ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (87)
  • Microbial biomass  (87)
  • Springer  (87)
  • 2020-2023
  • 1995-1999  (87)
  • Geosciences  (87)
Collection
  • Articles  (87)
Publisher
  • Springer  (87)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 1-9 
    ISSN: 1432-0789
    Keywords: Mineralization ; Soil organic matter ; Aerobic incubation ; CaCl2 extraction ; Soluble organic nitrogen ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Indices of N mineralization in soils of contrasting texture, pH, and organic matter contents were compared at different dates during the growing season. The indices were derived from a 12-week aerobic incubation, determination of the amount of microbial biomass at the start of the incubation, determination of the increase in NH 4 + after boiling with 2 M KCl for 2h, and extraction of total soluble N with 0.01 M CaCl2. Cumulative mineral N increased linearly with time in the course of the incubations. Rates of mineralization in soil samples taken in March 1989 and 1990 were significantly correlated with soluble organic N, while correlations between the mineralization rate and the increase in NH 4 + after boiling with 2 M KCl for 2 h were poor for sandy soils and absent for loamy soils. Correlations between NH 4 + after boiling with 2 M KCl for 2h and the soil N concentration were highly significant, but no general relationship was found between the mineralization rate and the soil N concentration. Neither biomass N nor biomass C was significantly correlated with the mineralization rate or with one of the chemical indices. Among the methods tested, soluble organic N extracted with 0.01 M CaCl2 was the only method with any promise for routine measurement of the mineralization capacity of the individual sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Fatty acids ; Phospholipids ; Lipopolysaccharides ; Microbial biomass ; Gram-positive bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Several soils subject to different cultivation and management practices were examined by analysis of fatty acid profiles derived from phospholipids and lipopolysaccharides, using an improved sequential method which is capable of measuring ester-linked and non-ester-linked phospholipid fatty acids (EL-PLFA, NEL-PLFA, respectively) and the hydroxy fatty acids in lipopolysaccharides. A good correlation was obtained (r〉0.90) between the soil biomass and total EL-PLFA in the soils investigated, which ranged from forest soils to a variety of agricultural soils. Elucidation of the composition of the community structure was an additional task. Eukaryotes can be differentiated from bacteria by the presence of polyunsaturated and ω-hydroxy fatty acids, both of which were much more abundant in the OF layer of the forest soil than in the remaining samples. A relatively low proportion of monomethyl branched-chain saturated fatty acids was obtained in the forest OF horizon, these being indicators for Gram-positive bacteria and actinomycetes. Various subclasses of proteobacteria produce β and mid-chain hydroxy fatty acids, which occur primarily in agricultural soils. The ratios between monounsaturated fatty acids and saturated fatty acids seem to be very useful parameters of soil environmental conditions. In addition, on the basis of the differences in composition of the NEL-PLFA and hydroxy fatty acids of lipopolysaccharides, clear indications for the community structure of various soils were obtained. In the forest soils much more abundant anaerobic micro-organisms and relatively less abundant proteobacteria were present than in the other soils. In the cultivated soils, however, the proportion of Gram-negative bacteria was considerably higher. Furthermore, eukaryotes appeared to be pre-dominant in the soils once used for a manure deposit site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 141-147 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Biomass C:N ratio Acidification ; Beech forest ; Soil organic C ; Total N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soils from 38 German forest sites, dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of overlying organic layers. Microbial biomass N and C were measured by fumigation-extraction. The pH of the soils varied between 3.5 and 8.3, covering a wide range of cation exchange capacity, organic C, total N, and soil C:N values. Maximum biomass C and biomass N contents were 2116 μg C m-2 and 347 μg N m-2, while minimum contents were 317 and 30 μg m-2, respectively. Microbial biomass N and C were closely correlated. Large variations in microbial biomass C:N ratios were observed (between 5.4 and 17.3, mean 7.7), indicating that no simple relationship exists between these two parameters. The frequency distribution of the parameters for C and N availability to the microflora divided the soils into two subgroups (with the exception of one soil): (1) microbial: organic C〉12 mg g-1, microbial:total N〉28 mg g-1 (n=23), a group with high C and N availability, and (2) microbial:organic C≤12 mg g-1, microbial:total N≦28 mg g-1 (n=14), a group with low C and N availability. With the exception of a periodically waterlogged soil, the pH of all soils belonging to subgroup 2 was below 5.0 and the soil C:N ratios were comparatively high. Within these two subgroups no significant correlation between the microbial C:N ratio and soil pH or any other parameter measured was found. The data suggest that above a certain threshold (pH 5.0) microbial C:N values vary within a very small range over a wide range of pH values. Below this threshold, in contrast, the range of microbial C:N values becomes very large.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 159-165 
    ISSN: 1432-0789
    Keywords: Collembola ; Microbial biomass ; Soil compaction ; Crop rotation ; Arable soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Collembola and microbial biomass C were investigated in a field experiment with controlled agricultural traffic and crop rotation over a period of 27 months. The wheel-induced compactive efforts were applied according to management practices within the crop rotation of sugar beet, winter wheat, and winter barley. Increasing wheel traffic produced increasing soil compaction, mainly due to a reduction in surface soil porosity. Increasing soil compaction was accompanied by a decrease in microbial biomass C and the density of collembola. The influence of soil compaction on microbial biomass C was smaller than that of the standing crop. However, for collembola, especially euedaphic species, a reduction in pore space appeared to be of more importance than the effects of a standing crop. Within the crop rotation, microbial biomass C and the density of collembola increased in the order sugar beet, winter wheat, and winter barley.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Dehydrogenase activity Urease ; Phosphatase ; Respiration ; ATP ; Grazing Fertiliser ; Lime
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field study was conducted to determine the influence of a short-term (2 year) cessation of fertiliser applications, liming, and sheep-grazing on microbial biomass and activity in a reseeded upland grassland soil. The cessation of fertiliser applications (N and NPK) on a limed and grazed grassland had no effect on microbial biomass measurements, enzyme activities, or respiration. Withholding fertiliser and lime from a grazed grassland resulted in significant reductions in both microbial biomass C (P〈0.05) and dehydrogenase activity (P〈0.05) by approximately 18 and 21%, respectively. The removal of fertiliser applications, liming, and grazing resulted in even greater reductions in microbial biomass C (44%, P〈0.001) and dehydrogenase activity (31%, P〈0.001), and significant reductions in microbial biomass N (P〈0.005), urease activity (P〈0.05), phosphatase activity (P〈0.001), and basal respiration (P〈0.05). The abundance of culturable bacteria and fungi and the soil ATP content were unaffected by changes in grassland managements. With the cessation of liming soil pH fell from 5.4 to 4.7, and the removal of grazing resulted in a further reduction to pH 4.5. A significant negative linear relationship (r 2=0.97; P〈0.01) was found between increasing soil acidity and dehydrogenase activity. Possible mechanisms influencing these changes are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Substrate-induced respiration ; Beech litter ; Fragmentation ; Nutrient limitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In February 1993 samples of litter from three different litter layers (upper, intermediate, and lower) were taken from a beechwood growing on basalt soil. Using the substrate-induced respiration method, we investigated the influence of fragmentation and glucose concentration on the maximum initial respiratory response. Glucose concentrations ranged between 0 and 160000 μg g-1 dry weight. The initial respiratory response reached a maximum at 80000 μg glucose g-1 dry weight. The addition of higher concentrations of glucose resulted in negligible changes in respiration. Litter materials of four different size classes (intact leaves, fragmented 〈100 mm2, 〈25 mm2, and 〈5 mm2) were amended with 80000 μg glucose g-1 dry weight. Substrate-induced respiration was at a maximum in the size class 〈25 mm2. The addition of glucose to intact litter did not result in microbial growth. It is concluded that C is not the primary limiting element for the microflora in litter layers of the study site. Fragmentation of beech litter enabled the microorganisms to grow. Presumably, nutrients that limited microbial growth in intact litter were mobilized by the fragmentation procedure and enabled microorganisms to grow in fragmented litter materials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Substrate-induced respiration ; Selective inhibition ; Prokaryote: eukaryote ratio Woodland soils ; Streptomycin ; Cycloheximide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Bacterial and fungal contributions to microbial respiration in three beechwood soils rich in C (two basalt soils and one limestone soil) were investigated by using streptomycin and cycloheximide to inhibit substrate-induced respiration after glucose (8000 μg g-1), N, and P addition to soil samples. The inhibitors were added as solutions (2000, 8000, and 16000 μg g-1) and the reduction in substrate-induced respiration after separate and combined inhibitor addition was measured in an automated electrolytic microrespirometer. Bacterial and fungal contributions to microbial respiration were calculated using the interval 6–10 h after inhibitor application. The microbial biomas was smaller in the two basalt soils (Oberhang and Mittelhang) than in the limestone soil (Unterhang). In the presence of both inhibitors, microbial respiration was inhibited by a maximum of 45, 45, and 25% in the two basalt soils and the limestone soil, respectively. Inhibition of microbial respiration was at a maximum at streptomycin and cycloheximide concentrations of 16000 μg g-1. The inhibitor additivity ratio approached 1.0 even at high inhibitor concentrations, indicating high inhibitor selectivity. Calculated prokaryote: eukaryote ratios indicated lower bacterial contributions to the microbial biomass in the Mettelhang (0.74) and Unterhang (0.73) than in the Oberhang (0.88) soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0789
    Keywords: Excreta ; Fertiliser ; Microbial biomass ; Nitrogen ; Silvopastoral
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper describes a field study to assess the effect of increasing the frequency of split applications of N fertiliser on the pattern of plant uptake, soil N availability, and microbial biomass C and N. Measurements were taken during the growing season in different positions relative to young trees (Prunus avium L.) in an upland silvopastoral system in its first year after establishment. At fertiliser rates of 72 and 144 kg ha-1 N applied as NH4NO3, increasing the number of split applications increased N uptake by the pasture. Mineral forms of soil N measured 2 weeks after application indicated that residual NH inf4 sup+ -N and total mineral N were also greater in this treatment on certain dates. Soil NO inf3 sup- -N was positively correlated with the soil moisture content, and nitrification reached a maximum in early May and declined rapidly thereafter except within the herbicide-treated areas around the trees where soil moisture had been conserved. Results of the study suggest that high NO inf3 sup- -N in herbicide-treated areas was probably caused by mineralisation of grass residues and low uptake by the tree rather than by preferential urine excretion by sheep sheltering beside the trees. Mean microbial biomass C and N values of 894 and 213 kg ha-1, respectively, were obtained. Microbial C was slightly increased by the higher frequency of split applications at 144 kg ha-1 N and was probably related to the greater herbage production with this treatment. Microbial N was not significantly affected by the N treatments. Both microbial biomass C and N increased during the growing season, resulting in the net immobilisation of at least 45 kg ha-1 N which was later released during the autumn.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 197-202 
    ISSN: 1432-0789
    Keywords: Soil organic matter ; Cultivation ; CPMAS 13C-NMR ; Microbial biomass ; Substrate-induced respiration ; Alkylic carbon ; pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract To determine whether there is a relationship between the composition of soil organic matter and the activity of the soil microbial biomass, the composition of the organic matter in 12 typical arable soils in Northwest Germany was investigated by wet chemical analysis and CPMAS cross polarization magic angle spinning 13C-NMR spectroscopy. The data were correlated with the microbial biomass as estimated by substrate-induced respiration. A strong correlation between the microbial biomass and alkylic C compounds was observed (r=-0.960***). Recalcitrant substances were enriched in this fraction, which were classified as humic acids according to the wet chemical procedure. The microbial decomposition of these humic acids is probably retarded, due to their chemical structure and/or physical bonding, when the soil microbial biomass activity is limited.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 314-320 
    ISSN: 1432-0789
    Keywords: Nitrogen mineralization ; Microbial biomass ; Soil drying ; Extractable organic N ; 15N isotope dilution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory soil incubation and a pot experiment with ryegrass were carried out in order to examine the extractability of microbial biomass N by using either 10-mM CaCl2 extraction or the electro-ultrafiltration (EUF) method. The aim of the experiment was to test the hypothesis whether the organic N (Norg) extracted by EUF or CaCl2 from dried soil samples represents a part of the microbial biomass. For the laboratory incubation a 15N-labelled Escherichia coli suspension was mixed with the soil. For the pot experiment a suspension of 15N-labelled bacteria was applied which had previously been isolated from the soil used. Soil samples of both treatments, with and without applied bacterial suspension, were extracted by EUF and CaCl2. The extractability of applied microbial biomass was estimated from the difference in extractable Norg between the two treatments. In addition, the N isotopic composition in the upper plant matter, in the soil, and in organic and inorganic N fractions of EUF and CaCl2 extracts was analysed. Both experiments showed that the applied microbial biomass was highly accessible to mineralization and thus represented potentially mineralizable N. However, this mineralizable N was not extractable by CaCl2 or by the EUF method. It was, therefore, concluded that the organic N released on soil drying and which was thus extractable was derived from the non-biomass soil organic matter. The result suggests that both extraction methods may provide a suitable index for mineralizable N only in cases where the decomposable organic substrates are derived mainly from sources other than the living soil biota.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 292-296 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Wetland rice soil ; Mineralizable nitrogen ; Reclamation ; Soil organic matter ; Barnyard manuring
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Microbial biomass C, N, total organic C, N and mineralizable N were measured in newly reclaimed wetland sandy loam rice soil with a very low nutrient status. Microbial biomass C increased 5.4–10.4 times due to application of barnyard manure, but decreased drastically to 24–27% during rice cultivation. Organic C and N contents also decreased during cultivation, but to a lesser extent to 59–76%. At the tillering stage of the rice plant, microbial biomass N was highly correlated with mineralizable N (r=0.986).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0789
