ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Water. ; Hydrology. ; Freshwater ecology. ; Marine ecology. ; Environmental chemistry. ; Environmental management. ; Environmental engineering. ; Biotechnology. ; Bioremediation. ; Water. ; Freshwater and Marine Ecology. ; Environmental Chemistry. ; Environmental Management. ; Environmental Engineering/Biotechnology.
    Description / Table of Contents: Section I Overview -- 1 Introduction to the volume -- 2 Deep-water oil and gas production in the Gulf of Mexico, and related global trends -- 3 Spilled oil composition and the natural carbon cycle: The true drivers of environmental fate and effects of oil spills -- Section II Geological, Chemical, Ecological and Physical Oceanographic Settings and Baselines for Deep Oil Spills in the Gulf of Mexico -- 4 An overview of the geologic origins of hydrocarbons and production trends in the Gulf of Mexico -- 5 Gulf of Mexico (GoM) bottom sediments and depositional processes: A baseline for future oil spills -- 6 Benthic faunal baselines in the Gulf of Mexico: A precursor to evaluate future impacts -- 7 Linking abiotic variables with macrofaunal and meiofaunal abundance and community -- 8 The asphalt ecosystem of the southern Gulf of Mexico: abyssal habitats across space and time -- 9 Geochemical and faunal characterization in the sediments off the Cuban north and northwest coast -- 10 Mapping isotopic and dissolved organic matter baselines in waters and sediments of Gulf of Mexico -- 11 Toward a predictive understanding of the benthic microbial community response to oiling on the northern Gulf of Mexico coast -- 12 Combining isoscapes with tissue-specific isotope records to re-create the geographic histories of fish -- 13 The utility of stable and radio isotopes in fish tissues as biogeochemical tracers of marine oil spill food web effects -- 14 Modernizing protocols for aquatic toxicity testing of oil and dispersant -- 15 Polycyclic aromatic hydrocarbon baselines in Gulf of Mexico fishes -- 16 Case Study: Using a combined laboratory, field, and modeling approach to assess oil spill impacts -- Section III Simulations of Future Deep Spills -- 17 Testing the effect of MOSSFA (Marine Oil Snow Sedimentation and Flocculent Accumulation) events in benthic microcosms -- 18 Physical processes influencing the sedimentation and lateral transport of MOSSFA in the NE Gulf of Mexico -- 19 Simulating deep oil spills beyond the Gulf of Mexico -- Section IV Comparisons of likely impacts from simulated spills -- 20 Comparison of the spatial extent, impacts to shorelines, and ecosystem and 4-dimensional characteristics of simulated oil spills -- 21 A predictive strategy for mapping locations where future MOSSFA events are expected -- 22 Connectivity of Gulf of Mexico continental shelf fish populations and implications of simulated oil spills -- 23 Evaluating the effectiveness of fishery closures for deep oil spills using a 4-dimensional model -- 24 As Gulf oil extraction goes deeper, who is at risk? Community structure, distribution, and connectivity of the deep-pelagic fauna -- 25 Evaluating impacts of deep oil spills on oceanic marine mammals -- 26 Comparative environmental sensitivity of offshore Gulf of Mexico waters potentially impacted by ultra-deep oil well blowouts -- Section V Preparing for and Responding to the Next Deepwater Spill -- 27 Preparing for the inevitable: ecological and indigenous community impacts of oil spill-related mortality in the United States Arctic marine ecosystem -- 28 Summary of contemporary research on use of chemical dispersants for deep sea oil spills -- 29 Perspectives on research, technology, policy and human resources for improved management of ultra-deep oil and gas resources and responses to oil spills -- Index.
    Abstract: It has often been said that generals prepare for the next war by re-fighting the last. The Deepwater Horizon (DWH) oil spill was unlike any previous – an underwater well blowout 1,500 meters deep. Much has been learned in the wake of DWH and these lessons should in turn be applied to both similar oil spill scenarios and those arising from “frontier” explorations by the marine oil industry. The next deep oil well blowout may be at 3,000 meters or even deeper. This volume summarizes regional (Gulf of Mexico) and global megatrends in marine oil exploration and production. Research in a number of key areas including the behavior of oil and gas under extreme pressure, impacts on biological resources of the deep sea, and the fate of oil and gas released in spills is synthesized. A number of deep oil spills are simulated with detailed computer models, and the likely effects of the spills and potential mitigation measures used to combat them are compared. Recommended changes in policies governing marine oil exploration and development are proposed, as well as additional research to close critical and emerging knowledge gaps. This volume synthesizes state-of-the-art research in deep oil spill behavior and response. It is thus relevant for government and industry oil spill responders, policy formulators and implementers, and academics and students desiring an in-depth and balanced overview of key issues and uncertainties surrounding the quest for deep oil and potential impacts on the environment.
