: 2019-01-08
    Description: In Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the topography and do not account for the underlying wave dynamics. If a 5-km model instead of a 60-km model resolution in Ammassalik is used, the flow associated with the strong wind event is faster by up to 20 m s−1. The effects extend far downstream over the Irminger Sea, resulting in a diverging spatial distribution and temporal evolution of the heat fluxes. Local differences in the heat fluxes amount to 20%, with potential implications for ocean convection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Earth Interactions, 22 (1). pp. 1-15.
    Publication Date: 2021-02-08
    Description: Predicting tropical cyclone (TC) activity becomes more important every year while the understanding of what factors impact them continues to be complicated. El Niño–Southern Oscillation (ENSO) is one of the primary factors impacting the activities in both the Pacific and the Atlantic, but an extensive examination of the fluctuation in this system has yet to be studied in its entirety. This article analyzes the ENSO impacts on the Atlantic tropical cyclone activity during the assessed warm and cold years to show the dominant centennial-scale variation impact. This study looks to plausibly link this variation to the Southern Ocean centennial variability, which is rarely mentioned in any factors affecting the Atlantic tropical cyclone activity. This centennial variability could be used to enhance future work related to predicting tropical cyclones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-02-08
    Description: Downward wave coupling (DWC) is an important process that characterizes the dynamical coupling between the stratosphere and troposphere via planetary wave reflection. A recent modeling study indicated that natural forcing factors, including sea-surface temperature variability and quasi-biennial oscillation, influence DWC and the associated surface impact in the Northern Hemisphere (NH). In light of this, we further investigate how DWC in the NH is affected by anthropogenic forcings, using a fully coupled chemistry-climate model CESM1 (WACCM). The results indicate that the occurrence of DWC is significantly suppressed in the future, starting later in the seasonal cycle, with more events concentrated in late winter (February-March). The future decrease in DWC events is associated with enhanced wave absorption in the stratosphere due to increased greenhouse gases. The enhanced wave absorption is manifest as more absorbing types of stratospheric sudden warmings, with more events concentrated in early winter. This early winter condition leads to a delay in the development of the upper stratospheric reflecting surface, resulting in a shift in the seasonal cycle of DWC towards late winter. The tropospheric responses to DWC events in the future exhibit different spatial patterns compared to those of the past. In the North Atlantic sector, DWC-induced circulation changes are characterized by a poleward shift and an eastward extension of the tropospheric jet, while in the North Pacific sector, the circulation changes are characterized by a weakening of the tropospheric jet. These responses are consistent with a change in the pattern of DWC-induced synoptic-scale eddy-mean flow interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-02-08
    Description: Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-04
    Description: Downward wave coupling occurs when an upward propagating planetary wave from the troposphere decelerates the flow in the upper stratosphere, and forms a downward reflecting surface that redirects waves back to the troposphere. To test this mechanism and potential factors influencing the downward wave coupling, three 145-year sensitivity simulations with NCAR’s Community Earth System Model (CESM-WACCM), a state-of-the-art high-top chemistry-climate model, are analyzed. The results show that the QBO and SST variability significantly impact downward wave coupling. Without the QBO, the occurrence of downward wave coupling is significantly suppressed. In contrast, stronger and more persistent downward wave coupling occurs when SST variability is excluded. The above influence on the occurrence of downward wave coupling is mostly due to a direct influence of the QBO and SST variability on stratospheric planetary wave source and propagation. The strengths of the tropospheric circulation and surface responses to a given downward wave coupling event, however, behave differently. The surface anomaly is significantly weaker (stronger) in the experiment with fixed SSTs (without QBO), even though the statistical signal of downward coupling is strongest (weakest) in this experiment. This apparent mismatch is explained by the differences in the strength of the synoptic-scale eddy-mean flow feedback and the possible contribution of SST anomalies in the North Atlantic during DWC event. The weaker synoptic-scale eddy-mean flow feedback, and the absence of the positive NAO-related SST-tripole pattern in the fixed SST experiment are consistent with a weaker tropospheric response in this experiment. The results highlight the importance of synoptic-scale eddies in setting the tropospheric response to downward wave coupling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Methods, 13 (2). pp. 107-108.
    Publication Date: 2020-06-24
    Description: To the Editor: We congratulate Halsey et al. for their important discussion of the random nature of P values in an earlier issue of this journal1. P values from identical experiments can differ greatly in a way that is surprising to many2, 3, 4, 5, 6. The failure to appreciate this…
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-04-11
    Description: Marine Upper Jurassic sediments have recently been reported from South Africa (Knysna Outlier, Cape Province) for the first time1. They occur as shallow water, sandy clays (Brenton Beds) in association with terrestrial/fluviatile conglomerates and sandstones, which were deposited in an approximately east-west elongate intermontane basin between the Cape Fold mountains (formed of Lower Palaeozoic sediments). Post-Cretaceous erosion has reduced the original deposits to a series of small, isolated outliers, only two of which have been reported to contain marine sediments (Knysna, lower Upper Jurassic; Algoa, Valanginian2) (Fig. 1). Extensive Neocomian-Maas-trichtian outcrops are known from the continental shelf off to the south of South Africa3, and a complete mid-Jurassic to Upper Cretaceous marine succession is suspected on the Agulhas Bank infilling and overlying east-west striking, fault bounded folds of Lower Palaeozoic Cape Supergroup rocks as shown in Fig. 1 (R. V. D., in preparation and refs. 1 and 4).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-04-11
    Description: There has been concern about recent temperature trends and the future effects of CO2 concentrations in the atmosphere1,2; but instrumental records only cover a few decades to a few centuries and it is essential that proxy data sources, such as pollen spectra from peats and lake sediments, be carefully interpreted as climate records. Several workers have shown statistically significant associations between the modern pollen rain and climatic parameters, an approach that by-passes the recognition of pollen/vegetation units. Statistically defined equations that associate abiotic and biotic elements are called transfer functions. We report here on the application of transfer function equations to nine middle and late Holocene peat and lake sediment sequences from northern Canada (Fig. 1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 288 (5788). pp. 260-263.
    Publication Date: 2016-03-01
    Description: Organic detritus passing from the sea surface through the water column to the sea floor controls nutrient regeneration, fuels benthic life and affects burial of organic carbon in the sediment record. Particle trap systems have enabled the first quantification of this important process. The results suggest that the dominant mechanism of vertical transport is by rapid settling of rare large particles, most likely of faecal pellets or marine snow of the order of 〉200 μm in diameter, whereas the more frequent small particles have an insignificant role in vertical mass flux4–6. The ultimate source of organic detritus is biological production in surface waters of the oceans. I determine here an empirical relationship that predicts organic carbon flux at any depth in the oceans below the base of the euphotic zone as a function of the mean net primary production rate at the surface and depth-dependent consumption. Such a relationship aids in estimating rates of decay of organic matter in the water column, benthic and water column respiration of oxygen in the deep sea and burial of organic carbon in the sediment record.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 73 (6). pp. 2509-2528.
