ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-03-14
    Keywords: Acidobacteria; Actinobacteria; Aridity index; aridity indices; brGDGTs; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DS11; DS11_soil; DS21; DS21_soil; DS31; DS31_soil; DS41; DS41_soil; DS51; DS51_soil; DS71; DS71_soil; DS81; DS81_soil; DS91; DS91_soil; Elevation of event; Event label; Inner Mongolia, China; Latitude of event; Longitude of event; MS11; MS11_soil; MS21; MS21_soil; MS31; MS31_soil; MS41; MS41_soil; MS51; MS51_soil; MS61; MS61_soil; MS71; MS71_soil; MS81; MS81_soil; Optional event label; Organic carbon, soil; pH; Precipitation, annual mean; soil pH; SOILS; Soil sample; Temperature, annual mean; TS101; TS101_soil; TS11; TS11_soil; TS111; TS111_soil; TS121; TS121_soil; TS131; TS131_soil; TS141; TS141_soil; TS151; TS151_soil; TS161; TS161_soil; TS21; TS21_soil; TS31; TS31_soil; TS41; TS41_soil; TS51; TS51_soil; TS61; TS61_soil; TS71; TS71_soil; TS81; TS81_soil; TS91; TS91_soil; Vegetation type; Verrucomicrobia
    Type: Dataset
    Format: text/tab-separated-values, 256 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Description: In this dataset, the basic environmental parameters, branched glycerol dialkyl glycerol tetraethers (brGDGTs) and soil bacterial community composition along an aridity soil transect in Inner Mongolia are included. In total, 32 surface soil samples (0-10 cm) were investigated, and the vegetation is characteried as desert steppe, typical steppe, and meadow steppe, repectively. The brGDGTs were extracted uisng a modified Bligh-Dyer method at the Institute of Botany, Chinese Academy of Sciences, and were subquently analyzed on a ultra high performance liquid chromatography mass spectrometer (UHPLC-MS) at Utrecht University. The bacterial DNA was analyzed using the MoBio PowerSoil DNA isolation Kit, and were further processed at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
    Keywords: Acidobacteria; Actinobacteria; aridity indices; brGDGTs; soil pH; Verrucomicrobia
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-07
    Keywords: Acidobacteria; Actinobacteria; aridity indices; Branched glycerol dialkyl glycerol tetraether; Branched glycerol dialkyl glycerol tetraether, Ia; Branched glycerol dialkyl glycerol tetraether, Ib; Branched glycerol dialkyl glycerol tetraether, Ic; Branched glycerol dialkyl glycerol tetraether, IIa; Branched glycerol dialkyl glycerol tetraether, IIa'; Branched glycerol dialkyl glycerol tetraether, IIb; Branched glycerol dialkyl glycerol tetraether, IIb'; Branched glycerol dialkyl glycerol tetraether, IIc; Branched glycerol dialkyl glycerol tetraether, IIc'; Branched glycerol dialkyl glycerol tetraether, IIIa; Branched glycerol dialkyl glycerol tetraether, IIIa'; Branched glycerol dialkyl glycerol tetraether, IIIb; Branched glycerol dialkyl glycerol tetraether, IIIb'; brGDGTs; Cyclization ratio of branched tetraethers; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DS11; DS11_soil; DS21; DS21_soil; DS31; DS31_soil; DS41; DS41_soil; DS51; DS51_soil; DS71; DS71_soil; DS81; DS81_soil; DS91; DS91_soil; Event label; Inner Mongolia, China; Isomer ratio; Methylation index of branched tetraethers; MS11; MS11_soil; MS21; MS21_soil; MS31; MS31_soil; MS41; MS41_soil; MS51; MS51_soil; MS61; MS61_soil; MS71; MS71_soil; MS81; MS81_soil; Number of cyclopentane moieties of 5-methyl pentamethylated brGDGTs; Number of cyclopentane moieties of 6-methyl pentamethylated brGDGTs; Number of cyclopentane moieties of tetramethylated branched glycerol dialkyl glycerol tetraether; soil pH; SOILS; Soil sample; Temperature, air; TS101; TS101_soil; TS11; TS11_soil; TS111; TS111_soil; TS121; TS121_soil; TS131; TS131_soil; TS141; TS141_soil; TS151; TS151_soil; TS161; TS161_soil; TS21; TS21_soil; TS31; TS31_soil; TS41; TS41_soil; TS51; TS51_soil; TS61; TS61_soil; TS71; TS71_soil; TS81; TS81_soil; TS91; TS91_soil; Ultra high performance liquid chromatography mass spectrometer (UHPLC-MS); Verrucomicrobia
    Type: Dataset
    Format: text/tab-separated-values, 768 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-10
