ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,295)
  • Elsevier  (2,307)
  • Springer  (988)
  • 2015-2019  (1,717)
  • 2010-2014  (1,394)
  • 1985-1989  (184)
Collection
Language
Years
Year
  • 101
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Seafloor Geomorphology as Benthic Habitat. , ed. by Harris, P. T. and Baker, E. K. Elsevier, Amsterdam, pp. 457-469. ISBN 978-0-12-385140-6
    Publication Date: 2017-06-20
    Description: The Cap de Creus continental shelf and Cap de Creus canyon are located in the southern most sector of the Gulf of Lions, in the northwestern Mediterranean. The Cap de Creus continental shelf contains sandy and muddy sediments and an abrupt morpho­ logy, with rocky outcrops, relict bioherms, erosive features, and planar bedforms. The Cap de Creus canyon breaches the shelf at a depth of 110 m and denotes a marked dif­ ference in the morphology between the northern and the southern flank, reflecting a different depositional regime. The most common substrates correspond to coarse and medium sands (28%) and silty sediments (40%). The most common megabenthic assemblages of the shelf correspond to the communities of "offshore detritic" (31.95%) and "coastal terrigenous muds" (36.99%), mostly dominated by sea pens, alcyonaceans, and ceriantharians. The northern flank of the Cap de Creus canyon is predominantly depositional, whereas the southern flank is erosional. Rocky outcrops provide the sub­ stratum for cold­water coral (CWC) communities' development, in which the white coral Madrepora oculata is the most abundant species.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 126 . pp. 40-49.
    Publication Date: 2020-02-06
    Description: Highlights: • We investigated growth and longevity of three deep-sea squids from the Monterey Bay. • We found daily growth increments in the statoliths of two deep-sea squids. • The estimated longevities are higher than those of shallow water relatives. • The estimated growth rates suggest a reduced pace of life in deep-sea squids. Abstract Coastal and epipelagic cephalopods are among the fastest growing invertebrates, with life cycles of typically 1 year or less. Evidence is accumulating that deep-sea taxa often live longer and grow slower than their shallow water relatives. We test the hypothesis that deep-sea squid show increased longevity and reduced growth rates compared to coastal and epipelagic species, by validation experiments and quantification of statolith increments of three deep-sea squids from the Monterey Submarine Canyon. The periodicity of statolith increment formation in coastal species is daily, but is unknown for deep-sea squid. Between 2010 and 2013, specimens of Chiroteuthis calyx, Galiteuthis phyllura and Octopoteuthis deletron were captured by remotely operated vehicles and trawl nets off California. ROV-captured living squid were immersed in tetracycline and kept alive in the lab for between 3 and 14 days. Correlating the number of elapsed days with the number of newly deposited statolith increments, and statolith growth after the fluorescent tetracycline mark, provided evidence of regular and daily increment deposition, in C. calyx and O. deletron. This relationship was less strong in G. phyllura and the one-increment-per-day hypothesis was not accepted for this species. Reconstructing growth rates based on statolith counts and wet weights from animals of a wide size range suggest that O. deletron is a slower growing squid (0.59% BW/day) than C. calyx (1.3% BW/day) and G. phyllura (1.2% BW/day). Octopoteuthis deletron matures at around two years, the oldest C. calyx was a mature male of 1.5 years and the eldest G. phyllura was 10 months and still immature. Maximum reported sizes for G. phyllura and C. calyx exceed those of our examined specimens, and therefore their longevity likely exceeds 2 years, in particular if the females brood their eggs. Our study supports the hypothesis that deeper living squid exhibit reduced growth rates and an increased longevity compared to shallow living species. We discuss these traits in the context of a life in the deep pelagic ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2020-02-06
    Description: Highlights • Identify new fine-grained hydrate filled fracture units in the Terrebonne Basin. • Identify new hydrate bearing thin sands, mostly within fractured muds. • Present detailed seismic amplitude maps of the new hydrate bearing units. • Discuss methane migration mechanisms and hydrate formation in thin sands. • Identify and discuss source-reservoir relationships between thick muds and thin sands. Abstract The interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are 〉100 m-thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grained units lack fracture features, and they contain 1–4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    facet.materialart.
    Unknown
    Springer
    In:  In: Evolution of Lightweight Structures. Biologically-inspired systems, 6 . Springer, Dordrecht, pp. 39-58.
    Publication Date: 2017-07-20
    Description: While the geometries of diatom frustules have been investigated in detail, the processes leading to their formation—morphogenesis and biomineralization—are not well understood. The study of organic templates, which are suspected to be important for biosilicification of diatoms, have been mainly investigated on the basis of diverse demineralization techniques. In contrast to naturally occurring dissolution of diatom cell walls in natural habitats, all experiments in vitro were based on chemical reagents including HF- or alkali-based techniques with addition of some additives as presented in this chapter. Mostly, the amino acids (serine, threonine, hydrohyproline) diverse proteinaceous materials (frustulins, pleuralins, silaffins, silacidins, circulins) as well as polyamines have been proposed to regulate biosilicification in vivo in diatoms. In this chapter, we review the biochemical pathways and potential functions of these chemical compounds and their roles in the biomineralization process. In addition, we demonstrate the presence of chitin and discuss its potential as scaffolding as well as a template material in siliceous cell walls of diatoms. The current findings show that a complex network of different organic components is responsible for the biomineralization of diatoms. Since both the organic network and the precipitated silica are integrated in the material which forms the diatom frustule, the material properties must differ from that of pure silica. As the material properties are a crucial factor for the defensive performance of the frustule and thus their survival, it is likely that organic templates for silicification play a role both for the development process and for the improvement of the material properties of the finished shells.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2020-02-06
    Description: Over the last decade there has been renewed interest in determining the water contents of basaltic magmas. A commonly applied method is analysis of H2O from melt inclusions in olivine. However, it is also well known that these can rapidly lose (or gain) H2O by diffusion. An alternative is to measure the H2O contents of clinopyroxene phenocrysts and use a partition coefficient (D) to estimate the original H2O content of the host magma. This approach is not without complications and several recent studies have attempted to assess the effects of diffusive loss of H2O from magmatic clinopyroxenes. In the ideal case, these crystals should be taken from rapidly cooled tephra or lapilli but such materials are not always available. In order to further assess the potential of using 5-10mm clinopyroxenes from lavas we undertook a detailed, multi-analytical investigation of clinopyroxenes from an ankaramite flow on Pico Island in the Azores. We conclude that these can be trusted to preserve (probably minimum) magmatic H2O contents if the H2O concentrations of multiple clinopyroxenes from a single sample form a linear correlation with the AlIV content that demonstrates a coupled substitution with little or no H2O loss. Conversely, if H2O contents decrease from core to rim whereas AlIV contents remain relatively constant then it is likely that those clinopyroxenes lost H2O during differentiation and/or cooling. We suspect that the olivine melt inclusions we analysed from Pico and São Miguel Islands also underwent diffusive loss of H2O. Using these criteria, we present clinopyroxene-derived magmatic H2O estimates for Corvo, Flores Faial, Pico and São Miguel Islands that range from 0.28 to 2.2wt%. When combined with published data these show that H2O contents often extend to higher values on the islands than along the adjacent mid-Atlantic ridge. These localised, elevated H2O contents can explain why the islands are emergent despite being situated away from the ridge and perhaps also the asymmetric nature of the bathymetry of the archipelago. It is possible that this H2O was recycled from material subducted very early on in Earth's history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2020-02-06
    Description: Highlight • It is important to develop systems able to detect and classify mineralized zones from waste materials while drilling deep-water; • Seismic P-wave velocities (Vp) were measured on 40 SMS and unmineralized mini-cores; • The porosity was back-calculated from Vp; • The results were compared with electrical resistivity measurements; • Using Archie’s Law, it is possible to observe that metallic conduction exists. Abstract Deep-sea mining exploration for seafloor massive sulfide (SMS) deposits is currently increasing. At present, most exploration activities are surficial and use indirect methods to identify potential sites and perform first assessments. For a proper resource estimate, however, drilling is inevitable. By using seabed drill rigs, exploration costs can be reduced considerably. SMS deposits are normally found at depths between 1000 and 4000 m and in order for deep sea mining to be implemented, reliable technologies are needed. Additionally, the development of geophysical systems that can detect and classify mineralized zones from waste materials while drilling could decrease costs and speed up offshore operations by limiting the amount of drilling of unmineralized materials. This paper shows how the physical properties of SMS can be used to discriminate between host rocks and mineralization. Seismic P-wave velocities (Vp) were measured on 40 SMS and unmineralized mini-cores. By back-calculating the porosity from Vp, comparing the results with electrical resistivity measurements, and using Archie's Law, it is possible to observe that metallic conduction exists. For deep-sea mineral exploration, the combination of seismic tests, electrical resistivity and magnetic susceptibility could support the preliminary discrimination of mineralized samples in the cores while drilling at the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2021-02-08
    Description: A Benguela Niño developed in November 2010 and lasted for 5 months along the Angolan and Namibian coastlines. Maximum amplitude was reached in January 2011 with an interannual monthly Sea Surface Temperature anomaly larger than 4 °C at the Angola Benguela Front. It was the warmest event since 1995. Consistent with previous Benguela Niños, this event was generated by a relaxation of the trade winds in the western equatorial Atlantic, which triggered a strong equatorial Kelvin wave propagating eastward along the equator and then southward along the southwest African coast. In the equatorial band, the associated ocean sub-surface temperature anomaly clearly shows up in data from the PIRATA mooring array. The dynamical signature is also detected by altimetry derived Sea Surface Height and is well reproduced by an Ocean Linear Model. In contrast to previous Benguela Niños, the initial propagation of sub-surface temperature anomalies along the equator started in October and the associated warming in the Angolan Benguela Front Zone followed on as early as November 2010. The warming was then advected further south in the Northern Benguela upwelling system as far as 25°S by an anomalously strong poleward sub-surface current. Demise of the event was triggered by stronger than normal easterly winds along the Equator in April and May 2011 leading to above normal shoaling of the thermocline along the Equator and the south-west African coastline off Angola and an associated abnormal equatorward current at the Angola Benguela Front in April and May 2011.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2021-02-08
    Description: Highlights • Analytical and numerical methods are employed to investigate fluid flow in active mud volcanoes or SHHS. • The effects of conduit radius and fluid properties on the flow rate are presented. • Conduit radius of such piercement systems cannot exceed a few metres at depth. • Clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. • A maximal exsolution depth between 1800 and 3200 m is inferred for CH4 and between 750 and 1000 m for CO2. Clastic eruptions involve the rapid ascension of sedimentary clasts together with fluids, gas and/or liquid phases that may further deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and, more generally, piercement structures. They involve various processes, acting over a wide range of scales, which makes them a complex and challenging multi-phase system to model. Although piercement structures have been widely studied and discussed, only a few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is a spectacular large scale clastic eruption. The Lusi eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand ongoing clastic eruptions and thus fossil clastic systems. We use both analytical formulations and numerical models to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement systems cannot exceed a few metres at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m depth for methane and between 750 m and 1000 m for carbon dioxide. Based on annual gas fluxes, we estimate that the conduit radius should be no larger than 1.5 m to match the maximal mud discharge, recorded at Lusi.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Micropaleontology, 135 . pp. 45-55.
    Publication Date: 2020-02-06
    Description: Highlights • Planktic foraminifera species show an Early Holocene 14C plateau analogous to the atmospheric 14C plateau at 10.2–9.6 cal ka. • Age-calibrated Early Holocene 14C plateau boundaries provide precise age control in 3 sediment cores on a 900 km long transect. • Differences between planktic foraminiferal and atmospheric 14C ages reveal the 14C reservoir age of local surface waters. • Different planktic species document different 14C reservoir ages characteristic of different surface and subsurface waters. To trace spatial variations in Holocene reservoir ages of surface and subsurface waters we studied narrowly spaced 14C records of planktic foraminifera in three high-sedimentation rate cores from the Nordic Seas, the Barents Sea continental margin and eastern Fram Strait. The two northern cores reveal a distinct Early Holocene 14C plateau in dates on the subsurface dweller Neogloboquadrina pachyderma at 9.3–9.1 14C ka. The plateau was tuned to an atmospheric 14C plateau at 9.0–8.7 14C ka that spans 10.2–9.6 calendar ka. These two plateau boundaries provide robust age control points to estimate short-term changes in sedimentation rate and to correlate paleoceanographic signals over 900 km along the West Spitsbergen Current. The difference between planktic and atmospheric 14C plateau ages suggests local 14C reservoir ages of 370–400 yr. Planktic foraminifera species that inhabit different water masses document different reservoir ages. By comparison, the subpolar N. incompta reveals a reservoir age of 150 yr, probably formed in well-mixed Atlantic-sourced waters during winter. The near-surface dweller Turborotalita quinqueloba shows an age of 290 yr in the Fram Strait, but one of 720 yr at the Barents Sea continental margin. The latter age suggests a calcification within old, meltwater-enriched Arctic surface waters admixed by the East Spitsbergen Current. Likewise, we assign an elevated reservoir age of 760 yr on mixed species at a Norwegian Sea site near 71°N to Preboreal meltwaters that spread from northern Norway far west, also documented by the spatial distribution of a coeval δ13C minimum of N. pachyderma.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    Springer
    In:  Advances in Atmospheric Sciences, 33 (3). pp. 352-364.
