ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,555)
  • Wiley  (801)
  • Springer  (748)
  • American Geophysical Union
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2015-2019  (1,038)
  • 2005-2009  (491)
  • 1970-1974  (26)
Collection
Publisher
Language
Years
Year
  • 101
    Publication Date: 2022-01-31
    Description: Dosidicus gigas (the Humboldt squid) is a widely distributed and ecologically important predator in the eastern Pacific Ocean, but its mating behaviour is poorly understood. Individuals of this species have undergone a drastic change in size at maturity in the last years. We investigated mating activity of Humboldt squid in the Gulf of California in 2013, 2014, and 2015 by quantifying spermatangia deposited in the tissue of the buccal area. In 2015, we encountered the smallest mean mantle length of mature specimens recorded to date in the Gulf of California. In all years, numerous males were encountered that had been mated by other males. Spermatangia in males were deposited on the tissue in similar numbers and in the same location as normally occurs in females (the buccal area), suggesting that male-to-male mating behaviour is similar to male-to-female. This behaviour is referred to as same-sex sexual behaviour and has been described for various taxa, including other cephalopods. Overall similarity in mating frequency between males and females and in body size of mated individuals (in 2015) suggests non-discriminative and brief encounters with body size being a cue for mating. This mating strategy may be beneficial for males, as Humboldt squid live in groups where competition for mates is likely high. The energetic costs of male-to-male mating events may be counterbalanced by the fitness profits of indiscriminate mating behaviour.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2022-01-31
    Description: In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end-of-century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade-off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2022-01-31
    Description: Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod (Gadus morhua), by exploring a unique data set combining whole-genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord-type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord-type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    facet.materialart.
    Unknown
    Wiley | AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 124 (4). pp. 2374-2403.
    Publication Date: 2022-01-31
    Description: The Bjerknes feedback is the dominant positive feedback in the equatorial ocean basins. To examine the seasonality, symmetry, and stationarity of the Pacific and Atlantic Bjerknes feedbacks we decompose them into three feedback elements that relate thermocline depth, sea surface temperature (SST), and western basin wind stress variability to each other. We partition feedback elements into composites associated with positive or negative anomalies. Using robust regression, we diagnose the strength of each composite. For the recent period 1993‐2012, composites of the Pacific Bjerknes feedback elements agree well with previous work. Positive composites are generally stronger than negative composites, and all feedback elements are weakest in late boreal spring. In the Atlantic, differences between positive and negative composites are less consistent across feedback elements. Specifically, wind variability seems to play a less important role in shaping atmosphere‐ocean coupling in the Atlantic when compared to the Pacific. However, a clear seasonality emerges: Feedback elements are generally strong in boreal summer and, for the negative composites, again in boreal winter. The Atlantic Bjerknes feedback is dominated by subsurface‐surface coupling. Applying our analysis to overlapping 25‐year periods for 1958‐2009 shows that the strengths of feedback elements in both ocean basins vary on decadal time scales. While the overall asymmetry of the Pacific Bjerknes feedback is robust, the strength and symmetry of Atlantic feedback elements vary considerably between decades. Our results indicate that the Atlantic Bjerknes feedback is non‐stationary on decadal time scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-01-31
    Description: Due to strong mean state‐biases most coupled models are unable to simulate equatorial Atlantic variability. Here, we use the Kiel Climate Model to assess the impact of bias reduction on the seasonal prediction of equatorial Atlantic sea surface temperature (SST). We compare a standard experiment (STD) with an experiment that employs surface heat flux correction to reduce the SST bias (FLX) and, in addition, apply a correction for initial errors in SST. Initial conditions for both experiments are generated in partially coupled mode, and seasonal hindcasts are initialized at the beginning of February, May, August and November for 1981–2012. Surface heat flux correction generally improves hindcast skill. Hindcasts initialized in February have the least skill, even though the model bias is not particularly strong at that time of year. In contrast, hindcasts initialized in May achieve the highest skill. We argue this is because of the emergence of a closed Bjerknes feedback loop in boreal summer in FLX that is a feature of observations but is missing in STD.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2022-01-31
    Description: 1. Epimicrobial communities on seaweed surfaces usually contain not only potentially pathogenic but also potentially beneficial micro‐organisms. Capacity of terrestrial plants for chemically mediated recruitment, that is, “gardening” of bacterial communities in the rhizosphere was recently demonstrated. Empirical evidence directly linking such chemical “gardening” with the beneficial role of gardened microbes in terrestrial plants is rare and largely missing for aquatic macrophytes. 2. Here, we demonstrate that our model invasive seaweed holobiont Agarophyton vermiculophyllum possesses beneficial microbiota on its surface that provide protection from bacterial pathogens. Metabolites from the algal holobiont’s surface reduced settlement of opportunistic pathogens but attracted protective epibacterial settlement. 3. We tested 58 different bacterial species (isolated from the surface of A. vermiculophyllum) individually in tip bleaching assays. Kordia algicida was identified as a “significant pathogen” inducing a bleaching disease. In addition, nine other species significantly reduced the risk of algal bleaching and were thus “significantly protective”. Additionally, two “potential pathogens” and 10 “potential protectors” were identified. When 19 significant and potential protectors and 3 significant and potential pathogens were tested together, the protective strains fully prevented bleaching, suggesting that a component of A. vermiculophyllum’s epimicrobiome provides an associational defence against pathogens. Chemically mediated selective recruitment of microbes was demonstrated in bioassays, where A. vermiculophyllum surface metabolites attracted the settlement of protective strains, but reduced settlement of pathogens. 4. Synthesis. The capacity of an aquatic macrophyte to chemically “garden” protective micro‐organisms to the benefit of strengthened disease resistance is demonstrated for the first time. Such a role of surface chemistry in “gardening” of microbes as found in the current study could also be applicable to other host plant—microbe interactions. Our results may open new avenues towards manipulation of the surface microbiome of seaweeds via chemical “gardening,” enhancing sustainable production of healthy seaweeds.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2022-01-31
    Description: Gelatinous zooplankton (GZ) such as medusae, ctenophores, siphonophores, pyrosomes and salps are important components of oceanic pelagic communities and small calycophoran siphonophores (CS) are typically abundant at shallow depths. The Sargasso Sea spawning area of the Atlantic catadromous freshwater eels has a regular pattern of shallow autumn to spring temperature fronts. There is limited information about the southern Sargasso Sea GZ fauna, and it is not known which species are distributed across these frontal zones. Plankton samples from a survey of larval European eel (Anguilla anguilla) abundance in March and April 2017 using an Isaacs-Kidd Midwater Trawl (0–300 m, 35 stations, three transects) were used to examine the distribution and abundance of net-captured CS and other GZ species in relation to oceanographic characteristics. More than 2200 specimens of 15 taxa were sub-sampled, with five CS (Abylopsis tetragona, A. eschscholtzii, Chelophyes appendiculata, Eudoxoides spiralis and E. mitra) dominating catches at every station. GZ were most abundant around the 22 and 24 °C isotherms, and higher abundances of CS in the north were correlated with lower water temperature. The widespread presence of CS across the European eel spawning area is consistent with a recent study detecting their DNA sequences in the gut contents of young eel larvae collected in the Sargasso Sea, suggesting CS material was either eaten directly or as part of ingested marine snow particles. The present study shows that both types of organisms occupy the southern Sargasso Sea during the European eel spawning season.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 124 (5). pp. 3393-3410.
    Publication Date: 2022-01-31
    Description: Sea surface waves significantly affect the wind energy input to the Ekman layer in the upper ocean. In the study, we first incorporated the wave-induced Coriolis-Stokes forcing, the reduction of wind stress caused by wave generation, and wave dissipation into the classical Ekman model to investigate the kinetic energy balance in the wave-affected Ekman layer. Then, both the theoretical steady state solution for the idealized condition and the nonsteady state solution for the realistic ocean were derived. Total energy input to the wave-affected Ekman layer includes the wind stress energy input and the wave-induced energy input. Based on the WAVEWATCH III model, the wave spectrum was simulated to represent realistic random directional wave conditions. The wind stress energy input and the wave-induced energy input to the wave-affected Ekman layer in the Antarctic Circumpolar Current in the period from 1988 to 2010 were then calculated. The annual mean total energy input in the Antarctic Circumpolar Current region was 402.5 GW and the proportions of the wind stress energy input and the wave-induced energy input were, respectively, 85% and 15%. Particularly, total energy input in the Antarctic Circumpolar Current in the wave-affected Ekman layer model was 59.8% lower than that in the classical Ekman model. We conclude that surface waves play a significant role in the wind energy input to the Ekman layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2022-01-31
    Description: Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large-scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within-region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low-salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic-enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high-latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade-offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2022-01-31
    Description: Climate change has been altering the ocean environment, affecting as a consequence the biological communities including microorganisms. We performed a mesocosm experiment to test whether biodiversity loss caused by one stressor would influence plankton community sensitivity to a subsequent stressor, as envisioned in Vinebrooke's multiple stressor concept. A natural Baltic Sea diatom-dominated phytoplankton assemblage was used as a model system where we examined whether a preceding heat shock would affect the community's response to changing salinity. Initially, the community was treated by a short-term temperature increase of 6 °C, which resulted in a loss of species compared to the control. Thereafter, the control and the heat-shocked communities were subject to a salinity change (- 5 psu, control, + 5 psu). The species Skeletonema dohrnii, Thalassiosira anguste-lineata, Thalassiosira nordenskioeldii, Chaetoceros socialis and Ditylum brightwellii were major components of the control and heat-shocked assemblages (〉 80% of the total biomass). We examined the effect on species composition and biodiversity (morphospecies and operational taxonomic units (OTUs) related to phytoplankton) and on phytoplankton biomass. In addition, we explored the single species response of five dominant diatoms on these environmental perturbations. Our results showed that increased salinity significantly reduced the OTUs richness both in the control and the less diverse heated community as well as the phytoplankton biomass in the heated community. On the other hand, decreased salinity significantly increased species richness and phytoplankton biomass in both communities and OTUs richness in the control community. The five dominant diatoms reached their highest biomass under decreased salinity and responded negatively to increased salinity (lower biomass than ambient salinity). Contrary to Vinebrooke's multiple stressor concept, there was no indication that the heat treatment had altered the community's sensitivity to the salinity stress in our study system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    American Society of Limnology and Oceanography | Wiley
    In:  Limnology and Oceanography: Methods, 17 (10). pp. 515-532.
    Publication Date: 2022-01-31
    Description: High‐quality seawater total alkalinity (AT) measurements are essential for reliable ocean carbon and acidification observations. Well‐established manual multipoint potentiometric titration methods already fulfill these requirements. The next step in the improvement of these observations is the increase of the spatial and temporal measuring resolution with minimal personnel and instrumental effort. For this, a rapid, automated underway analyzer meeting the same high requirements as the traditional method is necessary. In this study, we carried out a comprehensive characterization of the flow‐through analyzer CONTROS HydroFIA® TA (Kongsberg Maritime Contros GmbH, Kiel, Germany) for automated seawater AT measurements in the laboratory and in field with overall more than 5000 measurements. Under laboratory conditions, the analyzer featured a precision of ± 1.5 μmol kg−1 and an accuracy of ± 1.0 μmol kg−1, combined in an uncertainty of 1.6 – 2.0 μmol kg−1. High precision (± 1.1 μmol kg−1) and accuracy (−0.3 ± 2.8 μmol kg−1), and low uncertainty (2.0 – 2.5 μmol kg−1) were also achieved during field trials of 4 and 6 weeks duration. Although a linear drift appears to be the typical behavior of the system, this can be corrected for by regular reference measurements giving consistent measurement results. Another advantage of regular reference measurements is the early detection of any kind of malfunction due to its direct impact on the measurement performance. Based on the present study, recommendations for automated long‐term deployments are provided in order to gain optimal performance characteristics, aiming at the requirements for AT measurements.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 33 (7). pp. 891-903.