    Keywords: Phospholipids ; Microbial biomass ; Phosphatase ; Cropping systems ; Long-term experiments Prairie
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In agricultural ecosystems that have had consistent cropping histories, standard microbial methods may be used to evaluate past and present practices. Our objective was to evaluate several microbial methods that best indicate cropping histories and soil quality on long-term plots. We selected soil microbial carbon (C), phospholipid analyses, direct counts of total fungal and bacterial biomass, and soil enzymes (phosphatases) to measure direct and indirect microbial activity on the Sanborn Field and Tucker Prairie. The Sanborn Field has been under various cropping and management practices since 1888 and the Tucker Prairie is an uncultivated site. Seven different plots were chosen on the Sanborn Field and random samples were taken in the summit area on the Tucker Prairie, which represented a reference site. Soil microbial biomass C, phospholipids, and enzyme activity were reflective of the cropping and management histories observed on the Sanborn Field. Enzymatic activity was highly correlated to soil organic matter. The direct counts of fungal and bacterial biomass showed that fungal populations dominated these soils, which may be attributed to soil pH. Soil microbial biomass C and enzyme assays seemed to be better potential indicators of cropping histories than the other methods tested in the long-term plots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 309-316 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Microbial activity ; Long-term field experiment ; Fertilization ; Soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The Dehérain long-term field experiment was initiated in 1875 to study the impact of fertilization on a wheat-sugarbeet rotation. In 1987, the rotation was stopped to be replaced by continuous maize. Crop residues were soil-incorporated and the mineral fertilization was doubled in some plots. The impact of those changes on the microbial biomass and activity are presented. In spring 1987, the soil was still in a steady-state condition corresponding to the rotation. The microbial biomass was correlated with total organic C and decreased in the order farmyard manure〉mineral NPK〉unfertilized control. Microbial specific respiratory activity was higher in the unfertilized treatments. The soil biomass was closely related to soil N plant uptake. In 1989, after 2 years of maize and crop residue incorporation, the steady-state condition corresponding to the previous agricultural practices disappeared. So did the relationship between the biomass and total organic C, and the soil N plant uptake. Biomass specific respiratory activity increased because of low efficiency in the use of maize residues by microbes under N stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 362-368 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Aluminium toxicity ; Acid stress ; Microcalorimetry ; Microbial activity ; Stress parameter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Microbial biomass C and activity were determined in six forest soils along a gradient in physical and chemical climate in Europe. Both parameters were measured microcalorimetrically. The upper 22 cm of the soils were sampled in undisturbed columns (24 cm deep). Measurements were made in homogenized samples of the different surface organic horizons (Ol, Of, Oh) and the mineral horizons (Ah, Aeh, Bv) down to 22 cm. On a mass basis values for both the biomass and the activity showed an exponential decrease with depth in all soils. Expressed on a volume basis these relationships varied with soil pH. in the strongly acidified soils most of the microbial biomass and activity was located in the forest floor. In less acidified soils both parameters were highest in the mineral soil. Further relationships between biomass and activity and between soil chemical properties showed significant positive correlations with exchangeable Ca2+, Mg2+, Ca/Al and negative correlations with Al3+. There were no significant correlations with exchangeable cations in less acidified soils. It was calculated that the microbial biomass is more affected by soil chemistry than activity. The caloric quotient (qW) is a good parameter for determining the ecophysiological state of microorganisms in acidified soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-0789
    Keywords: Key words Defoliation ; Microbial biomass ; Microbial populations ; Dehydrogenase activity ; Respiration ; Bacteria ; Fungi ; Upland grassland ; Upland soil ; Pseudomonas spp.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A microcosm study was conducted to investigate the effect of continuous plant defoliation on the composition and activity of microbial populations in the rhizosphere of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). Continuous defoliation of ryegrass and clover resulted in significant (P〈0.01) increases in soil microbial biomass, although whilst increases were measured from day 2 in soil sown with clover significant increases were only seen from day 21 in soil sown with ryegrass. These increases were paralleled, from day 10 onwards, by increases in the numbers of culturable bacteria. Numbers of Pseudomonas spp. also increased in the later stages of the study. No influence on culturable fungal populations was detected. Whilst shifts in the composition of the microbial populations were measured in response to defoliation there was little effect on microbial activity. No changes in either dehydrogenase activity or microbial respiration in the rhizosphere of ryegrass or clover were measured in response to defoliation, but both dehydrogenase activity and microbial respiration were greater in ryegrass than clover when values over the whole study were combined. Continuous defoliation resulted in significant (P〈0.001) reductions in the root dry weight of ryegrass and clover, of the order 19% and 16%, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1996), S. 106-110 
    ISSN: 1432-0789
    Keywords: Key words 2 ; 4-D ; Dicamba ; Microbial biomass ; Wetland ; Forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A study was conducted to evaluate relationships between microbial biomass and the dissipation of 2,4-D (2,4-dichlorophenoxy acetic acid) and dicamba (2-methoxy-3,6-dichlorobenzoic acid) in soil. We hypothesized that the size of the microbial biomass should be a strong predictor of the pesticide degradation capacity of a particular soil. Soils with a high microbial biomass should have relatively high levels of general microbial activity and should support a diversity of degradation pathways. In this study, we quantified the degradation of 2,4-D and dicamba in a range of soils with different concentrations of microbial biomass. The herbicides 2,4-D and dicamba were added to similar soils collected from five different land use types (home lawn, cornfield, upland hardwood forest, wetland forest, and aquifer material) and incubated for 80 days under laboratory conditions. Herbicide residue and microbial biomass (C and N) analyses were performed 5, 10, 20, 40, and 80 days following herbicide application. Microbial biomass-C and -N and soil organic matter content were positively correlated with dissipation of 2,4-D and dicamba. The results suggest that there are relationships between the size of the soil microbial biomass and the herbicide degradation capacity of an ecosystem. These relationships may be useful for developing approaches for evaluating and predicting the fate of pesticides in different ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 299-304 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Fungal biomass ; Ergosterol ; Fumigation extraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ergosterol and microbial biomass C were measured in 26 arable, 16 grassland and 30 forest soils. The ergosterol content ranged from 0.75 to 12.94 μg g-1 soil. The geometric mean ergosterol content of grassland and forest soils was around 5.5 μg g-1, that of the arable soils 2.14 μg g-1. The ergosterol was significantly correlated with biomass C in the entire group of soils, but not in the subgroups of grassland and forest soils. The geometric mean of the ergosterol: microbial biomass C ratio was 6.0 mg g-1, increasing in the order grassland (5.1), arable land (5.4) and woodland (7.2). The ergosterol:microbial biomass C ratio had a strong negative relationship with the decreasing cation exchange capacity and soil pH, indicating that the fungal part of the total microbial biomass in soils increased when the buffer capacity decreased. The average ergosterol concentration calculated from literature data was 5.1 mg g-1 fungal dry weight. Assuming that fungi contain 46% C, the conversion factor from micrograms ergosterol to micrograms fungal biomass C is 90. For soil samples, neither saponification of the extract nor the more effective direct saponification during extraction seems to be really necessary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 152-158 
    ISSN: 1432-0789
    Keywords: Key words14C pulse-labelling ; Pasture fertility ; Microbial biomass ; Carbon fluxes ; Carbon budgets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Information on carbon (C) flows and transformations in the rhizosphere is vital for understanding soil organic matter dynamics and modelling its turnover. We followed the translocation of photosynthetically fixed C in three hill pastures that varied in their phosphorus (P) fertility, using a 14C-CO2 pulse-labelling chamber technique. Pasture shoot, root and soil samples were taken after 4h, 7 days and 35 days chase periods to examine the fluxes of 14C in the pasture plant-root-soil system. Shoot growth over 35 days amounted to 114, 179 and 182gm–2 at the low (LF), medium (MF) and high (HF) fertility pasture sites, respectively. The standing root biomass extracted from the soil did not differ significantly between sampling periods at any one level of fertility, but was significantly different across the three levels of fertility (1367, 1763 and 2406gm–2 at the LF, MF and HF pastures, respectively). The above- and below-ground partitioning of 14C was found to vary with the length of the chase period and fertility. Although most 14C (74%, 65% and 57% in the LF, MF and HF pastures, respectively) was in the shoot biomass after 4h, significant translocation to roots (23–39%) was also detected. By day 35, about 10% more 14C was partitioned below-ground in the LF pasture compared with the HF pasture. This is consistent with the hypothesis that, at limiting fertility, pasture plants allocate proportionally more resource below-ground for the acquisition of nutrients. In the LF site, with an annual assimilated C of 7064kgha–1, 2600kg was respired, 1861kg remained above-ground in the shoot and 2451kg was translocated to roots. In the HF pasture, of the 17313kgha–1 C assimilated, 7168kg was respired, 5298 remained in the shoot and 4432kg was translocated to the roots. This study provides, for the first time, data on the fluxes and quantities of C partitioned in a grazed pasture. Such data are critical for modelling C turnover and for constructing C budgets for grazed pasture ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 233-239 
    ISSN: 1432-0789
    Keywords: Key words Spatial residue distribution ; Soil compaction ; C/N ratio ; Nitrogen mineralization ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A mechanistic dynamic model (Verberne et al. 1990) was used to simulate mineralization of white-clover materials in a loam (25% clay) and a sandy loam soil (5% clay). I tested the model‘s ability to simulate the observed temporal patterns and to take account of altered physical protection as affected by soil compaction or spatial residue distribution. With default parameter values, the model greatly overestimated net N mineralization. The model was very sensitive to changes in the C/N ratio of the microbial biomass. Reducing this value from 8.0 to 6.0 improved the model performance. Nevertheless, initial N mineralization was appreciably overestimated. Two hypotheses may explain the discrepancies: (1) the C/N ratio of the microbial biomass is initially low (3–4) and gradually increases because of a succession from bacterial- to fungal-dominated biomass (H 1); (2) the C/N ratio of the substrates first attacked by microorganisms, i.e. water-soluble components such as sugars and free amino acids, is higher than the average value (6.0) assumed for the readily decomposable fraction (H 2). Conceptually, this fraction originally included N-containing polymers (proteins and nucleic acids), which in large part are water insoluble and probably attacked somewhat later than the monomers. Modification of the model, either by implementing a dynamic C/N ratio of the biomass and the effect of faunal grazing or by increasing the C/N ratio of the easily decomposable fraction, improved the model performance substantially. The two hypotheses need to be tested experimentally. The model adequately simulated measured effects of spatial residue distribution and soil compaction on N mineralization after adjustment or parameter values regulating physical protection of microbial biomass and metabolites. Moreover, there was a good agreement between simulated and measured microbial biomass N in the two soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 269-273 
    ISSN: 1432-0789
    Keywords: Key words Carbon dioxide ; Microbial biomass ; Microbial growth ; Soil respiration ; Glucose ; mineralization rate ; Chloroform fumigation extraction method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of increasing soil CO2 concentration was studied in six different soils. The soils were incubated in ambient air (0.05 vol.% CO2) or in air enriched with CO2 (up to 5.0 vol.% CO2). Carbon dioxide evolution, microbial biomass, growth or death rate quotients and glucose decay rate were measured at 6, 12 and 24 h of CO2 exposure. The decrease in soil respiration ranged from 7% to 78% and was followed by a decrease in microbial biomass by 10–60% in most cases. High CO2 treatments did not affect glucose decay rate but the portion of Cgluc mineralized to CO2 was lowered and a larger portion of Cgluc remained in soils. This carbon was not utilized by soil microorganisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1432-0789
    Keywords: 15N transformations ; Crop residues ; Soil texture ; Soil aggregation ; Microbial pool ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 245-251 
    ISSN: 1432-0789
    Keywords: Crop productivity ; Microbial biomass ; Cash grain ; Conventional farming ; Low-input agriculture ; NH uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil quality indices are attempts to classify soil conditions and to compare these conditions to their historical use. From this information it may be possible to determine which uses of soils are better for the long-range goals of agriculture and society. With many factors involved in the profitable production of safe foodstuffs without significant degradation of the environment and soils, an indicator that represents a broad biological perspective of quality is appropriate. Among a group of biological indicators, the ratio of crop N uptake to mineralized N as determined by microbial respiration plus net mineralized N found over a growing season is an useful indicator of soil quality. An evaluation of the 12-year-old Farming Systems Trial at the Rodale Institute Research Center indicated that soils in plots that had been conventionally managed were of lower quality than soil treated with manure or planted with legume-cash grain crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 284-292 
    ISSN: 1432-0789
    Keywords: Basal respiration ; Long-term effect ; Metabolic quotient ; Microbial biomass ; Osmotic potential ; Pasture soil ; Phosphate fertilizers ; Substrate-induced respiration (SIR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The objective of the present work was to examine the effects of phosphate fertilizers on the microbial activity of pasture soils. Various microbial characteristics were measured using soils from an existing long-term phosphate fertilizer field trial and a short-term incubation experiment. The measurements included basal respiration, substrate induced respiration, inhibition of substrate-induced respiration by streptomycin sulphate (fungal activity) and actidione (bacterial activity) and microbial biomass C. The long-term field trials was initiated during 1985 to examine the effectiveness of different sources of phosphate fertilizers (single superphosphate, North Carolina phosphate rock, partially acidulated North Carolina phosphate rock, and diammonium phosphate) on pasture yield. The incubation experiment was conducted for 8 weeks using the same soil and the sources of phosphate fertilizers used in the field trial. In the incubation experiment the fertilizer addition caused an initial decrease in basal and substrate-induced respiration but had no effect on total microbial biomass. The initial decline in basal and substrate-induced respiration with the fertilizer addition was restored within 8 weeks after incubation. In the field experiment the fertilizer addtion had no significant effect on basal respiration but increased substrate-induced respiration and microbial biomass C. The short-term and the long-term effects of phosphate fertilizer addition on the microbial characteristies of the soils are discussed in relation to its effects on pH, salt concentration, and the nutrient status of the soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 1-6 
