ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Blackwell Publishing Ltd  (56.218)
  • American Association for the Advancement of Science  (55.540)
  • American Geophysical Union (AGU)
  • Annual Reviews
  • 2020-2024  (108)
  • 2020-2023  (31)
  • 1985-1989  (49.666)
  • 1980-1984  (39.489)
  • 1960-1964  (22.326)
  • 1935-1939  (11.551)
Sammlung
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science
    In:  EPIC3New York, American Association for the Advancement of Science
    Publikationsdatum: 2016-01-07
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: PANGAEA Documentation , notRev
    Format: image/png
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-04-01
    Beschreibung: We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy. The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi‐analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log‐transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type‐curve analysis and determine their sensitivity. This procedure, implemented in welltestpy, is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open‐source software package welltestpy.
    Beschreibung: Article impact statement: We present a workflow to infer parameters of subsurface heterogeneity from pumping test data exemplified at two sites using welltestpy.
    Beschreibung: German Federal Environmental Foundation (DBU) http://dx.doi.org/10.13039/100007636
    Schlagwort(e): ddc:551.49
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-04-01
    Beschreibung: In designed experiments, different sources of variability and an adequate scale of measurement need to be considered, but not all approaches in common usage are equally valid. In order to elucidate the importance of sources of variability and choice of scale, we conducted an experiment where the effects of biochar and slurry applications on soil properties related to soil fertility were studied for different designs: (a) for a field‐scale sampling design with either a model soil (without natural variability) as an internal control or with composited soils, (b) for a design with a focus on amendment variabilities, and (c) for three individual field‐scale designs with true field replication and a combined analysis representative of the population of loess‐derived soils. Three silty loam sites in Germany were sampled and the soil macroaggregates were crushed. For each design, six treatments (0, 0.15 and 0.30 g slurry‐N kg−1 with and without 30 g biochar kg−1) were applied before incubating the units under constant soil moisture conditions for 78 days. CO2 fluxes were monitored and soils were analysed for macroaggregate yields and associated organic carbon (C). Mixed‐effects models were used to describe the effects. For all soil properties, results for the loess sites differed with respect to significant contributions of fixed effects for at least one site, suggesting the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils to be made and showed that site:slurry:biochar and site:slurry interactions were not negligible for macroaggregate yields. The use of a model soil as an internal control enabled observation of variabilities other than those related to soils or amendments. Experiments incorporating natural variability in soils or amendments resulted in partially different outcomes, indicating the need to include all important sources of variability. Highlights Effects of biochar and slurry applications were studied for different designs and mixed‐effects models were used to describe the effects. Including an internal control allowed observation of, e.g., methodological and analytical variabilities. The results suggested the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils. The results indicated the need to include all important sources of variability.
    Schlagwort(e): ddc:631.4
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-04-01
    Beschreibung: Temperate forest soils are often considered as an important sink for atmospheric carbon (C), thereby buffering anthropogenic CO2 emissions. However, the effect of tree species composition on the magnitude of this sink is unclear. We resampled a tree species common garden experiment (six sites) a decade after initial sampling to evaluate whether forest floor (FF) and topsoil organic carbon (Corg) and total nitrogen (Nt) stocks changed in dependence of tree species (Norway spruce—Picea abies L., European beech—Fagus sylvatica L., pedunculate oak—Quercus robur L., sycamore maple—Acer pseudoplatanus L., European ash—Fraxinus excelsior L. and small‐leaved lime—Tilia cordata L.). Two groups of species were identified in terms of Corg and Nt distribution: (1) Spruce with high Corg and Nt stocks in the FF developed as a mor humus layer which tended to have smaller Corg and Nt stocks and a wider Corg:Nt ratio in the mineral topsoil, and (2) the broadleaved species, of which ash and maple distinguished most clearly from spruce by very low Corg and Nt stocks in the FF developed as mull humus layer, had greater Corg and Nt stocks, and narrow Corg:Nt ratios in the mineral topsoil. Over 11 years, FF Corg and Nt stocks increased most under spruce, while small decreases in bulk mineral soil (esp. in 0–15 cm and 0–30 cm depth) Corg and Nt stocks dominated irrespective of species. Observed decadal changes were associated with site‐related and tree species‐mediated soil properties in a way that hinted towards short‐term accumulation and mineralisation dynamics of easily available organic substances. We found no indication for Corg stabilisation. However, results indicated increasing Nt stabilisation with increasing biomass of burrowing earthworms, which were highest under ash, lime and maple and lowest under spruce. Highlights We studied if tree species differences in topsoil Corg and Nt stocks substantiate after a decade. The study is unique in its repeated soil sampling in a multisite common garden experiment. Forest floors increased under spruce, but topsoil stocks decreased irrespective of species. Changes were of short‐term nature. Nitrogen was most stable under arbuscular mycorrhizal species.
    Beschreibung: Deutsche Forschungsgemeinschaff (DFG)
    Schlagwort(e): ddc:551.9 ; ddc:631.41
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sadai, S., Condron, A., DeConto, R., & Pollard, D. Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming. Science Advances, 6(39), (2020): eaaz1169, doi:10.1126/sciadv.aaz1169.