    Publication Date: 2022-01-31
    Description: The export of organic carbon from the surface ocean forms the basis of the biological carbon pump, an important planetary carbon flux. Typically, only a small fraction of primary productivity (PP) is exported (quantified as the export efficiency: export/PP). Here we assemble a global data synthesis to reveal that very high export efficiency occasionally occurs. These events drive an apparent inverse relationship between PP and export efficiency, which is opposite to that typically used in empirical or mechanistic models. At the global scale, we find that low PP, high export efficiency regimes tend to occur when macrozooplankton and bacterial abundance are low. This implies that a decoupling between PP and upper ocean remineralization processes can result in a large fraction of PP being exported, likely as intact cells or phytoplankton-based aggregates. As the proportion of PP being exported declines, macrozooplankton and bacterial abundances rise. High export efficiency, high PP regimes also occur infrequently, possibly associated with nonbiologically mediated export of particles. A similar analysis at a biome scale reveals that the factors affecting export efficiency may be different at regional and global scales. Our results imply that the whole ecosystem structure, rather than just the phytoplankton community, is important in setting export efficiency. Further, the existence of low PP, high export efficiency regimes imply that biogeochemical models that parameterize export efficiency as increasing with PP may underestimate export flux during decoupled periods, such as at the start of the spring bloom.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2022-01-31
    Description: This manuscript reports the first sightings and collection of the swimming crab Cronius ruber (Lamarck, 1818) on the coast of Madeira Island, Portugal. After the recent record in the Canary Islands, this represents a further step northward on this species’ expansion in distribution in the eastern Atlantic. The crab was first spotted during underwater visual census surveys done by scuba diving in July 2018 and was repeatedly observed during the following months, in different locations on the south coast of Madeira. Analysis of temperature data from several geographic locations where C. ruber is present was performed to assess how thermal regimes and ongoing changes may influence this recent distribution shift. Current temperature trends in Madeira suggest that the arrival and establishment of C. ruber to Madeira might have been facilitated this thermophilic species, adding evidence for the ongoing tropicalization of this area. Finally, the current spread of C. ruber in both Canaries and Madeira island systems highlights the need for a long-term monitoring program targeting this and other non-indigenous species (NIS).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2022-01-31
    Description: Clonal behavior has been hypothesized to provide an escape from allometric metabolic scaling that limits the maximum mass achieved by a single individual. Here, we demonstrate the capacity of a wide-spread, non-native sea anemone to buffer its colony biomass accumulation rate across environments by modulating ramet body size through environmentally dependent growth, fission, and catabolism. In 2015, thermal reaction norms for growth and fission behavior were constructed using clonal lines of the sea anemone Diadumene lineata. In 2018, variation in growth patterns under a factorial cross of temperature level and oxygen availability was examined to test the hypothesis that individual ramet size is regulated by oxygen limitation in accordance with optimal size theory. Across a wide range of temperatures, colonies accumulated a similar amount of biomass despite a radical shift from unitary to clonal growth, supporting fission as a mechanism to buffer growth rates over a range of conditions. Individual body size appears to be regulated by the environment with increased temperature and reduced oxygen modifying fission and mass-specific growth patterns, leading to the production of smaller-bodied ramets in warm conditions. However, whether anemones in common garden conditions reduce individual body size through catabolism or fission depends on the region of origin and may relate to differences in seasonal temperature patterns among coastlines, which influence the energetic benefits of fission rate plasticity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2022-01-31
    Description: Southeast Greenland has been a major participant in the ice sheet mass loss over the last several decades. Interpreting the evolution of glacier fronts requires information about their depth below sea level and ocean thermal forcing, which are incompletely known in the region. Here, we combine airborne gravity and multibeam echo sounding data from the National Aeronautics and Space Administration's Oceans Melting Greenland (OMG) mission with ocean probe and fishing boat depth data to reconstruct the bathymetry extending from the glacier margins to the edges of the continental shelf. We perform a three‐dimensional inversion of the gravity data over water and merge the solution with a mass conservation reconstruction of bed topography over land. In contrast with other parts of Greenland, we find few deep troughs connecting the glaciers to the sources of warm Atlantic Water, amidst a relatively uniform, shallow (350 m) continental shelf. The deep channels include the Kangerlugssuaq, Sermilik, Gyldenløve, and Tingmiarmiut Troughs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    Springer
    In:  Doklady Earth Sciences, 489 (Part 2). pp. 1469-1473.
    Publication Date: 2022-01-31
    Description: The Osborn Plateau is a large intraplate rise in the eastern part of the Indian Ocean, which has been poorly studied by the geological and geophysical methods. In cruise SO258/1 on the R/V Sonne, new data were collected using Parasound seismic profiling and a multibeam echo-sounder survey. Faults in the sedimentary cover, which extend to the bottom surface, indicate high neotectonic activity in the Osborn Plateau area. It may continue up to the present, as well as in the adjacent segment of the Ninetyeast Ridge, where strong earthquakes have been recorded. Two reflectors in the upper part of the sedimentary cover mark the global lowering of the World Ocean level at the Miocene/Pliocene and Pliocene/Pleistocene boundaries. The reflector in the sediments at the Lower/Upper Pliocene boundary is associated with a change in the regional hydrodynamic regime that occurred at that time in the eastern Indian Ocean. The rocks dredged on Osborn Plateau are identical to some volcanic rocks of the Ninetyeast Ridge, confirming their assumed genetic link, but they are more similar to the basalts of the Kerguelen Plateau. Extremely altered vitroclastic tuffs appear to have been formed as a result of explosive volcanic eruptions of alkali basalts or foidites under subaeral or relatively shallow water conditions and represent the most recent eruptions in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2022-01-31
    Description: International Ocean Discovery Program Expedition 352 recovered sedimentary‐volcaniclastic successions and extensional structures (faults and extensional veins) that allow the reconstruction of the Izu‐Bonin forearc tectonic evolution using a combination of shipboard core data, seismic reflection images, and calcite vein microstructure analysis. The oldest recorded biostratigraphic ages within fault‐bounded sedimentary basins (Late Eocene to Early Oligocene) imply a ~15 Ma hiatus between the formation of the igneous basement (52 to 50 Ma) and the onset of sedimentation. At the upslope sites (U1439 and U1442) extension led to the formation of asymmetric basins reflecting regional stretch of ~16–19% at strain rates of ~1.58 × 10−16 to 4.62 × 10−16 s−1. Downslope Site U1440 (closer to the trench) is characterized by a symmetric graben bounded by conjugate normal faults reflecting regional stretch of ~55% at strain rates of 4.40 × 10−16 to 1.43 × 10−15 s−1. Mean differential stresses are in the range of ~70–90 MPa. We infer that upper plate extension was triggered by incipient Pacific Plate rollback ~15 Ma after subduction initiation. Extension was accommodated by normal faulting with syntectonic sedimentation during Late Eocene to Early Oligocene times. Backarc extension was assisted by magmatism with related Shikoku and Parece‐Vela Basin spreading at ~25 Ma, so that parts of the arc and rear arc, and the West Philippine backarc Basin were dismembered from the forearc. This was followed by slow‐rift to postrift sedimentation during the transition from forearc to arc rifting to spreading within the Shikoku‐Parece‐Vela Basin system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2022-01-31
    Description: Understanding oceanic cadmium (Cd) cycling is paramount due to its micronutrient‐like behavior in seawater, which has been inferred from its similarity to phosphate (PO4) cycling. Cadmium concentrations follow a nutrient‐like consumption‐regeneration cycle in the top of the water column and are mainly controlled by water mass mixing and circulation in the deep ocean. However, an additional scavenging mechanism through cadmium sulfide (CdS) precipitates, occurring within sinking biogenic particles in oxygen deficient zones (ODZ), has been proposed. In this study, we report Cd stable isotope and concentration data for seven vertical seawater profiles sampled during GEOTRACES cruise GA08 in the northern Cape and Angola Basins, which feature a significant ODZ along their eastern margins. Outside the ODZ, Cd cycling is similar to that previously reported for the South Atlantic. While water mass mixing largely controls deep ocean Cd isotope signatures, Cd isotope fractionation in surface waters can be modelled as an open system at steady‐state buffered by organic ligand complexation. In the ODZ, stronger Cd depletion relative to PO4 is associated with a shift in δ114Cd towards heavier values, which is indicative of CdS precipitation. Our interpretation is supported by experimental CdS precipitation data and a size‐resolved particle model involving bacterial sulfate reduction as a precursor of CdS. Our estimates of the CdS flux to the seafloor (107 to 109 mol yr‐1) indicate that CdS precipitation is a significant process of Cd removal and constitutes a non‐negligible Cd sink that needs to be better quantified by Cd isotope analyses of marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 20 . pp. 6033-6050.
    Publication Date: 2022-01-31
    Description: Ultraslow spreading ridges are poorly understood plate boundaries consisting of magmatic and amagmatic segments that expose mostly mantle peridotite and only traces of basalt and gabbro. The slowest part of the global spreading system is represented by the eastern Gakkel Ridge in the Central Arctic Ocean, where crustal accretion is characterized by extreme focusing of melt to discrete magmatic centers. Close to its eastern tip lies the unusual 5,310 m deep Gakkel Rift Deep (GRD) with limited sediment infill, which is in strong contrast to the broader sediment‐filled rift valleys to the east and west. Here, we report an 40Ar/39Ar age of 3.65±0.01 Ma for a pillow basalt from a seamount located on the rim the GRD confirming ultraslow spreading rates of ~7 mm/yr close to the Laptev Sea as suggested from aeromagnetic data. Its geochemistry points to an alkaline lava, attributed to partial melting of a source that underwent prior geochemical enrichment. We note that the GRD extracts compositionally similar melts as the sparsely magmatic zone further west but at much slower spreading velocities of only ~6‐7 mm/yr, indicating the widespread occurrence of similarly fertile mantle in the High Arctic. This enriched source differs from sub‐continental lithospheric mantle that influences magmatism along the Western Volcanic Zone (Goldstein et al. 2008) and is similar to metasomatized mantle ‐ shown to influence melt genesis along the Eastern Volcanic Zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2022-01-31
    Description: Seafloor pockmarks of varying size occur over an area of 50,000 km2 on the Chatham Rise, Canterbury Shelf and Inner Bounty Trough, New Zealand. The pockmarks are concentrated above the flat‐subducted Hikurangi Plateau. Echosounder data identifies recurrent episodes of pockmark formation at ~100,000yr frequency coinciding with Pleistocene glacial terminations. Here we show that there are structural conduits beneath the larger pockmarks through which fluids flowed upward toward the seafloor. Large negative Δ14C excursions are documented in marine sediments deposited next to these subseafloor conduits and pockmarks at the last glacial termination. Modern pore waters contain no methane and there is no negative δ13C excursion at the glacial termination that would be indicative of methane or mantle‐derived carbon at the time the Δ14C excursion and pockmarks were produced. An ocean general circulation model equipped with isotope tracers is unable to simulate these large Δ14C excursions on the Chatham Rise by transport of hydrothermal carbon released from the East Pacific Rise as previous studies suggested. Here we attribute the Δ14C anomalies and pockmarks to release of 14C‐dead CO2 and carbon‐rich fluids from subsurface reservoirs, the most likely being dissociated Mesozoic carbonates that subducted beneath the Rise during the Late Cretaceous. Because of the large number of pockmarks and duration of the Δ14C anomaly, the pockmarks may collectively represent an important source of 14C‐dead carbon to the ocean during glacial terminations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    facet.materialart.
    Unknown
    Springer
    In:  Marine Biodiversity, 49 (1). pp. 131-146.
    Publication Date: 2022-01-31
    Description: Biodiversity is critical for maintaining and stabilizing ecosystem processes. There is a need for high-resolution biodiversity maps that cover large sea areas in order to address ecological questions related to biodiversity-ecosystem functioning relationships and to provide data for marine environmental protection and management decisions. However, traditional sampling-point-wise field work is not suitable for covering extensive areas in high detail. Spatial predictive modeling using biodiversity data from sampling points and georeferenced environmental data layers covering the whole study area is a potential way to create biodiversity maps for large spatial extents. Random forest (RF), generalized additive models (GAM), and boosted regression trees (BRT) were used in this study to produce benthic (macroinvertebrates, macrophytes) biodiversity maps in the northern Baltic Sea. Environmental raster layers (wave exposure, salinity, temperature, etc.) were used as independent variables in the models to predict the spatial distribution of species richness. A validation dataset containing data that was not included in model calibration was used to compare the prediction accuracy of the models. Each model was also evaluated visually to check for possible modeling artifacts that are not revealed by mathematical validation. All three models proved to have high predictive ability. RF and BRT predictions had higher correlations with validation data and lower mean absolute error than those of GAM. Both mathematically and visually, the predictions by RF and BRT were very similar. Depth and seabed sediments were the most influential abiotic variables in predicting the spatial patterns of biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2022-01-31
    Description: A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST AC in a set of integrations of the coupled Kiel Climate Model, in which only atmosphere model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of the cold tongue’s onset and termination as well as in an underestimation of the boreal spring warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal surface winds, which can be traced back to precipitation biases on both sides of the equator and an erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are inherent to the atmospheric component, as shown by companion uncoupled atmosphere model integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces convection biases and improves simulation of surface winds over land. Analysis of a subset of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these models, very similar mechanisms are at work in driving EEP SST AC biases.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-01-31
    Description: Methane gas hydrates have increasingly become a topic of interest because of their potential as a future energy resource. There are significant economical and environmental risks associated with extraction from hydrate reservoirs, so a variety of multiphysics models have been developed to analyze prospective risks and benefits. These models generally have a large number of empirical parameters which are not known a priori. Traditional optimization-based parameter estimation frameworks may be ill-posed or computationally prohibitive. Bayesian inference methods have increasingly been found effective for estimating parameters in complex geophysical systems. These methods often are not viable in cases of computationally expensive models and high-dimensional parameter spaces. Recently, methods have been developed to effectively reduce the dimension of Bayesian inverse problems by identifying low-dimensional structures that are most informed by data. Active subspaces is one of the most generally applicable methods of performing this dimension reduction. In this paper, Bayesian inference of the parameters of a state-of-the-art mathematical model for methane hydrates based on experimental data from a triaxial compression test with gas hydrate-bearing sand is performed in an efficient way by utilizing active subspaces. Active subspaces are used to identify low-dimensional structure in the parameter space which is exploited by generating a cheap regression-based surrogate model and implementing a modified Markov chain Monte Carlo algorithm. Posterior densities having means that match the experimental data are approximated in a computationally efficient way.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    In:  Limnology and Oceanography, 64 (1). pp. 302-316.