    Publication Date: 2019-02-01
    Description: State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities. Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5 (Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni˜no events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni˜no events, especially the extreme El Ni˜no events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure (especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2020-02-06
    Description: It was proposed to utilize siderite FeCO3 in mid to late Archaean Superior type banded as a proxy to constrain the CO2 partial pressure of Archaean atmospheres. Implicit in this proposition is that siderite was a primary carbonate mineral that crystallized directly from Fe2+ enriched Archaean seawater, in equilibrium with atmospheric CO2. To our knowledge that proposition has not been demonstrated to be valid. We test with water-gas exchange experiments under controlled CO2 partial pressures if siderite can be stabilized as a primary mineral in Fe2+ bearing seawater. Reduced seawater proxies enriched in Fe2+ and Mn2+ are equilibrated with reduced N2-CH4-CO2-H2 gas phases with variable CO2. The solid phases stabilized in Fe2+ enriched water compositions are amorphous ferrous iron hydroxy carbonates. Crystalline siderite FeCO3 is not found to be a stable phase. The phases precipitating from Mn2+ enriched water include crystalline rhodochrosite MnCO3 and possibly amorphous Mn-enriched phases. Based on these results we advise against using siderite in banded iron formations as a CO2 sensor for the Archaean atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2020-02-06
    Description: Highlights • We review the knowledge on modern high-latitude planktic foraminifers. • Subpolar species currently invade higher latitudes. • Climate change affects phenology, seawater pH, and carbon turnover. • Modern planktic foraminifers are briefly discussed for their paleoceanographic significance. Abstract Planktic foraminifers can be sensitive indicators of the changing environment including both the Arctic Ocean and Southern Ocean. Due to variability in their ecology, biology, test characteristics, and fossil preservation in marine sediments, they serve as valuable archives in paleoceanography and climate geochemistry over the geologic time scale. Foraminifers are sensitive to, and can therefore provide proxy data on ambient water temperature, salinity, carbonate chemistry, and trophic conditions through shifts in assemblage (species) composition and the shell chemistry of individual specimens. Production and dissolution of the calcareous shell, as well as growth and remineralization of the cytoplasm, affect the carbonate counter pump and to a lesser extent the soft-tissue pump, at varying regional and temporal scales. Diversity of planktic foraminifers in polar waters is low in comparison to lower latitudes and is limited to three native species: Neogloboquadrina pachyderma, Turborotalita quinqueloba, and Globigerina bulloides, of which N. pachyderma is best adapted to polar conditions in the surface ocean. Neogloboquadrina pachyderma hibernates in brine channels in the lower layers of the Antarctic sea ice, a strategy that is presently undescribed in the Arctic. In open Antarctic and Arctic surface waters T. quinqueloba and G. bulloides increase in abundance at lower polar to subpolar latitudes and Globigerinita uvula, Turborotalita humilis, Globigerinita glutinata, Globorotalia inflata, and Globorotalia crassaformis complement the assemblages. Over the past two to three decades there has been a marked increase in the abundance of Orcadia riedeli and G. uvula in the subpolar and polar Indian Ocean, as well as in the northern North Atlantic. This paper presents a review of the knowledge of polar and subpolar planktic foraminifers. Particular emphasis is placed on the response of foraminifers to modern warming and ocean acidification at high latitudes and the implications for data interpretation in paleoceanography and paleoclimate research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2020-02-06
    Description: High-resolution marine seismic data acquisition and subsequent analyses are highly influenced by sea conditions, directly affecting data quality and interpretation. Traditional swell effect correction methods are effective in improving reflector continuity; however, they are less useful for enhancing travel time consistency at intersection points of crossing lines. To develop a robust swell-removal technique for a set of crossing lines multi-beam echo sounder (MBES) data and Chirp sub-bottom profiler (SBP) data were acquired. After generation of a time structure map of the sea-bottom converted from the final processed multi-beam data, a moving average was used to improve the event continuity of the sea-bottom reflection of the Chirp SBP data. Using the position of the Chirp SBP data, the difference between the travel time of the sea-bottom from the smoothed map and the original travel time of the sea-bottom is calculated as a static correction. The static correction method based on the MBES data was compared and verified using three different cases: (i) simple 2D swell effect correction on a line-by-line basis, (ii) comparing the swell corrections at the crossing positions of 2D lines acquired from different dates, and (iii) comparison of ties of intersection points between 2D lines after new swell correction applied. Although a simple 2D swell correction showed great enhancement of reflector continuity, only the full static correction using the newly proposed method using MBES data produced completely corrected reflection events especially at the crossing points of 2D lines.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2017-09-15
    Description: Uraninite solubility in 0.001–2.0 m HCl solutions was experimentally studied at 500°C, 1000 bar, and hydrogen fugacity corresponding to the Ni/NiO buffer. It was shown that the following U(IV) species dominate in the aqueous solution: U(OH)40, U(OH)2Cl20, and UOH Cl30 Using the results of uraninite solubility measurement, the Gibbs free energies of U(IV) species at 500°C and 1000 bar were calculated (kJ/mol): −9865.55 for UO2(aq), −1374.57 for U(OH)2 Cl20, and −1265.49 for UOH Cl30, and the equilibrium constants of uraninite dissolution in water and aqueous HCl solutions were estimated: UO2(cr) = UO2(aq), pK0 = 6.64; UO2(cr) + 2HCl0 = U(OH)2 Cl20, pK2 = 3.56; and UO2(cr) + 3HCl0 = UOHcl30 + H2O, pK3 = 3.05. The value pK1 ≈ 5.0 was obtained as a first approximation for the equilibrium UO2(cr) + H2O + HCl0 = U(OH)3Cl0. The constant of the reaction UO2(cr) + 4HCl0 = UCl40 + 2H2O (pK4 = 7.02) was calculated taking into account the ionization constants of U Cl40 and U(OH)40, obtained by extrapolation from 25 to 500°C at 1000 bar using the BR model. Intense dissolution and redeposition of gold (material of experimental capsules) was observed in our experiments. The analysis and modeling of this phenomenon suggested that the UO2 + x/UO2 redox pair oxidized Au(cr) to Au+(aq), which was then reduced under the influence of stronger reducers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2020-02-06
    Description: Highlights • 2-D velocity models at the highest slip patch during the Chilean 2010 Mw 8.8 earthquake. • The highest slip patch correlates with large accretionary prisms. • The highest slip patch correlates with low continental slope angles. • A similar pattern is observed along the giant 1960 Mw 9.5 earthquake rupture area. Abstract Subduction megathrust earthquakes show complex rupture behaviour and large lateral variations of slip. However, the factors controlling seismic slip are still under debate. Here, we present 2-D velocity-depth tomographic models across four trench-perpendicular wide angle seismic profiles complemented with high resolution bathymetric data in the area of maximum coseismic slip of the 8.8 Maule 2010 megathrust earthquake (central Chile, 34°–36°S). Results show an abrupt lateral velocity gradient in the trench-perpendicular direction (from 5.0 to 6.0 km/s) interpreted as the contact between the accretionary prism and continental framework rock whose superficial expression spatially correlates with the slope-shelf break. The accretionary prism is composed of two bodies: (1) an outer accretionary wedge (5–10 km wide) characterized by low seismic velocities of 1.8–3.0 km/s interpreted as an outer frontal prism of poorly compacted and hydrated sediment, and (2) the middle wedge (∼50 km wide) with velocities of 3.0–5.0 km/s interpreted as a middle prism composed by compacted and lithified sediment. In addition, the maximum average coseismic slip of the 2010 megathrust event is fairly coincident with the region where the accretionary prism and continental slope are widest (50–60 km wide), and the continental slope angle is low (〈5°). We observe a similar relation along the rupture area of the largest instrumentally recorded Valdivia 1960 9.5 megathrust earthquake. For the case of the Maule event, published differential multibeam bathymetric data confirms that coseismic slip must have propagated up to ∼6 km landwards of the deformation front and hence practically the entire base of the middle prism. Sediment dewatering and compaction processes might explain the competent rheology of the middle prism allowing shallow earthquake rupture. In contrast, the outer frontal prism made of poorly consolidated sediment has impeded the rupture up to the deformation front as high resolution seismic reflection and multibeam bathymetric data have not showed evidence for new deformation in the trench region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2021-02-08
    Description: Afforestation of the Sahara has been proposed as a climate engineering method to sequester a substantial amount of carbon dioxide, potentially effective to mitigate climate change. Earlier studies predicted changes in the atmospheric circulation system. These atmospheric feedbacks raise questions about the self-sustainability of such an intervention, but have not been investigated in detail. Here, we investigate changes in precipitation and circulation in response to Saharan large-scale afforestation and irrigation with NCAR’s CESM-WACCM Earth system model. Our model results show a Saharan temperature reduction by 6 K and weak precipitation enhancement by 267 mm/year over the Sahara. Only 26% of the evapotranspirated water re-precipitates over the Saharan Desert, considerably large amounts are advected southward to the Sahel zone and enhance the West African monsoon (WAM). Different processes cause circulation and precipitation changes over North Africa. The increase in atmospheric moisture leads to radiative cooling above the Sahara and increased high-level cloud coverage as well as atmospheric warming above the Sahel zone. Both lead to a circulation anomaly with descending air over the Sahara and ascending air over the Sahel zone. Together with changes in the meridional temperature gradient, this results in a southward shift of the inner-tropical front. The strengthening of the Tropical easterly jet and the northward displacement of the African easterly jet is associated with a northward displacement and strengthening of the WAM precipitation. Our results suggest complex atmospheric circulation feedbacks, which reduce the precipitation potential over an afforested Sahara and enhance WAM precipitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2020-02-06
    Description: Highlights • New and reprocessed seismic data improved structural mapping at the Møre Margin. • Time-structure and thickness maps of the Cretaceous units have been constructed. • Stratigraphy reconstruction of a transect reveals 188 km extension. • Average stretching factor is 2.2–3.6 depending on assumed initial crustal thickness. Abstract Lithospheric stretching is the key process in forming extensional sedimentary basins at passive rifted margins. This study explores the stretching factors, resulting extension, and structural evolution of the Møre segment on the Mid-Norwegian continental margin. Based on the interpretation of new and reprocessed high-quality seismic, we present updated structural maps of the Møre margin that show very thick post-rift sediments in the central Møre Basin and extensive sill intrusion into the Cretaceous sediments. A major shift in subsidence and deposition occurred during mid-Cretaceous. One transect across the Møre continental margin from the Slørebotn Subbasin to the continent-ocean boundary is reconstructed using the basin modelling software TecMod. We test different initial crustal configurations and rifting events and compare our structural reconstruction results to stretching factors derived both from crustal thinning and the classical backstripping/decompaction approach. Seismic interpretation in combination with structural reconstruction modelling does not support the lower crustal bodies as exhumed and serpentinised mantle. Our extension estimate along this transect is ~ 188 ± 28 km for initial crustal thickness varying between 30 and 40 km.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2020-02-06
    Description: Olivine-hosted inclusions of silicate and sulfide melts, Cr-spinel and pyroxene were studied to estimate magma composition, temperature, pressure, and fO2 at the onset and during the silicate-sulfide immiscibility in modern arc basalt from Tolbachik volcano, Kamchatka arc. We demonstrate that the olivine phenocrysts hosting sulfide and silicate melt inclusions belong to the same population. The compositions of the silicate melt inclusions in most primitive olivine (88–91 mol% Fo) represent moderately oxidized (~ QFM + 1.1) high-MgO (up to 12–12.6 wt%) and high CaO/Al2O3 (0.8–1.2) melt that has abundances and ratios of the lithophile trace elements typical of island arc magmas. The initial volatile contents in parental Tolbachik magma are estimated from the melt inclusions and mass-balance considerations to be at least 4.9 wt% H2O, 2600 ppm S, 1100 ppm Cl, 550 ppm F, and 1200 ppm CO2. These data are used to calculate the temperature (~ 1220 °C) and minimum pressure (3 kbar) at which the beginning of crystallization and exsolution of sulfide melt took place. The presence of anhydrite, especially ubiquitous in the crystallized silicate melt associated with sulfide globules, suggest that much higher sulfur abundances prior to degassing and sulfate immiscibility and/or crystallization should be expected. We tentatively considered hydrothermal accumulations of sulfur (elemental, sulfate and sulfide) in the volcanic conduit responsible for local contamination and oversaturation of the Tolbachik magma in sulfur and related sulfide immiscibility. Coexisting sulfide and sulfate can be also interpreted in favor of the magmatic sulfide oxidation and related generation of S-rich fluids. Such fluids are expected to accumulate metals released from decomposed sulfide melts and supply significant epithermal mineralization, including native gold.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    facet.materialart.
    Unknown
    Elsevier
    In:  Current Biology, 27 (11). R489-R494.
    Publication Date: 2017-10-04
    Description: Invisible to the naked eye, yet dominating life with some 1030 cells, bacteria and archaea (referred to herein as ‘microbes’) play key roles in the global cycling of nutrients, matter and energy in our oceans. Having experimented for over 3.5 billion years since their first appearance, they are true master chemists that are capable of carrying out the most diverse and complex of chemical reactions. One of the most abundant groups, cyanobacteria, converts light into chemical energy by fixing carbon dioxide into organic matter. Part of this fixed carbon is consumed by higher trophic levels, while another fraction sinks to the deep sediments where, over geological time scales, it fossilizes into the natural resources that we tap into for our everyday lives. Despite our knowledge of their global importance and significant recent advances in marine microbiome research (Figure 1), some of the most fundamental questions still remain unanswered, and serve as active drivers of current research in this field: How many microbes are out there, and how many different types? What are they? What are their functional roles? How are they globally distributed? How do they adapt to varying environmental conditions and how will they respond to future environmental changes? This Primer provides a brief overview on how these questions have been addressed in the context of developing technologies. We discuss new insights, as well as new concepts and more refined questions, and we highlight some of the future promises and challenges that lie ahead.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 129 . pp. 1-9.
    Publication Date: 2020-02-06
    Description: Reliable very deep shipborne SBE 911plus Conductivity Temperature Depth (CTD) data to within 60m from the bottom and Kongsberg EM122 0.5° × 1° multibeam echosounder data are collected in the Challenger Deep, Mariana Trench. A new position and depth are given for the deepest point in the world's ocean. The data provide insight into the interplay between topography and internal waves in the ocean that lead to mixing of the lowermost water masses on Earth. Below 5000m, the vertical density stratification is weak, with a minimum buoyancy frequency N = 1.0 ± 0.6 cpd, cycles per day, between 6500 and 8500m. In that depth range, the average turbulence is coarsely estimated from Thorpe-overturning scales, with limited statistics to be ten times higher than the mean values of dissipation rate εT = 3 ± 2 × 10-11 m2 s-3 and eddy diffusivity KzT = 2 ± 1.5 × 10-4 m2 s-1 estimated for the depth range between 10,300 and 10,850m, where N = 2.5 ± 0.6 cpd. Inertial and meridionally directed tidal inertio-gravity waves can propagate between the differently stratified layers. These waves are suggested to be responsible for the observed turbulence. The turbulence values are similar to those recently estimated from CTD and moored observations in the Puerto Rico Trench. Yet, in contrast to the Puerto Rico Trench, seafloor morphology in the Mariana Trench shows up to 500m-high fault scarps on the incoming tectonic plate and a very narrow trench, suggesting that seafloor topography does not play a crucial role for mixing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-02-01
    Description: The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-02-01
    Description: Submarine groundwater discharge represents a major but poorly constrained component of coastal marine chemical budgets. In the current study, the geochemical behavior of 224Ra, inorganic nitrogen species, and Fe in shallow coastal groundwater was characterized to improve estimates of chemical flux via submarine groundwater discharge (SGD) at a site in the York River estuary, VA (USA). Directly measured SGD rates varied between 3.9 ± 1.2 cm day−1 offshore, and 8.9 ± 2.6 cm day−1 close to shore. A clear inverse relationship was observed between SGD and tidal height, reflecting the hydraulic gradient between groundwater and surface water. Discharge rates varied spatially in conjunction with the subterranean estuary location, and there was a strong inverse correlation between seepage rates and seepage salinity. Dissolved 224Ra activity in the mixing zone reached levels up to 6 dpm L−1 and co-varied with salinity in the groundwater but not in the surface water or seepage water. Instead, a consistent sigmoidal trend of Ra with pH was observed, which matched previous laboratory experiment results. Dissolved NH4 + reached concentrations up to 120 μM in the groundwater and appeared to mix conservatively with respect to salinity in the subterranean estuary. In contrast, NOx (NO2 − + NO3 −) was low in both fresh groundwater and surface water and showed non-conservative enrichment (up to 23 μM) within the subterranean estuary. Dissolved Fe also showed non-conservative excess in the subterranean estuary, reaching concentrations up to 50 μM. SGD-derived chemical fluxes were estimated using several different commonly used approaches: average groundwater concentrations, pore water constituent-salinity trends coupled with directly collected seepage salinity, constituent concentrations in directly collected seepage, and concentrations in shallowest groundwater samples. Different flux estimates were compared with a “variable endmember” approach based on the observed geochemical distribution and inferred behavior.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2018-02-05
    Description: Submarine groundwater discharge (SGD) is an important component of chemical fluxes in the coastal ocean. The composition of SGD is influenced by biogeochemical reactions that take place within the subterranean estuary (STE), the subsurface mixing zone of fresh and saline groundwaters. The STE is characterized by redox gradients that affect the speciation and mobility of redox-sensitive elements (RSEs). We examined the distributions and behavior of the RSEs Mo, U, V, and Cr within the larger redox framework of a shallow STE and evaluated the source-sink function of the STE for these elements. We found that the advection of water through the STE and the apparent respiration of organic matter drives the formation of a “classic” redox sequence typically observed in diffusion-dominated fine-grained sediments. High concentrations of dissolved organic matter (up to 2.9 mM) lead to extensive sulfide production (up to 1.8 mM) within 3 m of the surface. Both Mo and U are quantitatively removed as oxic surface waters mix into ferruginous and sulfidic zones. Molybdenum removal appears to occur where sulfide concentrations exceed ~ 11 μM, a previously reported threshold for quantitative formation of highly particle-reactive thiomolybdate species. Uranium removal apparently occurs via reduction and formation of insoluble phases or sorption to sediments. It is not clear how readily sequestered metals may be returned to solution, but SGD may be an important sink in the marine budget for both Mo and U. In contrast, both V and Cr show non-conservative addition across the salinity mixing gradient. Increases in pH appear to promote dissolution of V from minerals within the shallow aquifer, and mobilization may also be associated with dissolved organic matter. Chromium enrichment is associated with higher dissolved organic matter and is likely due to the formation of soluble Cr-organic complexes. Fluxes of these elements were constrained using SGD volume fluxes, determined using radium isotopes as well as direct discharge measurements by Lee-type seepage meters, and concentrations in directly-sampled seepage (Mo: − 0.21 to − 7.7 μmol m− 2 day− 1; U: − 0.02 to − 0.6 μmol m− 2 day− 1; V: 0.05 to 2.0 μmol m− 2 day− 1; Cr: 0.12 to 4.4 μmol m− 2 day− 1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2018-03-08
    Description: Brackish coastal groundwater is enriched in Ra, which is transported to surface waters via submarine groundwater discharge (SGD). The Ra activity of the SGD end-member is influenced by a variety of environmental factors including salinity, pH, and isotope half-life. In the York River estuary (YRE), 223Ra, 224Ra, and 226Ra were measured in surface water and shallow groundwater across a range of salinities and additional Ra sources quantified (desorption and diffusion from sediments, input from tidal marshes). The Ra budget of the estuary indicated a major source of Ra that could only be satisfied by SGD. The apparent Ra flux was combined with groundwater Ra end-member activity to estimate SGD volume fluxes of 5–178 L m− 2 d− 1. Each isotope exhibited a different seasonal pattern, with significantly higher 224Ra flux during summer than winter, lower 226Ra SGD flux during summer than winter, and no seasonal differences in 223Ra SGD flux. However, the SGD 224Ra end-member activity varied with seasonal pore water salinity fluctuations, indicating end-member control on seasonal 224Ra flux. Each Ra isotope suggested a different SGD volume flux, indicating that different nuclide regeneration rates may respond to and reflect different flow mechanisms in the subterranean estuary. This work indicates that volume fluxes estimated using geochemical tracers are sensitive to SGD end-member variations and end-member variability must be well-characterized for reliable SGD flux estimates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Chemistry, 156 . pp. 38-48.