    Type of Medium: Online Resource
    Pages: XII, 542 p. 167 illus., 138 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030129637
    DDC: 551.48
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Water. ; Hydrology. ; Freshwater ecology. ; Marine ecology. ; Environmental chemistry. ; Environmental management. ; Environmental engineering. ; Biotechnology. ; Bioremediation. ; Water. ; Freshwater and Marine Ecology. ; Environmental Chemistry. ; Environmental Management. ; Environmental Engineering/Biotechnology.
    Description / Table of Contents: Section I. Introduction -- 1. Introduction to the Volume -- Section II. Physics and Chemistry of Deep Oil Well Blowouts -- 2. The importance of understanding fundamental physics and chemistry of deep oil blowouts -- 3. Physical and chemical properties of oil and gas under reservoir and deep-sea conditions -- 4. Jet formation at the blowout site -- 5. Behavior of rising droplets and bubbles – impact on the physics of deep-sea blowouts and oil fate -- Section III. Transport and Degradation of Oil and Gas from Deep Spills -- 6. The importance of understanding transport and degradation of oil and gasses from deep sea blowouts -- 7. Biodegradation of petroleum hydrocarbons in the deep sea -- 8 Partitioning of organics between oil and water phases with and without the application of dispersants -- 9. Dynamic coupling of near-field and far-field models -- 10. Effects of oil properties and slick thickness on dispersant field effectiveness and oil fate -- 11. Far-field modeling of a deep-sea blowout: sensitivity studies of initial conditions, biodegradation, sedimentation and sub-surface dispersant injection on surface slicks and oil plume concentrations -- Section IV. Oil Spill Records in Deep Sea Sediments -- 12. Formation and sinking of MOSSFA (Marine Oil Snow Sedimentation and Flocculent Accumulation) events: Past and Present -- 13. The sedimentary record of MOSSFA events in the Gulf of Mexico: A comparison of the Deepwater Horizon (2010) and Ixtoc 1 (1979) oil spills -- 14. Characterization of the sedimentation associated with the Deepwater Horizon blowout: depositional pulse, initial response, and stabilization -- 15. Applications of FTICR-MS in oil spill studies -- 16. Changes in redox conditions of surface sediments following the Deepwater Horizon and Ixtoc 1 events -- 17. Long-term preservation of oil spill events in sediments: the case for the Deepwater Horizon spill in the northern Gulf of Mexico -- 18. Effect of marine snow on microbial oil degradation -- 19. Molecular legacy of the 1979 Ixtoc 1 oil spill in deep-sea sediments of the southern Gulf of Mexico -- 20. 40 years of weathering of coastal oil residues in the southern Gulf of Mexico -- Section V. Impacts of Deep Spills on Plankton, Fishes, and Protected Resources -- 21. Overview of ecological impacts of deep spills -- 22. Deep-sea benthic faunal impacts and community evolution before, during and after the Deepwater Horizon event -- 23. Impact and resilience of benthic foraminifera in the aftermath of the Deepwater Horizon and Ixtoc 1 oil spills -- 24. Chronic sublethal effects observed in wild caught fish following two major oil spills in the Gulf of Mexico: Deepwater Horizon and Ixtoc 1 -- 25. Impacts of deep spills on fish and fisheries -- 26. Impacts of the Deepwater Horizon oil spill on marine mammals and sea turtles -- Section VI. Toxicology of Deep Oil Spills -- 27. Ecotoxicology of deep ocean spills -- 28 A synthesis of Deepwater Horizon oil, chemical dispersant and chemically dispersed oil aquatic standard laboratory acute and chronic toxicity studies -- 29. Digging deeper than LC/EC50: non-traditional endpoints and non-model species in oil spill toxicology -- 30. Genetics and oil: transcriptomics, epigenetics and population genomics as tools to understand animal responses to exposure across different time scales -- Section VI. I Ecosystem-level modeling of deep oil spill impacts -- 31. A synthesis of top down and bottom up impacts of the Deepwater Horizon oil spill using ecosystem modeling -- 32. Comparing ecosystem model outcomes between Ixtoc 1 and Deepwater Horizon oil spills -- 33. Effects of the Deepwater Horizon oil spill on Human Communities: Catch and Economic Impacts -- Section VIII. Summary -- 34. Summary of Major Themes – Deep Oil Spills -- Index.