    Publication Date: 2022-01-31
    Description: Coastal seas like the North Sea have been subject to major changes in nutrient inputs over the last decades, resulting in shifts of limiting nutrients for phytoplankton communities. Here, we investigated the seasonal and spatial distribution and synthesis patterns of individual amino acids and distinct fatty acid groups and show how these were affected by different nutrient limitations in natural coastal phytoplankton communities. Nitrogen limited communities exhibited substantially slower synthesis of essential amino acids compared to synthesis of nonessential amino acids. In short‐term nutrient addition experiments, this trend was reversed immediately after N addition to levels found under not limiting conditions. On the contrary, phosphorus limited communities showed no such shift in amino acids. Both N and P limitation induced a shift from structural to storage fatty acids with a concurrent decrease in the synthesis of poly‐unsaturated fatty acids. Reversed effects in fatty acid synthesis after N or P addition were only apparent after 72 h, when they could be found in both fatty acid biosynthesis and concentrations. The different strategies of qualitative and quantitative regulation of different biomolecule synthesis under nutrient scarcity may have far‐reaching consequences for the phytoplankton's nutritional value. Higher trophic levels may have to cope with the loss of essential amino acids and poly‐unsaturated fatty acids in nutrient limited phytoplankton, which could induce changes in the structure of food webs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2022-01-31
    Description: A strong warm event occurred in the southeastern tropical Atlantic Ocean off Angola and Namibia in January and February 2016 with sea surface temperature anomalies reaching 3 °C. In contrast to classical Benguela Niño events, the analysis of various direct observations indicates that the warming was not predominantly forced by an equatorial Kelvin wave exciting a coastally trapped wave but instead resulted from a combination of local processes that are related to (1) a weakening of the alongshore, i.e. mainly southerly, winds and (2) enhanced freshwater input through local precipitation and river discharge. Consistent with the weakened winds, we find a reduction in latent heat loss from the ocean and a poleward surface current anomaly. The surface freshening, which is detected in satellite observations of sea surface salinity, caused a very shallow mixed layer and enhanced upper ocean stratification. This is supported by the analysis of the velocity structure of the Angola Current at 11°S, which shows that at the time of the event subsurface velocities were directed northward while surface velocities were directed southward. The shallow layer of warm and fresh surface water was thus advected poleward by the surface current. In addition, a reduction of the local upwelling and the formation of a barrier layer that inhibits the entrainment of cool subsurface waters into the surface mixed layer might have contributed to the warm surface anomaly. The sudden termination of the warm event was accompanied by a re-intensification of southerly winds in March
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2022-01-31
    Description: Environmental enrichment aims for a deliberate increase in structural complexity in otherwise plain rearing units, helping to reduce aberrant traits and promote welfare of fish kept in captivity. Before putting enrichment protocols into practice, however, practitioners like hatchery managers need clear guidelines on enrichment measures and on the substrates used. In the present study, we used rainbow trout as a model species for salmonid rearing and investigated the use of a single layer of three different gravel types, i.e., small (4–8 mm), medium (8–16 mm) and large (16–32 mm), for environmental enrichment during egg incubation, endogenous and first feeding of rainbow trout and compared this to a barren control. From the egg stage onwards, we determined mortality, fungal prevalence as well as growth of larvae and fingerlings. We found that gravel size significantly affected mortality and fungal prevalence with the smallest gravel size and the control showing the lowest incidents. Growth of larvae and fingerlings was not affected by gravel, both when compared between gravel types and to the barren control. When using gravel for environmental enrichment in salmonid hatcheries, a small gravel size should be used. Small gravel provides the fish with a more natural environment without compromising practical feasibility of enrichment in hatcheries, still allowing for easy visual inspection and manual control of the reared fish.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Tectonics, 38 (2). pp. 552-578.
    Publication Date: 2022-01-31
    Description: We examine the intra‐arc crustal seismicity of the Southern Andes Volcanic Zone (SVZ). Our aim is to resolve inter‐seismic deformation in an active magmatic arc dominated by both margin‐parallel (Liquiñe‐Ofqui fault system, (LOFS)) and Andean transverse faults (ATF). Crustal seismicity provides information about the schizosphere tectonic state, delineating the geometry and kinematics of high strain domains driven by oblique‐subduction. Here, we present local seismicity based on 16‐months data collected from 34 seismometers monitoring a ~200 km long section of the Southern Volcanic Zone, including the Lonquimay and Villarrica volcanoes. We located 356 crustal events with magnitudes between Mw 0.6 and Mw 3.6. Local seismicity occurs at depths down to 40 km in the forearc and consistently shallower than 12 km beneath the volcanic chain, suggesting a convex shape of the crustal seismogenic layer bottom. Focal mechanisms indicate strike‐slip faulting consistent with ENE‐WSW shortening in line with the long‐term deformation history revealed by structural geology studies. However, we find regional to local‐scale variations in the shortening axes orientation as revealed by the nature and spatial distribution of microseismicity, within three distinctive latitudinal domains. In the northernmost domain, seismicity is consistent with splay faulting at the northern termination of the LOFS; in the central domain, seismicity distributes along ENE‐ and WNW‐striking discrete faults, spatially associated with, hitherto seismic ATF. The southernmost domain, in turn, is characterized by activity focused along a N15°E striking master branch of the LOFS. These observations indicate a complex strain compartmentalization pattern within the intra‐arc crust, where variable strike‐slip faulting dominates over dip‐slip movements.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 124 (4). pp. 2348-2373.
    Publication Date: 2022-01-31
    Description: The North Equatorial Undercurrent (NEUC) has been suggested to act as an important oxygen supply route towards the oxygen minimum zone in the Eastern Tropical North Atlantic. Observational estimates of the mean NEUC strength are uncertain due to the presence of elevated mesoscale activities, and models have difficulties in simulating a realistic NEUC. Here we investigate the interannual variability of the NEUC and its impact onto oxygen based on the output of a high‐resolution ocean general circulation model (OGCM) and contrast the results with an unique data set of 21 ship sections along 23° W and a conceptual model. We find that the interannual variability of the NEUC in the OGCM is related to the Atlantic Meridional Mode (AMM) with a stronger and more northward NEUC during negative AMM phases. Discrepancies between OGCM and observations suggest a different role of the NEUC in setting the regional oxygen distribution. In the model a stronger NEUC is associated with a weaker oxygen supply towards the east. We attribute this to a too strong recirculation between the NEUC and the northern branch of the South Equatorial Current (nSEC) in the OGCM. Idealized experiments with the conceptual model support the idea that the impact of NEUC variability on oxygen depends on the source water pathway. A strengthening of the NEUC supplied out of the western boundary acts to increase oxygen levels within the NEUC. A strengthening of the recirculations between NEUC and the nSEC results in a reduction of oxygen levels within the NEUC.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    Wiley | AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 124 (3). pp. 1717-1735.
    Publication Date: 2022-01-31
    Description: The South-East Madagascar Bloom occurs in an oligotrophic region of the southwest Indian Ocean. Phase locked to austral summer, this sporadic feature exhibits substantial temporal and spatial variability. Several studies, with different hypotheses, have focused on the initiation mechanism triggering the bloom, but none has been as yet clearly substantiated. With 19 years of ocean color data set available as well as in situ measurements (Argo profiles), the time is ripe to review this feature. The bloom is characterized in a novel manner, and a new bloom index is suggested, yielding 11 bloom years, including 3 major bloom years (1999, 2006, and 2008). Spatially, the bloom varies from a mean structure (22–32°S; 50–70°E) both zonally and meridionally. A colocation analysis of Argo profiles and chlorophyll-a data revealed a bloom occurrence in a shallow-stratified layer, with low-salinity water in the surface layers. Additionally, a quantitative assessment of the previous hypotheses is performed and bloom occurrence is found to coincide with La Niña events and reduced upwelling intensity south of Madagascar. A stronger South-East Madagascar Current during La Niña may support a detachment of the current from the coasts, dampening the upwelling south of Madagascar, and feeding low-salinity waters into the Madagascar Basin, hence increasing stratification. Along with abundance of light, these provide the right conditions for a nitrogen-fixing cyanobacterial phytoplankton bloom onset
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2022-01-31
    Description: Determination of Mg/Ca in foraminifer shells as a proxy of seawater temperature is of particular interest in paleoclimate reconstruction. Here we show that femtosecond–200 nm–laser ablation–inductively coupled plasma–mass spectrometry is a suitable technique to precisely and accurately determine Mg/Ca in the micrometer-sized calcareous chambers of foraminifers. At low fluence (0.3–0.6 J/cm 2 ) the double-charged 44 Ca ++ and the single-charged 25 Mg + ions are measured nearly simultaneously. Integrated single-shot measurements using a pulse repetition rate of 1 Hz enable precise analyses at a depth resolution of about 50–100 nm/pulse corresponding to an ablated material of 0.3–0.6 ng calcite/pulse for a spot size of 55 μm. High-resolution analyses can be performed until a depth of 10–20 μm and thus particularly suitable for thin-shelled foraminifers. Reproducibility (relative standard deviation) is about 5% as approved by homogeneous reference materials. Calibration is performed with the microanalytical synthetic reference material MACS-3. Magnesium and Ca data of different carbonate and silicate reference materials agree within uncertainties with reference values. The procedure has been successfully applied for detailed analyses of single chambers and shell-depth profiles of live individuals and empty planktic and benthic foraminifer tests from different ocean basins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 124 (6). pp. 4044-4057.
    Publication Date: 2022-01-31
    Description: Interannual variability of Antarctic Intermediate Water (AAIW) in the tropical North Atlantic is investigated using the GECCO2 ocean state estimate and Argo data. AAIW salinity variability near the western boundary is highly correlated with the transport along the western boundary on interannual timescales. Northward propagating anomalies are associated with the western boundary transport variability that, to some extent, is related to the large‐scale wind stress curl forcing by means of the Sverdrup balance. AAIW anomalies also propagate westward with the speed of baroclinic Rossby waves, indicating that the displacement of the meridional salinity gradient by westward propagation of baroclinic Rossby waves plays a role in the variability of AAIW characteristics. Slower eastward spreading of AAIW anomalies is identified on decadal timescales likely associated with the advection of salinity anomalies by weak eastward current bands. Understanding the observed interannual and decadal variability of AAIW salinity is important to properly interpret salinity changes reported in response to changes in the hydrological cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Atmospheres, 124 (10). pp. 5400-5417.
    Publication Date: 2022-01-31
    Description: Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2022-01-31
    Description: Almost all the inorganic carbon on Earth is converted into biomass via the Calvin–Benson–Bassham (CBB) cycle. Here, the central carboxylation reaction is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which can be found in numerous primary producers including plants, algae, cyanobacteria, and many autotrophic bacteria. Although RubisCO possesses a crucial role in global biomass production, it is not a perfect catalyst. Therefore, research interest persists on accessing the full potential of yet unexplored RubisCOs. We recently developed an activity-based screen suited to seek active recombinant RubisCOs from the environment—independent of the native host’s culturability. Here, we applied this screen to twenty pre-selected genomic fosmid clones from six cultured proteobacteria to demonstrate that a broad range of phylogenetically distinct RubisCOs can be targeted. We then screened 12,500 metagenomic fosmid clones from six distinct hydrothermal vents and identified forty active RubisCOs. Additional sequence-based screening uncovered eight further RubisCOs, which could then also be detected by a modified version of the screen. Seven were active form III RubisCOs from yet uncultured Archaea. This indicates the potential of the activity-based screen to detect RubisCO enzymes even from organisms that would not be expected to be targeted.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2022-01-31
    Description: Marine species tend to have extensive distributions, which are commonly attributed to the dispersal potential provided by planktonic larvae and the rarity of absolute barriers to dispersal in the ocean. Under this paradigm, the occurrence of marine microendemism without geographic isolation in species with planktonic larvae poses a dilemma. The recently described Maya hamlet (Hypoplectrus maya, Serranidae) is exactly such a case, being endemic to a 50-km segment of the Mesoamerican Barrier Reef System (MBRS). We use whole-genome analysis to infer the demographic history of the Maya hamlet and contrast it with the sympatric and pan-Caribbean black (H. nigricans), barred (H. puella) and butter (H. unicolor) hamlets, as well as the allopatric but phenotypically similar blue hamlet (H. gemma). We show that H. maya is indeed a distinct evolutionary lineage, with genomic signatures of inbreeding and a unique demographic history of continuous decrease in effective population size since it diverged from congeners just ~3,000 generations ago. We suggest that this case of microendemism may be driven by the combination of a narrow ecological niche and restrictive oceanographic conditions in the southern MBRS, which is consistent with the occurrence of an unusually high number of marine microendemics in this region. The restricted distribution of the Maya hamlet, its decline in both census and effective population sizes, and the degradation of its habitat place it at risk of extinction. We conclude that the evolution of marine microendemism can be a fast and dynamic process, with extinction possibly occurring before speciation is complete.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Advances in Modeling Earth Systems, 11 (8). pp. 2745-2767.