    Publication Date: 2020-08-04
    Description: There is evidence that the strengthened stratospheric westerlies arising from the Antarctic ozone hole–induced cooling cause a polar mesospheric warming and a subsequent cooling in the lower thermosphere. While previous studies focus on the role of nonresolved (gravity) wave drag filtering, here the role of resolved (planetary) wave drag and radiative forcing on the Antarctic mesosphere and lower thermosphere (MLT) is explored in detail. Using simulations with NCAR’s Community Earth System Model, version 1 (Whole Atmosphere Community Climate Model) [CESM1(WACCM)], it is found that in late spring and early summer the anomalous polar mesospheric warming induced by easterly nonresolved wave drag is dampened by anomalous dynamical cooling induced by westerly resolved wave drag. This resolved wave drag is attributed to planetary-scale wave (k = 1–3) activity, which is generated in situ as a result of increased instability of the summer mesospheric easterly jet induced by the ozone hole. On the other hand, the anomalous cooling in the polar lower thermosphere induced by westerly nonresolved wave drag is enhanced by anomalous dynamical cooling due to westerly resolved wave drag. In addition, radiative effects from increased greenhouse gases during the ozone hole period contribute partially to the cooling in the polar lower thermosphere. The polar MLT temperature response to the Antarctic ozone hole is, through thermal wind balance, accompanied by the downward migration of anomalous zonal-mean wind from the lower thermosphere to the stratopause. The results highlight that a proper accounting of both dynamical and radiative effects is required in order to correctly attribute the causes of the polar MLT response to the Antarctic ozone hole.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-11-23
    Description: Large amounts of the greenhouse gas methane are released from the seabed to the water column1, where it may be consumed by aerobic methanotrophic bacteria2. The size and activity of methanotrophic communities, which determine the amount of methane consumed in the water column, are thought to be mainly controlled by nutrient and redox dynamics3–7. Here, we report repeated measurements of methanotrophic activity and community size at methane seeps west of Svalbard, and relate them to physical water mass properties and modelled ocean currents. We show that cold bottom water, which contained a large number of aerobic methanotrophs, was displaced by warmer water with a considerably smaller methanotrophic community within days. Ocean current simulations using a global ocean/sea-ice model suggest that this water mass exchange is consistent with short-term variations in the meandering West Spitsbergen Current. We conclude that the shift from an offshore to a nearshore position of the current can rapidly and severely reduce methanotrophic activity in the water column. Strong fluctuating currents are common at many methane seep systems globally, and we suggest that they affect methane oxidation in the water column at other sites, too.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Climate Change, 5 (1). pp. 71-79.
    Publication Date: 2017-02-24
    Description: Climate change is altering oceanic conditions in a complex manner, and the concurrent amendment of multiple properties will modify environmental stress for primary producers. So far, global modelling studies have focused largely on how alteration of individual properties will affect marine life. Here, we use global modelling simulations in conjunction with rotated factor analysis to express model projections in terms of regional trends in concomitant changes to biologically influential multi-stressors. Factor analysis demonstrates that regionally distinct patterns of complex oceanic change are evident globally. Preliminary regional assessments using published evidence of phytoplankton responses to complex change reveal a wide range of future responses to interactive multi-stressors with 〈20–300% shifts in phytoplankton physiological rates, and many unexplored potential interactions. In a future ocean, provinces will encounter different permutations of change that will probably alter the dominance of key phytoplankton groups and modify regional productivity, ecosystem structure and biogeochemistry. Consideration of regionally distinct multi-stressor patterns can help guide laboratory and field studies as well as the interpretation of interactive multi-stressors in global models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Climate Change, 5 (1). pp. 12-14.
    Publication Date: 2017-04-13
    Description: Reflection on the rapidly growing field of ocean acidification research highlights priorities for future research on the changing ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-12-19
    Description: Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intraoceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10Myr ago - coincident with the onset of subduction of more oceanic crust that originally formed above the Galápagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone - a process probably more common in the Archaean - can produce juvenile continental crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 45 . pp. 1709-1734.
    Publication Date: 2021-05-18
    Description: We perform eddy-resolving and high-vertical-resolution numerical simulations of the circulation in an idealized equatorial Atlantic Ocean in order to explore the formation of the deep equatorial circulation (DEC) in this basin. Unlike in previous studies, the deep equatorial intraseasonal variability (DEIV) that is believed to be the source of the DEC is generated internally by instabilities of the upper ocean currents. Two main simulations are discussed: Solution 1, configured with a rectangular basin and with wind forcing that is zonally and temporally uniform; and Solution 2, with realistic coastlines and with an annual cycle of wind forcing varying zonally. Somewhat surprisingly, Solution 1 produces the more realistic DEC: The large-vertical-scale currents (Equatorial Intermediate Currents or EICs) are found over a large zonal portion of the basin, and the small-vertical-scale equatorial currents (Equatorial Deep Jets or EDJs) form low-frequency, quasi-resonant, baroclinic equatorial basin modes with phase propagating mostly downward, consistent with observations. We demonstrate that both types of currents arise from the rectification of DEIV, consistent with previous theories. We also find that the EDJs contribute to maintaining the EICs, suggesting that the nonlinear energy transfer is more complex than previously thought. In Solution 2, the DEC is unrealistically weak and less spatially coherent than in the first simulation probably because of its weaker DEIV. Using intermediate solutions, we find that the main reason for this weaker DEIV is the use of realistic coastlines in Solution 2. It remains to be determined, what needs to be modified or included to obtain a realistic DEC in the more realistic configuration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-12-19
    Description: The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO 3- transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-07-16
    Description: Symbiotic relationships between phytoplankton and N-2-fixing microorganisms play a crucial role in marine ecosystems. The abundant and widespread unicellular cyanobacteria group A (UCYN-A) has recently been found to live symbiotically with a haptophyte. Here, we investigated the effect of nitrogen (N), phosphorus (P), iron (Fe) and Saharan dust additions on nitrogen (N-2) fixation and primary production by the UCYN-A-haptophyte association in the subtropical eastern North Atlantic Ocean using nifH expression analysis and stable isotope incubations combined with single-cell measurements. N-2 fixation by UCYN-A was stimulated by the addition of Fe and Saharan dust, although this was not reflected in the nifH expression. CO2 fixation by the haptophyte was stimulated by the addition of ammonium nitrate as well as Fe and Saharan dust. Intriguingly, the single-cell analysis using nanometer scale secondary ion mass spectrometry indicates that the increased CO2 fixation by the haptophyte in treatments without added fixed N is likely an indirect result of the positive effect of Fe and/or P on UCYN-A N-2 fixation and the transfer of N-2-derived N to the haptophyte. Our results reveal a direct linkage between the marine carbon and nitrogen cycles that is fuelled by the atmospheric deposition of dust. The comparison of single-cell rates suggests a tight coupling of nitrogen and carbon transfer that stays balanced even under changing nutrient regimes. However, it appears that the transfer of carbon from the haptophyte to UCYN-A requires a transfer of nitrogen from UCYN-A. This tight coupling indicates an obligate symbiosis of this globally important diazotrophic association.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 32 (8). pp. 1536-1543.
    Publication Date: 2020-08-04
    Description: A yet unexplained drift of (some) oxygen optodes during storage/transport and thus significant deviations from factory/laboratory calibrations have been a major handicap for autonomous oxygen observations. Optode drift appears to be systematic and is predominantly a slope effect due to reduced oxygen sensitivity. A small contribution comes from a reduced luminophore lifetime, which causes a small positive offset. A reliable in situ reference is essential to correct such a drift. Traditionally, this called for a ship-based reference cast, which poses some challenges for opportunistic float deployments. This study presents an easily implemented alternative using near-surface/in-air measurements of an Aanderaa optode on a 10-cm stalk and compares it to the more traditional approaches (factory, laboratory, and in situ deployment calibration). In-air samples show a systematic bias depending on the water saturation, which is likely caused by occasional submersions of the standard-height stalk optode. Linear regression of measured in-air supersaturation against in-water supersaturation (using ancillary meteorological data to define the saturation level) robustly removes this bias and thus provides a precise (0.2%) and accurate (1%) in situ correction that is available throughout the entire instrument’s lifetime.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-12
    Description: Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth’s regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1–2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Hydrometeorology, 16 (1). pp. 465-472.