    Beschreibung: Meltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. Here, we report on multi-century (present–2250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. Accounting for Antarctic discharge raises subsurface ocean temperatures by 〉1°C at the ice margin relative to simulations ignoring discharge. In contrast, expanded sea ice and 2° to 10°C cooler surface air and surface ocean temperatures in the Southern Ocean delay the increase of projected global mean anthropogenic warming through 2250. In addition, the projected loss of Arctic winter sea ice and weakening of the Atlantic Meridional Overturning Circulation are delayed by several decades. Our results demonstrate a need to accurately account for meltwater input from ice sheets in order to make confident climate predictions.
    Beschreibung: This research was supported by the NSF Office of Polar Programs through NSF grant 1443347, the Biological and Environmental Research (BER) division of the U.S. Department of Energy through grant DE-SC0019263, the NSF through ICER 1664013, and by a grant to the NASA Sea Level Science Team 80NSSC17K0698.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foukal, N. P., Gelderloos, R., & Pickart, R. S. A continuous pathway for fresh water along the East Greenland shelf. Science Advances, 6(43), (2020): eabc4254, doi:10.1126/sciadv.abc4254.
    Beschreibung: Export from the Arctic and meltwater from the Greenland Ice Sheet together form a southward-flowing coastal current along the East Greenland shelf. This current transports enough fresh water to substantially alter the large-scale circulation of the North Atlantic, yet the coastal current’s origin and fate are poorly known due to our lack of knowledge concerning its north-south connectivity. Here, we demonstrate how the current negotiates the complex topography of Denmark Strait using in situ data and output from an ocean circulation model. We determine that the coastal current north of the strait supplies half of the transport to the coastal current south of the strait, while the other half is sourced from offshore via the shelfbreak jet, with little input from the Greenland Ice Sheet. These results indicate that there is a continuous pathway for Arctic-sourced fresh water along the entire East Greenland shelf from Fram Strait to Cape Farewell.
    Beschreibung: Funding for this work comes from the NSF under grant numbers OCE-1756361 and OCE-1558742 (N.P.F. and R.S.P.) and grant numbers OCE-1756863 and OAC-1835640 (R.G.).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(17), ISSN: 0094-8276
    Publikationsdatum: 2023-09-08
    Beschreibung: We quantify sea ice concentration (SIC) changes related to synoptic cyclones separately for each month of the year in the Greenland, Barents and Kara Seas for 1979–2018. We find that these SIC changes can be statistically significant throughout the year. However, their strength varies from region to region and month to month, and their sign strongly depends on the considered time scale (before/during vs. after cyclone passages). Our results show that the annual cycle of cyclone impacts on SIC is related to varying cyclone intensity and traversed sea ice conditions. We further show that significant changes in these cyclone impacts have manifested in the last 40 years, with the strongest changes occurring in October and November. For these months, SIC decreases before/during cyclones have more than doubled in magnitude in the Barents and Kara Seas, while SIC increases following cyclones have weakened (intensified) in the Barents Sea (Kara Sea).
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(23), ISSN: 0094-8276
    Publikationsdatum: 2023-09-19
    Beschreibung: The strong cooling during the Last Glacial Maximum (LGM, 21 ka BP) provides a rigorous test of climate models' ability to simulate past and future climate changes. We force an atmospheric general circulation model with two recent global LGM sea surface temperature (SST) reconstructions, one suggesting a weak and the other a more pronounced cooling, and compare the simulated land surface temperatures (LSTs) to reconstructed data. Our results do not confirm either SST reconstruction. The cold SST data set leads to good agreement between simulated and observed LSTs at low latitudes, but is systematically too cold at mid-latitudes. The opposite is true for the warm SST data set. Differences between the simulated LSTs are caused by varying land surface albedos, which is lower for the warmer SST reconstruction. The inconsistency between reconstructed and simulated climate points to a potentially significant bias in the proxy reconstructions and/or the climate sensitivity of current climate models.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Reviews of Geophysics, American Geophysical Union (AGU), 61(3), ISSN: 8755-1209
    Publikationsdatum: 2023-10-09
    Beschreibung: Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(22), ISSN: 0094-8276
    Publikationsdatum: 2023-11-25
    Beschreibung: Given the role played by the historical and extensive coverage of sea ice concentration (SIC) observations in reconstructing the long‐term variability of Antarctic sea ice, and the limited attention given to model‐dependent parameters in current sea ice data assimilation studies, this study focuses on enhancing the performance of the Data Assimilation System for the Southern Ocean in assimilating SIC through optimizing the localization and observation error estimate, and two assimilation experiments were conducted from 1979 to 2018. By comparing the results with the sea ice extent of the Southern Ocean and the sea ice thickness in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that without optimizations due to achieving more reasonable error estimates. Investigating uncertainties of the sea ice volume anomaly modeling reveals the importance of the sea ice‐ocean interaction in the SIC assimilation, implying the necessity of assimilating more oceanic and sea‐ice observations.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2023-12-12