    Abstract: The demand for oil and gas has brought exploration and production to unprecedented depths of the world’s oceans. Currently, over 50% of the oil from the Gulf of Mexico now comes from waters in excess of 1,500 meters (one mile) deep, where no oil was produced just 20 years ago. The Deepwater Horizon oil spill blowout did much to change the perception of oil spills as coming just from tanker accidents, train derailments, and pipeline ruptures. In fact, beginning with the Ixtoc 1 spill off Campeche, Mexico in 1979-1980, there have been a series of large spill events originating at the sea bottom and creating a myriad of new environmental and well control challenges. This volume explores the physics, chemistry, sub-surface oil deposition and environmental impacts of deep oil spills. Key lessons learned from the responses to previous deep spills, as well as unresolved scientific questions for additional research are highlighted, all of which are appropriate for governmental regulators, politicians, industry decision-makers, first responders, researchers and students wanting an incisive overview of issues surrounding deep-water oil and gas production.
    Type of Medium: Online Resource
    Pages: XIV, 611 p. 152 illus., 110 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030116057
    DDC: 551.48
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 280 (2013): 20130327, doi:10.1098/rspb.2013.0327.
    Description: Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions, and evidence. We explore latitudinal differences in: 1) biological (e.g., species composition, spawning mode, pelagic larval duration (PLD)), 2) physical (e.g., water movement, habitat fragmentation), and 3) biophysical factors (primarily temperature, which could strongly affect development, swimming ability, or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature, and larval swimming, and each could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat, and geographic region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes, as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.
    Description: TK was supported by the Norwegian Research Council through project MENUII #190286. JML was supported by ARC Discovery Grant DP110100695. JEC and RRW were supported by the Partnership for the Interdisciplinary Study of Coastal Oceans, funded by The David and Lucille Packard Foundation and the Gordon and Betty Moore Foundation.
    Description: 2014-03-20
    Keywords: Population connectivity ; Larval dispersal ; Pelagic larval duration ; Larval behaviour ; Genetic structure ; Habitat fragmentation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Ocean Modelling 106 (2016): 74–89, doi:10.1016/j.ocemod.2016.09.010.
    Description: The gains from implementing high-resolution versus less costly low-resolution models to describe coastal circulation are not always clear, often lacking statistical evaluation. Here we construct a hierarchy of ocean-atmosphere models operating at multiple scales within a 1×1° domain of the Belizean Barrier Reef (BBR). The various components of the atmosphere-ocean models are evaluated with in situ observations of surface drifters, wind and sea surface temperature. First, we compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h) and atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. Next, in trying to understand why the high-resolution models improve prediction, we find that resolving both the diurnal sea-breeze and semi-diurnal tides is key to improving the Lagrangian statistics and transport predictions along the BBR. Notably, the model with the highest ocean-atmosphere resolution and with tidal forcing generates a higher number of looping trajectories and sub-mesoscale coherent structures that are otherwise unresolved. Finally, simulations conducted with this model from June to August of 2013 show an intensification of the velocity fields throughout the summer and reveal a mesoscale anticyclonic circulation around Glovers Reef, and sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to assess the best surface transport prediction from alternative ocean-atmosphere models using metrics derived from high frequency drifters’ data and meteorological stations.
    Description: This research is supported by the National Science Foundation award NSF-OCE 1260424.
    Keywords: Ocean-atmosphere model ; Lagrangian drifters ; High-resolution ; Coral reefs ; Belize
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 121 (2018): 49-75, doi:10.1016/j.ocemod.2017.11.008.