    Publication Date: 2020-07-23
    Description: The Water and Global Change (WATCH) forcing datasets have been created to support the use of hydrological and land surface models for the assessment of the water cycle within climate change studies. They are based on 40-yr ECMWF Re-Analysis (ERA-40) or ECMWF interim reanalysis (ERA-Interim) with temperatures (among other variables) adjusted such that their monthly means match the monthly temperature dataset from the Climatic Research Unit. To this end, daily minimum, maximum, and mean temperatures within one calendar month have been subjected to a correction involving monthly means of the respective month. As these corrections can be largely different for adjacent months, this procedure potentially leads to implausible differences in daily temperatures across the boundaries of calendar months. We analyze day-to-day temperature fluctuations within and across months and find that across-months differences are significantly larger, mostly in the tropics and frigid zones. Average across-months differences in daily mean temperature are typically between 10% and 40% larger than their corresponding within-months average temperature differences. However, regions with differences up to 200% can be found in tropical Africa. Particularly in regions where snowmelt is a relevant player for hydrology, a few degrees Celsius difference can be decisive for triggering this process. Daily maximum and minimum temperatures are affected in the same regions, but in a less severe way.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-02-20
    Description: Dissolved oxygen in sea water affects marine habitats and biogeochemical cycles. Oceanic zones with oxygen deficits represent 7% of the volume and 8% of the area of the oceans, and are thought to be expanding. One of the most pronounced lies in the region off Peru, where mesoscale activity in the form of fronts and eddies is strong. Here, we study the dynamics of the Peruvian oxygen minimum zone in a Lagrangian framework, using a coupled physical-biogeochemical numerical model and finite-size Lyapunov exponent fields, to evaluate the role of mesoscale activity. We find that, at depths between 380 and 600 m, mesoscale structures have two distinct roles. First, their mean positions and paths delimit and maintain the oxygen minimum zone boundaries. Second, their high-frequency fluctuations inject oxygen across the oxygen minimum zone boundaries and eddy fluxes are one order of magnitude higher than mean oxygen fluxes. We conclude that these eddy fluxes contribute to the ventilation of the Peruvian oxygen minimum zone.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-04-23
    Description: The symbiotic association of corals and unicellular algae of the genus Symbiodinium in the southern Persian/Arabian Gulf (PAG) display an exceptional heat tolerance, enduring summer peak temperatures of up to 36 °C. As yet, it is not clear whether this resilience is related to the presence of specific symbiont types that are exclusively found in this region. Therefore, we used molecular markers to identify the symbiotic algae of three Porites species along 〉1000 km of coastline in the PAG and the Gulf of Oman and found that a recently described species, Symbiodinium thermophilum, is integral to coral survival in the southern PAG, the world’s hottest sea. Despite the geographic isolation of the PAG, we discovered that representatives of the S. thermophilum group can also be found in the adjacent Gulf of Oman providing a potential source of thermotolerant symbionts that might facilitate the adaptation of Indian Ocean populations to the higher water temperatures expected for the future. However, corals from the PAG associated with S. thermophilum show strong local adaptation not only to high temperatures but also to the exceptionally high salinity of their habitat. We show that their superior heat tolerance can be lost when these corals are exposed to reduced salinity levels common for oceanic environments elsewhere. Consequently, the salinity prevailing in most reefs outside the PAG might represent a distribution barrier for extreme temperature-tolerant coral/Symbiodinium associations from the PAG.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-09-23
    Description: Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-10-24
    Description: Predictability on seasonal time scales over the North Atlantic–Europe region is assessed using a seasonal prediction system based on an initialized version of the Max Planck Institute Earth System Model (MPI-ESM). For this region, two of the dominant predictors on seasonal time scales are El Niño–Southern Oscillation (ENSO) and sudden stratospheric warming (SSW) events. Multiple studies have shown a potential for improved North Atlantic predictability for either predictor. Their respective influences are however difficult to disentangle, since the stratosphere is itself impacted by ENSO. Both El Niño and SSW events correspond to a negative signature of the North Atlantic Oscillation (NAO), which has a major influence on European weather. This study explores the impact on Europe by separating the stratospheric pathway of the El Niño teleconnection. In the seasonal prediction system, the evolution of El Niño events is well captured for lead times of up to 6 months, and stratospheric variability is reproduced with a realistic frequency of SSW events. The model reproduces the El Niño teleconnection through the stratosphere, involving a deepened Aleutian low connected to a warm anomaly in the northern winter stratosphere. The stratospheric anomaly signal then propagates downward into the troposphere through the winter season. Predictability of 500-hPa geopotential height over Europe at lead times of up to 4 months is shown to be increased only for El Niño events that exhibit SSW events, and it is shown that the characteristic negative NAO signal is only obtained for winters also containing major SSW events for both the model and the reanalysis data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-10-21
    Description: Classical theory concerning theEliassen–Palmrelation is extended in this study to allowfor a unified treatment of midlatitude inertia–gravity waves (MIGWs), midlatitude Rossby waves (MRWs), and equatorial waves (EQWs). A conservation equation for what the authors call the impulse-bolus (IB) pseudomomentum is useful, because it is applicable to ageostrophic waves, and the associated three-dimensional flux is parallel to the direction of the group velocity of MRWs. The equation has previously been derived in an isentropic coordinate system or a shallow-water model. The authors make an explicit comparison of prognostic equations for the IB pseudomomentum vector and the classical energy-based (CE) pseudomomentum vector, assuming inviscid linear waves in a sufficiently weak mean flow, to provide a basis for the former quantity to be used in an Eulerian time-mean (EM) framework. The authors investigate what makes the three-dimensional fluxes in the IB and CE pseudomomentum equations look in different directions. It is found that the two fluxes are linked by a gauge transformation, previously unmentioned, associated with a divergence-form wave-induced pressure L. The quantity L vanishes for MIGWs and becomes nonzero for MRWs and EQWs, and it may be estimated using the virial theorem. Concerning the effect of waves on the mean flow, L represents an additional effect in the pressure gradient term of both (the three-dimensional versions of) the transformed EM momentum equations and the merged form of the EMmomentumequations, the latter of which is associated with the nonacceleration theorem.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-12
    Description: Over the past 60 years, both average daily precipitation intensity and extreme precipitation have increased in many regions1, 2, 3. Part of these changes, or even individual events4, 5, have been attributed to anthropogenic warming6, 7. Over the Black Sea and Mediterranean region, the potential for extreme summertime convective precipitation has grown8 alongside substantial sea surface temperature increase. A particularly devastating convective event experienced in that region was the July 2012 precipitation extreme near the Black Sea town of Krymsk9. Here we study the effect of sea surface temperature (SST) increase on convective extremes within the region, taking the Krymsk event as a showcase example. We carry out ensemble sensitivity simulations with a convection-permitting atmospheric model and show the crucial role of SST increase in the extremeness of the event. The enhancement of lower tropospheric instability due to the current warmer Black Sea allows deep convection to be triggered, increasing simulated precipitation by more than 300% relative to simulations with SSTs characteristic of the early 1980s. A highly nonlinear precipitation response to incremental SST increase suggests that the Black Sea has exceeded a regional threshold for the intensification of convective extremes. The physical mechanism we identify indicates that Black Sea and Mediterranean coastal regions may face abrupt amplifications of convective precipitation under continued SST increase, and illustrates the limitations of thermodynamical bounds for estimating the temperature scaling of convective extremes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 96, Special supplement (7). S157-S160.
    Publication Date: 2018-06-20
    Description: [in “State of the Climate in 2014” : Special Supplement to the Bulletin of the American Meteorological Society Vol. 96, No. 7, July 2015]
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 72 . pp. 4029-4045.