    Publication Date: 2018-03-08
    Description: Solid-solution partitioning of Ra determines the dissolved Ra composition of porewater in marine sands. Therefore, sorption controls also influence the endmember concentration of Ra in submarine groundwater discharge (SGD). Ra is widely used as a tracer of SGD, and constraining sorption controls in permeable sands is necessary to evaluate spatial and temporal variation in Ra groundwater activities. This work presents Ra distribution coefficients measured in seawater (salinity 35) for some common solid sorbents as well as different solution compositions relevant to permeable marine sands and the subterranean estuary. There was a strong correlation of Ra distribution coefficient (Kd = solid-phase Ra/solution Ra) with surface area for size-fractionated sediments (log Kd (L/g) = 0.77 [log S.A. (m2/g)] + 0.73; r2 = 0.76). Ra sorption showed no direct relationship with solid-phase Fe or Mn content of the sands, although removal of visible surficial oxide coatings with dilute acid reduced Kd by a factor of 2 to 3. Synthetic Fe-oxides showed nearly two orders of magnitude difference in Ra sorption. Ferrihydrite had the highest Ra sorption coefficient at 1535 ± 410 L kg− 1, followed by lepidocrocite (174 ± 21 L kg− 1), hematite (75 ± 17 L kg− 1), and goethite (20 ± 8 L kg− 1). A marked increase in Ra adsorption was observed with increasing pH, with the sorption edge of natural sands falling within the pH range of 5–8. The extent of Ra sorption at a given pH varied among different substrates. No effect of dissolved Fe was observed on Ra partitioning. A large increase in Ra Kd was evident with increasing Ba concentration when seawater contained sulfate, opposite the effect that would be expected for sorption competition. No effect of Ba concentration was observed when sulfate was excluded from the ASW, indicating that barite precipitation caused the Kd increase. There was no clear effect of temperature on Ra sorption between 2 and 60 °C. Results of this study show that minor solid-phase components increase the Ra sorption capacity of bulk sands and buffer the dissolved Ra concentration (i.e., the SGD endmember). Solution controls on Ra sorption have the potential to greatly alter the Ra composition of discharging groundwater. Given that high-salinity, high-pH conditions probably prevail in porewater below the sediment–water interface, the actual SGD Ra endmember may be less variable than suggested by compilations that include groundwater from deep and fresh groundwater. Highlights ► Variable Ra partitioning to size-fractionated and diverse sediments was primarily controlled by specific surface area. ► Ra displayed pH-dependent sorption to sands, with a sorption edge between pH 5 and 8. ► No effect on Ra partitioning was observed for temperature or competition by dissolved Fe and Ba.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2018-03-08
    Description: Submarine groundwater discharge (SGD) into a shallow lagoon on the west coast of Mauritius Island (Flic-en-Flac) was investigated using radioactive (3H, 222Rn, 223Ra, 224Ra, 226Ra, 228Ra) and stable (2H, 18O) isotopes and nutrients. SGD intercomparison exercises were carried out to validate the various approaches used to measure SGD including radium and radon measurements, seepage rate measurements using manual and automated meters, sediment bulk conductivity and salinity surveys. SGD measurements using benthic chambers placed on the floor of the Flic-en-Flac Lagoon showed discharge rates up to 500 cm/day. Large variability in SGD was observed over distances of a few meters, which were attributed to different geomorphological features. Deployments of automated seepage meters captured the spatial and temporal variability of SGD with a mean seepage rate of 10 cm/day. The stable isotopic composition of submarine waters was characterized by significant variability and heavy isotope enrichment and was used to predict the contribution of fresh terrestrially derived groundwater to SGD (range from a few % to almost 100%). The integrated SGD flux, estimated from seepage meters placed parallel to the shoreline, was 35 m3/m day, which was in reasonable agreement with results obtained from a hydrologic water balance calculation (26 m3/m day). SGD calculated from the radon inventory method using in situ radon measurements were between 5 and 56 m3/m per day. Low concentrations of radium isotopes observed in the lagoon water reflected the low abundance of U and Th in the basalt that makes up the island. High SGD rates contribute to high nutrients loading to the lagoon, potentially leading to eutrophication. Each of the applied methods yielded unique information about the character and magnitude of SGD. The results of the intercomparison studies have resulted a better understanding of groundwater–seawater interactions in coastal regions. Such information is an important pre-requisite for the protection and management of coastal freshwater resources. Highlights ► Large fluctuations in SGD fluxes from 0 to 360 cm/day were observed. ► The integrated shoreline SGD fluxes were between 5 and 56 m3/m day. ► The groundwater contribution in SGD varied from a few % to almost 100%. ► The observed high SGD rates contributed to high nutrients loading to the lagoon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2021-04-23
    Description: The stoichiometric dissociation constants of carbonic acid ( and ) were determined by measurement of all four measurable parameters of the carbonate system (total alkalinity, total dissolved inorganic carbon, pH on the total proton scale, and CO2 fugacity) in natural seawater and seawater-derived brines, with a major ion composition equivalent to that Reference Seawater, to practical salinity (SP) 100 and from 25 °C to the freezing point of these solutions and –6 °C temperature minimum. These values, reported in the total proton scale, provide the first such determinations at below-zero temperatures and for SP 〉 50. The temperature (T, in Kelvin) and SP dependence of the current and (as negative common logarithms) within the salinity and temperature ranges of this study (33 ≤ SP ≤ 100, –6 °C ≤ t ≤ 25 °C) is described by the following best-fit equations: = –176.48 + 6.14528 – 0.127714 SP + 7.396×10–5 + (9914.37 – 622.886 + 29.714 SP) T–1 + (26.05129 – 0.666812 ) lnT (σ = 0.011, n = 62), and = –323.52692 + 27.557655 + 0.154922 SP – 2.48396×10–4 + (14763.287 – 1014.819 – 14.35223 SP) T–1 + (50.385807 – 4.4630415 ) lnT (σ = 0.020, n = 62). These functions are suitable for application to investigations of the carbonate system of internal sea ice brines with a conservative major ion composition relative to that of Reference Seawater and within the temperature and salinity ranges of this study.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2021-02-08
    Description: Documenting the early tectonic and magmatic evolution of the Izu–Bonin–Mariana (IBM) arc system in the Western Pacific is critical for understanding the process and cause of subduction initiation along the current convergent margin between the Pacific and Philippine Sea plates. Forearc igneous sections provide firm evidence for seafloor spreading at the time of subduction initiation (52 Ma) and production of “forearc basalt”. Ocean floor drilling (International Ocean Discovery Program Expedition 351) recovered basement-forming, low-Ti tholeiitic basalt crust formed shortly after subduction initiation but distal from the convergent margin (nominally reararc) of the future IBM arc (Amami Sankaku Basin: ASB). Radiometric dating of this basement gives an age range (49.3–46.8 Ma with a weighted average of 48.7 Ma) that overlaps that of basalt in the present-day IBM forearc, but up to 3.3 m.y. younger than the onset of forearc basalt activity. Similarity in age range and geochemical character between the reararc and forearc basalts implies that the ocean crust newly formed by seafloor spreading during subduction initiation extends from fore- to reararc of the present-day IBM arc. Given the age difference between the oldest forearc basalt and the ASB crust, asymmetric spreading caused by ridge migration might have taken place. This scenario for the formation of the ASB implies that the Mesozoic remnant arc terrane of the Daito Ridges comprised the overriding plate at subduction initiation. The juxtaposition of a relatively buoyant remnant arc terrane adjacent to an oceanic plate was more favourable for subduction initiation than would have been the case if both downgoing and overriding plates had been oceanic.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2017-12-13
    Description: The Neoarchean-Paleoproterozoic Transvaal Supergroup in South Africa contains the well-preserved stromatolitic Campbellrand-Malmani carbonate platform, which was deposited in shallow seawater shortly before the 2.40–2.32 Ga Great Oxidation Event (GOE). This platform is composed of alternating stromatolitic carbonates and mudstones and is a prominent candidate for (isotope-) geochemical mapping to investigate the appearance of very small amounts of free oxygen that accumulated in shallow waters preceding the GOE. Mo isotopes in sedimentary archives are widely used as a proxy for redox-changes in modern and ancient environments and recent evidence suggests that oxy-molybdate (MoO42−) is directly transferred from ocean water to inorganic carbonates with negligible fractionation, thus reflecting oceanic Mo isotope signatures. In this study we analyzed major and trace element compositions as well as Mo isotopic compositions of carbonate and mudstone samples from the KMF-5 drill core. Geochemical indicators, such as Fe and Mn concentrations and Fe-to-Mn abundance ratios reveal the preservation of some geochemical indicators despite the widespread silicification and dolomitization of the platform. Heavy δ30Si values of silicified carbonates between 0.53 and 2.35‰ point to Si precipitation from surface water during early diagenesis rather than to a later hydrothermal overprint. This assessment is supported by the frequent observation of rip-up structures of silica (chert) layers within the entire sedimentary succession. The δ98Mo values of whole rock samples throughout the Malmani-Campbellrand platform range between −0.82 and +1.40‰, similar to values reported for deeper slope carbonates from the Griqualand West area, but variations are independent from lithology or depositional water depth. These large variations in δ98Mo values indicate molybdenum redox cycling and thus the presence of free oxygen in the atmosphere-ocean system at that time, in agreement with earlier Mo isotopic studies on Campbellrand carbonates and shales. A similar range in δ98Mo values for carbonates between +0.40 and +0.87‰, however, was also found on the hand specimen scale, indicating the danger of a sample bias on the Mo isotopic stratigraphy of this carbonate platform. Results of previously unpublished adsorption experiments of Mo on CaCO3 clearly indicate that the Mo inventory of Malmani-Campbellrand carbonates was not only influenced by primary adsorption from seawater, but to a much larger degree by secondary processes during early diagenesis, which also affected the Mo isotopic composition of the samples on a local scale. Our results indicate that Mo concentrations and isotopic compositions in ancient stromatolitic carbonates were subject to redox changes within microbial mats and within the soft sediment during early diagenesis and later lithification, and as such cannot be used to quantitatively reconstruct the amount of free atmospheric oxygen or its fluctuations through Earth's history. Nevertheless, we interpret our heavy Mo isotopic signatures from carbonates as a minimum value for Neoarchean seawater and reinforce the assumption that free atmospheric oxygen built up a heavy oceanic Mo reservoir at that time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2017-10-12
    Description: In this paper we present an in-depth analysis and synthesis of published and newly acquired data on the chemical and isotopic composition of forearc fluids, fluid fluxes, and the associated thermal regimes in well-studied, representative erosional and accretionary subduction zone (SZ) forearcs. Evidence of large-scale fluid flow, primarily focused along faults, is manifested by widespread seafloor venting, associated biological communities, extensive authigenic carbonate formation, chemical and isotopic anomalies in pore-fluid depth-profiles, and thermal anomalies. The nature of fluid venting seems to differ at the two types of SZs. At both, fluid and gas venting sites are primarily associated with faults. The décollement and coarser-grained stratigraphic horizons are the main fluid conduits at accretionary SZs, whereas at non-accreting and erosive margins, the fluids from compaction and dehydration reactions are to a great extent partitioned between the décollement and focused conduits through the prism, respectively. The measured fluid output fluxes at seeps are high, ∼15–40 times the amount that can be produced through local steady-state compaction, suggesting that in addition, other fluid sources or non-steady-state fluid flow must be involved. Recirculation of seawater must be an important component of the overall forearc output fluid flux in SZs. The most significant chemical and isotopic characteristics of the expelled fluids relative to seawater are: Cl dilution; sulfate, Ca, and Mg depletions; and enrichments in Li, B, Si, Sr, alkalinity, and hydrocarbon concentrations, often distinctive δ18O, δD, δ7Li, δ11B, and δ37Cl values, and variable Sr isotope ratios. These characteristics provide key insights on the source of the fluid and the temperature at the source. Based on the fluid chemistry, the most often reported source temperatures reported are 120–150 °C. We estimate a residence time of the global ocean in SZs of ∼100 Myr, about five times faster than the previous estimate of ∼500 Myr by Moore and Vrolijk, similar to the residence time of ∼90 Myr for fluids in the global ridge crest estimated by Elderfield and Schultz, and ∼3 times longer than the 20–36 Myr estimate by German and von Damm and Mottl. Based on this extrapolated fluid reflux to the global ocean, subduction zones are an important source and sink for several elements and isotopic ratios, in particular an important sink for seawater sulfate, Ca and Mg, and an important source of Li and B.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2021-02-08
    Description: The potential of crustose coralline algae as high-resolution archives of past ocean variability in mid- to high-latitudes has only recently been recognized. Few comparisons of coralline algal proxies, such as temperature-dependent algal magnesium to calcium (Mg/Ca) ratios, with in situ-measured surface ocean data exist, even rarer are well replicated records from individual sites. We present Mg/Ca records from nine coralline algal specimens (Clathromorphum compactum) from a single site in the Gulf of Maine, North Atlantic. Sections from algal mounds were analyzed using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) yielding individual Mg/Ca records of up to 30 years in length. We first test intra- and intersample signal replication and show that algal Mg/Ca ratios are reproducible along several transects within individual sample specimens and between different samples from the same study site. In addition, LA-ICP-MS-derived Mg/Ca ratios are compared to electron microprobe (EMP) analyzed data on the longest-lived specimens and were found to be statistically commensurable. Second, we evaluate whether relationships between algal-based SST reconstructions and in situ temperature data can be improved by averaging Mg/Ca records from multiple algal specimens (intersample averages). We found that intersample averages yield stronger relationships to sea surface temperature (SST) data than Mg/Ca records derived from individual samples alone. Thus, Mg/Ca-based paleotemperature reconstructions from coralline algae can benefit from using multiple samples per site, and can expand temperature proxy precision from seasonal to monthly.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2021-02-08
    Description: Changes in Atlantic Meridional Overturning Circulation (AMOC) strength exert a major influence on global atmospheric circulation patterns. However, the pacing and mechanisms of low-latitude responses to high-latitude forcing are insufficiently constrained so far. To elucidate the interaction of atmospheric and oceanic forcing in tropical South America during periods of major AMOC reductions (Heinrich Stadial 1 and the Younger Dryas) we generated a high-resolution foraminiferal multi-proxy record from off the Orinoco River based on Ba/Ca and Mg/Ca ratios, as well as stable isotope measurements. The data clearly indicate a three-phased structure of HS1 based on the reconfiguration of ocean currents in the tropical Atlantic Ocean. The initial phase (HS1a) is characterized by a diminished North Brazil Current, a southward displacement of the ITCZ, and moist conditions dominating northeastern Brazil. During subsequent HS1b, the NBC was even more diminished or yet reversed and the ITCZ shifted to its southernmost position. Hence, dryer conditions prevailed in northern South America, while eastern Brazil experienced maximally wet conditions. During the final stage, HS1c, conditions are similar to HS1a. The YD represents a smaller amplitude version of HS1 with a southward-shifted ITCZ. Our findings imply that the low-latitude continental climate response to high-latitude forcing is mediated by reconfigurations of surface ocean currents in low latitudes. Our new records demonstrate the extreme sensitivity of the terrestrial realm in tropical South America to abrupt perturbations in oceanic circulation during periods of unstable climate conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2021-02-08
    Description: Olivine-hosted inclusions of silicate and sulfide melts, Cr-spinel and pyroxene were studied to estimate magma composition, temperature, pressure, and fO2 at the onset and during the silicate-sulfide immiscibility in modern arc basalt from Tolbachik volcano, Kamchatka arc. We demonstrate that the olivine phenocrysts hosting sulfide and silicate melt inclusions belong to the same population. The compositions of the silicate melt inclusions in most primitive olivine (88–91 mol% Fo) represent moderately oxidized (~ QFM + 1.1) high-MgO (up to 12–12.6 wt%) and high CaO/Al2O3 (0.8–1.2) melt that has abundances and ratios of the lithophile trace elements typical of island arc magmas. The initial volatile contents in parental Tolbachik magma are estimated from the melt inclusions and mass-balance considerations to be at least 4.9 wt% H2O, 2600 ppm S, 1100 ppm Cl, 550 ppm F, and 1200 ppm CO2. These data are used to calculate the temperature (~ 1220 °C) and minimum pressure (3 kbar) at which the beginning of crystallization and exsolution of sulfide melt took place. The presence of anhydrite, especially ubiquitous in the crystallized silicate melt associated with sulfide globules, suggest that much higher sulfur abundances prior to degassing and sulfate immiscibility and/or crystallization should be expected. We tentatively considered hydrothermal accumulations of sulfur (elemental, sulfate and sulfide) in the volcanic conduit responsible for local contamination and oversaturation of the Tolbachik magma in sulfur and related sulfide immiscibility. Coexisting sulfide and sulfate can be also interpreted in favor of the magmatic sulfide oxidation and related generation of S-rich fluids. Such fluids are expected to accumulate metals released from decomposed sulfide melts and supply significant epithermal mineralization, including native gold.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 106 (8). pp. 2999-3003.
    Publication Date: 2020-02-06
    Description: Karl Andrée began studying questions of sedimentology and oceanography in 1908 when working as an assistant at the University of Marburg and he remained faithful to these subjects until his death in 1959. The vast majority of his scientific contributions, however, were published during his time at the University of Königsberg (1915–1945). There he published his fundamental papers on marine geology, all of which adhered strictly to the principles of uniformitarianism, and helped improve our understanding of sedimentary processes and the stratigraphic record. His scientific work has enormous breadth. In the course of 55 years, he published 124 individual papers and books, some of which became classic textbooks. His versatility is particularly evident in his book “Geology of the Seafloor”, which contains many pertinent observations and descriptions still relevant today, even if it has fallen out of fashion. This scientist and university teacher was the first to successfully present the huge field of marine geology in all its facet and to consider the deposition of marine sediments as a function of their geographical distribution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    Springer
    In:  In: The Vent and Seep Biota : aspects from microbes to ecosystems. , ed. by Kiel, S. Topics in Geobiology, 33 . Springer, Dordrecht, pp. 379-401.