    ISSN: 1432-0789
    Keywords: Key words Tillage ; Soil enzymes ; Microbial biomass ; Dehydrogenase activity ; Nucleic acids ; Farming practices
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Modification of soil environment by different farming practices can significantly affect crop growth. Tillage causes soil disturbance, altering the vertical distribution of soil organic matter and plant nutrient supplies in the soil surface, and it may affect the enzyme activity and microbial biomass which are responsible for transformation and cycling of organic matter and plant nutrients. In this study, the influence of three conventional tillage systems (shallow plowing, deep plowing and scarification) at different depths on the distribution and activity of enzymes, microbial biomass and nucleic acids in a cropped soil was investigated. Analysis of variance for depth and tillage showed the influence of the different tillage practices on the activity of some enzymes and on the nucleic acids. Glucosidase, galactosidase, nitrate reductase and dehydrogenase activity were significantly affected by the three tillage modalities. Activity in the upper layer (0–20 cm) was higher in the plots tilled by shallow plowing and scarification than in those tilled by deep plowing. Positive relationships were observed between the soil enzymes themselves, with the exception of urease and pyrophosphatase activity. Moreover, significant correlations were found between DNA and β-galactosidase, and between RNA and β-glucosidase, β-galactosidase, alkaline phosphatase and phosphodiesterase. α-Glucosidase, β-galactosidase, alkaline phosphatase and phosphodiesterase were highly correlated with biomass C determined by the fumigation-extraction method.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1432-0789
    Keywords: Key words Grasslands ; Management ; Microbial biomass ; Bacteria ; Fungi ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  There is much interest in the development of agricultural land management strategies aimed at enhancing reliance on ecosystem self-regulation rather than on artificial inputs such as fertilisers and pesticides. This study tested the usefulness of measures of soil microbial biomass and fungal:bacterial biomass ratios as indicators of effective conversion from an intensive grassland system, reliant mainly on fertilisers for crop nutrition, to a low-input system reliant mainly on self-regulation through soil biological pathways of nutrient turnover. Analysis of soils from a wide range of meadow grassland sites in northern England, along a gradient of long-term management intensity, showed that fungal:bacterial biomass ratios (measured by phospholipid fatty acid analysis; PLFA) were consistently and significantly higher in the unfertilised than the fertilised grasslands. There was also some evidence that microbial biomass, measured by chloroform fumigation and total PLFA, was higher in the unfertilised than in the fertilised grasslands. It was also found that levels of inorganic nitrogen (N), in particular nitrate-N, were significantly higher in the fertilised than in the unfertilised grasslands. However, microbial activity, measured as basal respiration, did not differ between the sites. A field manipulation trial was conducted to determine whether the reinstatement of traditional management on an improved mesotrophic grassland, for 6 years, resulted in similar changes in the soil microbial community. It was found that neither the cessation of fertiliser applications nor changes in cutting and grazing management significantly affected soil microbial biomass or the fungal:bacterial biomass ratio. It is suggested that the lack of effects on the soil microbial community may be related to high residual fertility caused by retention of fertiliser N in the soil. On the basis of these results it is recommended that following the reinstatement of low-input management, the measurement of a significant increase in the soil fungal:bacterial biomass ratio, and perhaps total microbial biomass, may be an indicator of successful conversion to a grassland system reliant of self-regulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1432-0789
    Keywords: Key words Crop residues ; Biochemical quality ; Particle size ; Nitrogen cycling ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Mineralization of N from organic materials added to soil depends on the quality of the substrate as a carbon, energy and nutrient source for the saprophytic microflora. Quality reflects a combination of biochemical and physical attributes. We investigated how biochemical composition interacts with particle size to affect the soil microflora and N dynamics following incorporation of crop residues into soil. Four fresh shoot and root crop residues were cut into coarse and fine particle sizes, and incorporated into sandy-loam soil which was incubated under controlled environment conditions for 6 months. In the case of the highest biochemical quality material, potato shoot (C/N ratio of 10 : 1), particle size had no effect on microbial respiration or net N mineralization. For lower biochemical quality Brussels sprout shoot (C/N ratio of 15 : 1), reducing particle size caused microbial respiration to peak earlier and increased net mineralization of N during the early stages of decomposition, but reduced net N mineralization at later stages. However, for the lowest biochemical quality residues, rye grass roots (C/N ratio of 38 : 1) and straw (C/N ratio of 91 : 1) reducing particle size caused microbial respiration to peak later and increased net immobilization of N. For Brussels sprout shoot, reducing particle size decreased the C content and the C/N ratio of residue-derived light fraction organic matter (LFOM) 2 months following incorporation. However C and N content of LFOM derived from the other materials was not affected by particle size. For materials of all qualities, particle size had little effect on biomass N. We conclude that the impact of particle size on soil microbial activities, and the protection of senescent microbial tissues from microbial attack, is dependant on the biochemical quality of the substrate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 430-433 
    ISSN: 1432-0789
    Keywords: Key words Carbon ; Nitrogen ; Microbial biomass ; Mineralization ; Respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of acetate additions to northern hardwood forest soils on microbial biomass carbon (C) and nitrogen (N) content, soil inorganic N levels, respirable C and potential net N mineralization and nitrification were evaluated. The experiment was relevant to a potential watershed-scale calcium (Ca) addition that aims to replace Ca depleted by long-term exposure to acid rain. One option for this addition is to use calcium-magnesium (Mg) acetate, a compound that is inexpensive and much more readily soluble than the Ca carbonate that is generally used for large-scale liming. Field plots were treated with sodium (NA) acetate, Na bicarbonate or water (control) and were sampled (forest floor – Oe and Oa combined) 2, 10 and 58 days following application. It was expected that the addition of C would lead to an increase in biomass C and N and a decrease in inorganic N. Instead, we observed no effect on biomass C, a decline in biomass N and an increase in N availability. One possible explanation for our surprising results is that the C addition stimulated microbial activity but not growth. A second, and more likely, explanation for our results is that the C addition did stimulate microbial growth and activity, but there was no increase in microbial biomass due to predation of the new biomass by soil fauna. The results confirm the emerging realization that the effects of increases in the flow of C to soils, either by deliberate addition or from changes in atmospheric CO2, are more complex than would be expected from a simple C : N ratio analysis. Evaluations of large-scale manipulations of forest soils to ameliorate effects of atmospheric deposition or to dispose of wastes should consider microbial and faunal dynamics in considerable detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1432-0789
    Keywords: Key words Tree species ; Rhizosphere ; Microbial biomass ; Denitrification enzyme activity ; Autotrophic nitrifiers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Flushes of C and N from fumigation-extraction (FE-C and FE-N, respectively), substrate-induced respiration (SIR), denitrification enzyme activity (DEA) and numbers of NH4 + and NO2 – oxidizers were studied in the rhizospheres of Scots pine (Pinus sylvestris L.), Norway spruce [(Picea abies (L.) Karsten] and silver birch (Betula pendula Roth) seedlings growing in soil from a field afforestation site. The rhizosphere was defined as the soil adhering to the roots when they were carefully separated from the rest of the soil in the pots, termed as "planted bulk soil". Soil in unplanted pots was used as control soil. All seedlings had been grown from seed and had been infected by the natural mycorrhizas of soil. Overall, roots of all tree species tended to increase FE-C, FE-N, SIR and DEA compared to the unplanted soil, and the increase was higher in the rhizosphere than in the planted bulk soil. In the rhizospheres tree species did not differ in their effect on FE-C, FE-N and DEA, but SIR was lowest under spruce. In the planted bulk soils FE-C and SIR were lowest under spruce. The planted bulk soils differed probably because the roots of spruce did not extend as far in the pot as those of pine and birch. The numbers of both NH4 + and NO2 –oxidizers, determined by the most probable number method, were either unaffected or decreased by roots, with the exception of the spruce rhizosphere, where numbers of both were increased.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 156-161 
    ISSN: 1432-0789
    Keywords: Key words Soil cultivation ; Carbon loss ; Microbial biomass ; Enzyme activities ; Soil organic matter quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  In arable soils in Schleswig-Holstein (Northwest Germany) nearly 30% of the total organic C (TOC) stored in former times in the soil has been mineralized in the last 20 years. Microbial biomass, enzyme activities and the soil organic matter (SOM) composition were investigated in order to elucidate if a low TOC level affects microbial parameters, SOM quality and crop yield. Microbial biomass C (Cmic) and enzyme activities decreased in soils with a low TOC level compared to soils with a typical TOC level. The decrease in the Cmic/TOC ratio suggested low-level, steady-state microbial activity. The SOM quality changed with respect to an enrichment of initial litter compounds in the top soil layers with a low TOC level. Recent management of the soils had not maintained a desirable level of humic compounds. However, we found no significant decrease in crop yield. We suggest that microbial biomass and dehydrogenase and alkaline phosphatase activities are not necessarily indicators of soil fertility in soils with a high fertilization level without forage production and manure application.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 253-258 
    ISSN: 1432-0789
    Keywords: Key words Grazing animals ; Enzyme activity ; Microbial biomass ; Pasture ; Soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The size and activity of the soil microbial biomass in grazed pastures was compared on the main grazing area and on stock camp areas where animals congregate. Two sites were on hill country and three on gently sloping border-dyke irrigated land. Due to the transfer of nutrients and organic matter to the camp areas via dung and urine there was an accumulation of soil organic C, organic and inorganic P and S and soluble salts in the camp areas. Soil pH also tended to be higher in camp areas due to transfer of alkalinity by the grazing animals. Water soluble organic C, microbial biomass C and basal respiration were all higher in soils from camp areas but the proportion of organic C present as microbial C and the microbial respiratory quotient were unaffected. Microbial activity as quantified by arginine ammonification rate and fluorescein diacetate (FDA) hydrolysis was higher in camp than non-camp soils but dehydrogenase activity remained unaffected. Activities of protease, histidase, urease, acid phosphatase and aryl-sulphatase were all higher in stock camp soils. The activities of both histidase and aryl-sulphatase were also higher when expressed per unit of microbial biomass C, indicating that the increased activity was the result of increased enzyme production by the microbial community. Prolonged regular applications of dairy shed effluent (diluted dung and urine from cattle) to a field had a similar effect to stock camping in increasing soil organic matter content, nutrient accumulation and soil biological activity. It was concluded that the stock camping activity of grazing animals results in an increase in both the fertility and biological activity in soils from camp areas at the expense of these properties on the main grazing areas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 259-266 
    ISSN: 1432-0789
    Keywords: Key words Aggregate stability ; Microbial biomass ; Microbial activity ; Soil organic matter ; Microbial quotient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (〉60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1432-0789
    Keywords: Key words Soil fauna ; Microbial biomass ; Microbial respiration ; C ; N and P mineralisation ; Mixed species stands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  We examined how soil organisms and C, N and P mineralisation are affected by admixing deciduous tree species, silver birch (Betula pendula) and woollen birch (B. pubescens), in managed Norway spruce (Picea abies) stands. Pure spruce and mixed spruce–birch stands were examined at four sites in southern and central Sweden. Soil macroarthropods and enchytraeids were sampled in litter and soil. In the uppermost 5 cm of soil humus we determined microbial biomass and microbial respiration; we estimated the rate of C, N and P mineralisation under laboratory conditions. The densities of Coleoptera, Diptera and Collembola were larger in mixed stands than in spruce stands. Soil fauna composition differed between mixed and spruce stands (as revealed by redundancy analysis). Staphyliniidae, Elateridae, Cecidiomyidae larvae and Onychiuridae were the families that increased most strongly in mixed stands. There were no differences in microbial biomass and microbial respiration, nor in the C, N and P mineralisation rates, between mixed and spruce stands. However, within mixed stands microbial biomass, microbial activity and C mineralisation were approximately 15% higher under birch trees than under spruce trees. We propose that the presence of birch leaf litter was likely to be the most important factor causing differences in soil fauna composition. Birch may also influence the quality and the decomposition rate of humus in mixed stands. However, when the proportion of birch trees is low, the short-term (decades) effect of this species on decomposition is likely to be small in mixed stands on acid forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1432-0789
    Keywords: Defoliation ; Microbial biomass ; Microbial populations ; Dehydrogenase activity ; Respiration ; BacteriaFungi ; Upland grassland Upland soil ; Pseudomonas spp.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A microcosm study was conducted to investigate the effect of continuons plant defoliation on the composition and activity of microbial populations in the rhizosphere of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). Continuons defoliation of ryegrass and clover resulted in sigmficant (P 〈0.01) increases in soil microbial biomass, although whilst increases were measured from day 2 in soil sown with clover significant increases were only seen from day 21 in soil sown with ryegrass. These increases were paralleled, from day 10 onwards, by increases in the numbers of culturable bacteria. Numbers ofPsendomonas spp. also increased in the later stages of the study. No influence on culturable fungal populations was detected. Whilst shifts in the composition of the microbial populations were measured in response to defoliation there was little effect on microbial activity. No changes in either dehydrogenase activity or microbial respiration in the rhizosphere of ryegrass or clover were measured in response to defoliation, but both dehydrogenase activity and microbial respiration were greater in ryegrass than clover when values over the whole study were combined. Continuous defoliation resulted in significant (P 〈0.001) reductions in the root dry weight of ryegrass and clover, of the order 19% and 16%, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 1432-0789