    Publication Date: 2018-04-16
    Description: Atmospheric deposition contributes potentially significant amounts of the nutrients iron, nitrogen and phosphorus (via mineral dust and anthropogenic aerosols) to the oligotrophic tropical North Atlantic Ocean. Transport pathways, deposition processes and source strengths contributing to this atmospheric flux are all highly variable in space and time. Atmospheric sampling was conducted during 28 research cruises through the Eastern Tropical North Atlantic (ETNA) over a 12 year period and a substantial dataset of measured concentrations of nutrients and trace metals in aerosol and rainfall over the region was acquired. This database was used to quantify (on a spatial- and seasonal-basis) the atmospheric input of ammonium, nitrate, soluble phosphorus and soluble and total iron, aluminium and manganese to the ETNA. The magnitude of atmospheric input varies strongly across the region, with high rainfall rates associated with the Inter-tropical Convergence Zone contributing to high wet deposition fluxes in the south, particularly for soluble species. Dry deposition fluxes of species associated with mineral dust exhibited strong seasonality, with highest fluxes associated with winter-time low-level transport of Saharan dust. Overall (wet plus dry) atmospheric inputs of soluble and total trace metals were used to estimate their soluble fractions. These also varied with season and were generally lower in the dry north than in the wet south. The ratio of ammonium plus nitrate to soluble iron in deposition to the ETNA was lower than the N:Fe requirement for algal growth in all cases, indicating the importance of the atmosphere as a source of excess iron.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-12-19
    Description: To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-04-23
    Description: Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401°C. In laboratory experiments, where we heated samples to 380°C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 29 (1). pp. 61-76.
    Publication Date: 2019-02-01
    Description: The transport of dissolved oxygen (O2) from the surface ocean into the interior is a critical process sustaining aerobic life in mesopelagic ecosystems, but its rates and sensitivity to climate variations are poorly understood. Using a circulation model constrained to historical variability by assimilation of observations, we show that the North Pacific thermocline effectively takes up O2 primarily by expanding the area through which O2-rich mixed layer water is detrained into the thermocline. The outcrop area during the critical winter season varies in concert with the Pacific Decadal Oscillation (PDO). When the central North Pacific Ocean is in a cold phase, the winter outcrop window for the Central Mode Water class (CMW; a neutral density range of γ = 25.6 - 26.6) expands southward allowing more O2-rich surface water to enter the ocean’s interior. An increase in volume flux of water to the CMW density class is partly compensated by a reduced supply to the shallower densities of Subtropical Mode Water (γ = 24.0 - 25.5). The thermocline has become better oxygenated since the 1980s due partly to strong O2 uptake. Positive O2 anomalies appear first near the outcrop and subsequently downstream in the subtropical gyre. In contrast to the O2 variations within the ventilated thermocline, observed O2 in Intermediate Water (density range of γ = 26.7 – 27.2) shows a declining trend over the past half-century, a trend not explained by the open ocean water mass formation rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-11-03
    Description: Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world’s deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic relations in tropical corals are known to be key to their survival in oligotrophic conditions, the full metabolic capacity of CWC has yet to be revealed. Here we report isotope tracer evidence for efficient nitrogen recycling, including nitrogen assimilation, regeneration, nitrification and denitrification. Moreover, we also discovered chemoautotrophy and nitrogen fixation in CWC and transfer of fixed nitrogen and inorganic carbon into bulk coral tissue and tissue compounds (fatty acids and amino acids). This unrecognized yet versatile metabolic machinery of CWC conserves precious limiting resources and provides access to new nitrogen and organic carbon resources that may be essential for CWC to survive in the resource-depleted dark ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-02-25
    Description: The interoceanic transfer of seawater between the Indian Ocean and the Atlantic, ‘Agulhas leakage’, forms a choke point for the overturning circulation in the global ocean. Here, by combining output from a series of high-resolution ocean and climate models with in situ and satellite observations, we construct a time series of Agulhas leakage for the period 1870–2014. The time series demonstrates the impact of Southern Hemisphere westerlies on decadal timescales. Agulhas leakage shows a correlation with the Atlantic Multi-decadal Oscillation on multi-decadal timescales; the former leading by 15 years. This is relevant for climate in the North Atlantic
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 97 (6). pp. 1069-1072.
    Publication Date: 2019-02-01
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Climate Change, 5 (4). pp. 343-347.
    Publication Date: 2017-04-13
    Description: Sea-level rise1 is one of the most pressing aspects of anthropogenic global warming with far-reaching consequences for coastal societies. However, sea-level rise did2, 3, 4, 5, 6, 7 and will strongly vary from coast to coast8, 9, 10. Here we investigate the long-term internal variability effects on centennial projections of dynamic sea level (DSL), the local departure from the globally averaged sea level. A large ensemble of global warming integrations has been conducted with a climate model, where each realization was forced by identical CO2 increase but started from different atmospheric and oceanic initial conditions. In large parts of the mid- and high latitudes, the ensemble spread of the projected centennial DSL trends is of the same order of magnitude as the globally averaged steric sea-level rise, suggesting that internal variability cannot be ignored when assessing twenty-first-century DSL trends. The ensemble spread is considerably reduced in the mid- to high latitudes when only the atmospheric initial conditions differ while keeping the oceanic initial state identical; indicating that centennial DSL projections are strongly dependent on ocean initial conditions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-09-23
    Description: Restructure data-gathering and evaluation networks to address climate change, energy, food, health and water provision, say Yonglong Lu and colleagues.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-12-19
    Description: Global mean surface warming has stalled since the end of the twentieth century1, 2, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean3, 4, 5, 6, 7, 8, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing from the atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing9. Here, we analyse observations along with simulations from a global ocean–sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700 m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 521 (7553). pp. 428-430.
    Publication Date: 2017-12-19
    Description: An index of water-circulation strength in the North Atlantic Ocean has been derived from sea-level measurements. This provides fresh evidence of the ocean's leading role in multidecadal climate variability. See Letter p.508
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-09-23
    Description: Increasingly, spatial geochemical zonation, present as geographically distinct, subparallel trends, is observed along hotspot tracks, such as Hawaii and the Galapagos. The origin of this zonation is currently unclear. Recently zonation was found along the last B70 Myr of the Tristan-Gough hotspot track. Here we present new Sr–Nd–Pb–Hf isotope data from the older parts of this hotspot track (Walvis Ridge and Rio Grande Rise) and re-evaluate published data from the Etendeka and Parana flood basalts erupted at the initiation of the hotspot track. We show that only the enriched Gough, but not the less-enriched Tristan, component is present in the earlier (70–132 Ma) history of the hotspot. Here we present a model that can explain the temporal evolution and origin of plume zonation for both the Tristan-Gough and Hawaiian hotspots, two end member types of zoned plumes, through processes taking place in the plume sources at the base of the lower mantle.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 96 (9). pp. 1561-1564.
    Publication Date: 2015-11-11
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-09-23
    Description: Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-11-09
    Description: Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 29 (4). pp. 1353-1368.
    Publication Date: 2020-08-04
    Description: This study investigates the interaction of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the troposphere separately for the North Pacific and North Atlantic region. Three 145-year model simulations with NCAR’s Community Earth Sytem Model (CESM-WACCM) are analyzed where only natural and no anthropogenic forcings are considered. These long simulations allow us to obtain statistically reliable results from an exceptional large number of cases for each combination of the QBO (westerly and easterly) and ENSO phases (El Niño and La Niña). Two different analysis methods were applied to investigate where nonlinearity might play a role in QBO-ENSO interactions. The analyses reveal that the stratospheric equatorial QBO anomalies extend down to the troposphere over the North Pacific during Northern hemisphere winter only during La Niña and not during El Niño events. The Aleutian low is deepened during QBO westerly (QBOW) as compared to QBO easterly (QBOE) conditions, and the North Pacific subtropical jet is shifted northward during La Niña. In the North Atlantic, the interaction of QBOW with La Niña conditions (QBOE with El Niño) results in a positive (negative) North Atlantic Oscillation (NAO) pattern. For both regions, nonlinear interactions between the QBO and ENSO might play a role. The results provide potential to enhance the skill of tropospheric seasonal predictions in the North Atlantic and North Pacific region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 32 . pp. 2305-2317.