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Infrared spectroscopy in the visible to near‐infrared (vis–NIR) and mid‐infrared (MIR) regions is a well‐established approach for the prediction of soil properties. Different data fusion and training approaches exist, and the optimal procedures are yet undefined and may depend on the heterogeneity present in the set and on the considered scale. The objectives were to test the usefulness of partial least squares regressions (PLSRs) for soil organic carbon (SOC), total carbon (C〈sub〉t〈/sub〉), total nitrogen (N〈sub〉t〈/sub〉) and pH using vis–NIR and MIR spectroscopy for an independent validation after standard calibration (use of a general PLSR model) or using memory‐based learning (MBL) with and without spiking for a national spectral database. Data fusion approaches were simple concatenation of spectra, outer product analysis (OPA) and model averaging. In total, 481 soils from an Austrian forest soil archive were measured in the vis–NIR and MIR regions, and regressions were calculated. Fivefold calibration‐validation approaches were carried out with a region‐related split of spectra to implement independent validations with n ranging from 47 to 99 soils in different folds. MIR predictions were generally superior over vis–NIR predictions. For all properties, optimal predictions were obtained with data fusion, with OPA and spectra concatenation outperforming model averaging. The greatest robustness of performance was found for OPA and MBL with spiking with 〈italic toggle="no"〉R〈/italic〉〈sup〉2〈/sup〉 ≥ 0.77 (N), 0.85 (SOC), 0.86 (pH) and 0.88 (C〈sub〉t〈/sub〉) in the validations of all folds. Overall, the results indicate that the combination of OPA for vis–NIR and MIR spectra with MBL and spiking has a high potential to accurately estimate properties when using large‐scale soil spectral libraries as reference data. However, the reduction of cost‐effectiveness using two spectrometers needs to be weighed against the potential increase in accuracy compared to a single MIR spectroscopy approach.〈/p〉
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): ddc:631.4 ; data fusion ; independent validation ; infrared spectroscopy ; MBL ; nitrogen ; outer product analysis ; pH ; soil organic carbon ; spiking ; total carbon
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(21), ISSN: 0094-8276
    Publikationsdatum: 2023-11-01
    Beschreibung: Molybdenum (Mo) is a trace element sensitive to oceanic redox conditions. The fidelity of sedimentary Mo as a paleoredox proxy of coeval seawater depends on the extent of Mo remobilization during postdepositional processes. Here we present the Mo content and isotope profiles for deep sediments from the Nankai Trough, Japan. The Mo signature suggests that these sediments have experienced extensive early diagenesis and hydrothermal alteration at depth. Iron (Fe)‐manganese (Mn) (oxyhydr)oxide alteration combined with Mo thiolation leads to a more than twenty‐fold enrichment of Mo within the sulfate reduction zone. Hydrothermal fluids and Mo adsorption onto Fe‐Mn (oxyhydr)oxides cause extremely negative Mo‐isotope values at the underthrust zone. These postdepositional Mo signals might be misinterpreted as expanded anoxia in the water column. Our findings highlight the importance of constraining postdepositional effects on Mo‐based proxies during paleoredox reconstruction.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Global Biogeochemical Cycles, American Geophysical Union (AGU), 37(11), ISSN: 0886-6236
    Publikationsdatum: 2023-12-19
    Beschreibung: As a contribution to the Regional Carbon Cycle Assessment and Processes phase 2 (RECCAP2) project, we present synthesized estimates of Arctic Ocean sea-air CO2 fluxes and their uncertainties from surface ocean pCO2-observation products, ocean biogeochemical hindcast and data assimilation models, and atmospheric inversions. For the period of 1985–2018, the Arctic Ocean was a net sink of CO2 of 116 ± 4 TgC yr−1 in the pCO2 products, 92 ± 30 TgC yr−1 in the models, and 91 ± 21 TgC yr−1 in the atmospheric inversions. The CO2 uptake peaks in late summer and early autumn, and is low in winter when sea ice inhibits sea-air fluxes. The long-term mean CO2 uptake in the Arctic Ocean is primarily caused by steady-state fluxes of natural carbon (70% ± 15%), and enhanced by the atmospheric CO2 increase (19% ± 5%) and climate change (11% ± 18%). The annual mean CO2 uptake increased from 1985 to 2018 at a rate of 31 ± 13 TgC yr−1 dec−1 in the pCO2 products, 10 ± 4 TgC yr−1 dec−1 in the models, and 32 ± 16 TgC yr−1 dec−1 in the atmospheric inversions. Moreover, 77% ± 38% of the trend in the net CO2 uptake over time is caused by climate change, primarily due to rapid sea ice loss in recent years. Furthermore, true uncertainties may be larger than the given ensemble standard deviations due to common structural biases across all individual estimates.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2023-12-20
    Beschreibung: We assess the Southern Ocean CO2 uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2 with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) and pCO2-observation-based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present-day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2024-01-06
    Beschreibung: The seasonal cycle is the dominant mode of variability in the air-sea CO2 flux in most regions of the global ocean, yet discrepancies between different seasonality estimates are rather large. As part of the Regional Carbon Cycle Assessment and Processes Phase 2 project (RECCAP2), we synthesize surface ocean pCO2 and air-sea CO2 flux seasonality from models and observation-based estimates, focusing on both a present-day climatology and decadal changes between the 1980s and 2010s. Four main findings emerge: First, global ocean biogeochemistry models (GOBMs) and observation-based estimates (pCO2 products) of surface pCO2 seasonality disagree in amplitude and phase, primarily due to discrepancies in the seasonal variability in surface DIC. Second, the seasonal cycle in pCO2 has increased in amplitude over the last three decades in both pCO2 products and GOBMs. Third, decadal increases in pCO2 seasonal cycle amplitudes in subtropical biomes for both pCO2 products and GOBMs are driven by increasing DIC concentrations stemming from the uptake of anthropogenic CO2 (Cant). In subpolar and Southern Ocean biomes, however, the seasonality change for GOBMs is dominated by Cant invasion, whereas for pCO2 products an indeterminate combination of Cant invasion and climate change modulates the changes. Fourth, biome-aggregated decadal changes in the amplitude of pCO2 seasonal variability are largely detectable against both mapping uncertainty (reducible) and natural variability uncertainty (irreducible), but not at the gridpoint scale over much of the northern subpolar oceans and over the Southern Ocean, underscoring the importance of sustained high-quality seasonally resolved measurements over these regions.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2024-01-06