    Keywords: Arion rufus ; Slug cast material ; Mucus ; Nutrient leaching ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We investigated the effects of slug (Arion rufus L.) mucus and cast material on litter decomposition, nutrient mobilization, and microbial activity in two laboratory experiments: (1) Slug mucus and cast material was added to beech leaf litter (Fagus sylvatica L.), and leaching of N and P and CO2 production in microcosm systems were measured during 77 days of incubation; (2) mucus was added to beech leaf litter, and basal respiration, microbial biomass (substrate-induced respiration), specific respiration (qO2), microbial growth ability after C, CN, CP, and CNP amendment, and lag time (time between CNP addition and start of exponential increase in respiration rate) were measured during 120 days of incubation. Leaching of N and P from beech leaf litter was significantly increased in treatments with mucus or faecal material of A. rufus. Following day 3, slug mucus increased nitrification processes. Mucus addition to beech leaf litter also increased basal respiration and microbial biomass significantly. In contrast, specific respiration was not significantly affected by mucus addition, and generally declined until day 60 but then increased until day 120. Nutrient amendments indicated that between days 1 and 30, N was available for microbial growth in litter with mucus but not in control litter. Generally, the lag time in beech leaf litter with added mucus was shorter than in control litter. Lag times generally increased with age, indicating dominance of slow-growing microbial populations at later stages as a consequence of depletion of easily available C resources and nutrients. We conclude that C, N, and P cycling is accelerated by slug activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 7-14 
    ISSN: 1432-0789
    Keywords: Key words Acid rain ; Coniferous humus ; Ergosterol ; Microbial biomass ; Muramic acid ; Soil respiration ; Subarctic areas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Humus chemistry and respiration rate, ATP, ergosterol, and muramic acid concentration as measures of chemical properties, microbial activity, biomass, and indicators of fungal and bacterial biomass were studied in a long-term acid rain experiment in the far north of Finnish Lapland. The treatments used in this study were dry control, irrigated control (spring water, pH 6), and two levels of simulated acid rain (pH 4 and pH 3). Originally (1985–1988), simulated acid rain was prepared by adding both H2SO4 and HNO3 (1.9:1 by weight). In 1989 the treatments were modified as follows. In subarea 1 the treatments continued unchanged (H2SO4+HNO3 in rain to pH 4 and pH 3), but in subarea 2 only H2SO4 was applied. The plots were sampled in 1992. The acid application affected humus chemistry by lowering the pH, cation exchange capacity, and base saturation (due to a decrease in Ca and Mg) in the treatment with H2SO4+HNO3 to pH 4 (total proton load over 8 years 2.92 kmol ha–1), whereas the microbial variables were not affected at this proton load, and only the respiration rate decreased by 20% in the strongest simulated acid rain treatment (total proton load 14.9 kmol ha–1). The different ratios of H2SO4+HNO3 in subareas 1 and 2 did not affect the results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1432-0789
    Keywords: Basal respiration ; Metabolic quotient (qCO2) ; Microbial biomass ; Substrate-induced respiration (SIR) ; Fumigation-extraction (FE) ; Clear-cutting ; Humus ; Greenhouse effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In studying the basal respiration, microbial biomass (substrate-induced respiration, SIR), and metabolic quotient (qCO2) in western red cedar (Thuja plicata Donn ex D. Don)-western hemlock [(Tsuga heterophylla Raf.) Sarg.] ecosystems (old-growth forests, 3- and 10-year-old plantations) on northern Vancouver Island, British Columbia, Canada, we predicted that (1) soil basal respiration would be reduced by harvesting and burning, reflecting the reduction in microbial biomass and activities; (2) the microbial biomass would be reduced by harvesting and slash-burning, due to the excessive heat of the burning or due to reduced substrate availability; (3) microbial biomass in the plantations would tend to recover to the preharvesting levels with growth of the trees and increased substrate availability; and (4) microbial biomass measured by the SIR method would compare well with that measured by the fumigation-extraction (FE) method. Decaying litter layer (F), woody F (Fw) and humus layer (H) materials were sampled four times in the summer of 1992. The results obtained supported the four predictions. Microbial biomass was reduced in the harvested and slash-burned plots. Both SIR and FE methods provided equally good estimates of microbial biomass in the samples [SIR microbial C (mg g-1)=0.227+0.458 FE microbial C (mg g-1), r=0.63, P=0.0001] and proved suitable for microbial biomass measurements in this strongly acidic soil. Basal respiration was significantly greater in the old-growth forests than in the young plantations (P〈0.05) in both F and H layers, but not in the Fw layer. For the 3- and 10-year-old plantations, there was no difference in basal respiration in F, Fw, and H layers. Basal respiration was related to changes in air temperature, precipitation, and the soil moisture contant at the time of sampling. The qCO2 values were higher in the old-growth stands than in the plantations. Clear-cutting followed by prescribed burning did not increase soil microbial respiration, but CO2 released from slash-burning and that contributed from other sources may be of concern to increasing atmospheric CO2 concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 171-178 
    ISSN: 1432-0789
    Keywords: Aporrectodea nocturna ; Dispersal ; Cast production ; Modelling ; Earthworms ; Soil moisture ; Microbial biomass ; Prealpine meadow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field and laboratory experiments were carried out to describe the effects of Aporrectodea nocturna on soil characteristics in a pre-alpine meadow and to support the development of a model of cast production. In the prealpine meadow, increased cast production, first observed about 20 years ago around a newly planted hedge, was recorded to a distance of maximal 170 m from the hedge. Numbers of A. nocturna between 130 and 165 m from the hedge decreased from 164 to 16 individuals m-2. In the same area cast production steadily decreased from about 1.5 kg m-2 week-1 to nil, the plant community structure changed and the microbial biomass decreased, but the root biomass and the moisture content did not change. Laboratory experiments demonstrated that high cast production was not a specific feature of the A. nocturna population nor of the soil in the meadow. Diapause of A. nocturna was terminated in the laboratory during September. A model of cast production potential by the earthworm A. nocturna was established using laboratory determinations of the relationships with body weight, temperature, and water potential. The model was shown to predict cast production in the field given the assumption that the water potential was 0 MPa. According to the model, 81% of surface cast production was by juveniles, and 19% by adults of A. nocturna.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 1432-0789
    Keywords: Key words Farmyard manure ; Long-term experiment ; Michaelis constant ; Microbial biomass ; NPK fertilizers ; Respiratory activity ; Glucose affinity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We determined the size, activity, and affinity of the microbial community for glucose in soils from long-term experimental grassland plots. The plots had been treated annually with either farmyard manure, inorganic NPK fertilizers, farmyard manure+inorganic NPK fertilizers, (NH4)2SO4 only, or no experimental amendment since 1897. The largest biomass and activity differences were between the (NH4)2SO4-treated soil, which was very acid, and the rest, which were nearer neutral. In the (NH4)2SO4-treated soil, the biomass C to organic C ratio was small, but overall the community had high respiratory activity per unit of biomass (qCO2) and high overall affinity for glucose (low K m). The effects of the manure treatment were a greater biomass C and a lower overall glucose affinity than in the control plot. In the presence farmyard manure, NPK led to smaller biomass and a lower biomass to organic C ratio while having no significant effect on either glucose K m or qCO2. In the absence of farmyard manure, NPK led to significantly greater glucose affinity but had no significant effect on the biomass, the biomass C to organic C ratio or qCO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 231-238 
    ISSN: 1432-0789
    Keywords: Farmyard manure ; Fertilizer ; Microbial biomass ; Dryland agroecosystem ; Rice ; Lentil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Changes in the soil microbial biomass following applications of farmyard manure and inorganic fertilizer, alone and in combination, were studied for two annual cycles in a rice-lentil crop sequence grown under rainfed tropical dryland conditions. During the two annual cycles the microbial biomass C range (μg g-1) was 146–241 (x = 204), 191–301 (245), 244–382 (305), and 294–440 (365) in control, fertilizer, manure and manure+fertilizer plots, respectively. The corresponding ranges for microbial biomass N (μg g-1) were 16.5–21.0 (19.5), 20.4–38.2 (26.0), 23.0–34.6 (27.0) and 26.2–42.4 (33.3), and for microbial biomass P (μg g-1) 4.4–8.2 (7.0) 6.0–11.2 (9.6), 11.2–22.0 (17.0), and 10.0–25.4 (18.3). The maximum increase in the microbial biomass, due to these inputs was observed under the manure+fertilizer treatment followed, in decreasing order, by manure alone and fertilizer alone. Within individual crop periods the levels of microbial biomass decreased sharply from the seedling to the flowering stage and then increased slightly with crop maturity. The maximum levels of microbial biomass C and P were observed during the summer fallow. The maximum accumulation of microbial biomass N occurred in the early rainy season, immediately after the soil amendments. Microbial biomass C, N, and P were positively related to each other throughout the annual cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1432-0789
    Keywords: Microbial biomass ; In situ N mineralization ; Fertilizer ; Prescribed fire ; Eucalyptus forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of a range of fertilizer applications and of repeated low-intensity prescribed fires on microbial biomass C and N, and in situ N mineralization were studied in an acid soil under subalpine Eucalyptus pauciflora forest near Canberra, Australia. Fertilizer treatments (N, P, N+P, line + P, sucrose + P), and P in particular, tended to lower biomass N. The fertilizer effects were greatest in spring and smaller in summer and late actumn. Low-intensity prescribed fire lowered biomass N at a soil depth of 0–5 cm with the effect being greater in the most frequently burnt soils. No interactions between fire treatments, season, and depth were significant. Only the lime + P and N+P treatments significantly affected soil microbial biomass C contents. The N+P treatment increased biomass C only at 0–2.5 cm in depth, but the soil depth of entire 0–10 cm had much higher (〉doubled) biomass C values in the line + P treatment. Frequent (two or three times a year) burning reduced microbial boomass C, but the reverse was true in soils under forest burn at intervals of 7 years. Soil N mineralization was increased by the addition of N and P (alone or in combination), line + P, and sucrose + P to the soil. The same was true for the ratio of N mineralization to biomass N. Soil N mineralization was retarded by repeated fire treatments, especially the more frequent fire treatment where rates were only about half those measured in unburnt soils. There was no relationship between microbial biomass N (kg N ha-1) and the field rates of soil N mineralization (kg N ha-1 month-1). The results suggest that although soil microbial biomass N represents a distinct pool of N, it is not a useful measure of N turnover.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1432-0789
    Keywords: Soil carbon ; Crop rotation ; Legumes ; Cover crop ; Nitrogen fertilization ; Microbial biomass ; Soil health ; Gossypium hirsutum ; Zea mays ; Trifolium incarnatum ; Glycine max
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The “Old Rotation” cotton experiment was designed to aid farm managers in implementing rotation schemes that not only increase yield, but also improve soil quality. Six different crop rotation treatments were imposed since 1896. Rotations were: IA, cotton (Gossypium hirsutum L.) grown every year without a winter legume and without N fertilization; IB, cotton grown every year with a winter legume and without N fertilization; IC, cotton grown every year without a winter legume and with 134 kg N as NH4NO3 ha-1 year-1; IIA, 2-year cotton-corn (Zea mays L.) rotation with a winter legume and without N fertilization; IIB, 2-year cotton-corn rotation with a winter legume and with 134 kg N ha-1 year-1 as NH4NO3; and III, 3-year cotton-corn- alternating soybean [Glycine max (L.) Merr.] or rye (Secale cereale L.) rotation with a winter legume and with 134 g N as NH4NO3 ha-1 year-1. Crimson clover (Trifolium incarnatum L.) was the winter legume cover crop. The 2-year cotton-corn rotation with a winter legume and with 134 kg N ha-1 year-1 (IIB) and the 3-year cotton-corn soybean/rye rotation with a winter legume and with 134 kg N ha-1 year-1 (III) had higher amounts of soil organic matter, soil microbial biomass C and crop yield than the other four treatments. The cotton grown every year without a winter legume or N fertilizer (IA) had a lower amount of soil organic matter, soil microbial biomass C and N and cotton seed yield than all other rotations. In 1988 and 1992 cotton seed and legume yield were correlated in positive, curvilinear relationships with soil organic matter (r 2 ranged from 0.72 to 0.87). In most months, soil microbial biomass C and N was lower in the cotton grown every year without winter legumes or fertilizer (IA) than the other five rotations. In 1994, microbial biomass C and the Cmic:Corg ratio correlated in positive, curvilinear relationships with seed cotton yield (r 2=0.87 and 0.98, respectively). After 99 years of management the “Old Rotation” cotton experiment indicates that winter legumes increase amounts of both C and N in soil, which ultimately contribute to higher cotton yields. Microbial biomass C and the Cmic:Corg ratio are poor predictors of annual crop yield but may be an accurate indicator of soil health and a good predictor of long-term crop yield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 322-326 
    ISSN: 1432-0789
    Keywords: Soil texture ; Spatial distribution ; Microbial biomass ; Metabolic quotient ; Hops
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 μg g-1) than the sandy loam (185 μg g-1), whereas the sandy loam had a higher (3.1 μg CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 μg CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1432-0789
    Keywords: Mineralisation ; Immobilisation ; Humification ; Microbial biomass ; Oryza sativa L. ; Intensive production ; Continuous flooding ; Yield decline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A decline in rice yields has been associated with intensification of rice production. In continuously irrigated systems this has been attributed to a decline in soil N supply. Nutrient mineralisation and immobilisation is constrained by the quantity and nature of the organic substrates and the physico-chemical environment of the soil system itself. A flooded soil is very different from an aerobic one; electron acceptors other than oxygen have to be used. The transition to continuously anaerobic conditions associated with the intensification of wetland rice systems affects their organic matter turnover and may adversely affect their productivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 327-332 
    ISSN: 1432-0789
    Keywords: Litter decomposition ; Succession ; Microbial biomass ; Microbial respioration ; Microbial nutrient status
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 343-347 
    ISSN: 1432-0789