    Keywords: Acidobacteria; Actinobacteria; aridity indices; Armatimonadetes; Bacteria, unclassified; Bacteroidetes; brGDGTs; Chloroflexi; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DS11; DS11_soil; DS21; DS21_soil; DS31; DS31_soil; DS41; DS41_soil; DS51; DS51_soil; DS71; DS71_soil; DS81; DS81_soil; DS91; DS91_soil; Elevation of event; Event label; Firmicutes; Gemmatimonadetes; Inner Mongolia, China; Latitude of event; Longitude of event; MS11; MS11_soil; MS21; MS21_soil; MS31; MS31_soil; MS41; MS41_soil; MS51; MS51_soil; MS61; MS61_soil; MS71; MS71_soil; MS81; MS81_soil; Nitrospirae; Optional event label; Planctomycetes; Proteobacteria; soil pH; SOILS; Soil sample; TS101; TS101_soil; TS11; TS11_soil; TS111; TS111_soil; TS121; TS121_soil; TS131; TS131_soil; TS141; TS141_soil; TS151; TS151_soil; TS161; TS161_soil; TS21; TS21_soil; TS31; TS31_soil; TS41; TS41_soil; TS51; TS51_soil; TS61; TS61_soil; TS71; TS71_soil; TS81; TS81_soil; TS91; TS91_soil; Verrucomicrobia
    Type: Dataset
    Format: text/tab-separated-values, 704 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gao, Kunshan; Xu, Juntian; Gao, Guang; Li, Yahe; Hutchins, David A; Huang, Bangqin; Wang, Lei; Zheng, Ying; Jin, Peng; Cai, Xiaoni; Häder, Donat-Peter; Li, Wei; Xu, Kai; Liu, Nana; Riebesell, Ulf (2012): Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change, 2, 519–523, https://doi.org/10.1038/nclimate1507
    Publication Date: 2024-03-15
    Description: Carbon dioxide and light are two major prerequisites of photosynthesis. Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered stimulatory to marine primary production. Here we show that the combination of an increase in both CO2 and light exposure negatively impacts photosynthesis and growth of marine primary producers. When exposed to CO2 concentrations projected for the end of this century, natural phytoplankton assemblages of the South China Sea responded with decreased primary production and increased light stress at light intensities representative of the upper surface layer. The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns. To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and under varying levels (5-100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone. Above 22-36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to light levels and exhibited reduced thresholds at which light becomes inhibitory. Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities. In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the ocean.
    Keywords: A4_SCS; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); C3_SCS; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chromista; Coast and continental shelf; DATE/TIME; Duration; E606_SCS; East China Sea; Entire community; Event label; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; In situ sampler; Irradiance; Irradiance, standard deviation; ISS; Laboratory experiment; LE04_SCS; Light; Non photochemical quenching; Non photochemical quenching, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phaeodactylum tricornutum; Phosphate; Phytoplankton; PN07_ECS; Potentiometric; Primary production/Photosynthesis; Primary production of carbon; Primary production of carbon, per chlorophyll a; Primary production of carbon, per volume of seawater; Primary production of carbon, standard deviation; Salinity; Season; SEATS_SCS; Single species; Skeletonema costatum; South China Sea; Species; Temperate; Temperature, water; Thalassiosira pseudonana; Time of day; Treatment; Tropical; Yield ratio
    Type: Dataset
    Format: text/tab-separated-values, 17109 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan (2015): Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 6, 8714, https://doi.org/10.1038/ncomms9714
    Publication Date: 2024-03-15
    Description: Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Emiliania huxleyi; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haptophyta; Immunology/Self-protection; Laboratory experiment; Laboratory strains; Mesocosm or benthocosm; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phenolics, all; Phenolics, all, per individual; Phytoplankton; Potentiometric; Registration number of species; Replicate; Respiration; Respiration rate, oxygen, per cell; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Wuyuan_Bay
    Type: Dataset
    Format: text/tab-separated-values, 1434 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Liu, Nana; Tong, Shanying; Yi, Xiangqi; Li, Yan; Li, Zhenzhen; Miao, Hangbin; Wang, Tifeng; Li, Futian; Yan, Dong; Huang, Ruiping; Wu, YaPing; Hutchins, David A; Beardall, John; Dai, Minhan; Gao, Kunshan (2017): Carbon assimilation and losses during an ocean acidification mesocosm experiment, with special reference to algal blooms. Marine Environmental Research, 129, 229-235, https://doi.org/10.1016/j.marenvres.2017.05.003