    Publication Date: 2020-08-04
    Description: We investigated the effect of hydrostatic pressure of up to 6000 dbar on Aanderaa and Sea-Bird oxygen optodes both in the laboratory and in the field. The overall pressure response is a reduction in the O2 reading by 3 – 4 % per 1000 dbar which is closely linear with pressure and increases with temperature. Closer inspection reveals two superimposed processes with opposite effect: an O2-independent pressure response on the luminophore which increases optode O2 readings and an O2-dependent change in luminescence quenching which decreases optode O2 readings. The latter process dominates and is mainly due to a shift in the equilibrium between sensing membrane and sea water under elevated pressures. If only the dominant O2-dependent process is considered, Aanderaa and Sea-Bird optodes differ in their pressure response. Compensation of the O2-independent process, however, yields a uniform O2 dependence for Aanderaa optodes with standard foil and fast-response foil as well as Sea-Bird optodes. A new scheme to calculate optode O2 from raw data is proposed to account for the two processes. The overall uncertainty of the optode pressure correction amounts to 0.3 % per 1000 dbar, mainly due to variability between sensors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Climate Change, 5 (1). pp. 4-6.
    Publication Date: 2019-09-23
    Description: A sustainable global ocean observation system requires timely implementation of the framework for ocean observing. The recent Qingdao Global Ocean Summit highlighted the need for a more coherent institutional response to maintain an integrated ocean-observing system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-02-25
    Description: Fossils of marine microorganisms such as planktic foraminifera are among the cornerstones of palaeoclimatological studies. It is often assumed that the proxies derived from their shells represent ocean conditions above the location where they were deposited. Planktic foraminifera, however, are carried by ocean currents and, depending on the life traits of the species, potentially incorporate distant ocean conditions. Here we use high-resolution ocean models to assess the footprint of planktic foraminifera and validate our method with proxy analyses from two locations. Results show that foraminifera, and thus recorded palaeoclimatic conditions, may originate from areas up to several thousands of kilometres away, reflecting an ocean state significantly different from the core site. In the eastern equatorial regions and the western boundary current extensions, the offset may reach 1.5 °C for species living for a month and 3.0 °C for longer-living species. Oceanic transport hence appears to be a crucial aspect in the interpretation of proxy signals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  The ISME Journal, 9 (3). pp. 670-682.
    Publication Date: 2017-04-13
    Description: Microbiota provide their hosts with a range of beneficial services, including defense from external pathogens. However, host-associated microbial communities themselves can act as a source of opportunistic pathogens depending on the environment. Marine poikilotherms and their microbiota are strongly influenced by temperature, but experimental studies exploring how temperature affects the interactions between both parties are rare. To assess the effects of temperature, temperature stress and infection on diversity, composition and dynamics of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an experiment in a fully-crossed, three-factorial design, in which the temperature acclimated oysters (8 or 22 °C) were exposed to temperature stress and to experimental challenge with a virulent Vibrio sp. Strain. We monitored oyster survival and repeatedly collected hemolymph of dead and alive animals to determine the microbiome composition by 16s rRNA gene amplicon pyrosequencing. We found that the microbial dynamics and composition of communities in healthy animals (including infection survivors) were significantly affected by temperature and temperature stress, but not by infection. The response was mediated by changes in the incidence and abundance of operational taxonomic units (OTUs) and accompanied by little change at higher taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and moribund oysters, on the contrary, displayed signs of community structure disruption, characterized by very low diversity and proliferation of few OTUs. We can therefore link short-term responses of host-associated microbial communities to abiotic and biotic factors and assess the potential feedback between microbiota dynamics and host survival during disease.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Climate Change, 5 (5). pp. 419-423.
    Publication Date: 2017-12-19
    Description: The useful energy services and energy density value of fossil carbon fuels could be retained for longer timescales into the future if their combustion is balanced by CO2 recapture and storage. We assess the global balance between fossil carbon supply and the sufficiency (size) and capability (technology, security) of candidate carbon stores. A hierarchy of value for extraction-to-storage pairings is proposed, which is augmented by classification of CO2 containment as temporary (〈1,000 yr) or permanent (〉100,000 yr). Using temporary stores is inefficient and defers an intergenerational problem. Permanent storage capacity is adequate to technically match current fossil fuel reserves. However, rates of storage creation cannot balance current and expected rates of fossil fuel extraction and CO2 consequences. Extraction of conventional natural gas is uniquely holistic because it creates the capacity to re-inject an equivalent tonnage of carbon for storage into the same reservoir and can re-use gas-extraction infrastructure for storage. By contrast, balancing the extraction of coal, oil, biomass and unconventional fossil fuels requires the engineering and validation of additional carbon storage. Such storage is, so far, unproven in sufficiency.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-09-23
    Description: Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian–Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian–Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian–Emperor bend, 53–52 and 48–47 million years ago. We conclude that the Hawaiian–Emperor bend was formed by plate–mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Methods, 12 (5). pp. 377-378.
    Publication Date: 2020-06-24
    Description: Today’s predictions are tomorrow’s priors
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 28 (24). pp. 9697-9706.
    Publication Date: 2020-08-04
    Description: The upper tropical Atlantic Ocean has markedly warmed since the 1960s. It has been shown that this warming was not due to local heat fluxes, and that the trade winds that drive the coastal and equatorial upwelling have intensified rather than weakened. Remote forcing might thus have played an important role. Here model experiments are used to investigate the contribution from an increased inflow of warm Indian Ocean water through Agulhas leakage. A high-resolution hindcast experiment with interannually varying forcing for the time period 1948 to 2007, in which Agulhas leakage increases by about 45% from the 1960s to the early 2000s, reproduces the observed warming trend. To tease out the role of Agulhas leakage, a sensitivity experiment designed to only increase Agulhas leakage is used. Compared to a control simulation it shows a pronounced warming in the upper tropical Atlantic Ocean. A Lagrangian trajectory analysis confirms that a significant portion of Agulhas leakage water reaches the upper 300m of the tropical Atlantic Ocean within two decades, and that the tropical Atlantic warming in the sensitivity experiment is mainly due to water of Agulhas origin. Therefore, it is suggested that the increased trade winds since the 1960s favor upwelling of warmer subsurface waters, which in parts originate from the Agulhas, leading to higher SSTs in the tropics
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Climate Change, 5 (12). pp. 1107-1113.
    Publication Date: 2017-04-11
    Description: Carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating global warming and ocean acidification. To assess the extent to which CDR might eliminate the long-term consequences of anthropogenic CO2 emissions in the marine environment, we simulate the effect of two massive CDR interventions with CO2 extraction rates of 5 GtC yr(-1) and 25 GtC yr(-1), respectively, while CO2 emissions follow the extended RCP8.5 pathway. We falsify two hypotheses: the first being that CDR can restore pre-industrial conditions in the ocean by reducing the atmospheric CO2 concentration back to its pre-industrial level, and the second being that high CO2 emissions rates (RCP8.5) followed by CDR have long-term oceanic consequences that are similar to those of low emissions rates (RCP2.6). Focusing on pH, temperature and dissolved oxygen, we find that even after several centuries of CDR deployment, past CO2 emissions would leave a substantial legacy in the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 244 (131). pp. 11-12.
    Publication Date: 2018-03-02
    Description: STEP-LIKE structures in temperature and salinity beneath the Mediterranean water have been observed in the Eastern Atlantic1–6. In Fig. 1 we show the stations where steps have been found in the area to the west of Gibraltar. Salt fingering as a result of double diffusive processes has been suggested as a possible cause for the generation of such step-like structures7. During cruise No. 23 of RV Meteor in 1971 we intended to study the small scale features of such structures8. Some previous observations6 in August/September 1970 had revealed an extensive zone where a “thermohaline staircase” existed (Fig. 1). We therefore selected stations in this area and close to it for the proposed study. A high resolution in situ conductivity-temperature-depth meter of the “Kieler Multi-Meeressonde” type was used for the vertical profiling of temperature and salinity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-06-23
    Description: High-throughput techniques based on restriction site-associated DNA sequencing (RADseq) are enabling the low-cost discovery and genotyping of thousands of genetic markers for any species, including non-model organisms, which is revolutionizing ecological, evolutionary and conservation genetics. Technical differences among these methods lead to important considerations for all steps of genomics studies, from the specific scientific questions that can be addressed, and the costs of library preparation and sequencing, to the types of bias and error inherent in the resulting data. In this Review, we provide a comprehensive discussion of RADseq methods to aid researchers in choosing among the many different approaches and avoiding erroneous scientific conclusions from RADseq data, a problem that has plagued other genetic marker types in the past.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 300 (5889). pp. 245-246.