    Keywords: Ecosystem research ; Agricultural soils ; Forest soils ; Microbial biomass ; Microbial activities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The soil microbial biomass and activity were estimated for seven field (intensive and extensive management), grassland (dry and wet), and forest (beech, dry and wet alder) sites. Three of the sites (wet grassland, dry and wet alder) are located on a lakeshore and are influenced by lake water and groundwater. Four different methods were selected to measure and characterize the microbial biomass. Values of microbial biomass (weight basis) and total microbial biomass per upper horizon and hectare (volume basis) were compared for each site. Fumigation-extraction and substrate-induced respiration results were correlated but dit not give the same absolute values for microbial biomass content. When using the original conversion factors, substrate-induced respiration gave higher values in field and dry grassland soils, and fumigation-extraction higher values in soils with low pH and high water levels (high organic content). Results from dimethylsulfoxide reduction and arginine ammonification, two methods for estimating microbial activity, were not correlated with microbial biomass values determined by fumigation-extraction or substrate-induced respiration in all soils examined. In alder forest soils dimethylsulfoxide reduction and arginine ammonification gave higher values on the wet site than on the dry site, contrary to the values estimated by fumigation-extraction and substrate-induced respiration. These microbial activities were correlated with microbial biomass values only in field and dry grassland soils. Based on soil dry weight, microbial biomass values increased in the order intensive field, beech forest, extensive field, dry grassland, alder forest, wet grassland. However, microbial biomass values per upper horizon and hectare (related to soil volume) increased in agricultural soils in the order intensive field, dry grassland, extensive field, wet grassland and in forest soils in the order beech, wet alder, dry alder. We conclude that use of the original conversion factors with the soils in the present study for fumigation-extraction and substrate-induced respiration measurements does not give the same values for the microbial biomass. Furthermore, dimethylsulfoxide reduction and arginine ammonification principally characterize specific microbial activities and can be correlated with microbial biomass values under specific soil conditions. Further improvements in microbial biomass estimates, particularly in waterlogged soils, may be obtained by direct counts of organisms, ATP estimate, and the use of 14C-labelled organic substrates. From the ecological viewpoint, data should also be expressed per horizon and hectare (related to soil volume) to assist in the comparison of different sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 357-362 
    ISSN: 1432-0789
    Keywords: Leaf litter decomposition ; Poplar ; Eucalyptus ; Microbial biomass ; Agroforestry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil microbiological properties during decomposition of leaf litter of poplar (Populus deltoides) and eucalyptus (Eucalyptus tereticornis) were studied under laboratory conditions. Microbial biomass C and ninhydrin-N were measured at different intervals up to 90 days following incorporation of poplar and eucalyptus leaves separately @ 20 and 100t ha-1. In general, the net increase in total biomass C or ninhydrin N following amendment was larger in the soils which received poplar leaves than in the soils that received eucalyptus leaves. The amounts of biomass C, at day 90, in the soils which received eucalyptus leaves @ 20 and 100 t ha-1 was about half and one-third, respectively, that of the soils that received poplar leaves at the same rates. Similarly, the field soils naturally receiving eucalyptus leaf litter contained about half the amounts of biomass C or ninhydrin N of the soils that received poplar leaf litter. In contrast, the amounts of organic C and total N were more in soils which received eucalyptus leaves both in the laboratory experiment and under field conditions than in the soils that received poplar leaves, indicating that the decomposition of eucalyptus leaves in soils was slower than that of poplar leaves. The ratio of biomass C/soil organic C in soils receiving eucalyptus leaves was about 2–4 times lower than those in soils with no admendment or soils receiving poplar leaves. These results, therefore, suggest that the allelochemicals released into soil during decomposition of eucalyptus leaves had a toxic effect on soil microorganisms and may thus affect the nutrient cycling and hence soil fertility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1432-0789
    Keywords: Key words Soil carbon ; Crop rotation ; Legumes ; Cover crop ; Nitrogen fertilization ; Microbial biomass ; Soil health ; Gossypium hirsutum ; Zea mays ; Trifolium ; incarnatum ; Glycine max
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The “Old Rotation” cotton experiment was designed to aid farm managers in implementing rotation schemes that not only increase yield, but also improve soil quality. Six different crop rotation treatments were imposed since 1896. Rotations were: IA, cotton (Gossypium hirsutum L.) grown every year without a winter legume and without N fertilization; IB, cotton grown every year with a winter legume and without N fertilization; IC, cotton grown every year without a winter legume and with 134 kg N as NH4NO3 ha–1 year–1; IIA, 2-year cotton-corn (Zea mays L.) rotation with a winter legume and without N fertilization; IIB, 2-year cotton-corn rotation with a winter legume and with 134 kg N ha–1 year–1 as NH4NO3; and III, 3-year cotton-corn- (alternating soybean [Glycine max (L.) Merr.] or rye (Secale cereale L.) rotation with a winter legume and with 134g N as NH4NO3 ha–1 year–1. Crimson clover (Trifolium incarnatum L.) was the winter legume cover crop. The 2-year cotton-corn rotation with a winter legume and with 134 kg N ha–1 year–1 (IIB) and the 3-year cotton-corn soybean/rye rotation with a winter legume and with 134 kg N ha–1 year–1 (III) had higher amounts of soil organic matter, soil microbial biomass C and crop yield than the other four treatments. The cotton grown every year without a winter legume or N fertilizer (IA) had a lower amount of soil organic matter, soil microbial biomass C and N and cotton seed yield than all other rotations. In 1988 and 1992 cotton seed and legume yield were correlated in positive, curvilinear relationships with soil organic matter (r 2 ranged from 0.72 to 0.87). In most months, soil microbial biomass C and N was lower in the cotton grown every year without winter legumes or fertilizer (IA) than the other five rotations. In 1994, microbial biomass C and the Cmic:Corg ratio correlated in positive, curvilinear relationships with seed cotton yield (r 2=0.87 and 0.98, respectively). After 99 years of management the “Old Rotation” cotton experiment indicates that winter legumes increase amounts of both C and N in soil, which ultimately contribute to higher cotton yields. Microbial biomass C and the Cmic:Corg ratio are poor predictors of annual crop yield but may be an accurate indicator of soil health and a good predictor of long-term crop yield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1432-0789
    Keywords: Key words Basal respiration ; Metabolic quotient (qCO2) ; Microbial biomass ; Substrate-induced respiration (SIR) ; Fumigation-extraction (FE) ; Clear-cutting ; Humus ; Greenhouse effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In studying the basal respiration, microbial biomass (substrate-induced respiration, SIR), and metabolic quotient (qCO2) in western red cedar (Thuja plicata Donn ex D. Don)-western hemlock [(Tsuga heterophylla (Raf.) Sarg.] ecosystems (old-growth forests, 3- and 10-year-old plantations) on northern Vancouver Island, British Columbia, Canada, we predicted that (1) soil basal respiration would be reduced by harvesting and burning, reflecting the reduction in microbial biomass and activities; (2) the microbial biomass would be reduced by harvesting and slash-burning, due to the excessive heat of the burning or due to reduced substrate availability; (3) microbial biomass in the plantations would tend to recover to the preharvesting levels with growth of the trees and increased substrate availability; and (4) microbial biomass measured by the SIR method would compare well with that measured by the fumigation-extraction (FE) method. Decaying litter layer (F), woody F (Fw) and humus layer (H) materials were sampled four times in the summer of 1992. The results obtained supported the four predictions. Microbial biomass was reduced in the harvested and slash-burned plots. Both SIR and FE methods provided equally good estimates of microbial biomass in the samples [SIR microbial C (mg g–1)=0.227+0.458 FE microbial C (mg g–1), r=0.63, P=0.0001] and proved suitable for microbial biomass measurements in this strongly acidic soil. Basal respiration was significantly greater in the old-growth forests than in the young plantations (P〈〉;0.05) in both F and H layers, but not in the Fw layer. For the 3- and 10-year-old plantations, there was no difference in basal respiration in F, Fw, and H layers. Basal respiration was related to changes in air temperature, precipitation, and the soil moisture contant at the time of sampling. The qCO2 values were higher in the old-growth stands than in the plantations. Clear-cutting followed by prescribed burning did not increase soil microbial respiration, but CO2 released from slash-burning and that contributed from other sources may be of concern to increasing atmospheric CO2 concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 314-320 
    ISSN: 1432-0789
    Keywords: Key words Nitrogen mineralization ; Microbial biomass ; Soil drying ; Extractable organic N ; 15N isotope dilution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory soil incubation and a pot experiment with ryegrass were carried out in order to examine the extractability of microbial biomass N by using either 10-mM CaCl2 extraction or the electro-ultrafiltration (EUF) method. The aim of the experiment was to test the hypothesis whether the organic N (Norg) extracted by EUF or CaCl2 from dried soil samples represents a part of the microbial biomass. For the laboratory incubation a 15N-labelled Escherichia coli suspension was mixed with the soil. For the pot experiment a suspension of 15N-labelled bacteria was applied which had previously been isolated from the soil used. Soil samples of both treatments, with and without applied bacterial suspension, were extracted by EUF and CaCl2. The extractability of applied microbial biomass was estimated from the difference in extractable Norg between the two treatments. In addition, the N isotopic composition in the upper plant matter, in the soil, and in organic and inorganic N fractions of EUF and CaCl2 extracts was analysed. Both experiments showed that the applied microbial biomass was highly accessible to mineralization and thus represented potentially mineralizable N. However, this mineralizable N was not extractable by CaCl2 or by the EUF method. It was, therefore, concluded that the organic N released on soil drying and which was thus extractable was derived from the non-biomass soil organic matter. The result suggests that both extraction methods may provide a suitable index for mineralizable N only in cases where the decomposable organic substrates are derived mainly from sources other than the living soil biota.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 253-259 
    ISSN: 1432-0789
    Keywords: Heavy metals ; Microbial biomass ; Soil respiration ; Soil organic C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Chemical characteristics and some parameters related to biological components were determined in 16 soils from a fairly homogeneous area in the north of Italy, contaminated with different levels of heavy metals. Correlation analysis of the parameters studied showed close positive relationships among the metals and with the organic C content in the soils studied. Negative relationships were observed among the heavy metals, soil respiration, and the ratio between evolved CO2−C and microbial biomass C per unit time (specific respiratory activity). This was ascribed to an adverse heavy metal effect on the soil microflora, which appeared to increase the accumulation of organic matter as the heavy metal content increased, probably because the biomass was less effective in mineralising soil organic matter under these conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1432-0789
    Keywords: Key words Acidic forest soil ; Phosphorus ; Coal combustion by-product ; Carbon cycling ; Cellulose ; Microbial biomass ; Liming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphate rock (PR), limestone, coal combustion by-product (CCBP) high in Ca and high organic manures are potential amendments for increasing agricultural production in the acidic soils of the Appalachian region. The objective of this study was to examine effects of PR, CCBP and cellulose addition on soil microbial biomass in an acidic soil based on the measurement of soil microbial biomass P (P mic) and on the mineralization of organic matter. Application of PR alone or in combination with CCBP increased P mic. The P mic was far less when the soil received PR in combination with limestone than with PR application alone or PR in combination with CCBP. Either CCBP or limestone application alone considerably decreased P mic in the soil due to reduced P solubility. Cellulose addition alone did not increase P mic, but P mic was significantly increased when the soil was amended with cellulose in combination with PR. The decomposition of added cellulose was very slow in the soil without PR amendment. However, mineralization of both native organic matter and added cellulose was enhanced by PR application. Mineralization of organic matter was less when the soil was amended with PR in combination with high rates of CCBP (〉 2.5%) because PR dissolution varied inversely with amount of CCBP addition. Overall, CCBP had no detrimental effect on soil microbial biomass at low application rates, although, like limestone, CCBP at a high rate may decrease P mic in P-deficient soils through its influence on increased soil pH and decreased P bioavailability in the soil. Application of PR to an acidic soil considerably enhanced the microbial activity, thereby promoting the cycling of carbon and other nutrients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 111-129 
    ISSN: 1432-0789
    Keywords: Key words Fatty acid profile ; Phospholipids ; Lipopolysaccharides ; Soil microbial communities ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  This review discusses the analysis of whole-community phospholipid fatty acid (PLFA) profiles and the composition of lipopolysaccharides in order to assess the microbial biomass and the community structure in soils. For the determination of soil microbial biomass a good correlation was obtained between the total amount of PLFAs and the microbial biomass measured with methods commonly used for determinations such as total adenylate content and substrate-induced respiration. Generally, after the application of multivariate statistical analyses, whole-community fatty acid profiles indicate which communities are similar or different. However, in most cases, the organisms accounting for similarity or difference cannot be determined, and therefore artefacts could not be excluded. The fatty acids used to determine the biomass vary from those which determine the community structure. Specific attention has to be paid when choosing extraction methods in order to avoid the liberation of fatty acids from non-living organic material and deposits, and to exclude the non-target selection of lipids from living organisms, as well. By excluding the fatty acids which were presumed to be common and widespread prior to multivariate statistical analysis, estimates were improved considerably. Results from principal component analysis showed that determining the levels of fatty acids present in both low and high concentrations is essential in order to correctly identify microorganisms and accurately classify them into taxonomically defined groups. The PLFA technique has been used to elucidate different strategies employed by microorganisms to adapt to changed environmental conditions under wide ranges of soil types, management practices, climatic origins and different perturbations. It has been proposed that the classification of PLFAs into a number of chemically different subgroups should simplify the evaluating procedure and improve the assessment of soil microbial communities, since then only the subgroups assumed to be involved in key processes would be investigated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 27 (1998), S. 27-34 
    ISSN: 1432-0789
