ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2024-03-09
    Description: Physical, chemical and biogeochemical measurements derived from CTD-rosette deployments during three visits to site P3 (November to December, 2017) in the South Atlantic. Measurements were made during COMICS cruise DY086 on the RRS Discovery using a trace metal free Titanium Rosette (events 4, 7, 15, 19, 24, 26, 29) and a Stainless Steel Rosette (all other events). Physical parameters include temperature, salinity, density, photosynthetically active radiation and turbulence; chemical parameters include dissolved oxygen, dissolved oxygen saturation, nitrate, phosphate and silicate; biogeochemical parameters include turbidity, beam transmittance, beam attenuation, fluorescence, particulate organic carbon (POC), dissolved organic carbon (DOC), chlorophyll-a, net primary productivity (NPP), ambient leucine assimilation and bacterial cell count. To determine turbulence, a downward facing lowered acoustic doppler current profiler (LADCP, Teledyne Workhorse Monitor 300 kHz ADCP) was attached to the CTD frame. Shear and strain, which are obtained from velocity and density measurements, were used to estimate the dissipation rate of turbulent kinetic energy and the diapycnal eddy diffusivity from a fine-scale parameterisation. Estimates are calculated by parameterising internal wave-wave interactions and assuming that wave breaking modulates turbulent mixing. A detailed description of the method for calculating diffusivity from LADCP and CTD can be found in Kunze et al. (2006). Two datasets with different vertical resolutions were produced: one in which the shear is integrated from 150 to 300 m and the strain over 20-150 m, and one in which the shear is integrated from 70 to 200 m and the strain over 30-200 m. Nutrients (nitrate, phosphate, silicate) were determined via colourimetric analysis (see cruise report, Giering and Sanders, 2019), POC was determined as described in Giering et al. (2023), DOC and DOC flux were determined as described in Lovecchio et al. (2023), NPP was determined as described in Poulton et al. (2019), and ambient leucine assimilation and bacterial cell count were determined as described in Rayne et al. (2024). Bacterial abundance and leucine assimilation were made from bottle samples of six CTD casts of the stainless-steel rosette. Water was collected at six depths (6 m, deep-chlorophyll maximum, mixed layer depth + 10, 100, 250 and 500 m). Acid-cleaned HDPE carboys and tubing were used for sampling. Samples were then stored in the dark and at in-situ temperature prior to on-board laboratory sample preparation or analysis. Flow cytometry was used to measure bacterial abundance. Room temperature paraformaldehyde was used to fix 1.6 ml samples for 30 minutes. Then, using liquid nitrogen, the samples were flash frozen and stored at -80°C. Samples were then defrosted before being stained using SYBR Green I and run through the flow cytometer (BD FACSort™). The method of Hill et al. (2013) was applied to determine prokaryotic leucine assimilation using L-[4,5-³H] leucine which has a specific activity of 89.3 Ci/mmol­. In the mixed and upper layers of the water column, the protocol in Zubkov et al. (2007) was followed. Below the mixed layer, adaptions to the method included reducing the concentration of ³H-Leucine to 0.005, 0.01, 0.025, 0.04 and 0.05 nM; increasing experimental volumes to 30 ml; enhancing incubation times to 30, 60, 90 and 120 min. These adaptions were made to improve accuracy where lower rates of leucine assimilation were expected. Data were provided by the British Oceanographic Data Centre and funded by the National Environment Research Council.