    Beschreibung: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2024-01-12
    Beschreibung: Mantle-derived noble gases in volcanic gases are powerful tracers of terrestrial volatile evolution, as they contain mixtures of both primordial (from Earth's accretion) and secondary (e.g., radiogenic) isotope signals that characterize the composition of deep Earth. However, volcanic gases emitted through subaerial hydrothermal systems also contain contributions from shallow reservoirs (groundwater, crust, atmosphere). Deconvolving deep and shallow source signals is critical for robust interpretations of mantle-derived signals. Here, we use a novel dynamic mass spectrometry technique to measure argon, krypton, and xenon isotopes in volcanic gas with ultrahigh precision. Data from Iceland, Germany, United States (Yellowstone, Salton Sea), Costa Rica, and Chile show that subsurface isotope fractionation within hydrothermal systems is a globally pervasive and previously unrecognized process causing substantial nonradiogenic Ar-Kr-Xe isotope variations. Quantitatively accounting for this process is vital for accurately interpreting mantle-derived volatile (e.g., noble gas and nitrogen) signals, with profound implications for our understanding of terrestrial volatile evolution.
    Beschreibung: Published
    Beschreibung: eadg2566
    Beschreibung: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Beschreibung: JCR Journal
    Schlagwort(e): noble gases ; earth degassing
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publikationsdatum: 2023-02-23
    Beschreibung: Comparing helicopter-borne surface temperature maps in winter and optical orthomosaics in summer from the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3–2.5 K warmer on sea ice that later formed melt ponds. A one-dimensional steady-state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold-based classification achieves a correct classification for 41% of the melt ponds.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    facet.materialart.
    Unbekannt
    Annual Reviews
    Publikationsdatum: 2023-02-28
    Beschreibung: © The Author(s), 2023. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Timmermans, M.-L., & Toole, J. The Arctic Ocean’s Beaufort Gyre. Annual Review of Marine Science, 15(1), (2023): 223-248, https://doi.org/10.1146/annurev-marine-032122-012034.
    Beschreibung: The Arctic Ocean's Beaufort Gyre is a dominant feature of the Arctic system, a prominent indicator of climate change, and possibly a control factor for high-latitude climate. The state of knowledge of the wind-driven Beaufort Gyre is reviewed here, including its forcing, relationship to sea-ice cover, source waters, circulation, and energetics. Recent decades have seen pronounced change in all elements of the Beaufort Gyre system. Sea-ice losses have accompanied an intensification of the gyre circulation and increasing heat and freshwater content. Present understanding of these changes is evaluated, and time series of heat and freshwater content are updated to include the most recent observations.
    Beschreibung: Support was provided by the National Science Foundation Office of Polar Programs and the Office of Naval Research.
    Schlagwort(e): Arctic Ocean ; Beaufort Gyre ; Circulation ; Sea ice ; Freshwater ; Ocean heat content
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry, Geophysics, Geosystems, American Geophysical Union (AGU), 24(6), ISSN: 1525-2027
    Publikationsdatum: 2023-06-01
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2023-01-21
    Beschreibung: Charcoal‐rich Technosols on century‐old relict charcoal hearths (RCHs) are the subject of ongoing research regarding potential legacy effects that result from historic charcoal production and subsequent charcoal amendments on forest soil properties and forest ecosystems today. RCHs consist mostly of Auh horizons that are substantially enriched in soil organic carbon (SOC), of which the largest part seems to be of pyrogenic origin (PyC). However, the reported range of SOC and PyC contents in RCH soil also suggests that they are enriched in nonpyrogenic SOC. RCH soils are discussed as potential benchmarks for the long‐term influence of biochar amendment and the post‐wildfire influences on soil properties. In this study, we utilised a large soil sample dataset (n = 1245) from 52 RCH sites in north‐western Connecticut, USA, to quantify SOC contents by total element analysis. The contents of condensed highly aromatic carbon as a proxy for black carbon (BC) were predicted by using a modified benzene polycarboxylated acid (BPCA) marker method in combination with diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy‐based partial least square regression (r2 = 0.89). A high vertical spatial sampling resolution allowed the identification of soil organic matter (SOM) enrichment and translocation processes. The results show an average 75% and 1862% increase in TOC and BPCA‐derived carbon, respectively, for technogenic Auh horizons compared to reference soils. In addition to an increase in aromatic properties, increased carboxylic properties of the RCH SOC suggest self‐humification effects of degrading charcoal and thereby the continuing formation of leachable aromatic carbon compounds, which could have effects on pedogenic processes in buried soils. Indeed, we show BPCA‐derived carbon concentrations in intermediate technogenic Cu horizons and buried top/subsoils that suggest vertical translocation of highly aromatic carbon originating in RCH Auh horizons. Topmost Auh horizons showed a gradual decrease in total organic carbon (TOC) contents with increasing depth, suggesting accumulation of recent, non‐pyrogenic SOM. Lower aliphatic absorptions in RCH soil spectra suggest different SOM turnover dynamics compared to reference soils. Furthermore, studied RCH soils featured additional TOC enrichment, which cannot be fully explained now. Highlights BC to TOC ratio and high resolution vertical SOC distribution in 52 RCH sites were studied. RCH soils non‐BC pool was potentially different to reference soils. RCH soils feature TOC accumulation in the topmost horizon. There is BC translocation into buried soils on RCH sites.