    Keywords: Key words Acetylene ; Cycloheximide ; Heterotrophic nitrification ; Inhibitors ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The present work aims at evaluating the effect of cycloheximide at concentrations of between 0.5 and 5mgg–1 on N2O and NO3 – production in two slightly alkaline soils, sampled from deciduous woodland and arable cultivation. In the first experiment, peptone was used as the “inducing substrate” for heterotrophic activity, and soil was incubated with cycloheximide (at different concentrations) and/or acetylene (1mll–1) to block induced eukaryotic protein synthesis and ammonia monooxygenase activity, respectively. Peptone addition stimulated N2O and NO3 – production significantly in woodland soil, whereas arable soil showed no significant N2O emissions and low NO3 – production. Low cycloheximide concentrations drastically reduced N2O emissions in woodland soil, suggesting a potential role of fungi in N2O emissions. However, acetylene was equally effective in blocking N2O emissions and part of NO3 – production, so that a possible role of ammonia monooxygenase in an organic-inorganic pathway of N nitrification in fungal metabolism can be hypothesized. A second experiment was carried out on the woodland soil to check if low cycloheximide concentrations had non-target biocidal effects on soil microorganisms. Attention was focused on the range of concentrations which had reduced N2O emission in the woodland soil. The results suggested that at concentrations of cycloheximide between 0.5 and 2mgg–1 any biocidal effect on microbial biomass was negligible in the first 48h; therefore only selective inhibition of protein synthesis could be expected. The whole nitrifier population seemed to be particularly sensitive to cycloheximide concentrations higher than 2.5mgg–1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 55-61 
    ISSN: 1432-0789
    Keywords: Key words Leaf mulching ; Turfgrass ; Soil quality ; Microbial biomass ; Soil enzyme
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The influence of tree leaf amendment and N fertilization on soil quality in turfgrass environments was evaluated. Our objective was to assess changes in soil quality after additions of leaf materials and N fertilization by monitoring soil chemical and physical parameters, microbial biomass and soil enzymes. Established perennial ryegrass (Lolium perenne) plots were amended annually with maple (Acer spp.) leaves at three different rates (0, 2240, and 4480 kg ha–1 year–1) and treated with three nitrogen rates (0, 63, and 126 kg N ha–1 year–1). Tree leaf mulching did not significantly affect water infiltration or bulk density. However, trends in the data suggest increased infiltration with increasing leaf application rate. Tree leaf mulching increased total soil C and N at 0–1.3 cm depth but not at 1.3–9.0 cm. Extracted microbial phospholipid, an indicator of microbial biomass size, ranged from 28 to 68 nmol phospholipid g–1 soil at the 1.3–9.0 cm depth. The activity of β-glucosidase estimated on samples from 0–1.3 cm and 1.3–9.0 cm depths, and dehydrogenase activity estimated on samples from 1.3–9.0 cm were significantly increased by leaf mulching and N fertilizer application. Changes in microbial community composition, as indicated by phospholipid fatty acid methyl ester analysis, appear to be due to seasonal variations and did not reflect changes due to N or leaf amendment treatments. There were no negative effects of tree leaf mulching into turfgrass and early data suggest this practice will improve soil chemical, physical, and biological structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 30 (1999), S. 239-244 
    ISSN: 1432-0789
    Keywords: Key words Forest soil activity ; Microbial biomass ; Temperature ; Moisture ; Dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Effects of increased soil temperature on soil microbial biomass and dehydrogenase activity were examined on organic (O) horizon material in a low-elevation spruce-fir ecosystem. Soil temperature was maintained at 5  °C above ambient during the growing season in the experimental plots, and soil temperature, moisture, microbial biomass, and dehydrogenase activity were measured during the experiment. An incubation study was also conducted under three temperature regimes, 5, 15, and 25  °C, and under four moisture regimes of 20, 120, 220, and 320% to further evaluate these environmental factors on dehydrogenase activity and microbial biomass. Soil moisture content and microbial biomass controls were significantly lower (30% and 2 μg g–1 soil, respectively) in the heated plots during the treatment period, suggesting that moisture content was important in controlling microbial biomass. In the incubation study, temperature appeared more important than moisture in controlling microbial biomass and dehydrogenase activity. Increasing temperature between 5  °C and 25  °C resulted in significant decreases in microbial biomass and dehydrogenase activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1432-0789
    Keywords: Key words Catalase activity ; Crop rotation ; Dehydrogenase activity ; Microbial biomass ; Nitrogen fertilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A long-term experiment, which started in 1971 near Perugia, central Italy, was performed to investigate the effect of different crop residue management practices and rotation systems on some soil properties. Twenty years after the beginning of the experiment, chemical (organic C, total N, humified organic C, humic and fulvic acids), microbiological and biochemical parameters (microbial biomass, global hydrolase activity, dehydrogenase and catalase activities) were investigated. Two crop residue management practices were used in the experiment, i.e. removal (RCR soils) and burial (BCR soils). These treatments were factorially combined with eight rotation systems, i.e. five maize-wheat rotations of different lengths (M-1W, M-2W, M-3W, M-4W and M-5W) and three continuous wheat systems with different fertilization inputs, from 150 to 250 kg N ha–1. Soil samples were collected in the spring of 1991 for chemical determinations, and in the spring and autumn of 1992, 1993 and 1994, for microbiological and biochemical determinations. All soil chemical, microbiological and biochemical parameters investigated showed significant differences depending on the management of the crop residues. The BCR soils showed more favourable characteristics. In contrast, few significant effects were observed in relation to rotation and N-fertilization treatment. Significant correlations were found between organic-C content and all microbiological and biochemical parameters, as well as between the microbiological and biochemical parameters themselves, indicating that organic-C content plays an important role in determining the level of soil enzyme activity and, consequently, of soil fertility. This experiment showed that burying crop residues in soil can be considered good agronomic practice, which may help limit the gradual depletion of soil organic matter and improve the chemical properties of the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 129-134 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Bare fallow ; Microbial: organic C ratio ; Catalase activity ; Earthworms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inherent soil properties have an influence on microbial activity. These effects were measured in a field trial at Weihenstephan with 30 agricultural and 2 vineyard soils from different sites in Bavaria which had been kept under bare fallow for 6 years. The soils represented a wide range of arable soils from a temperate climate. Unaffected by recent differences in climatic conditions or cropping managements, they were used to assess the relationship between microbial biomass C and a broad spectrum of soil physical and chemical properties (clay content 5–63%, pH 4.5–7.5, organic C 0.55–2.93%). Microbial C was measured using the substrate-induced respiration method. In addition, soil catalase activity and the abundance and biomass of earthworms were determined. Among the soil properties, microbial C was most strongly correlated with organic C (r=0.86, n=29). In a comparison of linear regressions between microbial biomass C and organic C for different cropping managements, the slope under bare fallow was lowest, followed by monoculture and crop rotation. The microbial: organic C ratio ranged from 1.1 to 4.3% and was significantly correlated with soil pH (r=0.66). A positive relationship between microbial C and the clay content (r=0.66) was significantly improved when soils with more than 25% clay were excluded (r=0.80). Partial correlation analysis indicated that clay had a direct influence, hardly affected by an intercorrelation with organic C. Catalase activity was highly correlated with microbial C (r=0.95) and, because a rapid and sensitive method of determination is available, was considered suitable for estimating relative amounts of active microbial biomass. A positive relationship between microbial C and the abundance of earthworms indicated interactions between microorganisms and mesofauna.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    ISSN: 1432-0789
    Keywords: Analytical variations ; Root intenference ; Root pre-extraction ; Fumigation-extraction ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A control soil stored at 4°C was analyzed 38 times by fumigation-extraction during a period of 11 months to correct for variations caused by the analytical procedure. The difference in extractable C between fumigated and unfumigated samples oscillated around the average without a positive or negative trend. When data from contemporaneously extracted field samples were corrected with control soil data the variations were lowered. The deviations between corrected and uncorrected biomass C values had maxima of ±12%. Data obtained for seven dates using pre-extraction, wet-sieving, and centrifuging were compared with data obtained by the conventional procedure without any pretreatment. A negative difference from data obtained without pretreatment was found when the soil water content was decreased to 6%. The largest positive difference (+38%) was found in May during the period of highest root growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1432-0789
    Keywords: Key words Soil mesofauna ; Soil macrofauna ; Microbial biomass ; Soil enzymes ; N turnover ; pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a field study using soil mesocosms in an acid spruce forest soil we investigated the effects of mesofauna and macrofauna on microbial biomass, dissolved organic matter, and N cycling. Intact soil monoliths were taken from the ground, defaunated by deep-freezing, and wrapped in nets of various mesh-sizes to control re-immigration of different faunal size-classes. The monoliths were then replanted in the field. Three treatments of mesocosms were prepared: (1) with only microbiota, (2) microbiota and mesofauna, and (3) microbiota, mesofauna, and macrofauna (= complex fauna). After 8 months of exposure the mesocosms and the unmanipulated control plots (treatment 4) were destructively sampled. We estimated microbial biomass by substrate-induced respiration and the chloroform fumigation-extraction method. N cycling was measured by monitoring microbial N mineralization, the NH4 + content, and selected amino acids and the activities of protease, urease, and deaminase. The results from the L/F layer showed that the pool of the microbial biomass was not changed by the activity of the mesofauna. However, the mesofauna and macrofauna together enhanced SIR. An increase in microbial N mineralization was only observed in treatment 3 (microbiota + complex fauna). Protease activity and NH4 + content increased in treatments 2 (microbiota + mesofauna) and 3 (microbiota + complex fauna). The complex fauna induced a soil pH increase in treatment 3 as opposed to treatment 1 and the control. This increase was presumably due to excretory NH4 +. Principal component analysis revealed that the complex fauna in treatment 3 caused a significantly higher N turnover per unit of microbial biomass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 215-219 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Acidification ; Beech forest ; Soil organic C ; Total P ; Fagus sylvatica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Thirty-eight soils from forest sites in central Germany dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of the overlying organic layers. Microbial biomass P was estimated by the fumigation — extraction method, measuring the increase in NaHCO3-extractable phosphate. The size of the microbial P pool varied between 17.7 and 174.3 μg P g-1 soil and was on average more than seven times larger than NaHCO3-extractable phosphate. Microbial P was positively correlated with soil organic C and total P, reflecting the importance of soil organic matter as a P source. The mean microbial P concentration was 13.1% of total P, varying in most soils between 6 and 18. Microbial P and microbial C were significantly correlated with each other and had a mean ratio of 14.3. A wide (5.1–26.3) microbial C: P ratio indicates that there is no simple relatinship between these two parameters. The microbial C: P ratio showed strong and positive correlations with soil pH and cation exchange capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Metabolic quotient ; Seasonal variation ; Climatic conditions ; Soil respiration ; Tillage systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Variations in the microbial biomass and the in situ metabolic quotient (qCO2) due to climatic conditions were determined in a typical soil from the Argentine Rolling Pampa. Microbial C was evaluated by fumigation-incubation and qCO2 was calculated using soil respiration in the field. An inverse relationship between microbial C and soil temperature was fitted to a model (r 2=0.90, P=0.01). No significant association with the soil water content was detected because the soil was generally near field capacity and thus water availability did not limited microbial growth and activity. Values of qCO2 increased (r 2=0.89, P=0.01) as the result of metabolic activatìon, likely induced by a higher maintenance energy requirement at high temperatures. The highest values of qCO2 were obtained when microbial C was the lowest, which was attributed to self consumption of microbial C in the presence of high temperatures. Consequently, microbial C was generally higher (P=0.05) in winter than in summer. Therefore, when microbial C is used as an index of soil biological activity, the influence of temperature should be taken into account.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1432-0789
    Keywords: Soil mesofauna ; Soil macrofauna ; Microbial biomass ; Soil enzymes ; N turnover ; pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a field study using soil mesocosms in an acid spruce forest soil we investigated the effects of mesofauna and macrofauna on microbial biomass, dissolved organic matter, and N cycling. Intact soil monoliths were taken from the ground, defaunated by deep-freezing, and wrapped in nets of various mesh-sizes to control re-immigration of different faunal size-classes. The monoliths were then replanted in the field. Three treatments of mesocosms were prepared: (1) with only microbiota, (2) microbiota and mesofauna, and (3) microbiota, mesofauna, and macrofauna (= complex fauna). After 8 months of exposure the mesocosms and the unmanipulated control plots (treatment 4) were destructively sampled. We estimated microbial biomass by substrate-induced respiration and the chloroform fumigation-extraction method. N cycling was measured by monitoring microbial N mineralization, the NH inf4 sup+ content, and selected amino acids and the activities of protease, urease, and deaminase. The results from the L/F layer showed that the pool of the microbial biomass was not changed by the activity of the mesofauna. However, the mesofauna and macrofauna together enhanced SIR. An increase in microbial N mineralization was only observed in treatment 3 (microbiota + complex fauna). Protease activity and NH inf4 sup+ content increased in treatments 2 (microbiota + mesofauna) and 3 (microbiota + complex fauna). The complex fauna induced a soil pH increase in treatment 3 as opposed to treatment 1 and the control. This increase was presumably due to excretory NH inf4 sup+ . Principal component analysis revealed that the complex fauna in treatment 3 caused a significantly higher N turnover per unit of microbial biomass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1432-0789
    Keywords: Key words Analytical variations ; Root interference ; Root pre-extraction ; Fumigation-extraction ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A control soil stored at 4°C was analyzed 38 times by fumigation-extraction during a period of 11 months to correct for variations caused by the analytical procedure. The difference in extractable C between fumigated and unfumigated samples oscillated around the average without a positive or negative trend. When data from contemporaneously extracted field samples were corrected with control soil data the variations were lowered. The deviations between corrected and uncorrected biomass C values had maxima of ±12%. Data obtained for seven dates using pre-extraction, wet-sieving, and centrifuging were compared with data obtained by the conventional procedure without any pretreatment. A negative difference from data obtained without pretreatment was found when the soil water content was decreased to 6%. The largest positive difference (+38%) was found in May during the period of highest root growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 171-178 