    Keywords: 74EQ20171115; Angular scattering coefficient, 700 nm; Attenuation, optical beam transmission; Bacteria; Barometer, Paroscientific, Digiquartz TC; biological carbon pump; Calculated; Calculated according to UNESCO (1983); Calculation according to Kunze et al. (2006); Carbon, organic, dissolved; Carbon, organic, dissolved, flux; Carbon, organic, particulate; Chlorophyll a; Colorimetric analysis; COMICS; Conductivity sensor, SEA-BIRD SBE 4C; Controls over Ocean Mesopelagic Interior Carbon Storage; CTD/Rosette; CTD-RO; DATE/TIME; Density, sigma-theta (0); DEPTH, water; Discovery (2013); Dissipation rate; Dissolved Oxygen Sensor, Sea-Bird, SBE 43 and SBE 43F; DY086; DY086_CTD002; DY086_CTD003; DY086_CTD004; DY086_CTD005; DY086_CTD006; DY086_CTD007; DY086_CTD008; DY086_CTD009; DY086_CTD010; DY086_CTD015; DY086_CTD016; DY086_CTD017; DY086_CTD018; DY086_CTD019; DY086_CTD020; DY086_CTD021; DY086_CTD022; DY086_CTD023; DY086_CTD024; DY086_CTD026; DY086_CTD027; DY086_CTD028; DY086_CTD029; DY086_CTD030; DY086_CTD031; DY086_CTD032; DY086_CTD033; Eddy diffusivity; Event label; Flow cytometer, Becton Dickinson, FACSort; Fluorometer, Chelsea Instruments, Aquatracka MKIII; fluxes; High Temperature Catalytic Oxidation (Shimadzu TOC-VCPN); LATITUDE; Leucine uptake rate; Liquid scintillation counter, Packard, TRI-CARB 3100TR; LONGITUDE; marine biogeochemistry; Net primary production of carbon; Nitrate; Organic Elemental Analyzer, Thermo Fisher Scientific, Flash 2000; Oxygen; Oxygen saturation; PAR sensor, Biospherical, LI-COR, SN 70510; PAR sensor, Biospherical, LI-COR, SN 70520; Phosphate; Radiation, photosynthetically active; Radioassays, liquid scintillation counting; Salinity; Scattering meter, WET Labs, ECO-BB OBS; Silicate; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Temperature, water; Temperature sensor, SEA-BIRD SBE 3Plus; Transmissometer, WET Labs, C-Star
    Type: Dataset
    Format: text/tab-separated-values, 171794 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-09
    Description: Data derived from net catches for zooplankton and micronekton during the COMICS cruise DY086 in November to December, 2017. Raw catch counts and biomass measurements have been used alongside published values to provide biomass, respiration and ingestion data between 0 and 500 metres depth (Belcher et al. 2022, Cook et al. 2023, Stowasser et al. 2020). Data values are from multiple net deployments and the number of deployments for each value are provided in the dataset. Bongo, Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) and Rectangular Midwater Trawl (RMT) nets collected small (100 μm mesh; day only), medium (330 μm mesh; day and night) and large (4000 μm mesh; day and night) samples, respectively.
    Keywords: 74EQ20171115; biological carbon pump; biology; BONGO; Bongo net; Calculated; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; Date/Time of event; Date/Time of event 2; DEPTH, water; Depth, water, bottom/maximum; Depth, water, top/minimum; Discovery (2013); DY086; DY086_Bongo_P3A; DY086_Bongo_P3B; DY086_Bongo_P3C; DY086_MOCNESS_P3B; DY086_MOCNESS_P3C; DY086_RMT_P3A; DY086_RMT_P3B; DY086_RMT_P3C; Event label; fluxes; Latitude of event; Longitude of event; marine biogeochemistry; Mean values; MOC; MOCNESS opening/closing plankton net; Rectangular midwater trawl; RMT; Run Number; Runs; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Time of day; Zooplankton and micronekton, biomass as carbon; Zooplankton and micronekton, ingestion rate as carbon; Zooplankton and micronekton, respiration rate as carbon
    Type: Dataset
    Format: text/tab-separated-values, 500 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-02
    Description: Slow-sinking particles were sampled using the Marine Snow Catcher (MSC). For a full description of the MSC and flux calculations see Riley et al. (2012). The MSC was deployed at four depths between 50 - 650 m during four visit at Stations 1 (63°3' N 11°0' W) and three visits at Station 2 (62°5' N 2°3' W) to obtain depth profiles of slow-sinking material. The MSC was further deployed at 50 m during two visits at Station 3 (60°2' N 1°0' E). A total of 33 MSC were deployed. Slow-sinking particles were analysed for particulate organic carbon (POC), particulate inorganic carbon (PIC), biogenic silica (BSi), and Chlorophyll a (total, 〉10 µm).