    Publication Date: 2018-03-08
    Description: A subtropical front was observed in the area south and southeast of the Azores during cruises of FS Meteor and FS Poseidon in early 1982. The front has a basically west–east extension, with considerable meandering observed. Meso-scale eddies are found on both sides. The overall flow pattern corresponds to earlier results on geopotential differences in the upper northeast Atlantic, but the baroclinic transport of the order of 107 m3 s−1 is found to be concentrated in a 60-km wide jet. We suggest here that the current band is part of the gyre circulation, resulting from a branching of the North Atlantic Current.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-01-21
    Description: Circumpolar surface waters dominate the circulation of the Southern Ocean and sustain one of the ocean's largest standing stocks of biomass thereby producing a significant output of biogenic components, mainly diatoms, to the bottom sediments. Generally transit of biogenic matter from the sea surface to the sea floor affects nutrient regeneration fuels benthic life and transfers signals to the sediment record1–5. Reliable quantification of the relationship between biological production, fractionation of skeletal and tissue components and bottom sediment accumulation depends on direct vertical flux measurements from sediment trap deployments6–9, which have proved to be most scientifically productive10–13. We now present data on vertical mass fluxes from the Southern Ocean and evidence for strong biogeochemical fractionation between organic carbon-, nitrogen- and phosphorus-containing compounds, siliceous and calcareous skeletal remains, and refractory aluminosilicates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-09-02
    Description: Analysis of aeolo-marine dust deposits in the subtropical eastern Atlantic enables the strength of the major wind patterns during the late Quaternary to be evaluated and gives an insight into the climate of North Africa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 46 (12). pp. 3549-3562.
    Publication Date: 2021-05-18
    Description: The Equatorial Deep Jets (EDJs) are an ubiquitous feature of the equatorial oceans; in the Atlantic Ocean, they are the dominant mode of interannual variability of the zonal flow at intermediate depth. On the basis of more than 10 years of moored observations of zonal velocity at 23°W, the vertically propagating EDJs are best described as superimposed oscillations of the 13th to the 23th baroclinic modes with a dominant oscillation period for all modes of 1650 days. This period is close to the resonance period of the respective gravest equatorial basin mode for the dominant vertical modes 16 and 17. It is argued that since the equatorial basin mode is composed of linear equatorial waves, a linear reduced gravity model can be employed for each baroclinic mode, driven by spatially homogeneous zonal forcing oscillating with the EDJ period. The fit of the model solutions to observations at 23°W yields a basin wide reconstruction of the EDJs and the associated vertical structure of their forcing. From the resulting vertical profile of mean power input and vertical energy flux on the equator, it follows that the EDJs are locally maintained over a considerable depth range, from 500-2500 m, with the maximum power input and vertical energy flux at 1300 m. The strong dissipation closely ties the apparent vertical propagation of energy to the vertical distribution of power input and, together with the EDJs’ prevailing downward phase propagation, require the phase of the forcing of the EDJs to propagate downward.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Reviews Drug Discovery, 14 (2). pp. 111-129.
    Publication Date: 2020-06-23
    Description: Natural products have been a rich source of compounds for drug discovery. However, their use has diminished in the past two decades, in part because of technical barriers to screening natural products in high-throughput assays against molecular targets. Here, we review strategies for natural product screening that harness the recent technical advances that have reduced these barriers. We also assess the use of genomic and metabolomic approaches to augment traditional methods of studying natural products, and highlight recent examples of natural products in antimicrobial drug discovery and as inhibitors of protein–protein interactions. The growing appreciation of functional assays and phenotypic screens may further contribute to a revival of interest in natural products for drug discovery.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 10 (10). pp. 1686-1690.
    Publication Date: 2016-05-10
    Description: The temporal changes in the low-frequency thermal structure during a two-week period in August-September 1978 are discussed from moored data collected during the JASIN experiment. While some changes in the thermal structure appear to be related to local winds, the dominant low-frequency variability in the seasonal thermocline can be explained as horizontal advection of a spatially varying temperature field, and associated thermal wind, by geostrophic currents with little vertical motion or mixing required.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-02-01
    Description: A German national project coordinates research on improving a global decadal climate prediction system for future operational use. MiKlip, an eight-year German national research project on decadal climate prediction, is organized around a global prediction system comprising the climate model MPI-ESM together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that targets future operational use. Three prediction-system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multi-year-mean European summer surface temperatures, extra-tropical cyclone tracks, the Quasi-Biennial Oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays hindcast skill for wind-energy output. A new volcano code package permits rapid modification of the predictions in response to a future eruption. MiKlip has demonstrated the efficacy of subjecting a single global prediction system to a major research effort. The benefits of this strategy include the rapid cycling through the prediction-system generations, the development of a sophisticated evaluation package usable by all MiKlip researchers, and regional applications of the global predictions. Open research questions include the optimal balance between model resolution and ensemble size, the appropriate method for constructing a prediction ensemble, and the decision between full-field and anomaly initialization. Operational use of the MiKlip system is targeted for the end of the current decade, with a recommended generational cycle of two to three years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 14 (10). pp. 1560-1576.
    Publication Date: 2016-05-10
    Description: Isolated compact anticyclonic eddies or salt lenses were found in the Canary Basin. Hydrographic surveys of three such lenses show large anomalies of salinity and temperature (∼0.8, 2.5°C). They are centered at ∼1100 m, have a vertical extent of up to 900 m and radii of ∼50 km. Current meter records indicate anticyclonic velocities up to 29 cm s−1. Fine structure with vertical scales of ∼20 m and less, possibly due to intrusive decay, appears at the outer edges of the lenses whereas the centers are free of such structure. The probability of finding a salt lens at any station in the Canary Basin is fairly high (∼0.08).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-02-01
    Description: Latent heat fluxes (LHF) play an essential role in the global energy budget and are thus important for understanding the climate system. Satellite-based remote sensing permits a large-scale determination of LHF, which, amongst others, are based on near-surface specific humidity qa. However, the qa random retrieval error (Etot) remains unknown. Here, a novel approach is presented to quantify the error contributions to pixel-level qa of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS, version 3.2) dataset. The methodology makes use of multiple triple collocation (MTC) analysis between 1995-2008 over the global ice-free oceans. Apart from satellite records, these datasets include selected ship records extracted from the Seewetteramt Hamburg (SWA) archive and the International Comprehensive Ocean-Atmosphere Data Set (ICOADS), serving as the in-situ ground reference. The MTC approach permits the derivation of Etot as the sum of model uncertainty EM and sensor noise EN, while random uncertainties due to in-situ measurement errors (Eins) and collocation (EC) are isolated concurrently. Results show an Etot average of 1.1 ± 0.3 g kg-1, whereas the mean EC (Eins) is in the order of 0.5 ± 0.1 g kg-1 (0.5 ± 0.3 g kg-1). Regional analyses indicate a maximum of Etot exceeding 1.5 g kg-1 within humidity regimes of 12-17 g kg-1, associated with the single-parameter, multilinear qa retrieval applied in HOAPS. Multi-dimensional bias analysis reveals that global maxima are located off the Arabian Peninsula.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-08-04
    Description: Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semi-annual variability is also pronounced, despite weak forcing at that period. Here we use multi-year, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semi-annual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the 4th mode and the semi-annual cycle by the 2nd mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semi-annual cycles of the respective dominant baroclinic modes are associated with characteristic basin-wide structures. Using an idealized linear reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e. square basin versus realistic coastlines) or forcing (i.e. spatially uniform versus spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 238 (5364). pp. 405-406.