    ISSN: 1432-0789
    Keywords: Key wordsAporrectodea nocturna ; Dispersal ; Cast production ; Modelling ; Earthworms ; Soil moisture ; Microbial biomass ; Prealpine meadow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field and laboratory experiments were carried out to describe the effects of Aporrectodea nocturna on soil characteristics in a pre-alpine meadow and to support the development of a model of cast production. In the pre-alpine meadow, increased cast production, first observed about 20 years ago around a newly planted hedge, was recorded to a distance of maximal 170 m from the hedge. Numbers of A. nocturna between 130 and 165 m from the hedge decreased from 164 to 16 individuals m–2. In the same area cast production steadily decreased from about 1.5 kg m–2 week–1 to nil, the plant community structure changed and the microbial biomass decreased, but the root biomass and the moisture content did not change. Laboratory experiments demonstrated that high cast production was not a specific feature of the A. nocturna population nor of the soil in the meadow. Diapause of A. nocturna was terminated in the laboratory during September. A model of cast production potential by the earthworm A. nocturna was established using laboratory determinations of the relationships with body weight, temperature, and water potential. The model was shown to predict cast production in the field given the assumption that the water potential was 0 MPa. According to the model, 81% of surface cast production was by juveniles, and 19% by adults of A. nocturna.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 1432-0789
    Keywords: Phospholipid fatty acids ; Substrate-induced respiration ; Fungi ; Bacteria ; Sheep-grazing ; Fertiliser ; Lime ; Microbial biomass ; Soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this study we examined the effect on soil fungal:bacterial biomass ratios of withholding fertiliser, lime, and sheep-grazing from reseeded upland grassland. The cessation of fertiliser applications on limed and grazed grassland resulted in a reduction in soil pH from 5.4 to 5.1. The cessation of fertiliser applications and liming on grazed grassland resulted in a fall in pH from 5.4 to 4.7, whereas withholding fertiliser and lime and the removal of grazing resulted in a further reduction to pH 4.5. Substrate-induced respiration was reduced in the unfertilised grazed (21%; P〈0.01) and unfertilised ungrazed (36%; P〈0.001) treatments. Bacterial substrate-induced respiration and bacterial fatty acids were unaffected by the treatments. The relative abundance of the fungal fatty acid 18:2ω6 increased by 39 and 72% (P〈0.05) in the limed grazed and unfertilised grazed treatments, respectively. Fungal substrate-induced respiration increased in the limed grazed (18%) and unfertilised grazed (65%; P〈0.05) treatments. The ratio of 18:2ω6: bacterial fatty acids was correlated with the ratio of fungal:bacterial substrate-induced respiration (r=0.69; P〈0.001).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 1432-0789
    Keywords: Key words Soil organic matter ; Microbial biomass ; Soil enzymes ; Organic amendments ; Inorganic fertilizers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1432-0789
    Keywords: Key words Dairy shed effluent ; Enzymes ; Nitrogen fertilizer ; Microbial biomass ; Gross mineralization rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 – concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 372-381 
    ISSN: 1432-0789
    Keywords: Key words Cropping systems ; Biodynamic farms ; Soil organic matter fractions ; Microbial biomass ; Soil quality indicators
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of cropping systems on soil organic matter (SOM) in a pair of conventional and biodynamic mixed cropping farms were investigated. Soil samples (0–75 and 75–150-mm depths) were analysed for total carbon (TC), total nitrogen (TN), microbial biomass C (BC) and microbial biomass N (BN), and sequentially extracted for labile and stable SOM using cold water, hot water, acid mixtures and alkalis. In the biodynamic farm, TC and TN decreased with increasing period of cropping but the reverse occurred under pastures. These were not shown in soils from the conventional farm, probably due to N fertilizer additions. Under pastures, increases in SOM were attributed to greater biological N2 fixation and the return of plant residues and excreta from grazing animals. Overall, sensitive SOM quality indicators found for labile SOM were BN, BN:TN and HC:TC, and for stable SOM were HCl/HFC, HCl/HFC:TC, humin C, humin N, humin C:TC and humin N:TN. The BN and BN:TN were better indicators than BC and BC:TC. The humin fraction was strongly related to both labile and stable SOM fractions suggesting that humin contained non-extractable strongly complexed SOM components with mineral matter and also non-extractable plant and microbial residual components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 27 (1998), S. 168-172 
    ISSN: 1432-0789
    Keywords: Key words Agroforestry ; Soil organic matter ; Microbial biomass ; Soil respiration ; Soil enzymes ; Dalbergia sissoo
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of growing trees in combination with field crops on soil organic matter, microbial biomass C, basal respiration and dehydrogenase and alkaline phosphatase activities were studied in soils under a 12-year-old Dalbergia sissoo (a N2-fixing tree) plantation intercropped with a wheat (Triticum aestivum) – cowpea (Vigna sinensis) cropping sequence. The inputs of organic matter through D. sissoo leaf litter increased and crop roots decreased with the increase in tree density. Higher organic C and total N, microbial biomass C, basal soil respiration and activities of dehydrogenase and alkaline phosphatase were observed in treatments with tree-crop combination than in the treatment without trees. Soil organic matter, microbial biomass C and soil enzyme activities increased with the decrease in the spacing of the D. sissoo plantation. The results indicate that adoption of the agroforestry practices led to an improved organic matter status of the soil, which is also reflected in the increased nutrient pool and microbial activities necessary for long-term productivity of the soil. However, tree spacing should be properly maintained to minimize the effects of shading on the intercrops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1432-0789
    Keywords: Key words Dehydrogenase ; Microbial biomass ; Soil respiration ; Urease ; Humid Subtropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Microbial populations, biomass, soil respiration and enzyme activities were determined in slightly acid organic soils of major mountainous humid subtropical terrestrial ecosystems, along a soil fertility gradient, in order to evaluate the influence of soil properties on microbial populations, activity and biomass and to understand the dynamics of the microbial biomass in degraded ecosystems and mature forest. Although the population of fungi was highest in the undisturbed forest (Sacred Grove), soil respiration was lowest in the 7-year-old regrowth and in natural grassland (approximately 373 μg g–1 h–1). Dehydrogenase and urease activities were high in "jhum" fallow, and among the forest stands they were highest in the 7-year-old regrowth. Microbial biomass C (MBC) depended mainly on the organic C status of the soil. The MBC values were generally higher in mature forest than in natural grassland, 1-year-old jhum fallow and the 4-year-old alder plantation. The MBC values obtained by the chloroform-fumigation-incubation technique (330–1656 μg g–1) did not vary significantly from those obtained by the chloroform-fumigation-extraction technique (408–1684 μg g–1), however, the values correlated positively (P〈0.001). The enzyme activities, soil respiration, bacterial and fungal populations and microbial biomass was greatly influenced by several soil properties, particularly the levels of nutrients. The soil nutrient status, microbial populations, soil respiration and dehydrogenase activity were greater in Sacred Grove, while urease activity was greater in grassland.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1432-0789
    Keywords: Key words Tussock grassland ; High country ; Microbial biomass ; Organic C and N turnover ; Hieracium invasion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  In New Zealand Hieracium is an opportunistic plant that invades high country sites more or less depleted of indigenous vegetation. To understand the invasive nature of this weed we assessed the changes in soil C, N and P, soil microbial biomass C, N and P contents, microbial C : N and C : P ratios, the metabolic quotient, and turnover of organic matter in soils beneath Hieracium and its adjacent herbfield resulting from the depletion of tussock vegetation. The amounts of soil organic C and total N were higher under Hieracium by 25 and 11%, respectively, compared to soil under herbfield. This change reflects an improvement in both the quantity and quality of organic matter input to mineral soil under Hieracium, with higher percentage organic C and a lower C : N ratio. The microbial biomass C, N and P contents were also higher under Hieracium. The amount of C respired during the 34-week incubation indicated differences in the nature of soil organic matter under Hieracium, the unvegetated "halo" zone surrounding Hieracium patches, and herbfield (depleted tussock grassland). Decomposition of organic matter in these zones showed that the Hieracium soil had the greatest rate of CO2 respired, and the halo soil had the lowest. We relate the enhanced organic C turnover to the invasive nature of Hieracium. Net N mineralization was significantly lower from the Hieracium soil (57 mg N g–1 soil N) than from herbfield and halo soils (74 and 71 mg N g–1 soil N, respectively), confirming that the nature of organic N in Hieracium soil is different from adjoining halo and herbfield soils. It seems plausible that specific compounds such as polyphenols and lignins released by Hieracium are not only responsible for increased organic N, but also control the form and amount of N released during organic matter transformations. We conclude that the key to the success of Hieracium in the N-deficient South Island high country of New Zealand lies in its ability to control and sequester N supply through modifying the soil organic matter cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1432-0789
    Keywords: Key words Long-term fertilization ; Microbial biomass ; Dehydrogenase activity ; Denitrification potential ; Denitrifying enzyme activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Using soils from field plots in four different arable crop experiments that have received combinations of manure, lime and inorganic N, P and K for up to 20 years, the effects of these fertilizers on soil chemical properties and estimates of soil microbial community size and activity were studied. The soil pH was increased or unaffected by the addition of organic manure plus inorganic fertilizers applied in conjunction with lime, but decreased in the absence of liming. The soil C and N contents were greater for all fertilized treatments compared to the control, yet in all cases the soil samples from fertilized plots had smaller C:N ratios than soil from the unfertilized plots. The soil concentrations of all the other inorganic nutrients measured were greater following fertilizer applications compared with the unfertilized plots, and this effect was most marked for P and K in soils from plots that had received the largest amounts of these nutrients as fertilizers. Both biomass C determined by chloroform fumigation and glucose-induced respiration tended to increase as a result of manure and inorganic fertilizer applications, although soils which received the largest additions of inorganic fertilizers in the absence of lime contained less biomass C than those to which lime had been added. Dehydrogenase activity was lower in soils that had received the largest amounts of fertilizers, and was further decreased in the absence of lime. This suggests that dehydrogenase activity was highly sensitive to the inhibitory effects associated with large fertilizer additions. Potential denitrification and anaerobic respiration determined in one soil were increased by fertilizer application but, as with both the microbial biomass and dehydrogenase activity, there were significant reductions in both N2O and CO2 production in soils which received the largest additions of inorganic fertilizers in the absence of lime. In contrast, the size of the denitrifying component of the soil microbial community, as indicated by denitrifying enzyme activity, was unaffected by the absence of lime at the largest rate of inorganic fertilizer applications. The results indicated differences in the composition or function of microbial communities in the soils in response to long-term organic and inorganic fertilization, especially when the soils were not limited.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1432-0789
    Keywords: Key words Cropping systems ; Microbial biomass ; Carbon mineralization ; Nitrogen mineralization ; Conceptual humus fractions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  In a cropping systems experiment in southeastern Norway, ecological (ECO), integrated (INT) and conventional (CON) forage (FORAGE) and arable (ARABLE) model farms were compared. After 5 experimental years, topsoil was sampled in spring from spring grain plots and incubated for 449 days at controlled temperature (15  °C) and moisture content (50% water-holding capacity). There were no detectable differences between model farms in terms of total soil C or N. For INT and CON, however, values of microbial biomass C and N, microbial quotient (Cmic/Corg), and C and N mineralization were, or tended to be, higher for FORAGE than for ARABLE. For the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. For INT and CON, the metabolic quotient (qCO2) was lower for FORAGE than for ARABLE. Again, for the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. We estimated the sizes of conceptual soil organic matter pools by fitting a decomposition model to biomass and mineralization data. This resulted in a 48% larger estimate for CON-FORAGE than for CON-ARABLE of physically protected biomass C. For physically protected organic C the difference was 42%. Moreover, the stability of soil aggregates against artificial rainfall was substantially greater for CON-FORAGE than for CON-ARABLE. On this basis, we hypothesized that the lower qCO2 values in the FORAGE soils were mainly caused by a smaller proportion of active biomass due to enclosure of microorganisms within aggregates. Altogether, our results indicated a poorer inherent soil fertility in ARABLE than in FORAGE rotations, but the difference was small or absent in the ECO system, probably owing to the use of animal and green manures and reduced tillage intensity in the ECO-ARABLE rotation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 1432-0789
    Keywords: Key words Phospholipid fatty acids ; Substrate-induced respiration ; Fungi ; Bacteria ; Sheep-grazing ; Fertiliser ; Lime ; Microbial biomass ; Soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this study we examined the effect on soil fungal:bacterial biomass ratios of withholding fertiliser, lime, and sheep-grazing from reseeded upland grassland. The cessation of fertiliser applications on limed and grazed grassland resulted in a reduction in soil pH from 5.4 to 5.1. The cessation of fertiliser applications and liming on grazed grassland resulted in a fall in pH from 5.4 to 4.7, whereas withholding fertiliser and lime and the removal of grazing resulted in a further reduction to pH 4.5. Substrate-induced respiration was reduced in the unfertilised grazed (21%; P〈0.01) and unfertilised ungrazed (36%; P〈0.001) treatments. Bacterial substrate-induced respiration and bacterial fatty acids were unaffected by the treatments. The relative abundance of the fungal fatty acid 18:2ω6 increased by 39 and 72% (P〈0.05) in the limed grazed and unfertilised grazed treatments, respectively. Fungal substrate-induced respiration increased in the limed grazed (18%) and unfertilised grazed (65%; P〈0.05) treatments. The ratio of 18:2ω6: bacterial fatty acids was correlated with the ratio of fungal:bacterial substrate-induced respiration (r=0.69; P〈0.001).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 182-188 
    ISSN: 1432-0789