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): ddc:631.4 ; benzene polycarboxylated acid marker (BPCA) ; black carbon ; charcoal degradation ; charcoal kiln ; pyrogenic carbon ; relict charcoal hearth ; biochar
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), ISSN: 2572-4517
    Publikationsdatum: 2023-02-03
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), 38, 22 p., pp. e2022PA004439-e2022PA004439, ISSN: 2572-4517
    Publikationsdatum: 2023-08-30
    Beschreibung: Atmospheric carbon dioxide concentrations (pCO2) beyond ice core records have been reconstructed from δ11B derived from planktic foraminifera found in equatorial sediment cores. Here, I applied a carbon cycle model over the Plio-Pleistocene to evaluate the assumptions leading to these numbers. During glacials times, simulated atmospheric pCO2 was unequilibrated with pCO2 in the equatorial surface ocean by up to 35 ppm while the δ11B-based approaches assume unchanged (quasi)equilibrium between both. In the Pliocene, δ11B-based estimates of surface ocean pH are lower in the Pacific than in the Atlantic resulting in higher calculated pCO2. This offset in pH between ocean basins is not supported by models. To calculate pCO2 in surface waters out of the δ11B-based pH some assumptions on either total alkalinity or dissolved inorganic carbon are necessary. However, the assumed values of these under-constrained variables were according to my results partly inconsistent with chemically possible combinations within the marine carbonate system. The model results show glacial/interglacial variability in total alkalinity of the order of 100 μmol/kg, which is rarely applied to proxy reconstructions. Simulated atmospheric pCO2 is tightly (r2 〉 0.9) related to equatorial surface-ocean pH, which can be used for consistency checks. Long-term trends in volcanic CO2 outgassing and the strength of the continental weathering fluxes are still unconstrained, allowing for a wide range of possible atmospheric pCO2 across the Plio-Pleistocene. Nevertheless, this carbon cycle analysis suggests that reported atmospheric pCO2 above 500 ppm in the Pliocene might, for various reasons, need to be revised to smaller numbers.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(12), ISSN: 0094-8276
    Publikationsdatum: 2023-09-01
    Beschreibung: Aquatic ecosystems play an important role in global methane cycling and many field studies have reported methane supersaturation in the oxic surface mixed layer (SML) of the ocean and in the epilimnion of lakes. The origin of methane formed under oxic condition is hotly debated and several pathways have recently been offered to explain the “methane paradox.” In this context, stable isotope measurements have been applied to constrain methane sources in supersaturated oxygenated waters. Here we present stable carbon isotope signatures for six widespread marine phytoplankton species, three haptophyte algae and three cyanobacteria, incubated under laboratory conditions. The observed isotopic patterns implicate that methane formed by phytoplankton might be clearly distinguished from methane produced by methanogenic archaea. Comparing results from phytoplankton experiments with isotopic data from field measurements, suggests that algal and cyanobacterial populations may contribute substantially to methane formation observed in the SML of oceans and lakes.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 15(9), ISSN: 1942-2466
    Publikationsdatum: 2023-09-04
    Beschreibung: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Most viscous‐plastic sea ice models use the elliptical yield curve. This yield curve has a fundamental flaw: it excludes acute angles between deformation features at high resolution. Conceptually, the teardrop (TD) and parabolic lens (PL) yield curves offer an attractive alternative. These yield curves feature a non‐symmetrical shape, a Coulombic behavior for the low‐medium compressive stress, and a continuous transition to the ridging‐dominant mode, but their published formulation leads to negative or zero bulk and shear viscosities and, consequently, poor numerical convergence with stress states at times outside the yield curve. These issues are a consequence of the original assumption that the constitutive equations of the commonly used elliptical yield curve are also applicable to non‐symmetrical yield curves and yield curves with tensile strength. We derive a corrected formulation for the constitutive relations of the TD and PL yield curves. Results from simple uni‐axial loading experiments show that with the new formulation the numerical convergence of the solver improves and much smaller nonlinear residuals after a smaller number of total solver iterations can be reached, resulting in significant improvements in numerical efficiency and representation of the stress and deformation fields. The TD and PL yield curves lead to smaller angles of failure that better agree with observations. They are promising candidates to replace the elliptical yield curve in high‐resolution pan‐Arctic sea ice simulations.〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publikationsdatum: 2023-06-23
    Beschreibung: Climate change in the Arctic has substantial impacts on human life and ecosystems both within and beyond the Arctic. Our analysis of CMIP6 simulations shows that some climate models project much larger Arctic climate change than other models, including changes in sea ice, ocean mixed layer, air-sea heat flux, and surface air temperature in wintertime. In particular, dramatic enhancement of Arctic Ocean convection down to a few hundred meters is projected in these models but not in others. Interestingly, these models employ the same ocean model family (NEMO) while the choice of models for the atmosphere and sea ice varies. The magnitude of Arctic climate change is proportional to the strength of the increase in poleward ocean heat transport, which is considerably higher in this group of models. Establishing the plausibility of this group of models with high Arctic climate sensitivity to anthropogenic forcing is imperative given the implied ramifications.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 14(12), ISSN: 1942-2466