    Publication Date: 2022-01-31
    Description: Mesoscale dynamics of the Agulhas Current system determine the exchange between the Indian and Atlantic oceans, thereby influencing the global overturning circulation. Using a series of ocean model experiments compared to observations, we show that the representation of mesoscale eddies in the Agulhas ring path improves with increasing resolution of submesoscale flows. Simulated submesoscale dynamics are validated with time‐mean horizontal‐wavenumber spectra from satellite sea surface temperature measurements and mesoscale dynamics with spectra from sea surface height. While the Agulhas ring path in a nonsubmesoscale‐resolving (1/20)° configuration is associated with too less power spectral densities on all scales and too steep spectral slopes, the representation of the mesoscale dynamics improves when the diffusion and the dissipation of the model are reduced and some small‐scale features are resolved. Realistic power spectral densities over all scales are achieved when additionally the horizontal resolution is increased to (1/60)° and a larger portion of the submesoscale spectrum is resolved. Results of an eddy detection algorithm applied to the model outputs as well as to a gridded sea surface height satellite product show that in particular strong cyclones are much better represented when submesoscale flows are resolved by the model. The validation of the submesoscale dynamics with sea surface temperature spectra provides guidance for the choice of advection schemes and explicit diffusion and dissipation as well as for further subgrid‐scale parameterizations. For the Agulhas ring path, the use of upstream biased advection schemes without explicit diffusion and dissipation is found to be associated with realistically simulated submesoscales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2022-01-31
    Description: Fluctuations in abundance of dominant species can cause competitive release of resources with consequences on community structure and functioning. In the present study, changes in the intertidal macroinfauna community of an exposed sandy beach were evaluated during two contrasting periods characterized by low and high densities of the yellow clam Amarilladesma mactroides. The increase in clam abundance and biomass was associated with a significant decrease in abundance of the rest of the community. In particular, a decline was observed for the pea crab Austinixa patagoniensis, a commensal species that lives in the burrows of the shrimp Sergio mirim. Our study demonstrates that fluctuations in clam abundance lead to long-term changes in community structure, suggesting the presence of competitive interactions. The environmental stability over the two periods strengthens the hypothesis that the competition between species is crucial for shaping the ecological community. Stable isotope analysis allows discarding trophic competition as mechanism of exclusion. Image maps reveal complementary distribution of species, showing the relevance of the spatial competition, which is mediated by changes in abundance of a third species. Indeed, high densities of A. mactroides reduce the available area for the establishment of the S. mirim burrows, limiting the foraging behavior of its commensal, the pea crab. Such an interaction drives density-dependent exclusion of the pea crab from the intertidal zone following the establishment of the yellow clam population. This study illustrates that spatial competition triggered by the increase of a bed-forming species can have community-wide consequences in exposed sandy beaches
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2022-01-31
    Description: Large reservoirs of methane present in Arctic marine sediments are susceptible to rapid warming, promoting increasing methane emissions. Gas bubbles in the water column can be detected, and flow rates can be quantified using hydroacoustic survey methods, making it possible to monitor spatiotemporal variability. We present methane (CH4) bubble flow rates derived from hydroacoustic data sets acquired during 11 research expeditions to the western Svalbard continental margin (2008-2014). Three seepage areas emit in total 725-1,125 t CH4/year, and bubble fluxes are up to 2 kg.m(-2).year (-1). Bubble fluxes vary between different surveys, but no clear trend can be identified. Flux variability analyses suggest that two areas are geologically interconnected, displaying alternating flow changes. Spatial migration of bubble seepage was observed to follow seasonal changes in the theoretical landward limit of the hydrate stability zone, suggesting that formation/dissociation of shallow hydrates, modulated by bottom water temperatures, influences seafloor bubble release. Plain Language Summary It has been speculated that the release of methane (a potent greenhouse gas) from the seafloor in some Arctic Ocean regions is triggered by warming seawater. Emissions of gas bubbles from the seafloor can be detected by ship-mounted sonars. In 2008, a methane seepage area west of Svalbard was hydroacoustically detected for the first time. This seepage was hypothesized to be caused by dissociation of hydrates (ice-like crystals consisting of methane and water) due to ocean warming. We present an analysis of sonar data from 11 surveys conducted between 2008 and 2014. This study is the first comparison of methane seepage-related hydroacoustic data over such a long period. The hydroacoustic mapping and quantification method allowed us to assess the locations and intensity of gas bubble release, and how these parameters change over time, providing necessary data for numerical flux and climate models. No trend of increasing gas flow was identified. However, we observed seasonal variations potentially controlled by seasonal formation and dissociation of shallow hydrates. The hydrate formation/dissociation process is likely controlled by changes of bottom water temperatures. Alternating gas emissions between two neighboring areas indicate the existence of fluid pathway networks within the sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    In:  Limnology and Oceanography, 64 (5). pp. 1883-1894.
    Publication Date: 2022-01-31
    Description: Abyssal polymetallic nodule fields constitute an unusual deep-sea habitat. The mix of soft sediment and the hard substratum provided by nodules increases the complexity of these environments. Hard substrata typically support a very distinct fauna to that of seabed sediments, and its presence can play a major role in the structuring of benthic assemblages. We assessed the influence of seafloor nodule cover on the megabenthos of a marine conservation area (area of particular environmental interest 6) in the Clarion Clipperton Zone (3950–4250 m water depth) using extensive photographic surveys from an autonomous underwater vehicle. Variations in nodule cover (1–20%) appeared to exert statistically significant differences in faunal standing stocks, some biological diversity attributes, faunal composition, functional group composition, and the distribution of individual species. The standing stock of both the metazoan fauna and the giant protists (xenophyophores) doubled with a very modest initial increase in nodule cover (from 1% to 3%). Perhaps contrary to expectation, we detected little if any substantive variation in biological diversity along the nodule cover gradient. Faunal composition varied continuously along the nodule cover gradient. We discuss these results in the context of potential seabed-mining operations and the associated sustainable management and conservation plans. We note in particular that successful conservation actions will likely require the preservation of areas comprising the full range of nodule cover and not just the low cover areas that are least attractive to mining.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 124 (5). pp. 4399-4427.
    Publication Date: 2022-01-31
    Description: Free gas migration through the gas hydrate stability zone (GHSZ) and subsequent gas seepage at the seabed are characteristic features in marine gas hydrate provinces worldwide. The biogenic or thermogenic gas is typically transported along faults from deeper sediment strata to the GHSZ. Several mechanisms have been proposed to explain free gas transport through the GHSZ. While inhibition of hydrate formation by elevated salinities and temperatures have been addressed previously in studies simulating unfocused, area-wide upward advection of gas, which is not adequately supported by field observations, the role of focused gas flow through chimney-like structures has been underappreciated in this context. Our simulations suggest that gas migration through the GHSZ is, fundamentally, a result of methane gas supply in excess of its consumption by hydrate formation. The required high gas flux is driven by local overpressure, built up from gas accumulating below the base of the GHSZ that fractures the overburden when exceeding a critical pressure, thereby creating the chimney-like migration pathway. Initially rapid hydrate formation raises the temperature in the chimney structure, thereby facilitating further gas transport through the GHSZ. As a consequence, high hydrate saturations form preferentially close to the seafloor, where temperatures drop to bottom water values, producing a prominent subsurface salinity peak. Over time, hydrates form at a lower rate throughout the chimney structure, while initial temperature elevation and salinity peak dissipate. Thus, our simulations suggest that the near-surface salinity peak and elevated temperatures are a result of transient high-flux gas migration through the GHSZ.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    Springer
    In:  Bulletin of Volcanology, 81 (Article number 60).
    Publication Date: 2022-01-31
    Description: The NW-SE striking volcanic front in Nicaragua is dissected into a western and an eastern segment separated by 20 km of N-S offset. The Chiltepe volcanic complex lies at the eastern end of the western segment and at the northern tip of the Nejapa-Miraflores tectonic and volcanic lineament that traces the arc offset. The Chiltepe peninsula attained its present shape and composition during highly explosive and effusive volcanic activity through the Late Pleistocene and Holocene, which formed the Chiltepe Formation (CF) and culminated in the 1.9 ka plinian eruption of the Chiltepe tephra. The previous evolution of this volcanic system is recorded in the volcaniclastic Mateare Formation (MF) exposed west (downwind) of the peninsula and separated from the CF by a large regional erosional unconformity. We divide the MF into the lower MF-1 member (22 volcaniclastic units) and the upper MF-2 member (17 volcaniclastic units), which are separated by a major erosional unconformity. The MF-1 was formed by variably evolved (basalt to dacite) magmas from a mantle source that was moderately metasomatized by fluids derived from subducted sediments. These high-Al moderately hydrous magmas fractionated in a tholeiitic fashion, with early plagioclase but delayed magnetite fractionation (initial Fe-Ti enrichments). Apart from the variable degree of differentiation, magmatic conditions during MF-1 remained fairly constant. While MF-1 contains several erosional unconformities suggesting tectonic activity, MF-2 is conformably stratified and the tholeiitic magmas persisted during this time. However, during MF-2, Al-poor tholeiitic compositions gradually replaced the Al-rich of MF-1 without significant changes in metasomatism or degree of melting at their mantle sources. At the same time, a different mantle source was tapped that was richer in the sediment components, and which produced more hydrous magmas that differentiated in a calc-alkaline fashion with early fractionation of both plagioclase and magnetite. Hence, two mantle source compositions were active during MF-2. The erosional interval between MF and CF, associated with strike-slip motion at the Mateare Fault, correlates with initiation of Nejapa-Miraflores volcanism. We postulate that extension along the Najapa-Miraflores fault system facilitated rapid ascent of mafic magmas from a mantle source laterally away from the arc axis that was less metasomatized than sources directly below the arc. On the Chiltepe peninsula, the Nejapa-Miraflores and Chiltepe magma systems interacted to form tholeiitic, less hydrous types of magmas (andesite to dacite) that erupted intermittently with the dominant calc-alkaline hydrous dacites. While associations of tholeiitic and calc-alkaline magmas at other subduction zones have often been attributed to variable intracrustal processes, we here argue for changes in the mantle source, particularly hydration by slab-derived fluids, as the main control on subsequent differentiation behavior. We further attribute the long-term changes in mantle source conditions through MF and CF, possibly over about 1 My, to result from temporal heterogeneity caused by mantle wedge solid flow and possibly variable fluid flow from the slab.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 20 (11). pp. 4885-4905.
    Publication Date: 2022-01-31
    Description: The presence of gas hydrates (GHs) increases the stiffness and strength of marine sediments. In elasto‐plastic constitutive models, it is common to consider GH saturation (Sh) as key internal variable for defining the contribution of GHs to composite soil mechanical behavior. However, the stress‐strain behavior of GH‐bearing sediments (GHBS) also depends on the microscale distribution of GH and on GH‐sediment fabrics. A thorough analysis of GHBS is difficult, because there is no unique relation between Sh and GH morphology. To improve the understanding of stress‐strain behavior of GHBS in terms of established soil models, this study summarizes results from triaxial compression tests with different Sh, pore fluids, effective confining stresses, and strain histories. Our data indicate that the mechanical behavior of GHBS strongly depends on Sh and GH morphology, and also on the strain‐induced alteration of GH‐sediment fabrics. Hardening‐softening characteristics of GHBS are strain rate‐dependent, which suggests that GH‐sediment fabrics dynamically rearrange during plastic yielding events. We hypothesize that rearrangement of GH‐sediment fabrics, through viscous deformation or transient dissociation and reformation of GHs, results in kinematic hardening, suppressed softening, and secondary strength recovery, which could potentially mitigate or counteract large‐strain failure events. For constitutive modeling approaches, we suggest that strain rate‐dependent micromechanical effects from alterations of the GH‐sediment fabrics can be lumped into a nonconstant residual friction parameter. We propose simple empirical evolution functions for the mechanical properties and calibrate the model parameters against the experimental data. Plain Language Summary Gas hydrates (GHs) are crystalline‐like solids, which are formed from natural gas molecules and water at high pressure and low temperature. GHs, and particularly methane hydrates, are naturally abundant in marine sediments. It is known that the presence of GH increases the mechanical stiffness and strength of sediments, and there is strong effort in analyzing and quantifying these effects in order to understand potential risks of sediment destabilization or slope failure. Based on our experimental results from high‐pressure geotechnical studies, we show that not only the initial amount and distribution of GH are important for the increased strength of GH‐bearing sediments but also the dynamic rearrangement of GH‐sediment fabrics during deformation characterizes the stress‐strain response and enables strength recovery after failure. We propose that different microstructural mechanisms contribute to this rearrangement and strength recovery of GH sediment. However, we consider these complicated processes in a simplified manner in an improved numerical model, which can be applied for geotechnical risk assessment on larger scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2022-01-31
    Description: The isotopic composition of neodymium dissolved in seawater consists of a distal, advected component that reflects water mass mixing and circulation, but near land can also contain a large local component originating from terrestrial sources such as aeolian or fluvial material. In order to use Nd isotopes to reconstruct paleocirculation, it is important to detect any local influences on the seawater signal recorded in deep sea sediments. Here we present rare earth element (REE) and Nd isotope (εNd) records from the deep Caribbean for two well‐studied time intervals in the Late Pliocene and Early Pleistocene. We measured trace element and REE compositions of weakly cleaned foraminifera to investigate if the Nd isotope signal from the same samples contained a local component. We find distinct changes in REE compositions across glaciations that are consistent with increases in the supply of local terrestrial material to the basin likely the results of glacially driven changes in sea level. Despite these larger terrestrial inputs, the Ce anomaly (Ce/Ce*) became more pronounced during glaciations indicating a better deep Caribbean ventilation. Short negative Nd isotope excursions occurred during three of the four studied glaciations, independently of any other proxy indicators for changes in ocean circulation suggesting that inputs from local terrigenous sources of Nd controlled the signal. We recommend that studies that aim to use εNd as a paleocirculation tracer routinely measure REE compositions of the authigenic phase to identify any possible terrestrial influence on the signal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 124 (8). pp. 5923-5951.