    Publication Date: 2017-11-16
    Description: Since the discovery of dense animal communities associated with deep-sea hydrothermal venting (Lonsdale 1977), biological knowledge of those animals has accumulated (Van Dover 2000). Some unique animals associated with vent fields were found to depend on chemosynthetic primary production (Corliss et al. 1979). Subsequently, similar chemosynthetic animal assemblages were also discovered associated with deep-sea methane-seep areas, whale falls, and sunken wood (Pauli et al. 1984; Smith et al. 1989). To understand the pathways of adaptation to these environments, species shared between different habitats are of particular interest (Distel et al. 2000; Lorion et al. 2008). On a global scale, the number of species shared between vents and seeps is less than 10% of the total recorded vent or seep species (e.g. Tunnicliffe et al. 1998, 2003; Sibuet and Olu 1998). In the vent and seep communities around Japan, however, this figure exceeds 20% (based on a faunal list provided by Fujikura et al. 2008), although the Identification of species is still in progress. This relatively high abundance of both vent- and seep-inhabiting species suggests close relationships between vent and seep communities around Japan. A high similarity between megafaunal communities at vents and seeps around Japan was already noted by Fujikura et al. (1995); however, that study was based on species abundances investigated at only a single vent and two methane-seep communities. To date, at least 55 vent and seep communities have been discovered around Japan (Fujikura et al. 2008), and further analyses are required to elucidate the nature of this similarity. In this chapter, we focus on similarities between megafaunal communities inhabiting vents and seeps. As Kojima (2002) has already provided an review with an almost complete list of studies on vent and seep animals around Japan as of the time of publication, here we only provide brief, essential Information on their geologic settings and ecologic characteristics. Then, we summarize the species distributional records with Statistical analyses based on previous studies of those communities around Japan and discuss their proximity. In addition, we also summarize recent genetic studies of both vent- and seep-inhabiting species, i.e., three Calyptogena clams, Lamellibrachia and Paraescarpia tubeworms, and Bathymodiolus musseis, and discuss the Connectivity among populations of these species. Finally, we discuss whether the similarity of communities is accompanied by population Connectivity.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2021-02-08
    Description: Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri–Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ44/40Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation–desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation–desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation–desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2020-02-06
    Description: High-Mg, low-Ti volcanic rocks from the Manihiki Plateau in the Western Pacific share many geochemical characteristics with subduction-related boninites such as high-Ca boninites from the Troodos ophiolite on Cyprus, which are believed to originate by hydrous re-melting of previously depleted mantle. In this paper we compare the Manihiki rocks and Troodos boninites using a new dataset on the major and trace element composition of whole rocks and glasses from these locations, and new high-precision, electron microprobe analyses of olivine and Cr-spinel in these rocks. Our results show that both low-Ti Manihiki rocks and Troodos boninites could originate by re-melting of a previously depleted lherzolite mantle source (20–25% of total melting with 8–10% melting during the first stage), as indicated by strong depletion of magmas in more to less incompatible elements (Sm/Yb 〈 0.8, Zr/Y 〈 2, Ti/V 〈 12) and high-Cr-spinel compositions (Cr# 〉 0.5). In comparison with Troodos boninites, the low-Ti Manihiki magmas had distinctively lower H2O contents (〈 0.2 vs. 〉 2 wt% in boninites), ~ 100 °C higher liquidus temperatures at a given olivine Fo-number, lower fO2 (ΔQFM 〈 + 0.2 vs. ΔQFM 〉 + 0.2) and originated from deeper and hotter mantle (1.4–1.7 GPa, ~ 1440 °C vs. 0.8–1.0 GPa, ~ 1300 °C for Troodos boninites). The data provide new evidence that re-melting of residual upper mantle is not only restricted to subduction zones, where it occurs under hydrous conditions, but can also take place due to interaction of previously depleted upper mantle with mantle plumes from the deep and hotter Earth interior.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2021-02-08
    Description: Numerical models of magmatic hydrothermal systems have become powerful tools for linking surface and seafloor observations to chemical and fluid-dynamic processes at depth. This task requires resolving multi-phase flow over large distances of several kilometers, a wide range of pressure (p) and temperature (T) conditions, and over timescales of several thousands of years. The key numerical challenge is that realistic simulations have to consider the high nonlinearity and strong coupling of the governing conservation equations for mass and energy, while also being numerically efficient so that the required spatial and temporal scales can be resolved. Here we outline possible solutions to this problem by evaluating different implementation strategies and presenting a numerical scheme for fully coupled accurate and efficient flow solutions. The general scheme, based on the Newton–Raphson (NR) method, is presented for the simplified case of 2-D pure water convection and uses a control volume discretization on unstructured meshes. We find that the presented techniques significantly reduce the computational effort with respect to sequential/decoupled schemes. Key to this is a theta-time-differencing method for better accuracy, stability and convergence behavior of the NR-iterations, as well as improvements regarding upwinding. These features make the presented methods useful for coupled simulations of magmatic hydrothermal systems and a potential basis for future 3-D multi-phase codes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2021-02-08
    Description: Alphaproteobacterium strain MOLA1416, related to Mycoplana ramosa DSM 7292 and Chelativorans intermedius CC-MHSW-5 (93.6% 16S rRNA sequence identity) was isolated from the marine lichen, Lichina pygmaea and its chemical composition was characterized by a metabolomic network analysis using LC-MS/MS data. Twenty-five putative different compounds were revealed using a dereplication workflow based on MS/MS signatures available through GNPS (https://gnps.ucsd.edu/). In total, ten chemical families were highlighted including isocoumarins, macrolactones, erythrinan alkaloids, prodiginines, isoflavones, cyclohexane-diones, sterols, diketopiperazines, amino-acids and most likely glucocorticoids. Among those compounds, two known metabolites (13 and 26) were isolated and structurally identified and metabolite 26 showed a high cytotoxic activity against B16 melanoma cell lines with an IC50 0.6 ± 0.07 μg/mL.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2021-02-08
    Description: Highlights: • Lagrangian ocean analysis is a powerful way to analyse the output of ocean circulation models • We present a review of the Kinematic framework, available tools, and applications of Lagrangian ocean analysis • While there are unresolved questions, the framework is robust enough to be used widely in ocean modelling Abstract: Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    facet.materialart.
    Unknown
    Springer
    In:  In: Submarine Geomorphology. , ed. by Micallef, A. 〈https://orcid.org/0000-0002-9330-0648〉 Springer, Cham, pp. 43-62.
    Publication Date: 2021-05-11
    Description: Seismic reflection and refraction methods are routinely used to illuminate sub-seafloor geological relationships, thereby providing a means to investigate a wide range of Earth processes that influence submarine geomorphology. Since the birth of seismic methods for exploration of ore bodies and petroleum in the early part of the 20th century, progressive technological advancements have ensured that the seismic method remains a fundamental geophysical tool in both the oil and gas industry and scientific research. For both marine seismic reflection and refraction methods, the primary principles are based around the notion of sending artificially-generated sound waves downward into the Earth and recording the energy that returns to recording instruments (receivers). In the case of seismic reflection, the down-going wavefield reflects off geological boundaries characterized by density and velocity contrasts before being recorded by an array of receivers. In seismic refraction experiments, the notion is to record energy that has been refracted at multiple geological boundaries before, ultimately, being refracted at a critical angle and then returning to receivers on the seafloor. Survey designs for both methods are many and varied, ranging from relatively simple two-dimensional surveys, to multi-azimuth three-dimensional surveys that illuminate the subsurface from different directions. Although the state of the art in seismic methods is continually evolving, this chapter gives some examples of modern and developing trends that are relevant to investigations into submarine geomorphology. Examples include high-resolution 3D seismic imaging, high-frequency sub-bottom profiling, waveform inversion and deep-towed seismic acquisition. The strength of the seismic reflection method lies in its ability to gain insight into structural and stratigraphic relationships beneath the seafloor, as well as in investigating fluid flow processes. The refraction method, on the other hand, is often used as the tool of choice for crustal-scale investigations into deeply-rooted geological processes that shape the seafloor, such as plate tectonics and volcanism. As with all scientific methods, seismic methods are most powerful when combined with complementary geophysical, geological or geochemical methods to address a common Earth science question.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2020-11-02
    Description: Pteropods are important organisms in high-latitude ecosystems, and they are expected to severely suffer from climate change in the near future. In this study, sedimentation patterns of two pteropod species, the polar Limacina helicina and the subarctic boreal L. retroversa, are presented. Time series data received by moored sediment traps at the Long-Term Ecological Research (LTER) Observatory HAUSGARTEN in eastern Fram Strait were analyzed during the years 2008 to 2012. Results were derived from four different deployment depths (~200, 1,250, 2,400, and 2,550 m) at two different sites (79°N 04°20′E; 79°43′N 04°30′E). A species-specific sedimentation pattern was present at all depths and at both sites showing maximal flux rates during September/October for L. helicina and in November/December for L. retroversa. The polar L. helicina was outnumbered by L. retroversa (55–99 %) at both positions and at all depths supporting the recently observed trend toward the dominance of the subarctic boreal species. The largest decrease in pteropod abundance occurred within the mesopelagic zone (~200–1,250 m), indicating loss via microbial degradation and grazing. Pteropod carbonate (aragonite) amounted up to ~75 % of the total carbonate flux at 200 m and 2–13 % of the aragonite found in the shallow traps arrived at the deep sediment traps (~160 m above the seafloor), revealing the significance of pteropods in carbonate export at Fram Strait. Our results emphasize the relevance and the need for continuation of long-term studies to detect and trace changes in pteropod abundances and community composition and thus in the vertical transport of aragonite.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2017-12-08
    Description: SLC26A11 (human)/Slc26a11 (mouse), also known as kidney brain anion transporter (KBAT), is a member of the SLC26 anion transporter family and shows abundant mRNA expression in the brain. However, its exact cellular distribution and subcellular localization in the brain and its functional identity and possible physiological roles remain unknown. Expression and immunostaining studies demonstrated that Slc26a11 is abundantly expressed in the cerebellum, with a predominant expression in Purkinje cells. Lower expression levels were detected in hippocampus, olfactory bulb, cerebral cortex, and subcortical structures. Patch clamp studies in HEK293 cells transfected with mouse cDNA demonstrated that Slc26a11 can function as a chloride channel that is active under basal conditions and is not regulated by calcium, forskolin, or co-expression with cystic fibrosis transmembrane regulator. Single and double immunofluorescent labeling studies demonstrated the localization of vacuolar (V) H+-ATPase and Slc26a11 (KBAT) in the plasma membrane in Purkinje cells. Functional studies in HEK293 cells indicated that transfection with Slc26a11 stimulated acid transport via endogenous V H+-ATPase. We conclude that Slc26a11 (KBAT) is prominently distributed in output neurons of various subcortical and cortical structures in the central nervous system, with specific expression in Purkinje cells and that it may operate as a chloride channel regulating acid translocation by H+-ATPase across the plasma membrane and in intracellular compartments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2021-02-08
    Description: Highlights • Comparison of encrusting and rhodolith coralline algae for paleoclimate reconstruction • Both coralline algal forms can yield SST information, but encrusting forms generally yield higher correlations to SST. • Encrusting morphologies yielded longer records due to frequent growth irregularities in rhodoliths. Abstract Coralline algae have been used for sclerochronological studies throughout the last decade. These studies have focused on two different growth morphologies of the photosynthetic coralline algae: massive crusts forming small buildups on hard substrate, and free-living branching algal nodules, known as rhodoliths. The latter are generally found on soft-substrate, where they are frequently overturned by water movement and bottom feeding organisms, leaving one side of the rhodolith partially buried in the sediment at any given time. Here we test whether either of these growth morphologies is more suitable for proxy reconstructions by comparing Mg/Ca ratios – a temperature proxy – in multiple replicates of rhodoliths of Lithothamnion glaciale and in rhodoliths as well as encrusting specimens of Clathromorphum compactum. With both species being widespread throughout the Temperate and Arctic regions, we have chosen two North Atlantic localities at Nuuk Fjord, Greenland (Subarctic), and off the southeastern coast of Newfoundland, Canada (Temperate), for this study. Two to three Mg/Ca ratio transects spanning 18 years of growth were analysed on multiple specimens with encrusting morphologies and along different sides of rhodoliths using laser ablation inductively coupled mass spectrometry and compared to remotely sensed sea surface temperature (SST) data. The length of the common time span used for comparison was limited by growth interruptions in rhodoliths. Furthermore, our comparison is based on the assumption that rhodolith growth increments are annual – an assumption that has recently been challenged by mesocosm studies. Monthly Mg/Ca values from multiple transects within each individual were compared and in samples from Nuuk fjord significant correlations were found in 4 of 4 encrusting C. compactum, 4 of 4 C. compactum rhodoliths, and 2 of 3 L. glaciale rhodoliths. In Newfoundland significant correlations were found in 6 of 6 encrusting C. compactum comparisons (average: r = 0.61, p 〈 0.001), and in 6 of 6 L. glaciale rhodolith comparisons (average: r = 0.43, p 〈 0.001) for monthly resolved time series. The monthly Mg/Ca ratios (n = 216) from each morphology were compared with instrumental Reynolds SST yielding the following correlations: encrusting C. compactum (r = 0.64, p 〈 0.001), C. compactum rhodolith (r = 0.62, p 〈 0.001) and L. glaciale (r = 0.58, p 〈 0.001). In Newfoundland both morphologies indicate a similar strength in recording SST: encrusting C. compactum (r = 0.85, p 〈 0.001) and rhodolith-forming L. glaciale (r = 0.84, p 〈 0.001). In summary, Mg/Ca ratios derived from both coralline algal growth forms can yield SST information, however, massive encrusting forms generally yield higher correlations to SST than transects measured on individual rhodoliths, which only allowed for the generation of short uninterrupted time series due to frequent growth irregularities.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2017-12-12
    Description: There is mounting evidence that driving on the beach has a significant biophysical impact, and it has been suggested in a number of recent studies that driving on the beachface leads to a net loss of sediment from the beach-dune system. Identifying a conclusive link between beach driving and beach erosion is, however, complicated by the natural variability of the environment in both space and time, and it has proven difficult to distinguish the driving signal from this background noise. In this respect, the impacts of beach driving are not clear, making it difficult to develop appropriate management strategies to reduce the impact in either degree or extent. LiDAR data from both Padre Island National Seashore and Assateague Island National Seashore are used in the present study to determine if the differences in beach and dune morphology between restricted and open access sections of the beach are associated with beach driving. Results from Padre Island National Seashore suggest that beach driving does not affect the height and volume of the foredunes, but is responsible for a statistically significant decrease in the elevation of the dune crest and base compared to the control section of beach. The decrease in elevation is ascribed to the compaction and pulverization of seaweed wrack that accumulates along the Texas coast in the spring and summer months, and is responsible for the anchoring of sediment for the growth of new vegetation seaward of the foredune. At Assateague Island National Seashore, driving on the beach is shown to cause a statistically significant change in the beach-dune morphology, with smaller dunes set further back from the shoreline within the open access sections of the beach. Despite the changes in dune morphology at both sites, there is no statistically significant difference in beach-dune volume on either side of the beach access road, which suggests that driving on the beach does not lead to a net loss of sediment from the beach-dune system. Driving on the beach does, however, make the foredune at both sites susceptible to scarping and overwash during tropical storms and hurricanes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    facet.materialart.
    Unknown
    Springer
    In:  Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 111 . pp. 955-963.
    Publication Date: 2021-02-08
    Description: A novel actinobacterium, strain DB165T, was isolated from cold waters of Llullaillaco Volcano Lake (6170 m asl) in Chile. Phylogenetic analysis based on 16S rRNA gene sequences identified strain DB165T as belonging to the genus Subtercola in the family Microbacteriaceae, sharing 97.4% of sequence similarity with Subtercola frigoramans DSM 13057T, 96.7% with Subtercola lobariae DSM 103962T, and 96.1% with Subtercola boreus DSM 13056T. The cells were observed to be Gram-positive, form rods with irregular morphology, and to grow best at 10–15 °C, pH 7 and in the absence of NaCl. The cross-linkage between the amino acids in its peptidoglycan is type B2γ; 2,4-diaminobutyric acid is the diagnostic diamino acid; the major respiratory quinones are MK-9 and MK-10; and the polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, 5 glycolipids, 2 phospholipids and 5 additional polar lipids. The fatty acid profile of DB165T (5% 〉) contains iso-C14:0, iso-C16:0, anteiso-C15:0, anteiso-C17:0, and the dimethylacetal iso-C16:0 DMA. The genomic DNA G+C content of strain DB165T was determined to be 65 mol%. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses presented in this study, strain DB165T (= DSM 105013T = JCM 32044T) represents a new species in the genus Subtercola, for which the name Subtercola vilae sp. nov. is proposed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2021-04-23
    Description: The subterranean estuary (STE), the subsurface mixing zone of outflowing fresh groundwater and infiltrating seawater, is an area of extensive geochemical reactions that determine the composition of groundwater that flows into coastal environments. This study examined the porewater composition of a shallow STE (〈5 m depth) in Gloucester Point, VA (USA) over two years to determine seasonal variations in dissolved organic carbon (DOC) and the reduced metabolites Fe, Mn, and sulfide. An additional aim of this study was to investigate the relative importance of salinity gradients (which have great geochemical influence in surface estuaries) versus redox gradients on STE geochemistry. Two freshwater endmembers were identified, between which redox potential and composition varied with depth-a shallow freshwater endmember was oxidizing and high in DOC, whereas a deep freshwater endmember was reducing, lower in DOC, and high in sulfide. Results showed that dissolved Fe, Mn, and sulfide varied along a redox gradient distinct from the salinity gradient, and that three-endmember mixing was required to quantify non-conservative chemical addition/removal in the STE. In addition to salinity, humic carbon was used as a quasi-conservative tracer to quantify mixing according to a three-endmember model. The vertical distributions of DOC and reduced metabolites remained approximately constant over time, but concentrations varied with season. Dissolved organic carbon concentrations were greatest in the summer, and shallow meteoric groundwater supplied the majority of DOC to the STE. In summer, there was additional evidence for shallow non-conservative addition of DOC. Dissolved Fe and Mn were highest in a subsurface plume through the middle of the STE (100-140 cm below sediment surface at the high tide line) which was characterized by higher concentrations and greater non-conservative addition in the winter. In contrast, sulfide was higher in summer at depths within the Fe and Mn plume (100-140 cm). We attribute the contrasting seasonal patterns of dissolved Fe, Mn, and sulfide to differences in microbial response to temperature changes and organic matter availability, and to competition at the ferrous-sulfidic transition zone between dissimilatory metal reduction and sulfate reduction, leading to sulfate/sulfur reducing bacteria (SRB) being more active in summer and metal reducers being more active in winter. Throughout the STE, seasonal temperature and DOC variations determined the spatial distribution and geochemical cycling of Fe, Mn, and sulfur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2021-02-08
    Description: Pockmarks are variably sized crater-like structures that occur in young continental margin sediments. They are formed by gas eruptions and/or long-term release of fluid or gas. So far no pockmarks were known from the Pacific coast of South America between 51°S and 55°S. This article documents an extensive and previously unknown pockmark field in the Seno Otway (Otway Sound, 52°S) with multibeam bathymetry and parametric echosounding as well as sediment drill cores. Up to 31 pockmarks per square kilometer occur in water depths of 50 to 〉100 m in late glacial and Holocene sediments. They are up to 150 m wide and 10 m deep. Below and near the pockmarks, echosounder profiles image acoustic blanking as well as gas chimneys often crosscutting the 20 to 〉30 m thick glacial sediments above the acoustic basement, in particular along fault zones. Upward-migrating gas is trapped within the sediment strata, forming dome-like features. Two 5 m long piston cores from inside and outside a typical pockmark give no evidence for gas storage within the uppermost sediments. The inside core recovered poorly sorted glacial sediment, indicating reworking and re-deposition after several explosive events. The outside core documents an undisturbed stratigraphic sequence since ~15 ka. Many buried paleo-pockmarks occur directly below a prominent seismic reflector marking the mega-outflow event of the Seno Otway at 14.3 ka, lowering the proglacial lake level by about 80 m. This decompression would have led to frequent eruptions of gas trapped in reservoirs below the glacial sediments. However, the sediment fill of pockmarks formed after this event suggests recurrent events throughout the Holocene until today. Most pockmarks occur above folded hydrocarbon-bearing Upper Cretaceous and Paleogene rocks near the western margin of the Magallanes Basin, constraining them as likely source rocks for thermogenic gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    facet.materialart.