    Publikationsdatum: 2023-06-23
    Beschreibung: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea-surface salinity and sea-level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea-ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere-ocean-ice interaction occurs. One-year-long sea-ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea-ice concentration from 2011 to 2019 is calibrated by trend-adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea-ice edge raw forecast skill is within the range of operational global subseasonal-to-seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea-ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publikationsdatum: 2023-06-23
    Beschreibung: Sea ice leads play an important role in energy exchange between the ocean and atmosphere in polar regions, and therefore must be considered in weather and climate models. As sea ice leads are not explicitly resolved in such models, lead-averaged surface heat flux is of considerable interest for the parameterization of energy exchange. Measurements and numerical studies have established that the lead-averaged surface heat flux depends not only on meteorological parameters, but also on lead width. Nonetheless, few studies to date have investigated the dependency of surface heat flux on lead width. Most findings on that dependency are based on observations with lead widths smaller than a few hundred meters, but leads can have widths from a few meters to several kilometers. In this parameter study, we present the results of three series of large-eddy simulations of turbulent exchange processes above leads. We varied the lead width and air temperature, as well as the roughness length. As this study focused on conditions without background wind, ice-breeze circulation occurred, and was the main driver of the adjustment of surface heat flux. A previous large-eddy simulation study with uncommonly large roughness length found that lead-averaged surface heat flux exhibited a distinct maximum at lead widths of about 3 km, while our results show the largest heat fluxes for the smallest leads simulated (lead width of 50 m). At more realistic roughness lengths, we observed monotonously increasing heat fluxes with increasing lead width. Further, new scaling laws for the ice-breeze circulation are proposed.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(3), ISSN: 2169-9275
    Publikationsdatum: 2023-06-23
    Beschreibung: The Arctic is warming much faster than the global average. This is known as Arctic Amplification and is caused by feedbacks in the local climate system. In this study, we explore a previously proposed hypothesis that an associated wind feedback in the Barents Sea could play an important role by increasing the warm water inflow into the Barents Sea. We find that the strong recent decrease in Barents Sea winter sea ice cover causes enhanced ocean-atmosphere heat flux and a local air temperature increase, thus a reduction in sea level pressure and a local cyclonic wind anomaly with eastward winds in the Barents Sea Opening. By investigating various reanalysis products and performing high-resolution perturbation experiments with the ocean and sea ice model FESOM2.1, we studied the impact of cyclonic atmospheric circulation changes on the warm Atlantic Water import into the Arctic via the Barents Sea and Fram Strait. We found that the observed wind changes do not significantly affect the warm water transport into the Barents Sea, which rejects the wind-feedback hypothesis. At the same time, the cyclonic wind anomalies in the Barents Sea increase the amount of Atlantic Water recirculating westwards in Fram Strait by a downslope shift of the West Spitsbergen Current, and thus reduce Atlantic Water reaching the Arctic basin via Fram Strait. The resulting warm-water anomaly in the Greenland Sea Gyre drives a local anticyclonic circulation anomaly.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2022-09-13
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, C.-Z., Dick, H. J. B., Mitchell, R. N., Wei, W., Zhang, Z.-Y., Hofmann, A. W., Yang, J.-F., & Li, Y. Archean cratonic mantle recycled at a mid-ocean ridge. Science Advances, 8(22), (2022): eabn6749, https://doi.org/10.1126/sciadv.abn6749.
    Beschreibung: Basalts and mantle peridotites of mid-ocean ridges are thought to sample Earth’s upper mantle. Osmium isotopes of abyssal peridotites uniquely preserve melt extraction events throughout Earth history, but existing records only indicate ages up to ~2 billion years (Ga) ago. Thus, the memory of the suspected large volumes of mantle lithosphere that existed in Archean time (〉2.5 Ga) has apparently been lost somehow. We report abyssal peridotites with melt-depletion ages up to 2.8 Ga, documented by extremely unradiogenic 187Os/188Os ratios (to as low as 0.1095) and refractory major elements that compositionally resemble the deep keels of Archean cratons. These oceanic rocks were thus derived from the once-extensive Archean continental keels that have been dislodged and recycled back into the mantle, the feasibility of which we confirm with numerical modeling. This unexpected connection between young oceanic and ancient continental lithosphere indicates an underappreciated degree of compositional recycling over time.