    Keywords: Basin Scale Analysis, Synthesis and Integration; Biogenic silica; Calcium; Carbon, organic, particulate; Chlorophyll a, total; Date/Time of event; Deep Convection Cruise; DEPTH, water; EURO-BASIN; Event label; Latitude of event; Longitude of event; M87/1_415-1; M87/1_423-1; M87/1_432-1; M87/1_439-1; M87/1_451-1; M87/1_462-1; M87/1_486-1; M87/1_495-1; M87/1_503-1; M87/1_504-1; M87/1_507-1; M87/1_526-1; M87/1_533-1; M87/1_539-1; M87/1_548-1; M87/1_561-1; M87/1_568-1; M87/1_576-1; M87/1_580-1; M87/1_585-1; M87/1_620-1; M87/1_626-1; M87/1_636-1; M87/1_639-1; M87/1_644-1; M87/1_653-1; M87/1_668-1; M87/1_670-1; M87/1_674-1; M87/1_677-1; M87/1_685-1; M87/1_691-1; M87/1_698-1; M87/1a; M87/1b; Marine snow catcher; Meteor (1986); MSC; MSC-1-1; MSC-1-10; MSC-1-11; MSC-1-12; MSC-1-13; MSC-1-14; MSC-1-15; MSC-1-16; MSC-1-17; MSC-1-2; MSC-1-3; MSC-1-4; MSC-1-5; MSC-1-6; MSC-1-7; MSC-1-8; MSC-1-9; MSC-2-1; MSC-2-10; MSC-2-2; MSC-2-3; MSC-2-4; MSC-2-5; MSC-2-6; MSC-2-7; MSC-2-8; MSC-2-9; MSC-3-1; MSC-3-2; MSC-3-3; MSC-3-4; MSC-3-5; MSC-3-6; Nitrogen, particulate; Sample comment; Sodium; Strontium
    Type: Dataset
    Format: text/tab-separated-values, 1130 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-09
    Description: Meteorological data were collected across three visits to site P3 during COMICS cruise DY086 aboard the RRS Discovery in November and December, 2017. Measurements included: air pressure, temperature and humidity; solar and photosynthetically active radiation at both Port and Starboard sides. Data were provided by the British Oceanographic Data Centre and funded by the National Environment Research Council. BODC advised that the ship's anemometer shows inconsistencies and so data from the instrument were not included.
    Keywords: 74EQ20171115; 74EQ20171115-track; ALTITUDE; Barometer, Vaisala, PTB 210; biological carbon pump; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; CT; DATE/TIME; Discovery (2013); DY086; fluxes; Humidity, relative; LATITUDE; LONGITUDE; marine biogeochemistry; PAR sensor, Two Skye Instruments, SKE510; Potential incoming solar radiation; Pressure, atmospheric; Pyranometer, Kipp & Zonen, CM6B; Radiation, photosynthetically active; SUMMER; Sustainable Management of Mesopelagic Resources; Temperature, air; Temperature and humidity sensor, Vaisala, HMP; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 155589 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-09
    Description: Acoustic backscatter data were collected at five frequencies (18, 38, 70, 120 and 200 kHz) across two visits to site P3 (P3A, P3B), South Georgia, aboard the RRS Discovery during DY086. Acoustic backscatter was measured with a Simrad EK60. The data consistently shows no evidence of synchronised diel vertical migration (Cook et al. 2023).
    Keywords: 74EQ20171115; biological carbon pump; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; Date/Time of event; Date/Time of event 2; DEPTH, water; Discovery (2013); DY086; DY086_EK60_P3A; DY086_EK60_P3B; Echo backscatter; Echosounder, Simrad, EK60; Event label; fluxes; Frequency; Latitude of event; Longitude of event; marine biogeochemistry; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Time of day
    Type: Dataset
    Format: text/tab-separated-values, 5760 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-09
    Description: Discrete measurements of particulate organic carbon (POC) concentration and flux were made on the RRS Discovery during COMICS cruise DY086 at site P3 in the South Atlantic from November to December, 2017 (Giering et al. 2023). Data is from a variety of equipment including marine snow catchers, neutrally-buoyant sediment traps (PELAGRA) and a stand-alone pump system. Marine snow catchers settled on-deck for 2 hours. Slow sinking particles were collected from the base and fast sinking particles were collected from the tray. These data were used along with bottle POC data to calibrate glider backscatter data from the GOCART project.