    Unknown
    Springer
    In:  Acta Geotechnica, 12 (4). pp. 883-895.
    Publication Date: 2020-04-23
    Description: Depressurization gives rise to complex sediment– well interactions that may cause the failure of wells. The situation is aggravated when high depressurization is imposed on sediments subjected to an initially low effective stress, such as in gas production from hydrate accumulations in marine sediments. Sediment–well interaction is examined using a nonlinear finite element simulator. The hydro-mechanically coupled model represents the sediment as a Cam-Clay material, uses a continuous function to capture compressibility from low to high effective stress, and recognizes the dependency of hydraulic conductivity on void ratio. Results highlight the critical effect of hydromechanical coupling as compared to constant permeability models: A compact sediment shell develops against the screen, the depressurization zone is significantly smaller than the volume anticipated assuming constant permeability, settlement decreases, and the axial load on the well decreases; in the case of hydrates, gas production will be a small fraction of the mass estimated using a constant permeability model. High compressive axial forces develop in the casing within the production horizon, and the peak force can exceed the yield capacity of the casing and cause its collapse. Also tensile axial forces may develop in the casing above the production horizon as the sediment compacts in the depressurized zone and pulls down from the well. Well engineering should consider: slip joints to accommodate extensional displacement above the production zone, soft telescopic/sliding screen design to minimize the buildup of compressive axial force within the production horizon, and enlarged gravel pack to extend the size of the depressurized zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2021-02-08
    Description: Highlights: • Comparison of global NEMO and FESOM configurations with emphasis on the Agulhas system. • Both models simulate a reasonable and comparable large-scale circulation. • Both models have individual strengths and weaknesses to match the observations of the WBC system. • The numerical cost of FESOM is twice the one of NEMO. Abstract: Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing. Although the number of 3D wet grid points used in FESOM is similar to that in the nested NEMO, FESOM uses about two times the number of CPUs to obtain the same model throughput (in terms of simulated model years per day). This is feasible due to the high scalability of the FESOM code.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2020-02-06
    Description: Knowledge and understanding of geographic distributions of species is crucial for many aspects in ecology, conservation, policy making and management. In order to reach such an understanding, it is important to know abiotic variables that impact and drive distributions of native and non-native species. We used an existing long-term macrobenthos database for species presence-absence information and biomass estimates at different environmental gradients in the northern Baltic Sea. Region specific abiotic variables (e.g. salinity, depth) were derived from previously constructed bathymetric and hydrodynamic models. Multidimensional ordination techniques were then applied to investigate potential niche space separation between all native and non-native invertebrates in the northern Baltic Sea. Such an approach allowed to obtain data rich and robust estimates of the current native and non-native species distributions and outline important abiotic parameters influencing the observed pattern. The results showed clear niche space separation between native and non-native species. Non-native species were situated in an environmental space characterized by reduced salinity, high temperatures, high proportion of soft seabed and decreased depth and wave exposure whereas native species displayed an opposite pattern. Different placement of native and non-native species along the studied environmental niche space is likely to be explained by the differences in their evolutionary history, human mediated activities and geological youth of the Baltic Sea. The results of this study can provide early warnings and effectively outline coastal areas in the northern Baltic Sea that are prone to further range expansion of non-native species as climate change is expected to significantly reduce salinity and increase temperature in wide coastal areas, both supporting the disappearance of native and appearance of non-native species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2021-02-08
    Description: Highlights • Widespread Holocene tephra KHG, from Kamchatka, is found as a cryptotephra in the NGRIP ice-core. • This is the first identification of tephra from the Kamchatka Peninsula in Greenland ice. • NGRIP KHG has an age of 7872 ± 50 a BP and improves age models for Kamchatka. • Existing 14C age estimates for the KHG eruption are too young. Abstract Contiguous sampling of Holocene ice from the NGRIP core, Greenland, has revealed a new rhyolitic cryptotephra that is geochemically identical to the KHG tephra, a widespread marker deposit originating from the Khangar volcano, Kamchatka. This is the first identification of tephra from the Kamchatka Peninsula in Greenland ice and the first finding of the KHG tephra outside Kamchatka. The NGRIP KHG has an age of 7872 ± 50 a BP 1950, and this date will help improve age models for Kamchatka, where existing age estimates of KHG are too young, thus highlighting the importance of locating long-range, low-concentration cryptotephra deposits in well-dated ice cores. In Greenland KHG is located close to the termination of the 8.2 ka BP cooling event that is also a climate feature in palaeo-records of Kamchatka. This tie-point therefore provides a unique opportunity to synchronise records of environmental change in distal locations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2018-03-07
    Description: The boron isotope ratio (δ11B) of foraminifers and tropical corals has been proposed to record seawater pH. To test the veracity and practicality of this potential paleo-pH proxy in deep sea corals, samples of skeletal material from twelve archived modern Desmophyllum dianthus (D. dianthus) corals from a depth range of 274–1470 m in the Atlantic, Pacific, and Southern Oceans, ambient pH range 7.57–8.05, were analyzed for δ11B. The δ11B values for these corals, spanning a range from 23.56 to 27.88, are found to be related to seawater borate δ11B by the linear regression: δ11Bcoral=(0.76±0.28) δ11Bborate+(14.67±4.19) (1 standard error (SE)). The D. dianthus δ11B values are greater than those measured in tropical corals, and suggest substantial physiological modification of pH in the calcifying space by a value that is an inverse function of seawater pH. This mechanism partially compensates for the range of ocean pH and aragonite saturation at which this species grows, enhancing aragonite precipitation and suggesting an adaptation mechanism to low pH environments in intermediate and deep waters. Consistent with the findings of Trotter et al. (2011) for tropical surface corals, the data suggest an inverse correlation between the magnitude of a biologically driven pH offset recorded in the coral skeleton, and the seawater pH, described by the equation: ΔpH=pH recorded by coral−seawater pH=−(0.75±0.12) pHw+(6.88±0.93) (1 SE). Error analysis based on 95% confidence interval(CI) and the standard deviation of the regression residuals suggests that the uncertainty of seawater pH reconstructed from δ11Bcoral is ±0.07 to 0.12 pH units. This study demonstrates the applicability of δ11B in D. dianthus to record ambient seawater pH and holds promise for reconstructing oceanic pH distribution and history using fossil corals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2018-03-06
    Description: A geochemical proxy for surface ocean nutrient concentrations recorded in coral skeleton could provide new insight into the connections between sub-seasonal to centennial scale nutrient dynamics, ocean physics, and primary production in the past. Previous work showed that coralline P/Ca, a novel seawater phosphate proxy, varies synchronously with annual upwelling-driven cycles in surface water phosphate concentration. However, paired contemporaneous seawater phosphate time-series data, needed for rigorous calibration of the new proxy, were lacking. Here we present further development of the P/Ca proxy in Porites lutea and Montastrea sp. corals, showing that skeletal P/Ca in colonies from geographically distinct oceanic nutrient regimes is a linear function of seawater phosphate (PO4 SW) concentration. Further, high-resolution P/Ca records in multiple colonies of Pavona gigantea and Porites lobata corals grown at the same upwelling location in the Gulf of Panamá were strongly correlated to a contemporaneous time-series record of surface water PO4 SW at this site (r2 = 0.7–0.9). This study supports application of the following multi-colony calibration equations to down-core records from comparable upwelling sites, resulting in ±0.2 and ±0.1 μmol/kg uncertainties in PO4 SW reconstructions from P. lobata and P. gigantea, respectively. Inter-colony agreement in P/Ca response to PO4 SW was good (±5–12% about mean calibration slope), suggesting that species-specific calibration slopes can be applied to new coral P/Ca records to reconstruct past changes in surface ocean phosphate. However, offsets in the y-intercepts of calibration regressions among co-located individuals and taxa suggest that biologically-regulated “vital effects” and/or skeletal extension rate may also affect skeletal P incorporation. Quantification of the effect of skeletal extension rate on P/Ca could lead to corrected calibration equations and improved inter-colony P/Ca agreement. Nevertheless, the efficacy of the P/Ca proxy is thus supported by both broad scale correlation to mean surface water phosphate and regional calibration against documented local seawater phosphate variations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2021-02-08
    Description: Shallow shore zones are generally considered to provide juvenile habitats for many invertebrate and fish species and additionally serve as spawning grounds for important components of oceanic food webs and fishery resources such as herring (Clupea spp.). Herring attach their demersal eggs to benthic substrates, rendering reproduction success vulnerable to environmental changes and local habitat alterations. However, little information is available on the effects of different substrates on the survival of demersal eggs. Hypothesizing that the structural complexity of spawning substrates generally affects herring egg survival and that the effect magnitude depends on the suitability of ambient environment, field experiments were conducted on a major spawning ground of C. harengus in the Southwestern Baltic Sea. Herring eggs were artificially spawned on substrates of different structural complexities and incubated in situ under differing temperature regimes, at the beginning and the end of the natural herring spawning season, to include the full suite of stressors occurring on littoral spawning beds. Results of this study indicate a positive relation between high structural complexity of spawning substrates and herring egg survival. Mean egg mortality was three times higher on substrates of lowest complexity than on highly complex substrates. These differences became even more prominent under unfavorable conditions that appeared with rising water temperatures later in the spawning season. Although the mechanisms are still unclear, we conclude that structural complexity, particularly formed by submerged aquatic vegetation, provides a crucial prerequisite for the successful reproduction of substrate spawning marine fishes such as herring in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2021-02-08
    Description: Insight into a species’ native and introduced range is essential in understanding the invasion process. Genetic diversity, propagule pressure and environmental conditions all have been recognised as playing a determinant role in invasion success. Here, we aimed to investigate the genetic diversity and population genetic structure (using the COI mtDNA gene region and 22 nDNA microsatellite markers) of the Asian green mussel Perna viridis within its potential native range in Asia and at introduced locations in the USA and the Caribbean. We also analyse genetic data from vessel intercepts and an incursion. By doing so, we aimed to identify genetic signatures that could allow to track vessel samples to their source and provide further insight into potential high-risk invasive populations or areas. Three top hierarchical clusters were identified using the individual-based Bayesian clustering method in STRUCTURE, corresponding to populations in three world regions: (1) USA and Caribbean, (2) India and (3) Southeast Asia. Within Southeast Asia, additional analysis indicate a shallow genetic differentiation of three subgroups consisting of (3a) Thailand, (3b) Taiwan and Hong-Kong, and (3c) a cluster of Singapore–Indonesia samples. Overall, the population structure found in this study suggests that the markers used could be useful in identifying source populations, particularly between the three mains world regions. Most surprisingly however, this study shows that the genetic diversity of samples collected from vessel intercepts and incursions did not differ significantly from established populations in Southeast Asia. In this region, in addition to the high vessel connectivity and number of P. viridis transported, all sampled populations are likely to pose a comparable risk in terms of genetic diversity. The present work represents the most comprehensive population genetic study of P. viridis, and the first to address the potential genetic introduction risk posed by populations of this species. The information and genetic markers in this study constitute a valuable addition to the tools already used to infer on potential high-risk source populations of P. viridis. They should therefore prove useful for biosecurity surveillance and management actions directed at this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2021-02-08
    Description: Highlights • Active hydrothermal vent ecosystems are extremely rare. • Vent ecosystems are recognized as vulnerable by international organizations. • Mineral resources at active vents would not contribute significantly to the global metal supply. • Effective networks that protect representative active vents cannot be ensured. • A prohibition on mining active vents is consistent with obligations for conservation. Abstract There is increasing interest in mining minerals on the seabed, including seafloor massive sulfide deposits that form at hydrothermal vents. The International Seabed Authority is currently drafting a Mining Code, including environmental regulations, for polymetallic sulfides and other mineral exploitation on the seabed in the area beyond national jurisdictions. This paper summarizes 1) the ecological vulnerability of active vent ecosystems and aspects of this vulnerability that remain subject to conjecture, 2) evidence for limited mineral resource opportunity at active vents, 3) non-extractive values of active vent ecosystems, 4) precedents and international obligations for protection of hydrothermal vents, and 5) obligations of the International Seabed Authority under the UN Convention on the Law of the Sea for protection of the marine environment from the impacts of mining. Heterogeneity of active vent ecosystems makes it extremely challenging to identify “representative” systems for any regional, area-based management approach to conservation. Protection of active vent ecosystems from mining impacts (direct and indirect) would set aside only a small fraction of the international seabed and its mineral resources, would contribute to international obligations for marine conservation, would have non-extractive benefits, and would be a precautionary approach.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    facet.materialart.
    Unknown
    Springer
    In:  In: Volcanoes of the Azores. , ed. by Kueppers, U. and Beier, C. Volcanoes of the World . Springer, Berlin, pp. 251-280.
    Publication Date: 2018-02-26
    Description: The Azores archipelago is geochemically distinct amongst the oceanic intraplate volcanoes in that it has trace element and radiogenic Sr–Nd–Pb–Hf isotope signatures that cover much of the global variation observed in Ocean Island Basalts. Thus, it is the prime example of an intraplate melting anomaly preserving the compositional heterogeneity of the Earth’s mantle. Here, we review the trace element and radiogenic isotope geochemistry of the Azores islands and few submarine samples analysed and published over the past decades and summarise these findings and conclusions. The volcanoes of all islands erupted lavas of the alkaline series and their compositions broadly range from basalts to trachytes (see also Chapter “ Petrology of the Azores Islands” by Larrea et al.). Temperatures and pressures of melting imply that melting in the Azores occurs as a result of both slightly increased temperatures in the mantle (~35 °C) and addition of volatile elements into the mantle source. Basalts from the island of São Miguel show a stronger enrichment in highly incompatible elements like K and the Light Rare Earth Elements than the other islands further to the west. The older and easternmost island Santa Maria has lavas that are more silica-undersaturated than the rocks occurring on the younger islands. Each of the eastern islands shows a different and distinct radiogenic isotope composition and much of this variability can be explained by variably enriched recycled components of different age in their source regions. Amongst the global array, the lavas from eastern São Miguel are uniquely enriched in that they display radiogenic 206Pb/204Pb, 208Pb/204Pb and 87Sr/86Sr isotope ratios best explained by a distinct source in the mantle. The implication of the preservation of such unique, enriched sources in the mantle may indicate that stirring processes in the Azores mantle are not efficiently homogenising heterogeneities over the timescales of recycling of 0.1–1 Ga and possibly even up to 2.5 Ga. One possible explanation is the low buoyancy flux of the Azores mantle when compared to other intraplate settings. The preservation of these source signatures in the lavas on the easternmost Azores islands are the result of smaller degrees of partial melting due to a thicker lithosphere. This likely prevents a homogenisation during magma ascent compared to the western islands, preferentially sampling deep, low degree partial melts from the more fertile mantle sources. The geochemical signatures of the two islands west of the Mid-Atlantic Ridge (Corvo and Flores) imply a source enrichment and degrees of partial melting similar to those east of the ridge. Melting underneath the western islands is the result of a source that must be related to the Azores melting anomaly but has been modified by shallow level processes such as assimilation of oceanic crustal material.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    facet.materialart.