    Publication Date: 2022-01-31
    Description: A systematic study of Benguela Nino and Benguela Nina events during 1958 to 2015 including those that developed before the satellite era (1982) is carried out using an ocean general circulation model in combination with a linear equatorial model. Altogether, 21 strong warm and cold anomalous coastal events are identified among which 6 undocumented extreme coastal events are reported. Results suggest that most of these extreme coastal events including the newly identified ones are linked to remote equatorial forcing via mode 2 equatorial Kelvin waves. The latter propagates after approaching the African coast poleward as coastally trapped waves leading surface temperature anomalies along the Angola-Benguela current system by one month. One to two months before the peak of Benguela Ninos or Ninas usually occurring in March-April, a large-scale wind stress forcing is observed with both local (variations of alongshore coastal wind stress) and remote forcing developing simultaneously. Results further suggest that surface temperature anomalies off Southern Angola and in the Angola-Benguela Front are associated with equatorial dynamics and meridional wind stress fluctuations off the southwestern African coast north of 15 degrees S. Similar mechanisms are observed for Northern Namibia in combination with forcing by local meridional wind stress variations. Plain Language Summary The Benguela upwelling system located in the southeastern Atlantic Ocean supports a large marine ecosystem due to upwelling conditions. Every few years, anomalous warm and cold coastal events occur in the southeastern Atlantic and are detrimental for Angola, Namibia, and South Africa, as they affect fisheries and rainfall like El Nino phenomenon in the Pacific. To study these coastal events from 1958 to 2015, we use the output from a tropical Atlantic simulation in combination with the solution of a simple linear equatorial model. We study the anomalous coastal events including the ones that occurred before the satellite era (before 1982) and examine the role of the local wind forcing and the remote forcing associated with equatorial variability. We describe so far undocumented extreme events occurring from 1958 to 2015. Results suggest that most of the extreme coastal warm and cold events are associated with the propagation of equatorial Kelvin waves along the equatorial waveguide which trigger poleward-propagating coastal trapped waves along the southwestern African coast. One to two months before the peak season (usually March-April) of the anomalous coastal events, a large-scale wind pattern is observed, encompassing both variations of alongshore coastal wind in the southeastern Atlantic and zonal wind along the equatorial Atlantic.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2022-01-31
    Description: Predictions of the effects of global change on ecological communities are largely based on single habitats. Yet in nature, habitats are interconnected through the exchange of energy and organisms, and the responses of local communities may not extend to emerging community networks (i.e., metacommunities). Using large mesocosms and meiofauna communities as a model system, we investigated the interactive effects of ocean warming and acidification on the structure of marine metacommunities from three shallow‐water habitats: sandy soft‐bottoms, marine vegetation, and rocky reef substrates. Primary producers and detritus—key food sources for meiofauna—increased in biomass under the combined effect of temperature and acidification. The enhanced bottom‐up forcing boosted nematode densities but impoverished the functional and trophic diversity of nematode metacommunities. The combined climate stressors further homogenized meiofauna communities across habitats. Under present‐day conditions metacommunities were structured by habitat type, but under future conditions they showed an unstructured random pattern with fast‐growing generalist species dominating the communities of all habitats. Homogenization was likely driven by local species extinctions, reducing interspecific competition that otherwise could have prevented single species from dominating multiple niches. Our findings reveal that climate change may simplify metacommunity structure and prompt biodiversity loss, which may affect the biological organization and resilience of marine communities.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Paleoceanography and Paleoclimatology, 34 . pp. 2201-2222.
    Publication Date: 2022-01-31
    Description: Astronomical tuning in the Mediterranean region is primarily based on organically‐mediated proxies, such as cyclicity of organic rich layers or changes in foraminiferal assemblages. Both during and post deposition, organic proxies can be affected by complex processes not immediately related to the changes in precession (insolation) they are assumed to reflect. Here we present an isotopic proxy which exhibits precessional cyclicity yet is inorganic. Seawater lead (Pb) isotope records over four precessional cycles between 6.6 and 6.5 Ma, from bulk sediment leachates of three Messinian, circum‐Mediterranean marginal locations, show variations consistent with precessional cyclicity. During insolation minima, the Pb isotope signatures from all three sites converge to similar values, suggesting a regional process is affecting all three locations at that time. Data from the marginal sites are compared with new data from ODP Site 978 and published data from a variety of geological archives from the Mediterranean region to determine the mechanism(s) causing the observed variability. While the comparisons are not fully conclusive, the timing of events suggest that increased dust production from North Africa during insolation minima is the most likely control. This hypothesis implies that authigenic marine Pb isotope records have the potential to provide a reliable inorganic tie point for Mediterranean cyclostratigraphy where sub‐precessional resolution is required. An inorganic tie point could also provide the means to resolve long‐standing problems in Mediterranean stratigraphy on precessional and sub‐precessional timescales which have been obscured due to post‐depositional changes (e.g., sapropel burn‐down) or suboptimal ecological conditions (e.g., the Messinian Salinity Crisis).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 20 (6). pp. 2955-2984.
    Publication Date: 2022-02-02
    Description: Magma emplacement in organic‐rich sedimentary basins is a main driver of past environmental crises. Using a 2D numerical model, we investigate the process of thermal cracking in contact aureoles of cooling sills and subsequent transport and emission of thermogenic methane by hydrothermal fluids. Our model includes a Mohr‐Coulomb failure criterion to initiate hydrofracturing and a dynamic porosity/permeability. We investigate the Karoo Basin, taking into account host‐rock material properties from borehole data, realistic total organic carbon content, and different sill geometries. Consistent with geological observations, we find that thermal plumes quickly rise at the edges of saucer‐shaped sills, guided along vertically fractured high permeability pathways. Contrastingly, less focused and slower plumes rise from the edges and the central part of flat‐lying sills. Using a novel upscaling method based on sill‐to‐sediment ratio we find that degassing of the Karoo Basin occurred in two distinct phases during magma invasion. Rapid degassing triggered by sills emplaced within the top 1.5 km emitted ~1.6·103 Gt of thermogenic methane, while thermal plumes originating from deeper sills, carrying a 12‐times greater mass of methane, may not reach the surface. We suggest that these large quantities of methane could be re‐mobilized by the heat provided by neighboring sills. We conclude that the Karoo LIP may have emitted as much as ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activity, with emissions up to 3 Gt/year. This quantity of methane and the emission rates can explain the negative δ13C excursion of the Toarcian environmental crisis. Key Points Sill geometry and emplacement depth as well as intruded host rock type are the main factors controlling methane mobilization and degassing Dehydration‐related porosity increase and pore‐pressure‐induced hydrofracturing are important mechanisms for a quick transport of methane from sill to the surface The Karoo Basin may have degassed ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activity
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2022-02-18
    Description: The Atlantic Subtropical Cells (STCs) are shallow wind‐driven overturning circulations connecting the tropical upwelling areas to the subtropical subduction regions. In both hemispheres they are characterized by equatorward transport at thermocline level, upwelling at the equator and poleward Ekman transport in the surface layer. This study uses recent data from Argo oats complemented by ship sections at the western boundary as well as reanalysis products to estimate the meridional water mass transports and to investigate the vertical and horizontal structure of the STCs from an observational perspective. The seasonally varying depth of meridional velocity reversal is used as the interface between the surface poleward ow and the thermocline equatorward ow. The latter is bounded by the 26.0 kg m‐3 isopycnal at depth. We find that the thermocline layer convergence is dominated by the southern hemisphere water mass transport (9.0 ±1.1 Sv from the southern hemisphere compared to 2.9 ±1.3 Sv from the northern hemisphere) and that this transport is mostly confined to the western boundary. Compared to the asymmetric convergence at thermocline level, the wind‐driven Ekman divergence in the surface layer is more symmetric, being 20.4 ±3.1 Sv between 10°N and 10°S. The net poleward transports (Ekman minus geostrophy) in the surface layer concur with values derived from reanalysis data (5.5 ±0.8 Sv at 10°S and 6.4 ±1.4 Sv at 10°N). A diapycnal transport of about 4 Sv across the 26.0 kg m‐3 isopycnal is required in order to maintain the mass balance in the STC circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2022-03-08
    Description: Precise knowledge of wintertime sea ice production in Arctic polynyas is not only required to enhance our understanding of atmosphere‐sea ice‐ocean interactions but also to verify frequently utilized climate and ocean models. Here, a high‐resolution (2‐km) Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared satellite data set featuring spatial and temporal characteristics of 17 Arctic polynya regions for the winter seasons 2002/2003 to 2017/2018 is directly compared to an akin low‐resolution Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) passive microwave data set for 2002/2003 to 2010/2011. The MODIS data set is purely based on a 1‐D energy‐balance model, where thin‐ice thicknesses (≤ 20 cm) are directly derived from ice‐surface temperature swath data and European Centre for Medium‐Range Weather Forecasts Re‐Analysis‐Interim atmospheric reanalysis data on a quasi‐daily basis. Thin‐ice thicknesses in the AMSR‐E data set are derived empirically. Important polynya properties such as areal extent and potential thermodynamic ice production can be estimated from both pan‐Arctic data sets. Although independently derived, our results show that both data sets feature quite similar spatial and temporal variations of polynya area (POLA) and ice production (IP), which suggests a high reliability. The average POLA (average accumulated IP) for all Arctic polynyas combined derived from both MODIS and AMSR‐E are 1.99×105 km2 (1.34×103 km3) and 2.29×105 km2 (1.31×103 km3), respectively. Narrow polynyas in areas such as the Canadian Arctic Archipelago are notably better resolved by MODIS. Analysis of 16 winter seasons provides an evaluation of long‐term trends in POLA and IP, revealing the significant increase of ice formation in polynyas along the Siberian coast.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    Springer
    In:  Springer Climate
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2022-11-18
    Description: The increasing use of rare earth elements (REEs) in diverse technological applications has augmented the demand and exploitation of these worldwide, leading to a higher input of REEs + Yttrium (Y) in the marine environment. The present study investigated the ecotoxicity of Lanthanum (La) and Y to Mytilus galloprovincialis developing embryos and juveniles. This was achieved by quantifying the embryogenesis success after 48 h, and survival of juveniles after 96 h of exposure to different concentrations of La and Y. Results show that both La and Y are more toxic to developing embryos and larvae than to juveniles of M. galloprovincialis. Predicted no-effect concentration (PNEC) values were also derived for the embryo development as a preliminary approach to assess the environmental risk for these compounds to marine organisms. Results revealed that La is more toxic than Y. The high sensitivity of the early developmental stages to these compounds highlight the relevance of including these stages when evaluating the toxicity of chemicals where little information is available. Although older life stages may be more tolerant to toxicants, the population survival will be compromised if new recruits are not viable, with implications to the whole ecosystem health and functioning of the impacted area. Information on the ecotoxicity of chemicals with expanded technological use and that may be released during deep-sea mining activities is urgent in order to help estimate environmental impacts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2022-11-18
    Description: Abyssal plains of the Clarion Clipperton Fracture Zone (CCZ) in the NE Pacific Ocean probably harbour one of the world’s most diverse ecosystems. Gaining a basic understanding of the mechanisms underlying the evolution and persistence of CCZ biodiversity in terms of biogeography and connectivity has both scientific merit and informs the development of policy related to potential future deep-sea mining of mineral resources at an early stage in the process. Existing archives of polychaetes and isopods were sorted using a combined molecular and morphological approach, which uses nucleotide sequences (cytochrome c oxidase subunit I (COI)) and morphological information to identify appropriate sample sets for further investigations. Basic patterns of genetic diversity, divergence and demographic history of five polychaete and five isopod species were investigated. Polychaete populations were found to be genetically diverse. Pronounced long- and short-distance dispersal produces large populations that are continuously distributed over large geographic scales. Although analyses of isopod species suggest the same, spatial genetic structuring of populations do imply weak barriers to gene flow. Mining-related, large-scale habitat destruction has the potential to impact the continuity of both isopod and polychaete populations as well as their long-term dispersal patterns, as ecosystem recovery after major impacts is predicted to occur slowly at evolutionary time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2023-01-03
    Description: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2023-03-22
    Description: Unique marine sediment cores retrieved from the southwestern slope of the Iceland‐Faroe Ridge (IFR), close to the main axis of the Iceland‐Scotland Overflow Water (ISOW) revealed prominent sedimentary cycles reflecting near‐bottom current dynamics, sediment transport and deposition, coincident with Dansgaard‐Oeschger cycles and deglacial perturbations of the Atlantic Meridional Overturning Circulation (AMOC). The transition between Greenland Stadials (GSs) and Greenland Interstadials (GIs) follows a distinct, recurring sedimentation pattern. Basaltic (Ti‐rich) silts were transported from local volcanic sources by strong bottom currents and deposited during GIs comparable to modern ocean circulation. Finer‐grained felsic (K‐rich) sediments were deposited during GSs, when ISOW was weak. Possible felsic source areas include British‐Ireland and/or Fennoscandian shelf areas. A cyclic saw‐tooth pattern of bottom current strength is characterized by gradual intensification during GIs followed by a sharp decline towards GSs as is documented at core sites along the flank of Reykjanes Ridge. The cores north of Faroe Channel instead document the opposite pattern. This suggests that the near‐bottom currents along the Reykjanes Ridge are strongly controlled by the flow cascading over the IFR. Heinrich (like) Stadials (HSs) especially HS‐1 and HS‐2 are characterized by the deposition of very fine felsic sediments pointing to weakened bottom currents. Distinct coarse‐grained intervals of ice rafted debris (IRD) are absent from the sediment records, although pebble and gravel sized IRD is irregularly distributed throughout the fine sediment matrix. Near bottom currents are considered to have a major control on the lithogenic sediment deposition southwest of the Iceland‐Faroe Ridge and further down‐stream.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2023-03-22