    Keywords: Key words Long-term tillage ; N fertilization ; Microbial biomass ; Potential C and N mineralization ; Soil organic C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Quantifying seasonal dynamics of active soil C and N pools is important for understanding how production systems can be better managed to sustain long-term soil productivity especially in warm subhumid climates. Our objectives were to determine seasonal dynamics of inorganic soil N, potential C and N mineralization, soil microbial biomass C (SMBC), and the metabolic quotient of microbial biomass in continuous corn (Zea mays L.) under conventional (CT), moldboard (MB), chisel (CH), minimum tillage (MT), and no-tillage (NT) with low (45kgNha–1) and high (90kgNha–1) N fertilization. An Orelia sandy clay loam (fine-loamy, mixed, hyperthermic Typic Ochraqualf) in south Texas, United States, was sampled before corn planting in February, during pollination in May, and following harvest in July. Soil inorganic N, SMBC, and potential C and N mineralization were usually highest in soils under NT, whereas these characteristics were consistently lower throughout the growing season in soils receiving MB tillage. Nitrogen fertilization had little effect on soil inorganic N, SMBC, and potential C and N mineralization. The metabolic quotient of microbial biomass exhibited seasonal patterns inverse to that of SMBC. Seasonal changes in SMBC, inorganic N, and mineralizable C and N indicated the dependence of seasonal C and N dynamics on long-term substrate availability from crop residues. Long-term reduced tillage increased soil organic matter (SOM), SMBC, inorganic N, and labile C and N pools as compared with plowed systems and may be more sustainable over the long term. Seasonal changes in active soil C and N pools were affected more by tillage than by N fertilization in this subhumid climate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 1432-0789
    Keywords: Atrazine ; Microbial biomass ; Herbicide degradation ; Basal respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory incubation experiment was set up to determine the effects of atrazine herbicide on the size and activity of the soil microbial biomass. This experiment was of a factorial design (0, 5, and 50 μg g−1 soil of non-labelled atrazine and 6.6×103 Bq g−1 soil of 14C-labelled atrazine) x (0, 20, and 100 μg g−1 soil of urea-N) x (pasture or arable soil with a previous history of atrazine application). Microbial biomass, measured by substrate-induced respiration and the fumigation-incubation method, basal respiration, incorporation of 14C into the microbial biomass, degradation of atrazine, and 14C remaining in soil were monitored over 81 days. The amount of microbial biomass was unaffected by atrazine although atrazine caused a significant enhancement of CO2 release in the non-fumigated controls. Generally, the amounts of atrazine incorporated into the microbial biomass were negligible, indicating that microbial incorporation of C from atrazine is not an important mechanism of herbicide breakdown. Depending on the type of soil and the rate of atrazine application, 18–65% of atrazine was degraded by the end of the experiment. Although the pasture soil had twice the amount of microbial biomass as the arable soil, and the addition of urea approximately doubled the microbial biomass, this did not significantly enhance the degradation of atrazine. This suggests that degradation of atrazine is largely independent of the size of the microbial biomass and suggests that other factors (e.g., solubility, chemical hydrolysis) regulate atrazine breakdown. A separate experiment conducted to determine total amounts of 14C-labelled atrazine converted into CO2 by pasture and arable soils showed that less than 25% of the added 14C-labelled atrazine was oxidised to 14CO2 during a 15-week period. The rate of degradation was significantly greater in the arable soil at 24%, compared to 18% in the pasture soil. This indicates that soil microbes with previous exposure to atrazine can degrade the applied atrazine at a faster rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1432-0789
    Keywords: Substrate-induced respiration ; Microbial biomass ; Beech forest ; Soil aggregates ; Aggregate disruption ; Fagus sylvatica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We studied the effects of aggregates of different sizes on the soil microbial biomass. The distribution of aggregate size classes (〈2, 2–4, 4–10, 〉10 mm) in the upper mineral soil horizon (Ah layer) was very different in three sites (upper, intermediate, lower) in a beechwood (Fagus sylvatica) on a basalt hill (Germany). Aggregates of different sizes (〈2, 2–4, 4–10 mm) contained different amounts of C and N but the C:N ratios were similar. C and N contents were generally higher in smaller aggregates. The maximum initial respiratory response by microorganisms in intact aggregates and in aggregates passed through a 1-mm sieve declined with the aggregate size, but the difference was more pronounced in intact aggregates. Disruption of aggregates generally increased this response, particularly in 4- to 10-mm aggregates in the lower site. Basal respiration differed strongly among sites, but was similar in each of the aggregate size classes. Aggregate size did not significantly affect the specific respiration (μg O2 μg−1 microbial C h−1) nor the microbial: organic C ratio, but these parameters differed among sites. Microbial growth was increased strongly by passing the soil through a 1-mm sieve in each of the aggregate materials. The growth of microorganisms in disrupted aggregates was similar, and the effect of aggregate disruption depended on the growth of microorganisms in intact aggregates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Denitrification ; Nitrification ; Nitrate ; Organic C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field study was undertaken to determine the effects of different plant species on soil microbial biomass and N transformations in a well drained silty clay loam (Typic Dystrochrept) and a poorly drained clay loam (Typic Humaquept). The crop treatments were faba bean (Vicia faba L.), alfalfa (Medicago sativa L.), timothy (Phleum pratense L.), bromegrass (Bromus inermis L.), reed canarygrass (Phalaris arundinacea L.), and wheat (Triticum aestivum L.). Measurements of microbial biomass C, denitrification capacity, and nitrification capacity were performed periodically in the top 2–10 cm of soil. On most sampling dates, all three parameters were higher under perennial than under annual species. The nitrification capacity was positively affected by the level of N applied to each species (r=0.65** for the silty clay loam and 0.84*** for the clay loam) and not directly by the plant. The differences found in microbial biomass C were significantly correlated with the water-soluble organic C present under each plant species (r=0.74*** for the silty clay loam and 0.90*** for the clay loam), suggesting differences in C deposition in the soil among plant species. In the silty clay loam, the denitrification capacity was positively related to the amount of organic C found under each plant species, while in the clay loam, it was dependent on the amount of N applied to each species. There was less denitrification activity per unit biomass under legume species than under graminease, suggesting that, depending on their composition, root-derived materials may be used differently by soil microbes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 284-292 
    ISSN: 1432-0789
    Keywords: Key words Basal respiration ; Long-term effect ; Metabolic quotient ; Microbial biomass ; Osmotic potential ; Pasture soil ; Phosphate fertilizers ; Substrate-induced respiration (SIR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The objective of the present work was to examine the effects of phosphate fertilizers on the microbial activity of pasture soils. Various microbial characteristics were measured using soils from an existing long-term phosphate fertilizer field trial and a short-term incubation experiment. The measurements included basal respiration, substrate induced respiration, inhibition of substrate-induced respiration by streptomycin sulphate (fungal activity) and actidione (bacterial activity) and microbial biomass C. The long-term field trials was initiated during 1985 to examine the effectiveness of different sources of phosphate fertilizers (single superphosphate, North Carolina phosphate rock, partially acidulated North Carolina phosphate rock, and diammonium phosphate) on pasture yield. The incubation experiment was conducted for 8 weeks using the same soil and the sources of phosphate fertilizers used in the field trial. In the incubation experiment the fertilizer addition caused an initial decrease in basal and substrate-induced respiration but had no effect on total microbial biomass. The initial decline in basal and substrate-induced respiration with the fertilizer addition was restored within 8 weeks after incubation. In the field experiment the fertilizer addition had no significant effect on basal respiration but increased substrate-induced respiration and microbial biomass C. The short-term and the long-term effects of phosphate fertilizer addition on the microbial characteristics of the soils are discussed in relation to its effects on pH, salt concentration, and the nutrient status of the soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1432-0789
    Keywords: Farmyard manure ; Long-term experiment ; Michaelis constant ; Microbial biomass ; NPK fertilizers ; Respiratory activity ; Glucose affinity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We determined the size, activity, and affinity of the microbial community for glucose in soils from long-term experimental grassland plots. The plots had been treated annually with either farmyard manure, inorganic NPK fertilizers, farmyard manure+inorganic NPK fertilizers, (NH4)2SO4 only, or no experimental amendment sine 1897. The largest biomass and activity differences were between the (NH4)2SO4-treated soil, which was very acid, and the rest, which were nearer neutral. In the (NH4)2SO4-treated soil, the biomass C to organic C ratio was small, but overall the community had high respiratory activity per unit of biomass (qCO2) and high overall affinity for glucose (low K m). The effects of the manure treatment were a greater biomass C and a lower overall glucose affinity than in the control plot. In the presence farmyard manure, NPK led to smaller biomass and a lower biomass to organic C ratio while having no significant effect on either glucose K m or qCO2. In the absence of farmyard manure, NPK led to significantly greater glucose affinity but had no significant effect on the biomass, the biomass C to organic C ratio or qCO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 1432-0789
    Keywords: Key words15N transformations ; Crop residues ; Soil texture ; Soil aggregation ; Microbial pool ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were 15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    ISSN: 1432-0789
    Keywords: Key wordsArion rufus ; Slug cast material ; Mucus ; Nutrient leaching ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We investigated the effects of slug (Arion rufus L.) mucus and cast material on litter decomposition, nutrient mobilization, and microbial activity in two laboratory experiments: (1) Slug mucus and cast material was added to beech leaf litter (Fagus sylvatica L.), and leaching of N and P and CO2 production in microcosm systems were measured during 77 days of incubation; (2) mucus was added to beech leaf litter, and basal respiration, microbial biomass (substrate-induced respiration), specific respiration (qO2), microbial growth ability after C, CN, CP, and CNP amendment, and lag time (time between CNP addition and start of exponential increase in respiration rate) were measured during 120 days of incubation. Leaching of N and P from beech leaf litter was significantly increased in treatments with mucus or faecal material of A. rufus. Following day 3, slug mucus increased nitrification processes. Mucus addition to beech leaf litter also increased basal respiration and microbial biomass significantly. In contrast, specific respiration was not significantly affected by mucus addition, and generally declined until day 60 but then increased until day 120. Nutrient amendments indicated that between days 1 and 30, N was available for microbial growth in litter with mucus but not in control litter. Generally, the lag time in beech leaf litter with added mucus was shorter than in control litter. Lag times generally increased with age, indicating dominance of slow-growing microbial populations at later stages as a consequence of depletion of easily available C resources and nutrients. We conclude that C, N, and P cycling is accelerated by slug activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 7-14 
    ISSN: 1432-0789
    Keywords: Acid rain ; Coniferous humus ; Ergosterol ; Microbial biomass ; Muramic acid ; Soil respiration ; Subarctic areas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Humus chemistry and respiration rate, ATP, ergosterol, and muramic acid concentration as measures of chemical properties, microbial activity, biomass, and indicators of fungal and bacterial biomass were studied in a long-term acid rain experiment in the far north of Finnish Lapland. The treatments used in this study were dry control, irrigated control (spring water, pH 6), and two levels of simulated acid rain (pH 4 and pH 3). Originally (1985–1988), simulated acid rain was prepared by adding both H2SO4 and HNO3 (1.9:1 by weight). In 1989 the treatments were modified as follows. In subarea 1 the treatments continued unchanged (H2SO4+HNO3 in rain to pH 4 and pH 3), but in subarea 2 only H2SO4 was applied. The plots were sampled in 1992. The acid application affected humus chemistry by lowering the pH, cation exchange capacity, and base saturation (due to a decrease in Ca and Mg) in the treatment with H2SO4+HNO3 to pH 4 (total proton load over 8 years 2.92 kmol ha-1), whereas the microbial variables were not affected at this proton load, and only the respiration rate decreased by 20% in the strongest simulated acid rain treatment (total proton load 14.9 kmol ha-1). The different ratios of H2SO4+HNO3 in subareas 1 and 2 did not affect the results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 38-42 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Depth profile ; Fumigation-extraction method ; Soil organic matter ; Dormant population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 μg g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 μg g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 μg g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 57-63 
    ISSN: 1432-0789
    Keywords: Earthworms ; N mineralization ; Agroecosystems ; Soil structure ; Microbial biomass ; Lumbricus terrestris ; Aporrectodea tuberculata ; Soil cores
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH 4 + , NO 3 − , and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH 4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH 4 + were observed. However, when earthworms were present, the concentration of NO 3 − increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha−1 year−1, at the density used in this experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 245-251 
    ISSN: 1432-0789
    Keywords: Key words Crop productivity ; Microbial biomass ; Cash grain ; Conventional farming ; Low-input agriculture ; NH uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil quality indices are attempts to classify soil conditions and to compare these conditions to their historical use. From this information it may be possible to determine which uses of soils are better for the long-range goals of agriculture and society. With many factors involved in the profitable production of safe foodstuffs without significant degradation of the environment and soils, an indicator that represents a broad biological perspective of quality is appropriate. Among a group of biological indicators, the ratio of crop N uptake to mineralized N as determined by microbial respiration plus net mineralized N found over a growing season is an useful indicator of soil quality. An evaluation of the 12-year-old Farming Systems Trial at the Rodale Institute Research Center indicated that soils in plots that had been conventionally managed were of lower quality than soil treated with manure or planted with legume-cash grain crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 57-63 
    ISSN: 1432-0789
    Keywords: Key words Earthworms ; N mineralization ; Agroecosystems ; Soil structure ; Microbial biomass ; Lumbricus terrestris ; Aporrectodea tuberculata ; Soil cores
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH4 +, NO3 –, and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH4 + were observed. However, when earthworms were present, the concentration of NO3 – increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha–1 year–1, at the density used in this experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...