    Unknown
    Springer
    In:  In: Progress in Cultural Heritage Preservation: 4th International Conference, EuroMed 2012, Limassol, Cyprus, October 29 – November 3, 2012 - Proceedings. , ed. by Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F. and Caffo, R. Springer, Heidelberg, pp. 21-29. ISBN 978-3-642-34233-2
    Publication Date: 2018-03-23
    Description: The future demands on professional archaeological prospection will be its ability to cover large areas in a time and cost efficient manner with very high spatial resolution and accuracy. The objective of the 2010 in Vienna established Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology in collaboration with its nine European partner organizations is the advancement of the state-of-the-art by focusing on the development of remote sensing, geophysical prospection and virtual reality applications, as well as of novel integrated interpretation approaches dedicated to non-invasive spatial archaeology combining cutting-edge near-surface prospection methods with advanced computer science. Within the institute’s research program different areas for distinct case studies in Austria, Germany, Norway, Sweden and the UK have been selected as basis for the development and testing of new concepts for efficient and universally applicable tools for spatial, non-invasive archaeology. The collective resources and expertise available amongst the new research institute and associated partners permit innovative approaches to the archaeological exploration, documentation and investigation of the cultural heritage contained in entire archaeological landscapes. First promising results illustrate the potential of the proposed methodology and concepts.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2021-02-08
    Description: From protists to humans, all animals and plants are inhabited by microbial organisms. There is an increasing appreciation that these resident microbes influence the fitness of their plant and animal hosts, ultimately forming a metaorganism consisting of a uni- or multicellular host and a community of associated microorganisms. Research on host–microbe interactions has become an emerging cross-disciplinary field. In both vertebrates and invertebrates a complex microbiome confers immunological, metabolic and behavioural benefits; conversely, its disturbance can contribute to the development of disease states. However, the molecular and cellular mechanisms controlling the interactions within a metaorganism are poorly understood and many key interactions between the associated organisms remain unknown. In this perspective article, we outline some of the issues in interspecies interactions and in particular address the question of how metaorganisms react and adapt to inputs from extreme environments such as deserts, the intertidal zone, oligothrophic seas, and hydrothermal vents
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Treatise on Geochemistry. Reference Module in Earth Systems and Environmental Sciences, 5 . Elsevier, Amsterdam, pp. 385-404. 2.Ed. ISBN 978-0-08-099946-3
    Publication Date: 2018-04-19
    Description: A very close coupling exists between changes in atmospheric O2 and CO2 concentrations, owing to the chemistry of photosynthesis, respiration, and combustion. The coupling is not perfect, however, because CO2 variations are partially buffered by reactions involving the inorganic carbon system in seawater, which has no effect on O2. Measurements over the past two decades document variations in O2 on a range of space and time scales, including a long-term decrease driven mostly by fossil fuel burning and seasonal cycles driven by exchanges with the land biosphere and the oceans. In this chapter, these and other features seen in the measurements are described, also discussing variations in the tracer ‘atmospheric potential oxygen,’ which is a linear combination of O2 and CO2 designed to be insensitive to exchanges from the land biosphere and thereby sensitive mostly to oceanic processes. Challenges associated with measuring variations in O2 are addressed, and various applications of the observations are discussed, including quantifying the magnitude of the global land and ocean carbon sinks and testing ocean biogeochemical models. An updated budget for global carbon sinks based on O2 measurements from the Scripps O2 program is presented for the decades of the 1990s and 2000s.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2021-03-19
    Description: Recruitment patterns of sessile species often do not reflect the composition of the local propagule pool. This is, among other processes, attributed to the stimulation or inhibition of settlement by resident species. In an experimental study, we evaluated the effects of different densities of the ascidian Diplosoma listerianum on the settlement of the hydrozoan Obelia sp. For this, we monitored the cover of the dominant fouler Obelia sp. on vertically orientated PVC tiles, which were either bare or pre-seeded with two different densities (sparse or dense) of Diplosoma colonies, over the course of 8 weeks. The settlement tiles were deployed at two study sites in La Herradura Bay, Chile. The presence of D. listerianum enhanced the settlement or the growth or both of the colonial hydrozoan, but this effect disappeared within 4–8 weeks. Furthermore, we tested whether the initial enhancement of Obelia sp. by Diplosoma colonies goes back to the fact that larvae, which reject the ascidian tunic as a settlement substratum after a first contact, colonize nearby surfaces because of their limited mobility. However, we found no support for this assumption. We rather suggest that D. listerianum facilitated colonization indirectly by the accumulation of organic material in its vicinity and/or by its pumping activity. Initial resident-mediated enhancement of the hydrozoan was overridden by processes such as competition between later colonizers within the course of weeks and we could not detect any lasting effects of D. listerianum on the structure of the developing communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2021-02-08
    Description: Highlights • In cold seeps of Guaymas Basin, aragonite, barite and pyrite precipitated from modified seawater. • Aragonite is highly depleted in 13C suggesting formation via anaerobic oxidation of methane. • Barite formed through mixing of reducing, Ba-rich seep fluids with a 34S-rich sulfate pool. • Pyrite framboids formed under anoxic-sulfidic water via microbial sulfate reduction. Abstract Authigenic carbonate crusts, surface muds and bivalve shell fragments have been recovered from inactive and active recently discovered cold seep sites in central Guaymas Basin. In this study, for first time, redox conditions and fluid sources involved in mineral precipitation were investigated by analyzing the mineralogy and textures of surface samples, along with skeletal contents, and C, O and S isotopes variations. The δ13C values of aragonitic bivalve shells and non-skeletal carbonate from some surface muds (1‰ to −3.7‰ V-PDB) suggest that carbonate precipitated from ambient dissolved inorganic carbon, whereas fibrous aragonite cement and non-skeletal carbonate from other sites are highly depleted in 13C (down to −47.6‰ V-PDB), suggesting formation via anaerobic oxidation of methane, characteristic of methane seepage environments. δ18O in most of the carbonates varies from +1.4‰ to +3.2‰ V-PDB, indicating that they formed from slightly modified seawater. Some non-skeletal carbonate grains from surface muds have lower δ18O values (−12.5‰ to −8.2‰ V-PDB) reflecting the influence of 18O-depleted pore water. Size distribution of pyrite framboids (mean value: 3.1 μm) scattered within diatomaceous sinter suggests formation from anoxic-sulfidic bottom waters. δ34S in pyrite is of −0.3‰ V-CDT compared to +46.6‰ V-CDT in barite, thus implying a fluid sulfate−sulfide fractionation of 21.3‰ that argues in favor of microbial sulfate reduction as the processes that mediated pyrite framboid formation, in a semi-closed system. Barite formation occurred through the mixing of reducing and Ba-rich seep fluids with a 34S-enriched sulfate pool that resulted from microbial sulfate reduction in a semi-closed system. The chemical composition of aragonite cement, barite and pyrite suggest mineral precipitation from modified seawater. Taken together, our data suggest that mineralization at the studied seep sites is controlled by the mixing of seawater with minor amounts of hydrothermal fluids, and oxygen-depleted conditions favoring anaerobic microbial processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2020-07-09
    Description: Marine laminated sediments in dysoxic areas of the ocean floor are an excellent archive for high-resolution climate reconstructions. While the existence of discontinuities produced by natural events, such as underwater landslides (slumps), strong bottom currents, and/or bioturbation is usually acknowledged for long records, the extent of their influence on high-resolution sequences is usually not considered. In the present work we show strong evidence for multiple stratigraphic discontinuities in different gravity and box-cores retrieved off Pisco (Peru) covering the last 600 years. Chronostratigraphies are largely based on cross-correlation of distinct sedimentary structures (determined by X-ray image analysis) and validated using 210Pb, 241Am, and 14C profiles, as well as proxy records. The cross-correlation of distinct stratigraphic layers allows for chronostratigraphic tie points and clearly shows that some sedimentary sequences are continuous across scales of tens of kilometers, indicating that regional processes often determine laminae formation. Some differences in laminae thickness were found among cores, which could be explained by different sedimentation rates, spatially variable deposition of diatom blooms, changes in silica dissolution and partial deposition/erosion caused by bottom currents. Using multiple stratigraphic tie points provides clear evidence for laminated sequences present in some cores to be missing in other cores. Moreover, instantaneous depositions from upslope were identified in all the cores disrupting the continuity of the sediment records. These discontinuities (instantaneous deposits and missing sequences) may be due to slumps, possibly triggered by earthquakes and/or erosion by strong bottom currents. In spite of the missing sequences in some cores, a continuous composite record of the last six centuries was reconstructed from spliced sequences of the different cores, which provides a well-constrained temporal framework to develop further high-resolution proxies in this region. The present work shows that paleoreconstructions developed from single cores, particularly in areas with strong seismic activity and/or strong bottom currents, are subject to both temporal gaps and instantaneous depositions from upslope, both of which could be misinterpreted as abrupt climate changes or anomalous climate events. We stress the need for multiple cores to determine the stratigraphic continuity and chronologies for high-resolution records.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2021-02-08
    Description: The submerged portions of the North-Anatolian Fault (NAF) in the Sea of Marmara and the NE-Aegean Sea are sites of large magnitude earthquakes, that leave diagnostic geological “signatures” in the sedimentary record in the form of mass-wasting deposits, turbidites, and fluid and gas escape features. This is due to the interplay of seismic-shaking, mass- and turbidity flows, sediment resuspension and fluids circulation in relatively small sub-basins with a complex paleo-oceanography, steep slopes, high rates of deformation, and diffuse fault-controlled gas and fluid seeps. To unravel the complex interrelations of these phenomena during earthquake cycles, we carried out paleoseismological studies at several key locations. Here, we report results of these studies, carried out onboard the R/V Urania over a decade, starting soon after the Mw 7.4, 1999 İzmit earthquake. Our work included high resolution mapping of active faults through multibeam bathymetry and high resolution seismic reflection profiles, multi-parameter analysis of sediment cores, as well as seafloor observations using sensors mounted on remotely-operated vehicles (ROV). The main objectives were to map active faults, determine slip-rates and earthquake recurrence times along major fault strands, and assess connections between fault deformation and fluid activity. We mapped fault geometry in the gulfs of İzmit, Gemlik and Saros, showing the trans-tensive nature of these depressions. The average slip-rates for the last ~ 10 ka was found to be 10 mm/y in the gulfs of İzmit and Saros, at the eastern and the western ends of the NAF northern strand, and 3–4 mm/yr in the Gulf of Gemlik, along the middle strand of the NAF. These rates, integrated over 10 ka of NAF activity, are smaller than those determined by the GPS geodetic measurements. Submarine paleoseismological studies in the Gulf of İzmit detected the sedimentary records of earthquakes for the last 2.4 ka, suggesting an average recurrence time of 300 years for major events. Multisensor observations and monitoring of the seafloor have shown widespread emissions of gas and fluids along the submerged part of the NAF, associated with reduced black sediments; we investigated their possible connection with the earthquake cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-02-01
    Description: The interior of the Australian continent shows evidence for late Quaternary to Recent fault-controlled mantle 3He and CO2 degassing. A series of interconnected NW-striking sinistral faults, the Norwest fault zone (NFZ), in south-central Australia are associated with travertine mounds, the latter show a regular spacing of 50–70 km. U-series ages on 26 samples range from to (2σ errors) and suggest a clustering every ∼3–4 ka since ∼26 ka. Geochemical data demonstrate a remarkable mantle-to-groundwater connection. Isotopic data indicate that the groundwater is circulating to depths 〉3 km and interacting with Neoproterozoic/Cambrian basement and mantle volatiles. 3He/4He isotope ratios show that the He comes in part from the mantle. This demonstrates that the NFZ cuts through the entire crust and provides pathways for mantle degassing. Scaling relationships suggest that the series of sinistral faults that make up the NFZ are interconnected at depths and have a significant strike length of 60–70 km or more. The NFZ occurs where a major compositional boundary and a significant heat flow anomaly occurs, and a major step in lithospheric thickness has been mapped. We discuss a tectonic model in which recent stress field, heat flow and lithospheric structure in central Australia reactivated a set of steeply dipping Neoproterozoic faults, which may now be growing into a crustal/lithospheric-scale structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2021-02-08
    Description: We present the development and validation of a numerical modeling suite for bubble and droplet dynamics of multiphase plumes in the environment. This modeling suite includes real-fluid equations of state, Lagrangian particle tracking, and two different integral plume models: an Eulerian model for a double-plume integral model in quiescent stratification and a Lagrangian integral model for multiphase plumes in stratified crossflows. Here, we report a particle tracking algorithm for dispersed-phase particles within the Lagrangian integral plume model and a comprehensive validation of the Lagrangian plume model for single- and multiphase buoyant jets. The model utilizes literature values for all entrainment and spreading coefficients and has one remaining calibration parameter (Formula presented.), which reduces the buoyant force of dispersed phase particles as they approach the edge of a Lagrangian plume element, eventually separating from the plume as it bends over in a crossflow. We report the calibrated form (Formula presented.), where b is the plume half-width, and r is the distance of a particle from the plume centerline. We apply the validated modeling suite to simulate two test cases of a subsea oil well blowout in a stratification-dominated crossflow. These tests confirm that errors from overlapping plume elements in the Lagrangian integral model during intrusion formation for a weak crossflow are negligible for predicting intrusion depth and the fate of oil droplets in the plume. The Lagrangian integral model has the added advantages of being able to account for entrainment from an arbitrary crossflow, predict the intrusion of small gas bubbles and oil droplets when appropriate, and track the pathways of individual bubbles and droplets after they separate from the main plume or intrusion layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2021-02-08
    Description: Highlights • Four of the seven seamounts northeast of the Galápagos Platform are drowned islands • The ages of the seamounts range from 5.2 Ma to 0.5 Ma • Seamount morphology changes from conical to elongate at ~1.5 Ma • The locus of volcanism appears to migrate eastward at the rate of Nazca plate motion Abstract We present new geochemical and 40Ar/39Ar analyses from seven seamounts located off the northeastern margin of the shallow Galápagos Platform. Initial volcanism at 5.2 Ma created a small island (Pico) over the current location of the hotspot with geochemically enriched lavas. There is no further record of magmatism in the study area until 3.8 to 2.5 Ma, during which four roughly conical volcanoes (Sunray, Grande, Fitzroy, and Beagle) formed through eruption of lavas derived from a depleted mantle source. Sunray, Fitzroy, and Grande were islands that existed for ~3 m.y. ending with the submergence of Fitzroy at ~0.5 Ma. The youngest seamounts, Largo and Iguana, do not appear to have been subaerial and were active at 1.3 Ma and 0.5 Ma, respectively, with the style of edifice changing from the previous large cones to E-W elongate, composite structures. The progression of magmatism suggests that Pico erupted near 91.5°W near the location of the Galápagos plume while the others formed well east of the plume center. If the locations of initial volcanism are calculated using the eastward velocity of the Nazca plate, there appears to be a progression of younger volcanism toward the east, opposite what would be expected from a fixed mantle plume source. The rate that initial volcanism moves eastward is close to the plate velocity. A combination of higher temperature and geochemical enrichment of the thickened lithosphere of the Galápagos platform could have provided a viscosity gradient at the boundary between the thick lithosphere and the thinner oceanic lithosphere to the northeast. As this boundary moved eastward with the Nazca plate, it progressively triggered shear-driven mantle upwelling and volcanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2021-02-08
    Description: Highlights • Melt inclusions from southern Payenia have highly variable element enrichment • Magmas formed by mixing of asthenospheric high Nb/U and lithospheric low Nb/U melts • Low Nb/U type inclusions are similar in composition to alkaline lamprophyres • Low Nb/U melts were formed by fractionation of high Nb/U melts in the SCLM • The percolative fractional crystallization involved cpx, rutile and apatite Abstract We present major and trace element compositions of melt inclusions from three alkali basalts from the Río Colorado volcanic field in the Payenia backarc province, Argentina. Modeling of diffusion profiles around the inclusions showed that most inclusions equilibrated 〈14 days after formation, indicating a short crustal residence time for the magmas and nearly direct ascent through the crust. Despite overlapping host rock isotopic compositions, the inclusions show a large variation in their degree of enrichment, and display trends that we interpret as mixing between asthenospheric OIB-type low K2O-high Nb/U melts and enriched high K2O-low Nb/U lithospheric mantle melts similar in composition to alkaline lamprophyres. The low Nb/U magmas are excessively enriched in the elements Cs, Rb, Ba, Th, U, K, Pb and Cl relative to Nb, Ta and REEs. The enriched low Nb/U components are interpreted to have formed by percolative fractional crystallization of asthenospheric high Nb/U melts in the lithospheric mantle involving crystallization of clinopyroxene, apatite and rutile. The residual fluid-rich melts either mixed directly with new batches of high Nb/U melts or metasomatized and veined the lithospheric mantle which later re-melted during continued volcanism. The major element compositions of the high K2O-low Nb/U components are distinct for the whole rocks and melt inclusions, and most enriched inclusions have lower SiO2 and higher TiO2 contents indicating derivation by melting of amphibole-bearing veins. In contrast, most wr low Nb/U basalts have higher SiO2 and lower TiO2 and were most likely formed by melting of pyroxenitic veins or peridotitic metasomatized lithospheric mantle.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2020-02-06
    Description: Multi-proxy analyses of new piston core M13-08 together with seismic data from the Gulf of Gemlik provide a detailed record of paleoceanographic and paleoclimatic changes with special emphasis on the timing of the connections between the Sea of Marmara (SoM) and the Gulf of Gemlik during the late Pleistocene to Holocene. The deposition of a subaqueous delta sourced from the Armutlu River to the north is attributed to the lowstand lake level at −60 m in the gulf prior to 13.5 cal ka BP. On the basis of the seismic data, it is argued that the higher lake level (−60 m) in the gulf compared to the SoM level (−85 m) attests to its disconnection from the SoM during the late glacial period. Ponto-Caspian assemblages in the lacustrine sedimentary unit covering the time period between 13.5 and 12 cal ka BP represent a relict that was introduced into the gulf by a Black Sea outflow during the marine isotope stage 3 interstadial. Contrary to the findings of previous studies, the data suggest that such an outflow into the Gulf of Gemlik during the late glacial period could have occurred only if the SoM lake level (−85 m) was shallower than the sill depth (−55 m) of the gulf in the west. A robust age model of the core indicates the connection of the gulf with the marine SoM at 12 cal ka BP, consistent with the sill depth (−55 m) of the gulf on the global sea level curve. Strong evidence of a marine incursion into the gulf is well documented by the μ-XRF Sr/Ca data. The available profiles of elemental ratios in core M13-08, together with the age-depth model, imply that a warm and wet climate prevailed in the gulf during the early Holocene (12–10.1 cal ka BP), whereas the longest drought occurred during the middle Holocene (8.2–5.4 cal ka BP). The base of the main Holocene sapropel in the gulf is dated at 10.1 cal ka BP, i.e., 500 years younger than its equivalent in the SoM. The late Holocene is earmarked by warm and wet climate periods (5.0–4.2 and 4.2–2.7 cal ka BP) with some brief cold/dry periods (4.2 and 2.7–0.9 cal ka BP).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2021-04-23
    Description: Certification of trace metals in seawater certified reference materials (CRMs) NASS-7 and CASS-6 is described. At the National Research Council Canada (NRC), column separation was performed to remove the seawater matrix prior to the determination of Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ni, U, V, and Zn, whereas As was directly measured in 10-fold diluted seawater samples, and B was directly measured in 200-fold diluted seawater samples. High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was used for elemental analyses, with double isotope dilution for the accurate determination of B, Cd, Cr, Cu, Fe, Pb, Mo, Ni, U, and Zn in seawater NASS-7 and CASS-6, and standard addition calibration for As, Co, Mn, and V. In addition, all analytes were measured using standard addition calibration with triple quadrupole (QQQ)-ICPMS to provide a second set of data at NRC. Expert laboratories worldwide were invited to contribute data to the certification of trace metals in NASS-7 and CASS-6. Various analytical methods were employed by participants including column separation, co-precipitation, and simple dilution coupled to ICPMS detection or flow injection analysis coupled to chemiluminescence detection, with use of double isotope dilution calibration, matrix matching external calibration, and standard addition calibration. Results presented in this study show that majority of laboratories have demonstrated their measurement capabilities for the accurate determination of trace metals in seawater. As a result of this comparison, certified/reference values and associated uncertainties were assigned for 14 elements in seawater CRMs NASS-7 and CASS-6, suitable for the validation of methods used for seawater analysis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2020-02-06
    Description: The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M ~ 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2020-02-06
    Description: Highlights • We track the preferential pathways of the Mediterranean Outflow Water (MOW). • A topographic analysis method is used to identify the MOW hydrological avenues. • Contour avenues and cross-slope channels have complementary roles steering the MOW. • The MOW is a density-driven current steered by both bottom topography and the Coriolis force. Abstract The Mediterranean Water leaves the western end of the Strait of Gibraltar as a bottom wedge of salty and warm waters flowing down the continental slope. The salinity of the onset Mediterranean Outflow Water (MOW) is so high that leads to water much denser (initially in excess of 1.5 kg m−3) than the overlying central waters. During much of its initial descent, the MOW retains large salinity anomalies – causing density anomalies that induce its gravity current character – and relatively high westward speeds – causing a substantial Coriolis force over long portions of its course. We use hydrographic data from six cruises (a total of 1176 stations) plus velocity data from two cruises, together with high-resolution bathymetric data, to track the preferential MOW pathways from the Strait of Gibraltar into the western Gulf of Cadiz and to examine the relation of these pathways to the bottom topography. A methodology for tributary systems in drainage basins, modified to account for the Coriolis force, emphasizes the good agreement between the observed trajectories and those expected from a topographically-constrained flow. Both contour avenues and cross-slope channels are important and have complementary roles steering the MOW along the upper and middle continental slope before discharging as a neutrally buoyant flow into the western Gulf of Cadiz. Our results show that the interaction between bottom flow and topography sets the path and final equilibrium depths of the modern MOW. Furthermore, they support the hypothesis that, as a result of the high erosive power of the bottom flow and changes in bottom-water speed, the MOW pathways and mixing rates have changed in the geological past.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine and Petroleum Geology, 90 . pp. 1-9.