    Description: In marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.3 divisions per day) and limited-light (0.41 divisions per day) nutrient replete conditions. OlV7 infection caused early arrest of the host cell cycle, coinciding with a significantly higher proportion of infected cells than OlV1-amended treatments, regardless of host growth rate. OlV7 treatments showed a near-50-fold increase of progeny virions at the higher host growth rate, contrasting with OlV1's 16-fold increase. However, production of OlV7 virions was more sensitive than OlV1 production to reduced host growth rate, suggesting fitness trade-offs between infection efficiency and resilience to host physiology. Moreover, although organic matter released from OlV1- and OlV7-infected hosts had broadly similar chemical composition, some distinct molecular signatures were observed. Collectively, these results suggest that current views on viral relatedness through marker and core gene analyses underplay operational divergence and consequences for host ecology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2023-09-27
    Description: The Earth will exhibit continued global surface warming in response to a sustained increase of atmospheric carbon dioxide (CO2) levels. Massive meltwater input from the Antarctic ice sheet into the Southern Ocean could be one consequence of this warming. Here we investigate the impacts which this meltwater input may have on Earth’s surface climate and ocean circulation in a warming world. To this end a set of ensemble experiments has been conducted with a global climate model forced by increasing atmospheric CO2-concentration and an idealized Antarctic meltwater input to the Southern Ocean with varying amplitude and spatial pattern. As long as the atmospheric CO2-concentration stays moderate, i.e. below approximately twice the preindustrial concentration, and if a strong meltwater forcing of either 0.05 or 0.1 Sv is applied, enhanced Antarctic sea–ice cover and surface air temperature cooling over most parts of the Southern Ocean is observed. When the atmospheric CO2-concentration becomes larger than twice the preindustrial concentration, the meltwater only plays a minor role. The Antarctic meltwater drives significant slowing of the Southern Ocean meridional overturning circulation (MOC). Again, the meltwater influence only is detectable as long as the CO2-forcing is moderate. Much larger MOC changes develop in response to highly elevated atmospheric CO2-levels independent of whether or not a meltwater forcing is applied. The response of the Antarctic circumpolar current (ACC) is nonlinear. Substantial and persistent ACC slowing is simulated when solely the meltwater forcing of 0.1 Sv is applied, which is due to the halt of Weddell Sea deep convection and subsequent collapse of the Southern Ocean MOC. When the increasing atmospheric CO2-concentration additionally drives the model the ACC partly recovers in the long run. The partial recovery is due to strengthening westerly wind stress over the Southern Ocean, which intensifies the Ekman Cell. This study suggests that Southern Hemisphere climate projections for the twenty-first century could benefit from incorporating interactive Antarctic ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2023-11-07
    Description: Global biogeochemical ocean models rely on many parameters, which govern the interaction between individual components, and their response to the physical environment. They are often assessed/calibrated against quasi-synoptic data sets of dissolved inorganic tracers. However, a good fit to one observation might not necessarily imply a good match to another. We investigate whether two different metrics—the root-mean-square error to nutrients and oxygen and a metric measuring the overlap between simulated and observed oxygen minimum zones (OMZs)—help to constrain a global biogeochemical model in different aspects of performance. Three global model optimizations are carried out. Two single-objective optimizations target the root-mean-square metric and a sum of both metrics, respectively. We then present and explore multiobjective optimization, which results in a set of compromise solutions. Our results suggest that optimal parameters for denitrification and nitrogen fixation differ when applying different metrics. Optimization against observed OMZs leads to parameters that enhance fixed nitrogen cycling; this causes too low nitrate concentrations and a too high global pelagic denitrification rate. Optimization against nutrient and oxygen concentrations leads to different parameters and a lower global fixed nitrogen turnover; this results in a worse fit to OMZs. Multiobjective optimization resolves this antagonistic effect and provides an ensemble of parameter sets, which help to address different research questions. We finally discuss how systematic model calibration can help to improve models used for projecting climate change and its effect on fisheries and climate gas emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2024-01-29
    Description: Marine sediments host large amounts of methane (CH4), which is a potent greenhouse gas. Quantitative estimates for methane release from marine sediments are scarce, and a poorly constrained temporal variability leads to large uncertainties in methane emission scenarios. Here, we use 2D and 3D seismic reflection, multibeam bathymetric, geochemical and sedimentological data to (I) map and describe pockmarks in the Witch Ground Basin (central North Sea), (II) characterize associated sedimentological and fluid migration structures, and (III) analyze the related methane release. More than 1500 pockmarks of two distinct morphological classes spread over an area of 225 km2. The two classes form independently from another and are corresponding to at least two different sources of fluids. Class 1 pockmarks are large in size (〉 6 m deep, 〉 250 m long, and 〉 75 m wide), show active venting, and are located above vertical fluid conduits that hydraulically connect the seafloor with deep methane sources. Class 2 pockmarks, which comprise 99.5 % of all pockmarks, are smaller (0.9‐3.1 m deep, 26‐140 m long, and 14‐57 m wide) and are limited to the soft, fine‐grained sediments of the Witch Ground Formation and possibly sourced by compaction‐related dewatering. Buried pockmarks within the Witch Ground Formation document distinct phases of pockmark formation, likely triggered by external forces related to environmental changes after deglaciation. Thus, greenhouse gas emissions from pockmark fields cannot be based on pockmark numbers and present‐day fluxes but require an analysis of the pockmark forming processes through geological time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2024-02-29
    Description: Continental slopes are areas of high primary productivity, in particular where strong winds allow cold, nutrient‐laden deep water to upwell. The seafloor in upwelling areas is affected by repeated large submarine landslides, but the special environmental conditions have as yet not been taken into account in the analysis of these landslides. We show evidence for a potential link between environmental conditions and landslide occurrence for the Cap Blanc Slide Complex in the center of the Cap Blanc upwelling zone. Ocean Drilling Program Site 658 was drilled inside the slide complex, and its integration with high‐resolution seismic lines reveals that the onset of sliding postdates the onset of glaciations in the Northern Hemisphere. The sediment associated with failure surfaces of all seven slide events comprises of diatom ooze, the conditions for the formation of which are only met at the end of glacials. Preconditioning of the slope in the Cap Blanc Slide Complex is thus climatically controlled. We conclude that the presence of ooze formed under specific environmental conditions is an important factor in preconditioning slopes to fail in the Cap Blanc Slide Complex and potentially also at other continental slopes with high primary productivity.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-04-08
    Description: The Lagrangian method-where current location and intensity are determined by tracking the movement of flow along its path-is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid-20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice-free oceans and begin to construct basin-scale, and eventually global-scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-06-27
    Description: An interactive (multi-access) global identification key (OncIdent) has been developed for the pelagic marine microcopepod family Oncaeidae and made accessible online. Details of the general approach and development of the key are given in Bottger-Schnack and Schnack (J Nat Hist 49:2727-2741, 2015). After beta-testing, new additions include illustrations for all species and feature attributes considered, plus a textual summary of each species' feature states in the key. Additional taxonomic notes are given where required, highlighting morphological or molecular genetic peculiarities or problems, with links to large data bases leading directly to more comprehensive information about each species. The present paper briefly reviews the taxonomic background for key construction, summarizes the opportunities and limitations of the current online version OncIdent2.0, and provides guidance for its practical use.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2021-04-25
    Keywords: 551 ; VKB 350 ; 38.20
    Language: English
    Type: anthologyArticle , publishedVersion
    Format: 186-209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    Springer | Berlin [u.a.]
    Publication Date: 2021-04-25
    Description: Colonial non-zooxanthellate corals from deep-water coral reefs, Lophelia pertusa and Madrepora oculata, produce large amounts of extracellular mucus (EMS). This mucus has various functions, e.g., an antifouling capability protecting the coral skeleton from attacks of endolithic and boring organisms. Both corals show thick epithecal and exothecal skeletal parts with a clear lamellar growth pattern. The formation of the epitheca is unclear. It is supposed that the EMS play a central role during the calcification process of the epithecal skeletal parts. Staining with the fluorochrome tetracycline has shown an enrichment of Ca2+ ions in the mucus. In order to investigate this hypothesis, the protein content of the mucus and the intracrystalline organic matter from newly formed epithecal aragonite of Madrepora oculata was determined via sodium dodecyl sulfate (SDS) gel electrophoresis. Identical band patterns within both substances could be detected, one around 45 kDa molecular weight and a cluster around 30-35 kDa molecular weight. The occurrence of identical protein patterns within the mucus and in the newly formed aragonite confirms the idea that the mucus plays an important role during the organomineralization of the coral epitheca.
    Keywords: 551 ; VU 000 ; 38.20
    Language: English
    Type: anthologyArticle , publishedVersion
    Format: 731-744
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2021-03-29
    Description: The incorporation of hydrogen in enstatite in a hydrous system containing various amounts of NaCl was investigated at 25 kbar. The hydrogen content in enstatite shows a clear negative correlation to the NaCl-concentration in the system. The most favourable explanation is the reduction of water fugacity due to dilution. Other reasons for the limited hydrogen incorporation at high NaCl levels, such as a significant influence of Na+ on the defect chemistry or an exchange between OH- and Cl-in enstatite, appear much less important. A partition coefficient D Na En/Fluid = 0.0013 could be determined, demonstrating that Na is less incompatible in enstatite than H. The new results support the idea that dissolved components have to be considered when the total hydrogen storage capacity in nominally anhydrous minerals is estimated, especially in geological settings with high levels of halogens, such as subduction zones.
    Keywords: KEnstatite; Hydrogen incorporation;Water activity; Sodium; Chlorine ; 551
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2021-03-29
    Description: The coprecipitation of U (VI) with iron corrosion products from aqueous solutions by zero valent iron was investigated. The evidence of coprecipitation was demonstrated by conducting experiments with well characterized scrap iron,pyrite and a mixture of both materials with experimental durations of up to four months. Results indicate that under anoxic conditions only less than one tenth of the immobilized U(VI) was associated with the surface of scrap iron, whereas theremaining amount is entrapped in aging corrosion products.
    Keywords: 551
    Language: English
    Type: anthologyArticle , acceptedVersion
    Format: 577-586
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2021-03-29
    Description: Five volcanic tuffs ranging from dacitic tuffs of Hungary to rhyolite, phonolite and basaltic tuffs of Germany were consolidated under laboratory conditions. Prior to consolidation an anti-hygro, a hydrous consolidant, which reduces the swelling ability of clay minerals, was applied. The three consolidants, a silicic acid ester (SAE), an elastic silicic acid ester (eSAE) and an acrylate resin (PMMA) were applied on test specimens under vacuum. Petrographic characterisation (polarizing microscopy, XRD, SEM) provided data for fabric analyses and the mineral composition of the tuffs. Changes in fabric, effective porosity, density, tensile strength, ultrasonic wave velocity were evaluated after the treatment. Weathering simulation tests such as hygric dilatation and thermal dilatation aimed to prove the effectiveness of consolidation and the durability of consolidated tuff samples. More than 500 samples were analysed. The tests showed that SAE caused the highest increase in indirect tensile strength. The water absorption and the pore size distribution of the tuffs were modified by consolidation. The PMMA reduced the water absorption the most, whereas SAE modified it the least. All the tested consolidants increased the thermal dilatation of the tuffs. The changes in hygric dilatation were not uniform: for most tuffs SAE increased and PMMA decreased the hygric dilatation, although the clay-rich Habichtswald tuff showed the opposite trend. The changes in hygric and thermal behaviour of consolidated tuff require special care when specific consolidants are chosen. These products modify the physical properties of consolidated tuffs and change the behaviour of weathering.
    Keywords: Strengthening agents; Tuff; Silicic acid ester; PMMA; Durability ; 551
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2021-03-29
    Keywords: Albrecht-von-Haller-Institut für Pflanzenwissenschaften / Abteilung für Palynologie und Klimadynamik ; Palaeolimnology; Holocene climate; Diatoms; Green algae; Pollen; Karst ; 551
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2021-03-29
    Description: A 782 d solubilization study using not shaken batch experiments and involving one uranium-bearing rock and three natural carbonate minerals was conducted to characterize uranium (U) leaching under oxic conditions. Results showed that aqueous U concentration increased continuously with a solubilization rate of 0.16 mgm-2h-1 for the first 564 d (1.5 y). After 1.5 y, U concentration reached a maximum value (saturation) and decreased afterwards. The saturation concentration of 54 mgL-1 (mean value) was influenced to various extent by the presence of carbonate minerals. Dissolution/precipitation, adsorption or ion exchange processes appear to control U solubilization.
    Keywords: 551
    Language: English
    Type: anthologyArticle , acceptedVersion
    Format: 425-435
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2021-04-25
    Keywords: 551 ; VU 000 ; 38.20
    Language: English
    Type: anthologyArticle , publishedVersion
    Format: 179-211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2021-04-25
    Keywords: 551 ; VU 000 ; 38.20
    Language: English
    Type: anthologyArticle , publishedVersion
    Format: 102-120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2021-04-25
    Keywords: 551 ; VU 000 ; 38.20
    Language: English
    Type: anthologyArticle , publishedVersion
    Format: 121-133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2021-03-29
    Description: The veneer cladding of the Oeconomicum (OEC, Göttingen), the State Theatre of Darmstadt (STD, Darmstadt) and of the State and University Library (SUB, Göttingen) is characterised by pronounced bowing after a short time of exposure. Direct comparison of bowing data related to measurements from 2000 to 2003 at the SUB clearly show that the amplitude in bowing had significantly increased. The bowing is different in intensity and orientation (concave, convex). The cladding material (Peccia marble, Rosa Estremoz marble and Carrara marble) are different in lattice preferred orientation, grain size distribution and grain interlocking. Depending on the bowing, panels may show cracks mostly initiated at the dowels. The percentage of visible cracks and breakouts increases with the amplitude of bowing except for the STD. Repetitive heatingcooling under dry conditions leads to considerable inelastic residual strain only after the first or second thermal cycle. The residual strain continuously increases again if water is present, whereby the moisture content after a thermal cycle has a certain impact on the decay rate. The water-enhanced thermal dilatation strongly correlates with the deterioration rate obtained from the laboratory bow test. Detailed petrophysical investigations provide evidence that with increasing bowing a decrease of mechanical properties (flexural strength or breaking load at dowel hole) occur. Marble degradation is also connected with the increase in porosity and a general shift of the maximum pore radii to larger pore sizes...