    Beschreibung: This study was financially supported by the National Science Fund for Distinguished Young Scholars 42025201 (to C.-Z.L.), the National Key Research and Development Project of China 2020YFA0714801 (to C.-Z.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010106 (to C.-Z.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDB42020301 (to C.-Z.L.), and NSF grants 2114652 and 1657983 (to H.J.B.D.).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2022-10-27
    Beschreibung: This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.
    Beschreibung: This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.
    Beschreibung: All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892.
    Schlagwort(e): Coastal morphodynamics ; Extreme storms ; Coastal modeling ; Sandy coasts ; Waves ; Sediment transport
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gomaa, F., Utter, D. R., Powers, C., Beaudoin, D. J., Edgcomb, V. P., Filipsson, H. L., Hansel, C. M., Wankel, S. D., Zhang, Y., & Bernhard, J. M. Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments. Science Advances, 7(22), (2021): eabf1586, https://doi.org/10.1126/sciadv.abf1586.
    Beschreibung: Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.
    Beschreibung: his project was funded by the U.S. NSF IOS 1557430 and 1557566. H.L.F. acknowledges support from the Swedish Research Council VR (grant number 2017-04190).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Le Roux, V., Urann, B. M., Brunelli, D., Bonatti, E., Cipriani, A., Demouchy, S., & Monteleone, B. D. Postmelting hydrogen enrichment in the oceanic lithosphere. Science Advances, 7(24), (2021): eabf6071, https://doi.org/10.1126/sciadv.abf6071.
    Beschreibung: The large range of H2O contents recorded in minerals from exhumed mantle rocks has been challenging to interpret, as it often records a combination of melting, metasomatism, and diffusional processes in spatially isolated samples. Here, we determine the temporal variations of H2O contents in pyroxenes from a 24-Ma time series of abyssal peridotites exposed along the Vema fracture zone (Atlantic Ocean). The H2O contents of pyroxenes correlate with both crustal ages and pyroxene chemistry and increase toward younger and more refractory peridotites. These variations are inconsistent with residual values after melting and opposite to trends often observed in mantle xenoliths. Postmelting hydrogen enrichment occurred by ionic diffusion during cryptic metasomatism of peridotite residues by low-degree, volatile-rich melts and was particularly effective in the most depleted peridotites. The presence of hydrous melts under ridges leads to widespread hydrogen incorporation in the oceanic lithosphere, likely lowering mantle viscosity compared to dry models.
    Beschreibung: Funding for this study was supported by NSF EAR-P&G 1524311 and 1839128 to V.L.R. and the Andrew W. Mellon Foundation Award for Innovative Research to V.L.R. A.C. and D.B. were funded by the Italian Programma di Rilevante Interesse Nazionale PRIN 20178LPCPW and PRIN2017KY5ZX8, respectively. Revisions were performed within the duration of a “Visiting Scholar at SCIENCE 2020” award to V.L.R. (University of Copenhagen, Denmark), with support from the Department of Geosciences and Natural Resource Management, Section for Geology.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N., Nilsson-Kerr, K., Rosenthal, Y., Anand, P., & McGrath, S. M. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions. Science Advances, 7(23), (2021): eabg3848, https://doi.org/10.1126/sciadv.abg3848.
    Beschreibung: South Asian precipitation amount and extreme variability are predicted to increase due to thermodynamic effects of increased 21st-century greenhouse gases, accompanied by an increased supply of moisture from the southern hemisphere Indian Ocean. We reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume. South Asian precipitation and runoff are strongly coherent with, and lag, atmospheric carbon dioxide changes at Earth’s orbital eccentricity, obliquity, and precession bands and are closely tied to cross-equatorial wind strength at the precession band. We find that the projected monsoon response to ongoing, rapid high-latitude ice melt and rising carbon dioxide levels is fully consistent with dynamics of the past 0.9 million years.
    Beschreibung: S.C.C. and S.M.M. were supported by U.S. NSF OCE1634774. M.Y. was funded by JSPS grants JPMXS05R2900001 and 19H05595 and JAMSTEC Exp. 353 postcruise study. K.N.-K. and P.A. were supported by UK-IODP, Open University, and NERC (NE/L002493/1), K.T. was supported by the Technology and Research Initiative Fund, Arizona Board of Regents.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seltzer, A. M., Bekaert, D. V., Barry, P. H., Durkin, K. E., Mace, E. K., Aalseth, C. E., Zappala, J. C., Mueller, P., Jurgens, B., & Kulongoski, J. T. Groundwater residence time estimates obscured by anthropogenic carbonate. Science Advances, 7(17), (2021): eabf3503, https://doi.org/10.1126/sciadv.abf3503.