    Keywords: 74EQ20171115; biological carbon pump; Carbon, organic, particulate; Carbon, organic, particulate, flux; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; Date/Time of event; DEPTH, water; Discovery (2013); DY086; DY086_MSC006; DY086_MSC007; DY086_MSC010; DY086_MSC015; DY086_MSC016; DY086_MSC019; DY086_MSC020; DY086_MSC022; DY086_MSC027; DY086_MSC028; DY086_MSC029; DY086_MSC034; DY086_MSC035; DY086_MSC036; DY086_MSC037; DY086_MSC038; DY086_MSC039; DY086_MSC040; DY086_MSC061; DY086_MSC062; DY086_MSC063; DY086_MSC067; DY086_MSC068; DY086_MSC069; DY086_MSC071; DY086_MSC072; DY086_MSC076; DY086_MSC077; DY086_MSC078; DY086_MSC079; DY086_MSC081; DY086_MSC082; DY086_MSC083; DY086_MSC084; DY086_MSC093; DY086_MSC094; DY086_MSC099; DY086_MSC100; DY086_MSC101; DY086_MSC103; DY086_MSC104; DY086_MSC105; DY086_MSC106; DY086_MSC111; DY086_MSC112; DY086_MSC113; DY086_MSC114; DY086_MSC125; DY086_MSC126; DY086_MSC127; DY086_MSC128; DY086_Pelagra006; DY086_Pelagra007; DY086_Pelagra008; DY086_Pelagra009; DY086_Pelagra010; DY086_Pelagra011; DY086_Pelagra012; DY086_Pelagra013; DY086_Pelagra014; DY086_Pelagra015; DY086_Pelagra016; DY086_Pelagra017; DY086_Pelagra018; DY086_Pelagra019; DY086_Pelagra020; DY086_Pelagra021; DY086_Pelagra022; DY086_Pelagra023; DY086_Pelagra024; DY086_Pelagra025; DY086_Pelagra026; DY086_Pelagra027; DY086_Pelagra028; DY086_Pelagra029; DY086_Pelagra030; DY086_Pelagra031; DY086_Pelagra032; DY086_Pelagra033; DY086_Pelagra034; DY086_Pelagra035; DY086_Pelagra036; DY086_Pelagra037; DY086_Pelagra038; DY086_SAPS001; DY086_SAPS002; DY086_SAPS003; DY086_SAPS004; DY086_SAPS005; Event label; fluxes; Latitude of event; Longitude of event; marine biogeochemistry; Marine snow catcher; MSC; PELAGRA; SAPS; Site; Stand-alone pumps; SUMMER; Sustainable Management of Mesopelagic Resources; Trap, sediment, drifting
    Type: Dataset
    Format: text/tab-separated-values, 366 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2018-05-30
    Description: The extensive release of oil during the 2010 Deepwater Horizon spill in the northern Gulf of Mexico perturbed the pelagic ecosystem and associated sinking material. To gauge the recovery and post-spill baseline sources, we measured Δ14C, δ13C and δ34S of sinking particles near the spill site and at a reference site and natural seep site. Particulates were collected August 2010–April 2016 in sediment traps moored at sites with depths of 1160–1660 m. Near the spill site, changes in Δ14C indicated a 3-year recovery period, while δ34S indicated 1–2 years, which agreed with estimates of 1–2 years based on hydrocarbon composition. Under post-spill baseline conditions, carbon inputs to sinking particulates in the northern Gulf were dominated by surface marine production (80–85%) and riverine inputs (15–20%). Near the spill site, Δ14C values were depleted in October 2010 (–140 to –80‰), increasing systematically by 0.07 ± 0.02‰ day–1 until July 2013 when values reached –3.2 ± 31.0‰. This Δ14C baseline was similar to particulates at the reference site (3.8 ± 31.1‰). At both sites, δ13C values stayed constant throughout the study period (–21.9 ± 0.5‰ and –21.9 ± 0.9‰, respectively). δ34S near the spill site was depleted (7.4 ± 3.1‰) during October 2010–September 2011, but enriched (16.9 ± 2.0‰) and similar to the reference site (16.2 ± 3.1‰) during November 2012–April 2015. At the seep site, Δ14C values were –21.7 ± 45.7‰ except during August 2012–January 2013 when a significant Δ14C depletion of –109.0 ± 29.1‰ was observed. We interpret this depletion period, also observed in δ13C data, as caused by the incorporation of naturally seeped oil into sinking particles. Determination of post-spill baselines for these isotopic signatures allows for evaluation of anthropogenic inputs in future.
    Electronic ISSN: 2325-1026
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...