    Keywords: Bowing; Marble; Building mapping;Residual strain;Thermal expansion; Bowing potential ; 551
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2021-02-08
    Description: Afforestation of the Sahara has been proposed as a climate engineering method to sequester a substantial amount of carbon dioxide, potentially effective to mitigate climate change. Earlier studies predicted changes in the atmospheric circulation system. These atmospheric feedbacks raise questions about the self-sustainability of such an intervention, but have not been investigated in detail. Here, we investigate changes in precipitation and circulation in response to Saharan large-scale afforestation and irrigation with NCAR’s CESM-WACCM Earth system model. Our model results show a Saharan temperature reduction by 6 K and weak precipitation enhancement by 267 mm/year over the Sahara. Only 26% of the evapotranspirated water re-precipitates over the Saharan Desert, considerably large amounts are advected southward to the Sahel zone and enhance the West African monsoon (WAM). Different processes cause circulation and precipitation changes over North Africa. The increase in atmospheric moisture leads to radiative cooling above the Sahara and increased high-level cloud coverage as well as atmospheric warming above the Sahel zone. Both lead to a circulation anomaly with descending air over the Sahara and ascending air over the Sahel zone. Together with changes in the meridional temperature gradient, this results in a southward shift of the inner-tropical front. The strengthening of the Tropical easterly jet and the northward displacement of the African easterly jet is associated with a northward displacement and strengthening of the WAM precipitation. Our results suggest complex atmospheric circulation feedbacks, which reduce the precipitation potential over an afforested Sahara and enhance WAM precipitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2021-02-08
    Description: Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the “nuclear envelope junction”. The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope–endoplasmic reticulum Ca2+-store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion-by-ion growth rather than by a nanoparticle accretion mechanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2021-02-08
    Description: Numerical models of magmatic hydrothermal systems have become powerful tools for linking surface and seafloor observations to chemical and fluid-dynamic processes at depth. This task requires resolving multi-phase flow over large distances of several kilometers, a wide range of pressure (p) and temperature (T) conditions, and over timescales of several thousands of years. The key numerical challenge is that realistic simulations have to consider the high nonlinearity and strong coupling of the governing conservation equations for mass and energy, while also being numerically efficient so that the required spatial and temporal scales can be resolved. Here we outline possible solutions to this problem by evaluating different implementation strategies and presenting a numerical scheme for fully coupled accurate and efficient flow solutions. The general scheme, based on the Newton–Raphson (NR) method, is presented for the simplified case of 2-D pure water convection and uses a control volume discretization on unstructured meshes. We find that the presented techniques significantly reduce the computational effort with respect to sequential/decoupled schemes. Key to this is a theta-time-differencing method for better accuracy, stability and convergence behavior of the NR-iterations, as well as improvements regarding upwinding. These features make the presented methods useful for coupled simulations of magmatic hydrothermal systems and a potential basis for future 3-D multi-phase codes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    Springer
    In:  Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 111 . pp. 955-963.
    Publication Date: 2021-02-08
    Description: A novel actinobacterium, strain DB165T, was isolated from cold waters of Llullaillaco Volcano Lake (6170 m asl) in Chile. Phylogenetic analysis based on 16S rRNA gene sequences identified strain DB165T as belonging to the genus Subtercola in the family Microbacteriaceae, sharing 97.4% of sequence similarity with Subtercola frigoramans DSM 13057T, 96.7% with Subtercola lobariae DSM 103962T, and 96.1% with Subtercola boreus DSM 13056T. The cells were observed to be Gram-positive, form rods with irregular morphology, and to grow best at 10–15 °C, pH 7 and in the absence of NaCl. The cross-linkage between the amino acids in its peptidoglycan is type B2γ; 2,4-diaminobutyric acid is the diagnostic diamino acid; the major respiratory quinones are MK-9 and MK-10; and the polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, 5 glycolipids, 2 phospholipids and 5 additional polar lipids. The fatty acid profile of DB165T (5% 〉) contains iso-C14:0, iso-C16:0, anteiso-C15:0, anteiso-C17:0, and the dimethylacetal iso-C16:0 DMA. The genomic DNA G+C content of strain DB165T was determined to be 65 mol%. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses presented in this study, strain DB165T (= DSM 105013T = JCM 32044T) represents a new species in the genus Subtercola, for which the name Subtercola vilae sp. nov. is proposed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2021-02-08
    Description: Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to 〉100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to 〉30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since ~15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 6 (3). pp. 565-582.
    Publication Date: 2021-02-08
    Description: To maintain the chance of keeping the average global temperature increase below 2 degrees C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2 degrees C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2021-02-08
    Description: Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical–chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity–ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2021-03-19
    Description: During the summer monsoon, the western tropical Indian Ocean is predicted to be a hot spot for dimethylsulfide emissions, the major marine sulfur source to the atmosphere, and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea spray, should also be enhanced, due to the steady strong winds during the monsoon. Marine air masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the SO234-2/235 cruise in the western tropical Indian Ocean from July to August 2014, directly measured eddy covariance DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (cruise average 9.1 μmol m−2 d−1). The directly measured fluxes, as well as computed isoprene and sea spray fluxes, were combined with FLEXPART backward and forward trajectories to track the emissions in space and time. The fluxes show a significant positive correlation with aerosol data from the Terra and Suomi-NPP satellites, indicating a local influence of marine emissions on atmospheric aerosol numbers.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2021-02-08
    Description: Shallow shore zones are generally considered to provide juvenile habitats for many invertebrate and fish species and additionally serve as spawning grounds for important components of oceanic food webs and fishery resources such as herring (Clupea spp.). Herring attach their demersal eggs to benthic substrates, rendering reproduction success vulnerable to environmental changes and local habitat alterations. However, little information is available on the effects of different substrates on the survival of demersal eggs. Hypothesizing that the structural complexity of spawning substrates generally affects herring egg survival and that the effect magnitude depends on the suitability of ambient environment, field experiments were conducted on a major spawning ground of C. harengus in the Southwestern Baltic Sea. Herring eggs were artificially spawned on substrates of different structural complexities and incubated in situ under differing temperature regimes, at the beginning and the end of the natural herring spawning season, to include the full suite of stressors occurring on littoral spawning beds. Results of this study indicate a positive relation between high structural complexity of spawning substrates and herring egg survival. Mean egg mortality was three times higher on substrates of lowest complexity than on highly complex substrates. These differences became even more prominent under unfavorable conditions that appeared with rising water temperatures later in the spawning season. Although the mechanisms are still unclear, we conclude that structural complexity, particularly formed by submerged aquatic vegetation, provides a crucial prerequisite for the successful reproduction of substrate spawning marine fishes such as herring in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2021-02-08
    Description: Insight into a species’ native and introduced range is essential in understanding the invasion process. Genetic diversity, propagule pressure and environmental conditions all have been recognised as playing a determinant role in invasion success. Here, we aimed to investigate the genetic diversity and population genetic structure (using the COI mtDNA gene region and 22 nDNA microsatellite markers) of the Asian green mussel Perna viridis within its potential native range in Asia and at introduced locations in the USA and the Caribbean. We also analyse genetic data from vessel intercepts and an incursion. By doing so, we aimed to identify genetic signatures that could allow to track vessel samples to their source and provide further insight into potential high-risk invasive populations or areas. Three top hierarchical clusters were identified using the individual-based Bayesian clustering method in STRUCTURE, corresponding to populations in three world regions: (1) USA and Caribbean, (2) India and (3) Southeast Asia. Within Southeast Asia, additional analysis indicate a shallow genetic differentiation of three subgroups consisting of (3a) Thailand, (3b) Taiwan and Hong-Kong, and (3c) a cluster of Singapore–Indonesia samples. Overall, the population structure found in this study suggests that the markers used could be useful in identifying source populations, particularly between the three mains world regions. Most surprisingly however, this study shows that the genetic diversity of samples collected from vessel intercepts and incursions did not differ significantly from established populations in Southeast Asia. In this region, in addition to the high vessel connectivity and number of P. viridis transported, all sampled populations are likely to pose a comparable risk in terms of genetic diversity. The present work represents the most comprehensive population genetic study of P. viridis, and the first to address the potential genetic introduction risk posed by populations of this species. The information and genetic markers in this study constitute a valuable addition to the tools already used to infer on potential high-risk source populations of P. viridis. They should therefore prove useful for biosecurity surveillance and management actions directed at this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2021-02-08
    Description: Air masses in the convective outflows of four large convective systems near Borneo Island in Malaysia were sampled in the height range 11–13 km within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) FP7 European project in November and December 2011. Correlated enhancements of CO, CH4 and the short-lived halogen species (CH3I and CHBr3) were detected when the aircraft crossed the anvils of the four systems. These enhancements were interpreted as the fingerprint of vertical transport from the boundary layer by the convective updraft and then horizontal advection in the outflow. For the four observations, the fraction f of air from the boundary layer ranged between 15 and 67%, showing the variability in transport efficiency depending on the dynamics of the convective system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2018-12-17
    Description: The discovery of known bioactive chemical leads from microbial monocultures hinders the efficiency of drug discovery programmes. Therefore, in recent years, the use of fungal–bacterial coculture experiments has gained considerable attention due to their ability to generate new bioactive leads. In this work, fungal strain Setophoma terrestris was cocultured with Bacillus amyloliquifaciens to discover novel bioactive compounds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    facet.materialart.
    Unknown
    Springer
    In:  In: Volcanoes of the Azores. , ed. by Kueppers, U. and Beier, C. Volcanoes of the World . Springer, Berlin, pp. 251-280.
    Publication Date: 2018-02-26
    Description: The Azores archipelago is geochemically distinct amongst the oceanic intraplate volcanoes in that it has trace element and radiogenic Sr–Nd–Pb–Hf isotope signatures that cover much of the global variation observed in Ocean Island Basalts. Thus, it is the prime example of an intraplate melting anomaly preserving the compositional heterogeneity of the Earth’s mantle. Here, we review the trace element and radiogenic isotope geochemistry of the Azores islands and few submarine samples analysed and published over the past decades and summarise these findings and conclusions. The volcanoes of all islands erupted lavas of the alkaline series and their compositions broadly range from basalts to trachytes (see also Chapter “ Petrology of the Azores Islands” by Larrea et al.). Temperatures and pressures of melting imply that melting in the Azores occurs as a result of both slightly increased temperatures in the mantle (~35 °C) and addition of volatile elements into the mantle source. Basalts from the island of São Miguel show a stronger enrichment in highly incompatible elements like K and the Light Rare Earth Elements than the other islands further to the west. The older and easternmost island Santa Maria has lavas that are more silica-undersaturated than the rocks occurring on the younger islands. Each of the eastern islands shows a different and distinct radiogenic isotope composition and much of this variability can be explained by variably enriched recycled components of different age in their source regions. Amongst the global array, the lavas from eastern São Miguel are uniquely enriched in that they display radiogenic 206Pb/204Pb, 208Pb/204Pb and 87Sr/86Sr isotope ratios best explained by a distinct source in the mantle. The implication of the preservation of such unique, enriched sources in the mantle may indicate that stirring processes in the Azores mantle are not efficiently homogenising heterogeneities over the timescales of recycling of 0.1–1 Ga and possibly even up to 2.5 Ga. One possible explanation is the low buoyancy flux of the Azores mantle when compared to other intraplate settings. The preservation of these source signatures in the lavas on the easternmost Azores islands are the result of smaller degrees of partial melting due to a thicker lithosphere. This likely prevents a homogenisation during magma ascent compared to the western islands, preferentially sampling deep, low degree partial melts from the more fertile mantle sources. The geochemical signatures of the two islands west of the Mid-Atlantic Ridge (Corvo and Flores) imply a source enrichment and degrees of partial melting similar to those east of the ridge. Melting underneath the western islands is the result of a source that must be related to the Azores melting anomaly but has been modified by shallow level processes such as assimilation of oceanic crustal material.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2021-02-08
    Description: The 1Myr tephra records of IODP (International Ocean Discovery Program) Holes U1436A and U1437B in the Izu-Bonin fore- and reararc were investigated in order to assess provenance and eruptive volumes, respectively. In total, 304 tephra samples were examined and 260 primary tephra layers were identified. Tephra provenance was determined by means of major and trace element compositions of glass shards and distinguished between Japan and Izu-Bonin arc origin of the tephra layers. A total of 33 marine tephra compositions were correlated to the Japan arc and 227 to the Izu arc. Twenty marine tephra layers were correlated between the two drilling sites. Additionally, we defined eleven correlations of marine tephra deposits to major widespread Japanese eruptions; from the 1.05Ma Shishimuta-Pink Tephra to the 30ka Aira-Tn Tephra, both from Kyushu Island. These eruptions provide independent time markers within the sediment record and six correlations were used to date tephra layers from Japan in Hole U1436A to establish an alternative age model for this hole. Furthermore, the minimum distal tephra volumes of all detected events were calculated, which enabled the comparison of the tephra volumes that derived from the Japan and the Izu-Bonin arcs. For some of the major Japanese eruptions these are the first volume estimations that also include distal deposits. All of the Japanese tephras derived from events with eruption magnitude Mv≥5.6 and three of the investigated eruptions reach magnitudes Mv≥7. Volcanic events of the Izu-Bonin arc have mostly eruption magnitudes Mv≤5.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2021-04-21
    Description: Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here, we present the first combined dissolved (DPb), labile (LpPb) and particulate (PPb) Pb dataset from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by 4-fold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (〉2500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to ‘buffer’ the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2021-03-19
    Description: Recruitment patterns of sessile species often do not reflect the composition of the local propagule pool. This is, among other processes, attributed to the stimulation or inhibition of settlement by resident species. In an experimental study, we evaluated the effects of different densities of the ascidian Diplosoma listerianum on the settlement of the hydrozoan Obelia sp. For this, we monitored the cover of the dominant fouler Obelia sp. on vertically orientated PVC tiles, which were either bare or pre-seeded with two different densities (sparse or dense) of Diplosoma colonies, over the course of 8 weeks. The settlement tiles were deployed at two study sites in La Herradura Bay, Chile. The presence of D. listerianum enhanced the settlement or the growth or both of the colonial hydrozoan, but this effect disappeared within 4–8 weeks. Furthermore, we tested whether the initial enhancement of Obelia sp. by Diplosoma colonies goes back to the fact that larvae, which reject the ascidian tunic as a settlement substratum after a first contact, colonize nearby surfaces because of their limited mobility. However, we found no support for this assumption. We rather suggest that D. listerianum facilitated colonization indirectly by the accumulation of organic material in its vicinity and/or by its pumping activity. Initial resident-mediated enhancement of the hydrozoan was overridden by processes such as competition between later colonizers within the course of weeks and we could not detect any lasting effects of D. listerianum on the structure of the developing communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (2). pp. 1471-1484.