    Publication Date: 2024-03-15
    Description: A mesocosm experiment was conducted in Wuyuan Bay (Xiamen), China, to investigate the effects of elevated pCO2 on bloom formation by phytoplankton species previously studied in laboratory-based ocean acidification experiments, to determine if the indoor-grown species performed similarly in mesocosms under more realistic environmental conditions. We measured biomass, primary productivity and particulate organic carbon (POC) as well as particulate organic nitrogen (PON). Phaeodactylum tricornutum outcompeted Thalassiosira weissflogii and Emiliania huxleyi, comprising more than 99% of the final biomass. Mainly through a capacity to tolerate nutrient-limited situations, P. tricornutum showed a powerful sustained presence during the plateau phase of growth. Significant differences between high and low CO2 treatments were found in cell concentration, cumulative primary productivity and POC in the plateau phase but not during the exponential phase of growth. Compared to the low pCO2 (LC) treatment, POC increased by 45.8–101.9% in the high pCO2 (HC) treated cells during the bloom period. Furthermore, respiratory carbon losses of gross primary productivity were found to comprise 39–64% for the LC and 31–41% for the HC mesocosms (daytime C fixation) in phase II. Our results suggest that the duration and characteristics of a diatom bloom can be affected by elevated pCO2. Effects of elevated pCO2 observed in the laboratory cannot be reliably extrapolated to large scale mesocosms with multiple influencing factors, especially during intense algal blooms.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Mesocosm or benthocosm; Nitrogen, organic, particulate; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Primary production/Photosynthesis; Primary production of carbon per day; Registration number of species; Replicate; Respiration rate, carbon dioxide; Salinity; Silicate; Species; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Wuyuan_Bay
    Type: Dataset
    Format: text/tab-separated-values, 12180 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wang, Tifeng; Tong, Shanying; Liu, Nana; Li, Futian; Wells, Mark L; Gao, Kunshan (2017): The fatty acid content of plankton is changing in subtropical coastal waters as a result of OA: Results from a mesocosm study. Marine Environmental Research, 132, 51-62, https://doi.org/10.1016/j.marenvres.2017.10.010
    Publication Date: 2024-03-15
    Description: Ocean Acidification (OA) effects on marine plankton are most often considered in terms of inorganic carbon chemistry, but decreasing pH may influence other aspects of cellular metabolism. Here we present the effects of OA on the fatty acid (FA) content and composition of an artificial phytoplankton community (Phaeodactylum tricornutum, Thalassiosira weissflogii, and Emiliania huxleyi) in a fully replicated, 4 m**3 mesocosm study in subtropical coastal waters (Wuyuan Bay, China, 24.52°N, 117.18°E) at present day (400 μatm) and elevated (1000 μatm) pCO2 concentrations. Phytoplankton growth occurred in three phases during the 33-day experiment: an initial exponential growth leading to senescence and a subsequent decline phase. Phytoplankton sampled from these mesocosms were fed to mesozooplankton collected by net haul from Wuyuan Bay. Concentrations of saturated fatty acids (SFA) in both phytoplankton and mesozooplankton remained high under acidified and non-acidified conditions. However, polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) increased significantly more under elevated pCO2 during the late exponential phase (Day 13), indicating increased nutritional value for zooplankton and higher trophic levels. Indeed, uptake rates of the essential FA docosahexaenoic acid (C20:5n3, DHA) increased in mesozooplankton under acidified conditions. However, mesozooplankton grazing rates decreased overall with elevated pCO2. Our findings show that these selected phytoplankton species have a relatively high tolerance to acidification in terms of FA production, and local mesozooplankton in these subtropical coastal waters can maintain their FA composition under end of century ocean acidification conditions.