    Description: Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
    Description: EvS has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 715386). This research for PJW was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. Funding for HFD was provided by Grant No. DE-SC0012457 from the US Department of Energy. PB acknowledges support for this work from NERC grant NE/R011567/1. SFG is supported by NERC National Capability funding through the Extended Ellett Line Programme.
    Keywords: Ocean circulation ; Lagrangian analysis ; Connectivity ; Particle tracking ; Future modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Drifter data
    Description: Trajectories of fifty-five biodegradable drifters in the Belizean Barrier Reef. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/729896
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1260424
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.
    Description: Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.
    Description: Work by CB Paris was supported by the National Science Foundation grant NSF-OCE 0550732. Work by M-A Coffroth and SR Thorrold was supported by the National Science Foundation grant NSF-OCE 0424688. Work by TL Shearer was supported by an International Cooperative Biodiversity Group grant R21 TW006662-01 from the Fogarty International Center at the National Institutes of Health.
    Keywords: Connectivity ; Larval dispersal ; Marine protected areas ; Resilience ; Replacement ; Genetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bracco, A., Paris, C. B., Esbaugh, A. J., Frasier, K., Joye, S. B., Liu, G., Polzin, K. L., & Vaz, A. C. Transport, fate and impacts of the deep plume of petroleum hydrocarbons formed during the Macondo blowout. Frontiers in Marine Science, 7, (2020): 542147, doi:10.3389/fmars.2020.542147.
    Description: The 2010 Macondo oil well blowout consisted in a localized, intense infusion of petroleum hydrocarbons to the deep waters of the Gulf of Mexico. A substantial amount of these hydrocarbons did not reach the ocean surface but remained confined at depth within subsurface plumes, the largest and deepest of which was found at ∼ 1000–1200 m of depth, along the continental slope (the deep plume). This review outlines the challenges the science community overcame since 2010, the discoveries and the remaining open questions in interpreting and predicting the distribution, fate and impact of the Macondo oil entrained in the deep plume. In the past 10 years, the scientific community supported by the Gulf of Mexico Research Initiative (GoMRI) and others, has achieved key milestones in observing, conceptualizing and understanding the physical oceanography of the Gulf of Mexico along its northern continental shelf and slope. Major progress has been made in modeling the transport, evolution and degradation of hydrocarbons. Here we review this new knowledge and modeling tools, how our understanding of the deep plume formation and evolution has evolved, and how research in the past decade may help preparing the scientific community in the event of a future spill in the Gulf or elsewhere. We also summarize briefly current knowledge of the plume fate – in terms of microbial degradation and geochemistry – and impacts on fish, deep corals and mammals. Finally, we discuss observational, theoretical, and modeling limitations that constrain our ability to predict the three-dimensional movement of waters in this basin and the fate and impacts of the hydrocarbons they may carry, and we discuss research priorities to overcome them.
    Description: This review was made possible by funding from the Gulf of Mexico Research Initiative (GoMRI) and is a product of the Core Area 1 Synthesis workshop. The authors have contributed research on the Gulf deep circulation and the deep plume through GoMRI-funded consortia (ECOGIG for AB, SJ and GL, C-IMAGE for CP, AV and KF, and RECOVER for AE) and one of the RFP-5 grant (KP). KP was partially supported also by NSF OCE-1536779.
    Keywords: Deepwater Horizon ; Deepwater plume ; Ocean modeling ; Oil modeling ; Transport and mixing processes ; Active tracer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-06-13
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-08
    Description: The European eel (Anguilla anguilla) hatches in the Sargasso Sea and migrates to European and North African freshwater. As glass eels, they reach estuaries where they become pigmented. Glass eels use a tidal phase-dependent magnetic compass for orientation, but whether their magnetic direction is innate or imprinted during migration is unknown. We tested the hypothesis that glass eels imprint their tidal-dependent magnetic compass direction at the estuaries where they recruit. We collected 222 glass eels from estuaries flowing in different cardinal directions in Austevoll, Norway. We observed the orientation of the glass eels in a magnetic laboratory where the magnetic North was rotated. Glass eels oriented towards the magnetic direction of the prevailing tidal current occurring at their recruitment estuary. Glass eels use their magnetic compass to memorize the magnetic direction of tidal flows. This mechanism could help them to maintain their position in an estuary and to migrate upstream.
    Electronic ISSN: 2399-3642
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...