    Publication Date: 2016-09-14
    Description: In the southern hemisphere, female and young male sperm whales (up to about 39 feet long) are not normally found in higher latitudes than 40° S while large males occur in Antarctic waters1–3; clearly many large bulls must migrate from the breeding areas into colder regions. Evidence of the return of large bulls to lower latitudes rests upon marking them in the Antarctic4 or external infestation by Antarctic Cocconeis or Cyamus 5. Only a single mark5 has been recovered which provides direct evidence for the return north from Antarctic waters. This mark (USSR No. 650203) was fired on December 25, 1967, at 62° 22′ S 26° 25′ E and the whale was killed on May 13, 1968, off Durban. The small size of the male concerned (35 feet at death) makes this record rather surprising although Jonsgård6 did mention that the smallest whales from Antarctic waters were about 35 feet. Marking can provide information on only a small part of the whale population at considerable cost, freshness of the whale restricts the value of infestation as an indicator but the study of food remnants in sperm whale stomachs provides another method without these disadvantages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (2). pp. 509-525.
    Publication Date: 2020-10-22
    Description: By performing two sets of high-resolution atmospheric general circulation model (AGCM) experiments, we find that the atmospheric response to a sea surface temperature (SST) anomaly in the extratropical North Pacific is sensitive to decadal variations of the background SST on which the SST anomaly is superimposed. The response in the first set of experiments, in which the SST anomaly is superimposed on the observed daily SST of 1981-1990, strongly differs from the response in the second experiment, in which the same SST anomaly is superimposed on the observed daily SST of 1991-2000. The atmospheric response over the North Pacific during 1981-1990 is eddy-mediated, equivalent barotropic and concentrated in the east. In contrast, the atmospheric response during 1991-2000 is weaker and strongest in the west. The results are discussed in terms of Rossby wave dynamics, with the proposed primary wave source switching from baroclinic eddy vorticity forcing over the eastern North Pacific in 1981-1990 to mean flow divergence over the western North Pacific in 1991-2000. The wave source changes are linked to the decadal reduction of daily SST variability over the eastern North Pacific and strengthening of the Oyashio Extension front over the western North Pacific. Thus, both daily and frontal aspects of the background SST variability in determining the atmospheric response to extratropical North Pacific SST anomalies are emphasized by our AGCM experiments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-06-25
    Description: Crossover recombination reshuffies genes and prevents errors in segregation tha't Iead to extra or missing chromosomes (aneuploidy) in human eggs, a major cause of pregnancy failure and congenital disorders. Here we generate genome-wide maps of cro~sovers and chromosome segregation patterns by recovering all three products of single female meioses. Genotyping 〉4 millioninformative SNPs from 23 complete meioses allowed us to map 2,032 maternal and 1,342 paternal crossovers and to infer the segregation patterns of 529 chromosome pairs. We uncover a new reverse chromosome segregation pattern in which both homologsseparate their sister chromatids at meiosis I; detect selection for higher recombination rates in the female germ line by the elimination of aneuploid embryos; and report chromosomal drive against non recombinant chromatids at meiosis II. Collectively, our findings show !hat recombination not only affects homolog segregation at meiosis I but also the fate of sister chromatids at meiosis II.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 28 (1). pp. 168-185.
    Publication Date: 2020-08-04
    Description: Variations in the global tropospheric zonal mean zonal wind ([U]) during boreal winter are investigated using Rotated Empirical Orthogonal Functions applied to monthly means. The first two modes correspond to the Northern and Southern Annular Mode and modes 3 and 4 represent variability in the tropics. One is related to El Niño Southern Oscillation and the other has variability that is highly correlated with the time series of [U] at 150 hPa between 5°N and 5°S ([U150]E) and is related to activity of the Madden-Julian Oscillation. The extratropical response to [U150]E is investigated using linear regressions of 500 hPa geopotential height onto the [U150]E time series. We make use of reanalysis data and of the ensemble mean output from a relaxation experiment using the European Center for Medium Range Weather Forecasts model in which the tropical atmosphere is relaxed towards reanalysis data. The regression analysis reveals that a shift of the Aleutian low and a wave train across the North Atlantic are associated with [U150]E. We find that the subtropical waveguides and the link between the North Pacific and North Atlantic are stronger during the easterly phase of [U150]E. The wave train over the North Atlantic is associated with Rossby wave sources over the subtropical North Pacific and North America. Finally, we show that a linear combination of both [U150]E and the Quasi Biennial Oscillation in the lower stratosphere can explain the circulation anomalies of the anomalously cold European winter of 1962/63 when both were in an extreme easterly phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-08-04
    Description: To investigate the influence of atmospheric model resolution on the representation of daily precipitation extremes, ensemble simulations with the atmospheric general circulation model ECHAM5 at different horizontal (T213 to T31) and vertical (L31 to L19) resolutions and forced with observed sea surface temperatures and sea ice concentrations have been carried out for 01/1982 - 09/2010. All results have been compared with the highest resolution, which has been validated against observations. Resolution affects both the representation of physical processes and the averaging of precipitation across grid boxes. The latter, in particular, smoothes out localized extreme events. These effects have been disentangled by averaging precipitation simulated at the highest resolution to the corresponding coarser grid. Extremes are represented by seasonal maxima, modeled by the generalized extreme value distribution. Effects of averaging and representation of physical processes vary with region and season. In the tropical summer hemisphere, extreme precipitation is reduced by up to 30% due to the averaging effect, and a further 65% owing to a coarser representation of physical processes. Towards mid- to high latitudes, the latter effect reduces to 20%; in the winter hemisphere it vanishes towards the poles. A strong drop is found between T106 and T63 in the convection dominated tropics. At the lowest resolution, northern hemisphere winter precipitation extremes, mainly caused by large scale weather systems, are in general represented reasonably well. Coarser vertical resolution causes an equatorward shift of maximum extreme precipitation in the tropics. The impact of vertical resolution on mean precipitation is less pronounced; for horizontal resolution it is negligible.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  The ISME Journal, 9 (3). pp. 696-707.
    Publication Date: 2019-01-17
    Description: Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 522 (7554). pp. 36-37.
    Publication Date: 2019-03-05
    Description: The identification of an exchange of nutrients and signalling molecules between a planktonic alga and a bacterium demonstrates that targeted mutualistic interactions occur across domains of life in the oceans. See Letter p.98
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 96 (7). ES1-ES32.
    Publication Date: 2019-09-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-10-16
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-03-05
    Description: Particles in aquatic environments host distinct communities of microbes, yet the evolution of particlespecialized taxa and the extent to which specialized microbial metabolism is associated with particles is largely unexplored. Here, we investigate the hypothesis that a widely distributed and uncultivated microbial group - the marine group II euryarchaea (MGII) - interacts with living and detrital particulate organic matter (POM) in the euphotic zone of the central California Current System. Using fluorescent in situ hybridization, we verified the association of euryarchaea with POM. We further quantified the abundance and distribution of MGII 16S ribosomal RNA genes in size-fractionated seawater samples and compared MGII functional capacity in metagenomes from the same fractions. The abundance of MGII in free-living and 〈3 μm fractions decreased with increasing distance from the coast, whereas MGII abundance in the 0.8-3 lm fraction remained constant. At several offshore sites, MGII abundance was highest in particle fractions, indicating that particle-attached MGII can outnumber free-living MGII under oligotrophic conditions. Compared with free-living MGII, the genome content of MGII in particleassociated fractions exhibits an increased capacity for surface adhesion, transcriptional regulation and catabolism of high molecular weight substrates. Moreover, MGII populations in POM fractions are phylogenetically distinct from and more diverse than free-living MGII. Eukaryotic phytoplankton additions stimulated MGII growth in bottle incubations, providing the first MGII net growth rate measurements. These ranged from 0.47 to 0.54 d-1. However, MGII were not recovered in wholegenome amplifications of flow-sorted picoeukaryotic phytoplankton and heterotrophic nanoflagellates, suggesting that MGII in particle fractions are not physically attached to living POM. Collectively, our results support a linkage between MGII ecophysiology and POM, implying that marine archaea have a role in elemental cycling through interactions with particles. © 2015 International Society for Microbial Ecology. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-03-05
    Description: Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 76 (8). pp. 2481-2503.