    Publication Date: 2021-02-08
    Description: The spectacular Lusi eruption started in northeast Java, Indonesia, on May 29th, 2006, continuously erupting mud, water, gas, oil, and clasts ever since. Lusi provides an unprecedented opportunity to study the birth and the evolution of a large-scale and hot mud eruption. Lusi is interpreted as a hybrid between a traditional hydrocarbon-driven piercement structure (mud volcano) and a hydrothermal system fuelled by magmatic heat. Lusi is therefore an exciting natural laboratory for understanding analogue modern and palaeo-piercement systems such as mud volcanoes, sediment-hosted hydrothermal systems, and hydrothermal vent complexes. This special issue collects recent multidisciplinary work completed in the framework of the ERC-funded LUSI LAB project. These studies were conducted at and near Lusi. Contributions span across disciplines such as engineering, geochemistry, geophysics, geology and numerical modelling, including fieldwork, laboratory and theoretical approaches. The acquired results contribute to characterise the dynamics of complex interactions between volcanism and an ongoing erupting clastic system. Lusi still saves many mysteries that will be unravelled by future scientific investigations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2021-02-08
    Description: Microplastics (〈5 mm) have been found in many fish species, from most marine environments. However, the mechanisms underlying microplastic ingestion by fish are still unclear, although they are important to determine the pathway of microplastics along marine food webs. Here we conducted experiments in the laboratory to examine microplastic ingestion (capture and swallowing) and egestion by juveniles of the planktivorous palm ruff, Seriolella violacea (Centrolophidae). As expected, fish captured preferentially black microplastics, similar to food pellets, whereas microplastics of other colours (blue, translucent, and yellow) were mostly co-captured when floating close to food pellets. Microplastics captured without food were almost always spit out, and were only swallowed when they were mixed with food in the fish's mouth. Food probably produced a ‘gustatory trap’ that impeded the fish to discriminate and reject the microplastics. Most fish (93% of total) egested all the microplastics after 7 days, on average, and 49 days at most, substantially longer than food pellets (〈2 days). No acute detrimental effects of microplastics on fish were observable, but potential sublethal effects of microplastics on the fish physiological and behavioural responses still need to be tested. This study highlights that visually-oriented planktivorous fish, many species of which are of commercial value and ecological importance within marine food webs, are susceptible to ingest microplastics resembling or floating close to their planktonic prey. Microplastic similarity to food, and food presence together with microplastics, influence the ingestion of microplastics by visually-oriented planktivorous fish.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2021-02-08
    Description: Highlights • A carbonic anhydrase gene was identified from an hydrothermal vent metagenome. • The gene product LOGACA is a dimeric α-type carbonic anhydrase. • LOGACA is highly thermostable at alkaline pH. • Thermostability correlates with secondary structure, surface charges and ion pairs. Abstract Carbonic anhydrases (CAs) are extremely fast enzymes, which have attracted much interest in the past due to their medical relevance and their biotechnological potential. An α-type CA gene was isolated from DNA derived from an active hydrothermal vent chimney, in an effort to identify novel CAs with suitable properties for CO2 capture. The gene product was recombinantly produced and characterized, revealing remarkable thermostability, also in the presence of high ionic strength alkaline conditions, which are used in some CO2 capture applications. The Tm was above 90 °C under all tested conditions. The enzyme was crystallized and the structure determined by molecular replacement, revealing a typical bacterial α-type CA non-covalent dimer, but not the disulphide mediated tetramer observed for the hyperthermophilic homologue used for molecular replacement, from Thermovibrio ammonificans. Structural comparison suggests that an increased secondary structure content, increased content of charges on the surface and ionic interactions compared to mesophilic enzymes, may be main structural sources of thermostability, as previously suggested for the homologue from Sulfurihydrogenibium yellowstonense.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2021-02-08
    Description: Marine macroalgae in temperate regions are constantly exposed to colonization by fouling organisms, but the intensity of fouling fluctuates in time. We, therefore, hypothesized that a macroalgal species from these latitudes should be able to adjust its antifouling defense to the prevailing colonization pressure. To test this assumption, fouling pressure in the Western Baltic Sea as well as the activity of surface extracts gained from the non-native Gracilaria vermiculophylla against the diatom Stauroneis constricta and the filamentous alga Ceramium tenuicorne were assessed over one vegetation period on a monthly basis. We used two solvents with different polarities to extract chemical compounds from the alga. Both, hexane and dichloromethane (DCM) surface extracts, inhibited settlement of C. tenuicorne, while only hexane surface extracts deterred S. constricta. Furthermore, the activities of both extracts fluctuated on the scale of months and the fluctuations in the activity against C. tenuicorne, which were observed in DCM extracts, correlated with the intensity of fouling pressure that C. tenuicorne inflicted on G. vermiculophylla in the field. Thus, G. vermiculophylla appears to be able to adjust its antifouling defenses—at least partly—to fouling pressure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2018-06-26
    Description: We present the latest 3D velocity field of the Fennoscandian glacial isostatic adjustment (GIA) process from BIFROST. It is derived from more than 4800 days (13 years) of data at more than 80 permanent GPS sites. We use the GAMIT/GLOBK and the GIPSY/OASIS II software packages for GPS analysis and compare the results. The solution has an internal accuracy at the level of 0.2 mm/year (1 sigma) for horizontal velocities at the best sites. We also present a revised GIA prediction model. At the best sites, the optimal model agrees with the observations to within 0.4 mm/year. However, the model systematically overpredicts the magnitude of horizontal rates in the north. We discuss limitations in computed and presented GNSS station velocities, where especially possible instability over time causing non-linear pattern in vertical time series are considered. In extension, preliminary results from an investigation applying revised analysis strategies on a sparse subset of the database are presented, indicating possible improvements for the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2021-02-08
    Description: Highlights • Improved position accuracy of up to 0.08 cm using SAPOS®-corrected DGNSS • High-resolution snippet backscatter to detect and monitor UXO and its environment • Combined evaluation of bathymetry, backscatter intensities, and sediments Abstract The present study reports the evaluation of snippet backscatter information gathered with a high-frequency multibeam echosounder system (200–400 kHz) due to their usability to detect ammunition of different sizes in shallow coastal waters. Besides the feasibility of the snippet backscatter data, it was focused on the attainable horizontal accuracy in comparison to side-scan sonar and autonomous underwater vehicle (AUV) surveys. The data was collected in shallow coastal waters of up to 18 m water depth (Baltic Sea) close to an ammunition dumping site characterized by an almost flat seafloor covered with sand and silt sediments. The analysis of the multibeam compared to sidescan data indicates the snippet backscatter to be a promising prospective method for ammunition detection and being able to improve horizontal position accuracy of up to 0.08 m.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2021-02-08
    Description: Seafloor spreading at slow and ultraslow rates is often taken up by extension on large-offset faults called detachments, which exhume lower crustal and mantle rocks, and in some cases make up domed oceanic core complexes. The exposed footwall may reveal a characteristic pattern of spreading-parallel corrugations, the largest of which are clearly visible in multibeam bathymetric data, and whose nature and origin have been the subject of controversy. In order to tackle this debate, we use available nearbottom bathymetric surveys recently acquired with autonomous deep-sea vehicles over five corrugated detachments along the Mid-Atlantic Ridge. With a spatial resolution of 2 m, these data allow us to compare the geometry of corrugations on oceanic detachments that are characterized by differing fault zone lithologies, and accommodate varying amounts of slip. The fault surfaces host corrugations with wavelengths of 10-250 m, while individual corrugations are finite in length, typically 100-500 m. Power spectra of profiles calculated across the corrugated fault surfaces reveal a common level of roughness, and indicate that the fault surfaces are not fractal. Since systematic variation in roughness with fault offset is not evident, we propose that portions of the exposed footwalls analyzed here record constant brittle strain. We assess three competing hypotheses for corrugation formation and find that the continuous casting and varying depth to brittle-ductile transition models cannot explain the observed corrugation geometry nor available geological observations. We suggest a model involving brittle strain localization on a network of linked fractures within a zone of finite thickness is a better explanation for the observations. This model explains corrugations on oceanic detachment faults exposed at the seafloor and on normal faults in the continents, and is consistent with recently imaged corrugations on a subduction zone megathrust. Hence fracture linkage and coalescence may give rise to corrugated fault zones, regardless of earlier deformation history and tectonic setting.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2020-07-14
    Description: A culture of juvenile Sepia officinalis L. was kept during summer 1985 in the aquaria of the “Station Marine”, Wimereux, France. During the first four months of juvenile development, oxygen consumption under increasing hypoxia was measured with a closed respirometer. The experiments revealed a high regulatory capacity of juvenile S. officinalis. The critical oxygen concentrations were calculated and their ontogenetical evolution was studied. The critical oxygen concentration increased with increasing development. A linear relationship emerged between the critical oxygen concentration and the logarithm of the wet weight [COc (mg O2 l-1)=-0.393+0.893×log10(Ww)]. The decreasing regulatory capacity of growing S. officinalis is most probably related to adaptations to a changing ecological environment during development. Another possibility is a physiological change, most probably related to the shift from embryonic to adult hemocyanin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    facet.materialart.
    Unknown
    Springer
    In:  Polar Biology, 9 (3). pp. 137-145.
    Publication Date: 2020-06-10
    Description: The diets of five breeding seabird species were investigated on Adélie Land in January–February 1982. Stomach contents of Adélie penguins, Pygoscelis adeliae, were sampled by a water off-loading method and of Procellariiformes by spontaneous regurgitation. Diet compositions by mass were: Adélie penguin (79% euphausiid, 18% fish, 3% squid); Cape pigeon, Daption capense, (64% euphausiid, 29% fish, 7% carrion); Antarctic fulmar, Fulmarus glacialoides, (64% euphausiid, 20% carrion, 16% fish); snow petrel, Pagodroma nivea, (95% fish, 2% euphausiid, 1% carrion) and Wilson's stormpetrel, Oceanites oceanicus, (39% fish, 37% euphausiid, 13% carrion, 12% various crustaceans). The present Adélie penguin diet is consistent with those reported in other studies, given our knowledge of geographical variation in food availability. Differences in the diets of fulmarine petrels appear to relate to differences in foraging areas. The snow petrel is a fish-eating bird associated with pack-ice. Cape pigeon and Antarctic fulmar are mainly krill-eaters and we infer segregation along a neritic/oceanic gradient because of the importance of the neritic Euphausia crystallorophias in the former and the oceanic E. superba in the latter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-09-04
    Description: Highlights • Synthesis of timescales of magmatic processes at spreading centres. • Compilation of drilled MORB glass compositions, chemical stratigraphy of the oceanic crust. • No chemical difference between MORB sampled from active ridges or by drilling. • Chemical variations on timescales 〈 1 ka reflect changes in melt recharge relative to fractionation. • Changes in the composition of melt entering crust occur over timescales of 10 to 100 ka. Abstract Oceanic crust is continuously created at mid-ocean ridges by decompression melting of the upper mantle as it upwells due to plate separation. Decades of research on active spreading ridges have led to a growing understanding of the complex magmatic, tectonic and hydrothermal processes linked to the formation of new oceanic igneous crust. However, less is known about the timescales of magmatic processes at mid-ocean ridges, including melting in and melt extraction from the mantle, fractional crystallisation, crustal assimilation and/or magma mixing. In this paper, we review the timescales of magmatic processes by integrating radiometric dating, chemical and petrological observations of mid-ocean ridge basalts (MORBs) and geophysical models. These different lines of evidence suggest that melt extraction and migration, and crystallisation and mixing processes occur over timescales of 1 to 10,000 a. High-resolution geochemical stratigraphic profiles of the oceanic crust using drill-core samples further show that at fast-spreading ridges, adjacent flow units may differ in age by only a few 100 a. We use existing chemical data and new major- and trace-element analyses of fresh MORB glasses from drill-cores in ancient Atlantic and Pacific crust, together with model stratigraphic ages to investigate how lava chemistry changes over 10 to 100 ka periods, the timescale of crustal accretion at spreading ridges which is recorded in the basalt stratigraphy in drilled sections through the oceanic crust. We show that drilled MORBs have compositions that are similar to those of young MORB glasses dredged from active spreading ridges (lavas that will eventually be preserved in the lowermost part of the extrusive section covered by younger flows), showing that the dredged samples are indeed representative of the bulk oceanic crust. Model stratigraphic ages calculated for individual flows in boreholes, together with the geochemical stratigraphy of the drilled sections, show that at fast-spreading ridges, magma compositions vary over 〈 100 to 1000 a, likely due to variations in the relative rates of crystallisation and melt recharge. However, on longer timescales of 10 to 100 ka, variations in the composition of the primitive melt feeding the ridge lead to chemical variations in the erupted lavas, likely as a function of thermal and/or chemical heterogeneity of the mantle source. The further understanding of these temporal variations in magma composition, especially at shorter timescales of less than a few centuries, is a promising area for future research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2020-02-06
    Description: In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in calcite we performed precipitation experiments decoupling temperature and precipitation rate (R∗). Calcite was precipitated at 12.5, 25.0 and 37.5 °C by diffusing NH3 and CO2 gases into aqueous solutions closely following the experimental setup of Lemarchand et al (2004). The precipitation rate (R∗) for every sample was determined applying the initial rate method and from the specific surface area of almost all samples for each reaction. The order of reaction with respect to Ca2+ ions was determined to be one and independent of T. However, the order of reaction with respect to HCO3- changed from three to one as temperature increases from 12.5, 25 °C and 37.5 °C. Strontium incorporated into calcite (expressed as DSr= [Sr/Ca] calcite/ [Sr/Ca] solution) was found to be R∗ and T dependent. As a function of increasing R∗ the Δ88/86Sr-values become more negative and as temperature increases the Δ88/86Sr values also increase at constant R∗. The DSr and Δ88/86Sr-values are correlated to a high degree and depend only on R∗ being independent of temperature, complexation and varying initial ratios. Latter observation may have important implications for the study of diagenesis, the paleo-sciences and the reconstruction of past environmental conditions. Calcium isotope fractionation (Δ44/40Ca) was also found to be R∗ and T dependent. For 12.5 and 25.0 °C we observe a general increase of the Δ44/40Ca values as a function of R∗ (Lemarchand et al type behavior, Lemarchand et al (2004)). Whereas at 37.5 °C a significant decreasing Δ44/40Ca is observed relative to increasing R∗ (Tang et al type behavior, Tang et al. (2008)). In order to reconcile the discrepant observations we suggest that the temperature triggered change from a Ca2+-NH3-aquacomplex covalent controlled bonding to a Ca2+-H2O-aquacomplex van-der-Waals controlled bonding caused the change in sign of the R∗ - Δ44/40Ca slope due to the switch of an equilibrium type of isotope fractionation related to the covalent bonding during lower temperatures to a kinetic type of isotope fractionation at higher temperatures. This is supported by the observation that the Δ44/40Ca ratios are independent from the [Ca]: [DIC] ratio at 12.5 and 25°C but highly dependent at 37.5°C. Our observations imply the chemical fluid composition and temperature dependent complexation controls the amount and direction of Ca isotope fractionation in contrast to the Sr isotopes which do not show any change of its fractionation behaviour as a function of complexation in the liquid phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2020-02-06
    Description: Highlights • First present seafloor hydrothermal mineralization processes at both Wocan-1 and Wocan-2 on the slow-spreading Carlsberg Ridge. • The Cu-rich chimneys were formed at slightly lower temperatures than Cu-rich and Fe-rich massive sulfides. • The main Ag-carriers were both late-stage Cu sulfides and Fe sulfides, which deposited under low temperatures and oxidized conditions. • Fluid mixing of hydrothermal fluids with seawater might result in significant redistributions of trace metal elements in sulfides. Abstract The basalt-hosted Wocan hydrothermal field (WHF), located on the NW slope of an axial volcanic ridge in a depth of ∼3000 m at 6°22′N on the slow-spreading Carlsberg Ridge, northwest Indian Ocean, was discovered in 2013 during Chinese DY28th cruise. Preliminary investigations show that the field consists of two hydrothermal sites: Wocan-1, which shows indications for recent high-temperature hydrothermal activity, is located near the peak of the axial volcanic ridge in a water depth of 2970-2990 m, and the inactive Wocan-2 site, located at a water depth of 3100 m, ∼1.7 km to the northwest of Wocan-1. The recovered hydrothermal precipitates can be classified into four groups: (i) Cu-rich chimneys; (ii) Cu-rich massive sulfides; (iii) Fe-rich massive sulfides; and (iv) silicified massive sulfides. We conducted mineral texture and assemblage observation and Laser-ablation ICP-MS analyses of the hydrothermal precipitates to study the mineralization processes. Our results show that there are distinct systematic trace element distributions throughout the different minerals in the four sample groups. In general, chalcopyrite from the group (i) is enriched in Pb, As, Mo, Ga, Ge, V, and Sb, metals that are commonly referred to as medium- to low-temperature elements. In contrast these elements are present in low contents in the chalcopyrite grains from other sample groups. Selenium, a typical high-temperature metal, is enriched in chalcopyrite from groups (ii) and (iv), whereas Ag and Sn are enriched only in some silicified massive sulfides. As with chalcopyrite, pyrite also shows distinct trace element associations in grains with different habitus. The low-temperature association of elements (Pb, Mo, Mn, U, Mg, Ag, and Tl) is typically present in colloform/framboidal pyrite, whereas the high-temperature association (Se, Co, and Bi) is enriched in euhedral pyrite. Sphalerite in the groups (i) and (iii) at Wocan-1 is characterized by high concentrations of Ga, Ge, Pb, Cd, As, and Sb, indicating that sphalerite in these sample groups likely precipitated at intermediate temperatures. Early bornite, which mainly occurs in the central part of the Cu-rich chimney, is typically enriched in Sn and In compared to the other minerals. In contrast, late bornite that likely formed during increasing interaction of hydrothermal fluids with cold, oxygenated seawater has low Sn and In, but significantly higher concentrations of Ag, Au, Mo and U. Digenite, also forming in the exterior parts of the samples during the late stages of hydrothermal fluid venting, is poor in most trace elements, except Ag and U. The notable Ag enrichment in the late-stage mineral assemblages at both Wocan-1 and Wocan-2 may therefore be related to lower temperatures and elevated pH. Our results indicate that Wocan-1 has experienced a cycle of heating with Cu-rich chimney growth and subsequent cooling, followed by late seafloor weathering, while Wocan-2 has seen intermediate- to high-temperature mineralization followed by intense silicification of sulfides. Seafloor weathering processes or mixing of hydrothermal fluids with seawater during the waning stages of hydrothermal fluid flow result in significant redistributions of trace elements in sulfide minerals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-02-01