    Keywords: Alkalinity, total; all-cis-4,7,10,13,16,19-Docosahexaenoic acid of total fatty acids; all-cis-6,9,12,15,18-Heneicosapentaenoic acid of total fatty acids; Aragonite saturation state; Behaviour; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Coast and continental shelf; Day of experiment; Docosahexaenoic acid; Eicosapentaenoic acid; Entire community; EXP; Experiment; Fatty acids; Fatty acids, saturated; Fatty acids, standard deviation; Fatty acids, total; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Grazing rate; Group; Mesocosm or benthocosm; Monounsaturated fatty acids; Name; n-fatty acid C14:0; n-fatty acid C16:1; n-fatty acid C18:0; n-fatty acid C18:1n9; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; Percentage, standard deviation; pH; Phosphate; Polyunsaturated fatty acids; Polyunsaturated fatty acids of total fatty acids; Replicate; Salinity; Silicate; Temperate; Temperature, water; Treatment; Type; Wuyuan_Bay
    Type: Dataset
    Format: text/tab-separated-values, 4287 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gao, Guang; Jin, Peng; Liu, Nana; Li, Futian; Tong, Shanying; Hutchins, David A; Gao, Kunshan (2017): The acclimation process of phytoplankton biomass, carbon fixation and respiration to the combined effects of elevated temperature and p CO 2 in the northern South China Sea. Marine Pollution Bulletin, 118(1-2), 213-220, https://doi.org/10.1016/j.marpolbul.2017.02.063
    Publication Date: 2024-03-15
    Description: We conducted shipboard microcosm experiments at both off-shore (SEATS) and near-shore (D001) stations in the northern South China Sea (NSCS) under three treatments, low temperature and low pCO2 (LTLC), high temperature and low pCO2 (HTLC), and high temperature and high pCO2 (HTHC). Biomass of phytoplankton at both stations were enhanced by HT. HTHC did not affect phytoplankton biomass at station D001 but decreased it at station SEATS. HT alone increased net primary productivity by 234% at station SEATS and by 67% at station D001 but the stimulating effect disappeared when HC was combined. HT also increased respiration rate by 236% at station SEATS and by 87% at station D001 whereas HTHC reduced it by 61% at station SEATS and did not affect it at station D001. Overall, our findings indicate that the positive effect of ocean warming on phytoplankton assemblages in NSCS could be damped or offset by ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); D001; Entire community; Event label; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Primary production/Photosynthesis; Primary production of carbon; Primary production of carbon, standard deviation; Primary production of carbon per chlorophyll a; Respiration; Respiration/net photosynthesis ratio; Respiration/net photosynthesis ratio, standard deviation; Respiration rate, carbon; Respiration rate, carbon, per chlorophyll a; Respiration rate, carbon dioxide, standard deviation; Salinity; SEATS; Station label; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type
    Type: Dataset
    Format: text/tab-separated-values, 316 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Liu, Nana; Beardall, John; Gao, Kunshan (2017): Elevated CO2 and associated seawater chemistry do not benefit a model diatom grown with increased availability of light. Aquatic Microbial Ecology, 79(2), 137-147, https://doi.org/10.3354/ame01820
    Publication Date: 2024-03-15
    Description: Elevated CO2 is leading to a decrease in pH in marine environments (ocean acidification [OA]), altering marine carbonate chemistry. OA can influence the metabolism of many marine organisms; however, no consensus has been reached on its effects on algal photosynthetic carbon fixation and primary production. Here, we found that when the diatom Phaeodactylum tricornutum was grown under different pCO2 levels, it showed different responses to elevated pCO2 levels under growth-limiting (20 µmol photons/m**2/s, LL) compared with growth-saturating (200 µmol photons/m**2/s, HL) light levels. With pCO2 increased up to 950 µatm, growth rates and primary productivity increased, but in the HL cells, these parameters decreased significantly at higher concentrations up to 5000 µatm, while no difference in growth was observed with pCO2 for the LL cells. Elevated CO2 concentrations reduced the size of the intracellular dissolved inorganic carbon (DIC) pool by 81% and 60% under the LL and HL levels, respectively, with the corresponding photosynthetic affinity for DIC decreasing by 48% and 55%. Little photoinhibition was observed across all treatments. These results suggest that the decreased growth rates under higher CO2 levels in the HL cells were most likely due to acid stress. Low energy demand of growth and energy saving from the down-regulation of the CO2 concentrating mechanisms (CCM) minimized the effects of acid stress on the growth of the LL cells. These findings imply that OA treatment, except for down-regulating CCM, caused stress on the diatom, reflected in diminished C assimilation and growth rates.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, intracellular pool; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Cumulative carbon fixation per cell; Effective quantum yield; Factor; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Identification; Initial slope of photosynthesis/dissolved inorganic carbon; Laboratory experiment; Laboratory strains; Light; Light capturing capacity; Light saturated maximum photosynthetic rate per cell; Light saturation point; Maximal electron transport rate, relative; Maximum photochemical quantum yield of photosystem II; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phaeodactylum tricornutum; Phytoplankton; Primary production/Photosynthesis; Registration number of species; Salinity; Single species; Species; Temperature, water; Time in seconds; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 6177 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...