    Publication Date: 2021-02-08
    Description: The variability of the Atlantic Meridional Overturning Circulation (AMOC) may play a role in sea surface temperature predictions on seasonal to decadal time scales. Therefore, AMOC seasonal cycles are a potential baseline for interpreting predictions. Here we present estimates for the seasonal cycle of transports of volume, temperature, and freshwater associated with the upper limb of the AMOC in the eastern subpolar North Atlantic on the Extended Ellett Line hydrographic section between Scotland and Iceland. Due to weather, ship‐based observations are primarily in summer. Recent glider observations during other seasons present an opportunity to investigate the seasonal variability in the upper layer of the AMOC. First, we document a new method to quality control and merge ship, float, and glider hydrographic observations. This method accounts for the different spatial sampling rates of the three platforms. The merged observations are used to compute seasonal cycles of volume, temperature, and freshwater transports in the Rockall Trough. These estimates are similar to the seasonal cycles in two eddy‐resolving ocean models. Volume transport appears to be the primary factor modulating other Rockall Trough transports. Finally, we show that the weakest transports occur in summer, consistent with seasonal changes in the regional‐scale wind stress curl. Although the seasonal cycle is weak compared to other variability in this region, the amplitude of the seasonal cycle in the Rockall Trough, roughly 0.5–1 Sv about a mean of 3.4 Sv, may account for up to 7–14% of the heat flux between Scotland and Greenland.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2021-02-08
    Description: Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2018-12-17
    Description: We report a new method for calibrating the current gain of 1013 Ω amplifiers in both positive and negative mode used in thermal ionisation mass spectrometry (TIMS). This method uses any isotopic standard or sample to calibrate the gain factor as long as it can produce a stable current signal. It is simpler and more flexible than that recommended by Thermo‐Fisher (the manufacture of the TIMS). In these analyses, the gains of five 1013 Ω amplifiers were assessed. The precision of gain factors was better than 100 ppm (2 RSD) in a day, and the long‐term reproducibility was better than 300 ppm (2 RSD) within 2 to 8 months. After a gain was calibrated, the ratio accuracy and precision in the positive mode for 87Sr/88Sr of NIST 987 Sr and 143Nd/144Nd of La Jolla Nd were 0.710242 ± 60 (2 SD, n = 14) and 0.511842 ± 10 (2 SD, n = 22), respectively, at intensities of 88Sr 0.3 V and 142Nd 0.4 V, while in the negative mode for 187Os/188Os of Merck Os was 0.120229 ± 34 (2 SD, n = 23) at an intensity of 187OsO3 0.01 mV. In addition, a difference in the gain factors between the negative mode TIMS (NTIMS) and positive mode TIMS (PTIMS) has been recognized. The values of the gain factor for NTIMS and PTIMS show a deviation of 0.54% on the Triton and 0.31% on the Triton Plus TIMS in this study; therefore, gain calibration should be carried out on both NTIMS and PTIMS. Moreover, a bias of ~ 1.5 × 10−5 between H and L Faraday cups for the same 1013 Ω amplifier has been detected, hinting that the efficiency of different Faraday cups may affect the gain factors, which can be eliminated through the new method of “cross‐calibration” discribed in this study.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2021-02-08
    Description: Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2021-02-08
    Description: We present the development and validation of a numerical modeling suite for bubble and droplet dynamics of multiphase plumes in the environment. This modeling suite includes real-fluid equations of state, Lagrangian particle tracking, and two different integral plume models: an Eulerian model for a double-plume integral model in quiescent stratification and a Lagrangian integral model for multiphase plumes in stratified crossflows. Here, we report a particle tracking algorithm for dispersed-phase particles within the Lagrangian integral plume model and a comprehensive validation of the Lagrangian plume model for single- and multiphase buoyant jets. The model utilizes literature values for all entrainment and spreading coefficients and has one remaining calibration parameter (Formula presented.), which reduces the buoyant force of dispersed phase particles as they approach the edge of a Lagrangian plume element, eventually separating from the plume as it bends over in a crossflow. We report the calibrated form (Formula presented.), where b is the plume half-width, and r is the distance of a particle from the plume centerline. We apply the validated modeling suite to simulate two test cases of a subsea oil well blowout in a stratification-dominated crossflow. These tests confirm that errors from overlapping plume elements in the Lagrangian integral model during intrusion formation for a weak crossflow are negligible for predicting intrusion depth and the fate of oil droplets in the plume. The Lagrangian integral model has the added advantages of being able to account for entrainment from an arbitrary crossflow, predict the intrusion of small gas bubbles and oil droplets when appropriate, and track the pathways of individual bubbles and droplets after they separate from the main plume or intrusion layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2021-04-23
    Description: Certification of trace metals in seawater certified reference materials (CRMs) NASS-7 and CASS-6 is described. At the National Research Council Canada (NRC), column separation was performed to remove the seawater matrix prior to the determination of Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ni, U, V, and Zn, whereas As was directly measured in 10-fold diluted seawater samples, and B was directly measured in 200-fold diluted seawater samples. High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was used for elemental analyses, with double isotope dilution for the accurate determination of B, Cd, Cr, Cu, Fe, Pb, Mo, Ni, U, and Zn in seawater NASS-7 and CASS-6, and standard addition calibration for As, Co, Mn, and V. In addition, all analytes were measured using standard addition calibration with triple quadrupole (QQQ)-ICPMS to provide a second set of data at NRC. Expert laboratories worldwide were invited to contribute data to the certification of trace metals in NASS-7 and CASS-6. Various analytical methods were employed by participants including column separation, co-precipitation, and simple dilution coupled to ICPMS detection or flow injection analysis coupled to chemiluminescence detection, with use of double isotope dilution calibration, matrix matching external calibration, and standard addition calibration. Results presented in this study show that majority of laboratories have demonstrated their measurement capabilities for the accurate determination of trace metals in seawater. As a result of this comparison, certified/reference values and associated uncertainties were assigned for 14 elements in seawater CRMs NASS-7 and CASS-6, suitable for the validation of methods used for seawater analysis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2021-02-08
    Description: We present a crustal-scale seismic profile in the Barents Sea based on new data. Wide-angle seismic data were recorded along a 600 km long profile at 38 ocean bottom seismometer and 52 onshore station locations. The modeling uses the joint refraction/reflection tomography approach where co-located multi-channel seismic reflection data constrain the sedimentary structure. Further, forward gravity modeling is based on the seismic model. We also calculate net regional erosion based on the calculated shallow velocity structure. Our model reveals a complex crustal structure of the Baltic Shield to Barents shelf transition zone, as well as strong structural variability on the shelf itself. We document large volumes of pre-Carboniferous sedimentary strata in the transition zone which reach a total thickness of 10 km. A high-velocity crustal domain found below the Varanger Peninsula likely represents an independent crustal block. Large lower crustal bodies with very high velocity and density below the Varanger Peninsula and the Fedynsky High are interpreted as underplated material that may have fed mafic dykes in the Devonian. We speculate that these lower crustal bodies are linked to the Devonian rifting processes in the East European Craton, or belonging to the integral part of the Timanides, as observed onshore in the Pechora Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2021-02-08
    Description: Marine macroalgae in temperate regions are constantly exposed to colonization by fouling organisms, but the intensity of fouling fluctuates in time. We, therefore, hypothesized that a macroalgal species from these latitudes should be able to adjust its antifouling defense to the prevailing colonization pressure. To test this assumption, fouling pressure in the Western Baltic Sea as well as the activity of surface extracts gained from the non-native Gracilaria vermiculophylla against the diatom Stauroneis constricta and the filamentous alga Ceramium tenuicorne were assessed over one vegetation period on a monthly basis. We used two solvents with different polarities to extract chemical compounds from the alga. Both, hexane and dichloromethane (DCM) surface extracts, inhibited settlement of C. tenuicorne, while only hexane surface extracts deterred S. constricta. Furthermore, the activities of both extracts fluctuated on the scale of months and the fluctuations in the activity against C. tenuicorne, which were observed in DCM extracts, correlated with the intensity of fouling pressure that C. tenuicorne inflicted on G. vermiculophylla in the field. Thus, G. vermiculophylla appears to be able to adjust its antifouling defenses—at least partly—to fouling pressure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2021-02-08
    Description: We reanalyze existing paleodata of global mean surface temperature ΔTg and radiative forcing ΔR of CO2 and land ice albedo for the last 800,000 years to show that a state‐dependency in paleoclimate sensitivity S, as previously suggested, is only found if ΔTg is based on reconstructions, and not when ΔTg is based on model simulations. Furthermore, during times of decreasing obliquity (periods of land‐ice sheet growth and sea level fall) the multi‐millennial component of reconstructed ΔTg diverges from CO2, while in simulations both variables vary more synchronously, suggesting that the differences during these times are due to relatively low rates of simulated land ice growth and associated cooling. To produce a reconstruction‐based extrapolation of S for the future we exclude intervals with strong ΔTg‐CO2 divergence and find that S is less state‐dependent, or even constant (state‐independent), yielding a mean equilibrium warming of 2–4 K for a doubling of CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2021-02-08
    Description: Estuaries are among the most valuable aquatic systems in terms of their services to human welfare. They offer an ideal framework to assess multiscale processes linking climate and food web dynamics through the hydrological cycle. Resolving food web responses to climate change is fundamental to resilience management of these threatened ecosystems under global change scenarios. Here, we examined the temporal variability of the plankton food web in the Mondego Estuary, central Iberian Peninsula, over the period 2003 to 2012. The results pointed out a cascading effect from climate to plankton communities that follow a non-stationary behavior shaped by the climate variance envelope. Concurrent changes in hydrographic processes at the regional, that is, upwelling intensity, and local, that is, estuarine hydrology, scales were driven by climatic forcing promoted by the North Atlantic Oscillation; the influence of which permeated the physical environment in the estuary affecting both autotrophic and heterotrophic communities. The most conspicuous change arose around 2008 and consisted of an obvious decrease in freshwater taxa along with a noticeable increase in marine organisms, mainly driven by gelatinous zooplankton. The observed increase in small-sized cosmopolitan copepods, that is, Clausocalanus arcuicornis, Oithona plumifera, thermophilic species, that is, Penilia avirostris, and gelatinous zooplankton suggests a structural change in the Mondego plankton community. These results provide empirical support to the expectation that expanding climate variance changes plankton structure and functioning, likely fostering trophic interactions in pelagic food webs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    In:  Limnology and Oceanography, 63 (2). pp. 968-984.
    Publication Date: 2021-06-23
    Description: Overfishing, excess nutrient load, and invasion of Mnemiopsis leidyi acted on the Black Sea from 1960s to 1990s. Under the effect of these drivers, the ecosystem underwent several transformations that culminated in the shift from a planktonic food chain to a network with most of the energy diverted to jellyfish. The interplay between multiple stressors and the intricate web of trophic interactions make it difficult to understand which causative mechanisms linked the sources of change to the observed variations. To study such interplay, we focused on the structure of the trophic interactions and applied loop analysis to qualitatively predict the response of variables to stressors. Significant variations in biomass trends were identified with statistical analysis and considered as benchmark to validate loop analysis predictions. The results of the comparisons were used to select the most influential trophic interactions that explain the changes observed between 1960 and 1990. The models were applied to test (1) the importance of various environmental drivers and (2) the mechanisms that produced the observed changes. The results suggested that the changes observed before M. leidyi invasion were strongly influenced by the excess nutrient addition, an outcome that challenges the relevance of the trophic cascade as described in literature. The concurrent effect of overfishing, climate, and nutrient enrichment likely triggered the outburst of M. leidyi in the late 1980s. Our work shows the potential of loop analysis to grasp the causal relationships between the drivers, the structure of the interactions, and the responses of the variables.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    Springer
    In:  Journal of Applied Phycology, 30 (3). pp. 1859-1874.
    Publication Date: 2021-02-08
    Description: Marine biofouling is a paramount phenomenon in the marine environment and causes serious problems to maritime industries worldwide. Marine algae are known to produce a wide variety of chemical compounds with antibacterial, antifungal, antialgal, and anti-macrofouling properties, inhibiting the settlement and growth of other marine fouling organisms. Significant investigations and progress have been made in this field in the last two decades and several antifouling extracts and compounds have been isolated from micro- and macroalgae. In this minireview, we have summarized and evaluated antifouling compounds isolated and identified from macroalgae and microalgae between January 2010 and June 2016. Future directions for their commercialization through metabolic engineering and industrial scale up have been discussed. Upon comparing biogeographical regions, investigations from Southeast Asian waters were found to be rather scarce. Thus, we have also discussed the need to conduct more chemical ecology based research in relatively less explored areas with high algal biodiversity like Southeast Asia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...