    Description: This paper discribes characteristic features of the extrusive dome growth of the Young Shiveluch Volcano in 2001–2013 and analyzes variations in the chemical and mineralogic composition of magmas erupted during this period. It is shown that, compared with the earlier phases in the dome growth during 1980–1981 and 1993–1995, the andesites that were erupted in the 2000s are less homogeneous in bulk composition, crystal contents and contain phenocrysts, which differ in composition and the conditions of crystallization. These compositional feature of rocks are interpreted as resulting from convection in a shallow magma chamber, with the convection being caused by the arrival of a fresh portion of deep magma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2020-02-06
    Description: The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf–Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between −16.8 and −14.9 at the surface to more radiogenic values near −11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to −11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ −4) and North East Atlantic Deep Water (ɛHf ∼ −0.1), although their source waters have essentially the same ɛNd signature. This most likely reflects different weathering signals of hafnium delivered to Denmark Strait Overflow Water and North East Atlantic Deep Water (incongruent weathering of old rocks from Greenland versus basaltic rocks from Iceland). In addition, the ɛHf data resolve two layers within the main body of Labrador Sea Water not visible in the ɛNd distribution, which are shallow Labrador Sea Water (ɛHf ∼ −2) and deep Labrador Sea Water (ɛHf ∼ −4.5). The latter layer was formed between the late 1980’s and mid 1990’s during the last cold state of the Labrador Sea and underwent substantial modification since its formation through the admixture of Irminger Water, Iceland Slope Water and North East Atlantic Deep Water, which is reflected in its less radiogenic ɛHf signature. The overall behavior of Hf in the water column suggests its higher sensitivity to local changes in weathering inputs on annual to decadal timescales. Although application of Hf isotopes as a tracer for global water mass mixing is complicated by their susceptibility to incongruent weathering inputs they are a promising tracer of local processes in restricted basins such as the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2020-02-06
    Description: Highlights • First magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site. • New inversion method resolves high-resolution magnetic anomaly in a steep environment. • Lost City bears a positive magnetization resulting from specific chemical processes. A 2003 high-resolution magnetic survey conducted by the Autonomous Underwater Vehicle ABEover the low-temperature, ultramafic-hosted hydrothermal field Lost City reveals a weak positive magnetic anomaly. This observation is in direct contrast to recent observations of strong positive magnetic anomalies documented over the high-temperature ultramafic-hosted hydrothermal vents fields Rainbow and Ashadze, which indicates that temperature may control the production of magnetization at these sites. The Lost City survey provides a unique opportunity to study a field that is, to date, one of a kind, and is an end member of ultramafic-hosted hydrothermal systems. Our results highlight the key contribution of temperature on magnetite production resulting from serpentinization reactions. Whereas high temperature promotes significant production and partitioning of iron into magnetite, low temperature favors iron partitioning into various alteration phases, resulting in a magnetite-poor rock. Moreover, the distribution of magnetic anomalies confirms results of a previous geological survey indicating the progressive migration of hydrothermal activity upslope. These discoveries contribute to the results of 25yrs of magnetic exploration of a wide range of hydrothermal sites, from low-to high-temperature and from basalt-to ultramafic-hosted, and thereby validate using high-resolution magnetics as a crucial parameter for locating and characterizing hydrothermal sites hosting unique chemosynthetic-based ecosystems and potentially mineral-rich deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2020-02-06
    Description: The water masses passing the Fram Strait are mainly responsible for the exchange of heat and freshwater between the Nordic Seas and the Arctic Ocean (the Arctic Mediterranean, AM). Disentangling their exact sources, distribution and mixing, however, is complex. This work provides new insights based on a detailed geochemical tracer inventory including dissolved Nd isotope (εNd), rare earth element (REE) and stable oxygen isotope (δ18O) data along a full water depth section across Fram Strait. We find that Nd isotope and REE distributions in the open AM primarily reflect lateral advection of water masses and their mixing. Seawater-particle interactions exert important control only above the shelf regions, as observed above the NE Greenland Shelf. Advection of northward flowing warm Atlantic Water (AW) is clearly reflected by an εNd signature of -11.7 and a Nd concentration ([Nd]) of 16 pmol/kg in the upper ∼500 m of the eastern and central Fram Strait. Freshening and cooling of the AW on its way trough the AM are accompanied by a continuous change towards more radiogenic εNd signatures (e.g. -10.4 of dense Arctic Atlantic Water). This mainly reflects mixing with intermediate waters but also admixture of dense Kara Sea waters and Pacific-derived waters. The more radiogenic εNd signatures of the intermediate and deep waters (reaching -9.5) are mainly acquired in the SW Nordic Seas through exchange with basaltic formations of Iceland and SE Greenland. Inputs of Nd from Svalbard are not observed and surface waters and Nd on the Svalbard shelf originate from the Barents Sea. Shallow southward flowing Arctic-derived waters (〈 200 m) form the core of the East Greenland Current above the Greenland slope and can be traced by their relatively radiogenic εNd (reaching -8.8) and elevated [Nd] (21 to 29 pmol/kg). These properties are used together with δ18O and standard hydrographic tracers to define the proportions of Pacific-derived (〈 ∼30 % based on Nd isotopes) and Atlantic-derived waters, as well as of river waters (〈 ∼8 %). Shallow waters (〈 150 m) on the NE Greenland Shelf share some characteristics of Arctic-derived waters, but exhibit less radiogenic εNd values (reaching -12.4) and higher [Nd] (up to 38 pmol/kg) in the upper ∼100 m. This suggests local addition of Greenland freshwater of up to ∼6 %. In addition to these observations, this study shows that the pronounced gradients in εNd signatures and REE characteristics in the upper water column provide a reliable basis for assessments of shallow hydrological changes within the AM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2021-02-08
    Description: The relationship between fisheries and marine spatial planning (MSP) is still widely unsettled. While several scientific studies highlight the strong relation between fisheries and MSP, as well as ways in which fisheries could be included in MSP, the actual integration of fisheries into MSP often fails. In this article, we review the state of the art and latest progress in research on various challenges in the integration of fisheries into MSP. The reviewed studies address a wide range of integration challenges, starting with techniques to analyse where fishermen actually fish, assessing the drivers for fishermen's behaviour, seasonal dynamics and long-term spatial changes of commercial fish species under various anthropogenic pressures along their successive life stages, the effects of spatial competition on fisheries and projections on those spaces that might become important fishing areas in the future, and finally, examining how fisheries could benefit from MSP. This paper gives an overview of the latest developments on concepts, tools, and methods. It becomes apparent that the spatial and temporal dynamics of fish and fisheries, as well as the definition of spatial preferences, remain major challenges, but that an integration of fisheries is already possible today
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2020-02-06
    Description: We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from −0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (−0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (−0.39 to −0.07‰) with a mean of −0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (−0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo concentrations of all the ultramafic xenoliths of 40–400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113–180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal–silicate fractionation. An identical isotopic composition might result from core–mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    facet.materialart.
    Unknown
    Springer
    In:  Polar Biology, 6 (1). pp. 43-45.
    Publication Date: 2020-06-10
    Description: Faecal material of leopard, crabeater and elephant seals was collected from the vicinity of Davis station, Antarctica. Very few identifiable remains were found in elephant seal droppings. Fish remains, mainly of Pleuragramma antarcticum, were found in both leopard and crabeater seal droppings. The mysid Antarctomysis maxima was also found in crabeater seal droppings and amphipods and decapod crustaceans in leopard seal droppings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2020-06-26
    Description: Highlights • Glass inclusions record 11 Ma of early arc magma evolution. • Arc tholeiites succeed calc-alkalic magmas temporally. • Volcanic arc output directly linked to mantle wedge composition. • Dynamic slab control on arc magmatism following subduction initiation. Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu–Bonin–Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu–Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early ‘calc-alkalic’, high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the ‘calc-alkalic’ stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of wedge replenishment by corner flow does not overwhelm the rate of magma extraction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-02-01
    Description: Highlights • A serpentinised peridotite basement is strongly supported by S-waves analysis • Depth dependent serpentinisation resembles to that observed at magma-poor margins. • Mantle exhumation was preceded by MOR-type magmatism and later intraplate volcanism. Summary The Tyrrhenian basin opened in the Neogene following the E–SE retreat of the Appenines–Calabrian subduction system and the subsequent back-arc extension of an orogenic crust. The resultant crustal structure includes a complex distribution of continental, back-arc magmatism, and mantle-exhumation domains. A clear example of this complex structure is found in the central and deepest part of the basin (i.e. Magnaghi–Vavilov sub-basin) where geophysical data supported that the bulk of the basement is composed of partially serpentinised peridotite representing exhumed mantle rocks, and intruded by basalts forming low ridges and volcanic edifices. However, those data sets cannot univocally demonstrate the widespread presence of serpentinised mantle rocks, let alone the percentage of serpentinisation. Here, we use S-wave arrivals and available geological information to further constrain the presence of mantle serpentinisation. Travel times of converted S-waves were used to derive the overall Vp/Vs and Poisson's ratio (σ), as well as S-wave velocity of the basement in the Magnaghi-Vavilov Basins. This analysis reveals Vp/Vs ≈ 1.9 (σ ≈ 0.3) that strongly supports a serpentinised peridotite forming the basement under the basins, rather than oceanic-type gabbro/diabase. P-wave velocity models is later used to quantify the amount of serpentinisation from fully serpentinised (up to 100%) at the top of the basement to 〈 10% at 5–7 km deep, with a depth distribution similar to continent–ocean Transition zones at magma-poor rifted margins. Seismic reflection profiles show normal faulting at either flank of the Magnaghi–Vavilov Basin that is potentially responsible for the onset of serpentinisation and later mantle exhumation. These results, together with basement sampling information in the area, suggests that the late stage of mantle exhumation was accompanied or soon followed by the emplacement of MOR-type basalts forming low ridges that preceded intraplate volcanism responsible for the formation of large volcanoes in the area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2020-02-06
    Description: Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)—for example, neoechinulin B—have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2020-02-06
    Description: Orbital forcing influences climate phenomena by changing incoming solar radiation in season and latitude. Here, changes in the El Niño-Southern Oscillation (ENSO)’s impact on the East Asian winter monsoon (EAWM) due to orbital forcing, especially for three selected time periods in each of two interglacial periods, the Eemian (126, 122, 115 ka) and Holocene (9, 6, 0 ka), are investigated. There was a high negative correlation between ENSO and EAWM when the obliquity was low, the processional angle was large, and especially when accompanied by large eccentricity, which corresponds to a weaker monsoon period. The correlation was also high when ENSO variability was high, which interestingly corresponded to lower obliquity and higher-degree precession periods. Therefore, as both lower obliquity and higher-degree precession, such as during 115 ka and 0 ka, cause the EAWM to be weakened through higher winter insolation over Northern hemisphere, and the ENSO to be enhanced through an intensified zonal contrast of the equatorial sea surface temperature, the relationship between the ENSO and EAWM becomes tighter. The opposite case (i.e., during 126 and 9 ka) is also true dynamically. Furthermore, the sensitivity of boreal winter precipitation against sea surface temperature (SST) anomaly over the tropical Pacific, which depends on mean SST, was positively correlated to the strength of the ENSO-EAWM correlation, implying that the warmer mean ocean surface causes the strong response of atmosphere to change in the SST anomaly, thereby enhancing the impact of ENSO on EAWM. Warmer wintertime tropical SST is attributed to higher insolation over the tropics, especially during 115 and 0 ka, while cooler SSTs occurred during 126 and 9 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2020-02-06
    Description: Highlights • The Jbel Boho complex is shown to have an alkaline, intraplate geochemical signature. • At least three magma generations are responsible for forming the extrusive-intrusive complex. • The highly evolved and LREE-rich rhyolitic dykes are associated with synchysite-(Ce) mineralization. Abstract The Jbel Boho complex (Anti-Atlas/Morocco) is an alkaline magmatic complex that was formed during the Precambrian-Cambrian transition, contemporaneous with the lower early Cambrian dolomite sequence. The complex consists of a volcanic sequence comprising basanites, trachyandesites, trachytes and rhyolites that is intruded by a syenitic pluton. Both the volcanic suite and the pluton are cut by later microsyenitic and rhyolitic dykes. Although all Jbel Boho magmas were probably ultimately derived from the same, intraplate or plume-like source, new geochemical evidence supports the concept of a minimum three principal magma generations having formed the complex. Whereas all volcanic rocks (first generation) are LREE enriched and appear to be formed by fractional crystallization of a mantle-derived magma, resulting in strong negative Eu anomalies in the more evolved rocks associated with low Zr/Hf and Nb/Ta values, the younger syenitic pluton displays almost no negative Eu anomaly and very high Zr/Hf and Nb/Ta. The syenite is considered to be formed by a second generation of melt and likely formed through partial melting of underplated mafic rocks. The syenitic pluton consists of two types of syenitic rocks; olivine syenite and quartz syenite. The presence of quartz and a strong positive Pb anomaly in the quartz syenite contrasts strongly with the negative Pb anomaly in the olivine syenite and suggests the latter results from crustal contamination of the former. The late dyke swarm (third generation of melt) comprises microsyenitic and subalkaline rhyolitic compositions. The strong decrease of the alkali elements, Zr/Hf and Nb/Ta and the high SiO2 contents in the rhyolitic dykes might be the result of mineral fractionation and addition of mineralizing fluids, allowing inter-element fractionation of even highly incompatible HFSE due to the presence of fluorine. The occurrence of fluorite in some volcanic rocks and the Ca-REE-F carbonate mineral synchysite in the dykes with very high LREE contents (Ce ∼720 ppm found in one rhyolitic dyke) suggest the fluorine-rich nature of this system and the role played by addition of mineralizing fluids. The REE mineralization expressed as synchysite-(Ce) is detected in a subalkaline rhyolitic dyke (with ΣLREE = 1750 ppm) associated with quartz, chlorite and occasionally with Fe-oxides. The synchysite mineralization is probably the result of REE transport by acidic hydrothermal fluids as chloride complex and their neutralization during fluid-rock interaction. The major tectonic change from compressive to extensional regime in the late Neoproterozoic induced the emplacement of voluminous volcaniclastic series of the Ediacran Ouarzazate Group. The alkaline, within-plate nature of the Jbel Boho igneous complex implies that this extensional setting continued during the early Cambrian.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2018-01-19
    Description: The emission rates of eight volatile halogenated compounds by three tropical brown seaweed species collected from Cape Rachado, west coast Peninsular Malaysia, under different irradiances have been determined. A purge-and-trap sample preparation system with a gas chromatograph and mass-selective detector was used to measure a suite of halocarbons released by Sargassum binderi Sonder ex J. Agardh, Padina australis Hauck, and Turbinaria conoides (J. Agardh) Kützing. All species are widely distributed in Peninsular Malaysia, with S. binderi a dominant seaweed species at our survey site. Release of few halocarbons was found to be influenced by irradiance. Correlations were also observed between emission of certain halocarbons with photosynthetic activity, especially bromo-and iodinated compounds (0.6 〈 r 〈0.9; p 〈 0.01) suggesting that environmental factors such as light can affect the release of these volatile halogenated compounds by the seaweeds into the atmosphere. Compared with temperate and polar brown seaweeds, tropical species, such as T. conoides, may emit higher levels of bromoform, CHBr3, and other halocarbons. It is therefore important to investigate the contribution of tropical seaweeds towards the local atmospheric composition of halocarbons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2020-06-26
    Description: Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates at two sites: freshwater (Nida) and brackish water (Smiltyne) in the Curonian Lagoon (SE Baltic Sea). Using the size-fractionation approach and dilution experiments, we found that the microzooplankton community was able to remove up to 78% of nanophytoplankton (2–20 μm) standing stock and 130% of the total daily primary production in the brackish waters of the lagoon, and up to 83% of standing stock and 76% of the primary production of picophytoplankton (0.2–2 μm) in the freshwater part. The observed differences were attributed to the changes in ciliate community size and trophic structure, with larger nano-filterers (30–60 μm) dominating the brackish water assemblages and pico-nano filterers (〈20 μm and 20–30 μm) prevailing in the freshwater part of the lagoon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...