ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Microbial ecology 25 (1993), S. 287-304 
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The decomposition of three different 14C-labeled cellulose substrates (plant holocellulose, plant cellulose prepared from 14C-labeled beech wood (Fagus sylvatica) and bacterial cellulose produced by Acetobacter xylinum) in samples from the litter and mineral soil layer of a beechwood on limestone was studied. In a long-term (154 day) experiment, mineralization of cellulose materials, production of 14C-labeled water-soluble compounds, and incorporation of 14C in microbial biomass was in the order Acetobacter cellulose 〉 holocellulose 〉 plant cellulose in both litter and soil. In general, mineralization of cellulose, production of 14C-labeled water-soluble compounds, and incorporation of 14C in microbial biomass were more pronounced, but microbial biomass 14C declined more rapidly in litter than in soil. In short-term (14 day) incubations, mineralization of cellulose substrates generally corresponded with cellulase and xylanase activities in litter and soil. Pre-incubation with trace amounts of unlabeled holocellulose significantly increased the decomposition of 14C-labeled cellulose substrates and increased cellulase activity later in the experiment but did not affect xylanase activity. The sum of 14CO2 production, 14C in microbial biomass, and 14C in water-soluble compounds is considered to be a sensitive parameter by which to measure cellulolytic activity in soil and litter samples in short-term incubations. Shorter periods than 14 days are preferable in assays using Acetobacter cellulose, because the decomposition of this substrate is more variable than that of holocellulose and plant cellulose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Substrate-induced respiration ; Microbial biomass ; Beech forest ; Soil aggregates ; Aggregate disruption ; Fagus sylvatica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We studied the effects of aggregates of different sizes on the soil microbial biomass. The distribution of aggregate size classes (〈2, 2–4, 4–10, 〉10 mm) in the upper mineral soil horizon (Ah layer) was very different in three sites (upper, intermediate, lower) in a beechwood (Fagus sylvatica) on a basalt hill (Germany). Aggregates of different sizes (〈2, 2–4, 4–10 mm) contained different amounts of C and N but the C:N ratios were similar. C and N contents were generally higher in smaller aggregates. The maximum initial respiratory response by microorganisms in intact aggregates and in aggregates passed through a 1-mm sieve declined with the aggregate size, but the difference was more pronounced in intact aggregates. Disruption of aggregates generally increased this response, particularly in 4- to 10-mm aggregates in the lower site. Basal respiration differed strongly among sites, but was similar in each of the aggregate size classes. Aggregate size did not significantly affect the specific respiration (μg O2 μg−1 microbial C h−1) nor the microbial: organic C ratio, but these parameters differed among sites. Microbial growth was increased strongly by passing the soil through a 1-mm sieve in each of the aggregate materials. The growth of microorganisms in disrupted aggregates was similar, and the effect of aggregate disruption depended on the growth of microorganisms in intact aggregates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 160-164 
    ISSN: 1432-0789
    Keywords: Lignin decomposition ; Soil microcompartments ; White-rotted wood ; Brown-rotted wood ; Earthworm faeces ; Octolasion lacteum ; Fagus sylvatica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary C mineralization of three different C-14-labelled lignin substrates (Klason-lignin, dioxane-lignin, lignocellulose) was investigated in four microcompartments, consisting of white-rotted beechwood (Fagus sylvatica L)., brown-rotted beechwood, earthworm [Octolasion lacteum (Örley)] faecal particles mixed with white-rotted beechwood, and earthworm feacal particles mixed with brown-rotted beechwood, incubated at 10°C for 193 days. Conversion of the labelled substrates to 14CO2 was low in both white-rotted and brown-rotted wood without faecal particles. Overall C mineralization followed the order Klason-lignin 〉 dioxane-lignin 〉 lignocellulose, indicating that there were different amounts of labelled contaminants in the lignin substrates. Lignin degradation was more pronounced in earthworm faeces mixed with wood materials, and overall C mineralization ranged between 4.4% and 6.3% of the inital C content. C mineralization of the lignin substrates increased considerably in faecal particles after about 90 days, presumably due to nutrient immobilization and microbial succession. The usefulness of the three lignin substrates in monitoring the time-course and extent of lignin degradation in soil microcompartments is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 327-332 
    ISSN: 1432-0789
    Keywords: Litter decomposition ; Succession ; Microbial biomass ; Microbial respioration ; Microbial nutrient status
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 230-234 
    ISSN: 1432-0789