    Publication Date: 2021-01-08
    Description: A simple analytical model of the atmospheric boundary layer (ABL) coupled to sea ice is presented. It describes clear-sky cooling over sea ice during polar night in the presence of leads. The model solutions show that the sea ice concentration and wind speed have a strong impact on the thermal regime over sea ice. Leads cause both a warming of the ABL and an increase of stability over sea ice. The model describes a sharp ABL transition from a weakly stable coupled state to a strongly stable decoupled state when wind speed is decreasing. The threshold value of the transition wind speed is a function of sea ice concentration. The decoupled state is characterized by a large air–surface temperature difference over sea ice, which is further increased by leads. In the coupled regime, air and surface temperatures increase almost linearly with wind speed due to warming by leads and also slower cooling of the ABL. The cooling time scale shows a nonmonotonic dependency on wind speed, being lowest for the threshold value of wind speed and increasing for weak and strong winds. Theoretical solutions agree well with results of a more realistic single-column model and with observations performed at the three Russian “North Pole” drifting stations (NP-35, -37, and -39) and at the Surface Heat Budget of the Arctic Ocean ice camp. Both modeling results and observations show a strong implicit dependency of the net longwave radiative flux at the surface on wind speed.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 287 (5783). pp. 628-630.
    Publication Date: 2016-11-15
    Description: Statoliths of cephalopods are small, hard calcareous stones which lie within the cartilaginous skulls of octopods, sepioids and teuthoids1. Fossil statoliths, clearly belonging to genera which are alive today, have previously been described from 11 Cenozoic deposits spanning from the Eocene to the Pleistocene in North America2–5. Such statoliths are of particular interest because they provide a means of studying the evolution of living cephalopod groups which have no calcareous shells, including the cosmopolitan and numerous teuthoids and octopods. Here, the first cephalopod statoliths to be recognized in European deposits are described and identified as Loligo sp. They are compared with the North American fossil Loligo species and statoliths removed from the two living Loligo species of Europe.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 305 (5933). pp. 403-407.
    Publication Date: 2016-11-23
    Description: Basalts from the Reykjanes Ridge contain noble gases delivered from the non-degassed lower mantle by the Iceland plume. These lower mantle gases are thought to be a mixture of planetary and solar components, as would be expected if the Earth accreted from fine silicate particles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Monthly Weather Review, 146 (11). pp. 3589-3604.
    Publication Date: 2021-01-08
    Description: Gap flows and the stable boundary layer were studied in northwest Greenland during the aircraft-based Investigation of Katabatic Winds and Polynyas during Summer (IKAPOS) experiment in June 2010. The measurements were performed using the research aircraft POLAR 5 of Alfred Wegener Institute (AWI; Bremerhaven). Besides navigational and basic meteorological instrumentation, the aircraft was equipped with radiation and surface temperature sensors and a turbulence measurement system. In the area of Smith Sound at the southern end of the Nares Strait, a stable, but fully turbulent, boundary layer with strong winds of up to 22 m s−1 was found during conditions of synoptically induced northerly winds through the Nares Strait. Strong surface inversions were present in the lowest 100–200 m. As a consequence of channeling effects, a well-pronounced low-level jet system was documented for each of four flights. The wind maximum is located at 20–50-km distance from the exit of Smith Sound. The 3D boundary layer structure past this gap is studied in detail. The channeling process is consistent with gap flow theory. The flow through the gap and over the surrounding mountains leads to the lowering of isotropic surfaces and the acceleration of the flow. The orographically channeled flow through Smith Sound plays a key role for the formation of the North Water polynya being the largest ice-producing polynya in the Arctic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 31 (19). pp. 7969-7984.
    Publication Date: 2021-02-08
    Description: This study analyzes the response of the Atlantic meridional overturning circulation (AMOC) to different CO2 concentrations and two ice sheet configurations in simulations with the coupled climate model MPI-ESM. With preindustrial (PI) ice sheets, there are two different AMOC states within the studied CO2 range: one state with a strong and deep upper overturning cell at high CO2 concentrations and one state with a weak and shallow upper cell at low CO2 concentrations. Changes in AMOC variability with decreasing CO2 indicate two stability thresholds. The strong state is stable above the first threshold near 217 ppm, and the weak state is stable below the second threshold near 190 ppm. Between the two thresholds, both states are marginally unstable, and the AMOC oscillates between them on millennial time scales. The weak AMOC state is stable when Antarctic Bottom Water becomes dense and salty enough to replace North Atlantic Deep Water (NADW) in the deep North Atlantic and when the density gain over the North Atlantic becomes too weak to sustain continuous NADW formation. With Last Glacial Maximum (LGM) ice sheets, the density gain over the North Atlantic and the northward salt transport are enhanced with respect to the PI ice sheet case. This enables active NADW formation and a strong AMOC for the entire range of studied CO2 concentrations. The AMOC variability indicates that the simulated AMOC is far away from a stability threshold with LGM ice sheets. The nonlinear relationship among AMOC, CO2, and prescribed ice sheets provides an explanation for the large intermodel spread of AMOC states found in previous coupled LGM simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-02-08
    Description: Major sudden stratospheric warmings (SSWs) are extreme events during boreal winter, which not only impact tropospheric weather up to three months but also can influence oceanic variability through wind stress and heat flux anomalies. In the North Atlantic region, SSWs have the potential to modulate deep convection in the Labrador Sea and thereby the strength of the Atlantic meridional overturning circulation. The impact of SSWs on the Northern Hemisphere surface climate is investigated in two coupled climate models: a stratosphere-resolving (high top) and a non-stratosphere-resolving (low top) model. In both configurations, a robust link between SSWs and a negative NAO is detected, which leads to shallower-than-normal North Atlantic mixed layer depth. The frequency of SSWs and the persistence of this link is better captured in the high-top model. Significant differences occur over the Pacific region, where an unrealistically persistent Aleutian low is observed in the low-top configuration. An overrepresentation of SSWs during El Nino conditions in the low-top model is the main cause for this artifact. Our results underline the importance of a proper representation of the stratosphere in a coupled climate model for a consistent surface response in both the atmosphere and the ocean, which, among others, may have implications for oceanic deep convection in the subpolar North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-02-08
    Description: Benthic storms are important for both the energy budget of the ocean and for sediment resuspension and transport. Using 30 years of output from a high-resolution model of the North Atlantic, it is found that most of the benthic storms in the model occur near the western boundary in association with the Gulf Stream and the North Atlantic Current, in regions that are generally co-located with the peak near-bottom eddy kinetic energy. A common feature are meander troughs in the near-surface jets that are accompanied by deep low pressure anomalies spinning up deep cyclones with near-bottom velocities of up to more than 0.5 m/s. A case study of one of these events shows the importance of both baroclinic and barotropic instability of the jet, with energy being extracted from the jet in the upstream part of the meander trough and partly returned to the jet in the downstream part of the meander trough. This motivates examining the 30-year time mean of the energy transfer from the (annual mean) background flow into the eddy kinetic energy. This quantity is shown to be co-located well with the region in which benthic storms and large increases in deep cyclonic relative vorticity occur most frequently, suggesting an important role for mixed barotropic-baroclinic instability driven cyclogenesis in generating benthic storms throughout the model simulation. Regions of largest energy transfer and most frequent benthic storms are found to be the Gulf Stream west of the New England Seamounts and the North Atlantic Current near Flemish Cap.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-09-23
    Description: Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of 231Pa/230Th and 143Nd/144Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard–Oeschger interstadials (Greenland warm periods).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...