    Keywords: Earthworm casts ; Microbial respiration ; Microbial biomass ; Nitrogen ; Phosphorus ; Aporrectodea caliginosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Microbial respiration, microbial biomass and nutrient requirements of the microflora (C, N, P) were studied in the food substrate (soil taken from the upper 3 cm of the mineral soil of a beech wood on limestone), the burrow walls and the casts of the earthworm Aporrectodea caliginosa (Savigny). The passage of the soil through the gut caused an increase in soil microbial respiration of about 90% over a 4-week period. Microbial biomass was increased only in freshly deposited casts and decreased in aging faeces to a level about 10% lower than in soil. Microbial respiration of the burrow walls was only increased over a shorter period (about 2 weeks). The microflora of the soil and the burrow walls was limited by P, whereas in earthworm casts, microbial growth was limited by the amount of available C. In aging faeces the P requirement of the microflora increased and approached that of the soil. Immobilization of phosphate in earthworm casts is probably caused by mainly abiotic processes. C mineralization by soil microflora fertilized with glucose and P was limited by N, except in freshly deposited casts. Ammonium, not nitrate, was responsible for this process. N dynamics in earthworm casts are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 217-220 
    ISSN: 1432-0789
    Keywords: Endogeic earthworms ; Lumbricidae ; Mucus excretion ; C turnover ; Octolasion lacteum ; Aporrectodea caliginosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Mucus excretion of endogeic earthworms, by the body surface to burrow walls and by the intestine to casts, was investigated using uniformly 14C-labelled adult or subadult specimens of Octolasion lacteum (Örley) in laboratory incubations in soil from a beechwood on limestone. The daily loss of C due to mucus excretion from the body surface and in casts was calculated as 0.2 and 0.5% of total animal C, respectively. The C loss due to mucus excretion by subadult or adult individuals of O. lacteum is assumed to account for 63% of total C losses (including mucus excretion and respiration) of the earthworms. In a second experiment we studied the incorporation of 14C from labelled soil, again from a beechwood on limestone, into the tissue of the endogeic earthworm species Aporrectodea caliginosa (Savigny). The results of this experiment indicate the existence of two C pools, one more labile and one more stable, in earthworms. It is assumed that the C investment for respiration and mucus excretion is derived from the labile C pool of endogeic earthworms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0789
    Keywords: Key wordsFagus sylvatica ; Urtica dioica ; Nitrate leaching ; Forest ; Lumbricidae ; Decomposition ; Mineralization ; Octolasion lacteum ; Litter ; CO2 production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of leaf litter of beech (Fagus sylvatica L.) and stinging nettles (Urtica dioica L.) and of the endogeic earthworm species Octolasion lacteum (Örley) on carbon turnover and nutrient dynamics in soil of three beechwood sites on a basalt hill (Hesse, Germany) were investigated in a laboratory experiment lasting for about 1 year. The sites were located along a gradient from basalt (upper part of the hill) to limestone (lower part of the hill) with an intermediate site in between (transition zone). At the intermediate site U. dioica dominated in the understory whereas at the other sites Mercurialis perennis L. was most abundant. The amount and composition of organic matter was similar in soil of the basalt (carbon content 5.9%, C/N ratio 13.8) and intermediate site (carbon content 5.6%, C/N ratio 14.3) but the soil of the intermediate site produced more CO2 (in total +17.5%) and more nitrogen (as nitrate) was leached from this soil (in total +55.6%). It is concluded that the soil of the intermediate site contains a large mobile carbon and nitrogen pool and the formation of this pool is ascribed to the input of U. dioica litter. Leaf litter of U. dioica strongly increased NO3 –-N leaching immediately after the litter had been added, whereas nitrogen was immobilized due to addition of beech litter. Despite the very fast initial decomposition of nettle litter, the increase in CO2 production due to this litter material was only equivalent to 20.1% of the amount of carbon added with the nettle litter; the respective value for beech litter was 34.8%. Earthworms altered the time course of carbon and nitrogen mineralization in each of the treatments. In general, earthworms strongly increased mineralization of nitrogen but this effect was less pronounced in soil of the intermediate site (treatments without litter), which is ascribed to a depleted physically protected nitrogen and carbon pool. In contrast, their effect on the total amount of nitrogen mobilized from nettle litter was small. Earthworms significantly reduced CO2 production from soil of the intermediate site (treatments without litter) and it is concluded that earthworm activity contributes to the restoration of the depleted physically protected carbon pool at this site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0929-1393
    Keywords: Aspen forest ; Bacterial/fungal ratio ; Carbon mineralization ; Dendrobaena octaedra ; Microbial biomass ; Nutrient cycling ; Pine forest
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0038-0717
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Soil Biology and Biochemistry 25 (1993), S. 1703-1711 
    ISSN: 0038-0717
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...