    Beschreibung: Groundwater is an important source of drinking and irrigation water. Dating groundwater informs its vulnerability to contamination and aids in calibrating flow models. Here, we report measurements of multiple age tracers (14C, 3H, 39Ar, and 85Kr) and parameters relevant to dissolved inorganic carbon (DIC) from 17 wells in California’s San Joaquin Valley (SJV), an agricultural region that is heavily reliant on groundwater. We find evidence for a major mid-20th century shift in groundwater DIC input from mostly closed- to mostly open-system carbonate dissolution, which we suggest is driven by input of anthropogenic carbonate soil amendments. Crucially, enhanced open-system dissolution, in which DIC equilibrates with soil CO2, fundamentally affects the initial 14C activity of recently recharged groundwater. Conventional 14C dating of deeper SJV groundwater, assuming an open system, substantially overestimates residence time and thereby underestimates susceptibility to modern contamination. Because carbonate soil amendments are ubiquitous, other groundwater-reliant agricultural regions may be similarly affected.
    Beschreibung: his work was conducted as a part of the USGS National Water Quality Assessment Program (NAWQA) Enhanced Trends Project (https://water.usgs.gov/nawqa/studies/gwtrends/). Measurements at Argonne National Laboratory were supported by Department of Energy, Office of Science under contract DE-AC02-06CH11357. Measurements at Pacific Northwest National Laboratory were part of the Ultra-Sensitive Nuclear Measurements Initiative conducted under the Laboratory Directed Research and Development Program. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. This work was also partially supported by NSF award OCE-1923915 (to A.M.S. and P.H.B. at WHOI).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48), (2021): eabj2515, https://doi.org/10.1126/sciadv.abj2515.
    Beschreibung: Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.
    Beschreibung: Y.Z. acknowledges funding from the National Science Foundation of China (91958213), the Chinese Academy of Sciences (XDB42020402), and the Shandong Provincial Natural Science Foundation, China (ZR2020QD068). This study was supported in part by the U.S. National Science Foundation NSF EAR 1826673 to E.G. and G.A.G. and OCE 1756349 to E.G.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trembath-Reichert, E., Shah Walter, S. R., Ortiz, M. A. F., Carter, P. D., Girguis, P. R., & Huber, J. A. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Science Advances, 7(18), (2021): eabg0153, https://doi.org/10.1126/sciadv.abg0153.
    Beschreibung: Biogeochemical processes occurring in fluids that permeate oceanic crust make measurable contributions to the marine carbon cycle, but quantitative assessments of microbial impacts on this vast, subsurface carbon pool are lacking. We provide bulk and single-cell estimates of microbial biomass production from carbon and nitrogen substrates in cool, oxic basement fluids from the western flank of the Mid-Atlantic Ridge. The wide range in carbon and nitrogen incorporation rates indicates a microbial community well poised for dynamic conditions, potentially anabolizing carbon and nitrogen at rates ranging from those observed in subsurface sediments to those found in on-axis hydrothermal vent environments. Bicarbonate incorporation rates were highest where fluids are most isolated from recharging bottom seawater, suggesting that anabolism of inorganic carbon may be a potential strategy for supplementing the ancient and recalcitrant dissolved organic carbon that is prevalent in the globally distributed subseafloor crustal environment.
    Beschreibung: The Gordon and Betty Moore Foundation sponsored most of the observatory components at North Pond through grant GBMF1609. This work was supported by the National Science Foundation through grants NSF OCE-1745589, OCE-1635208, and OCE-1062006 to J.A.H. and NSF OCE-1635365 to P.R.G. and S.R.S.W.; NASA Postdoctoral Fellowship with the NASA Astrobiology Institute to E.T.-R.; L’Oréal USA For Women in Science Fellowship to E.T.-R.; and Woods Hole Partnership Education Program, sponsored by the Woods Hole Diversity Initiative to M.A.F.O. The Center for Dark Energy Biosphere Investigations (C-DEBI OCE-0939564) also supported the participation of J.A.H. and P.D.C. This is C-DEBI contribution number 564.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, A. C., Ostrander, C. M., Romaniello, S. J., Reinhard, C. T., Greaney, A. T., Lyons, T. W., & Anbar, A. D. Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth. Science Advances, 7(40), (2021): eabj0108, https://doi.org/10.1126/sciadv.abj0108.
    Beschreibung: Evidence continues to emerge for the production and low-level accumulation of molecular oxygen (O2) at Earth’s surface before the Great Oxidation Event. Quantifying this early O2 has proven difficult. Here, we use the distribution and isotopic composition of molybdenum in the ancient sedimentary record to quantify Archean Mo cycling, which allows us to calculate lower limits for atmospheric O2 partial pressures (PO2) and O2 production fluxes during the Archean. We consider two end-member scenarios. First, if O2 was evenly distributed throughout the atmosphere, then PO2 〉 10–6.9 present atmospheric level was required for large periods of time during the Archean eon. Alternatively, if O2 accumulation was instead spatially restricted (e.g., occurring only near the sites of O2 production), then O2 production fluxes 〉0.01 Tmol O2/year were required. Archean O2 levels were vanishingly low according to our calculations but substantially above those predicted for an abiotic Earth system.
    Beschreibung: We would like to thank our funding sources, including FESD “Dynamics of Earth System Oxygenation” (NSF EAR 1338810 to A.D.A.), NASA Earth and Space Science Fellowship awarded to A.C.J. (80NSSC17K0498), NSF EAR PF to A.C.J. (1952809), and WHOI Postdoctoral Fellowship to C.M.O. C.T.R. acknowledges support from the NASA Astrobiology Institute. We also acknowledge support from the Metal Utilization and Selection across Eons (MUSE) Interdisciplinary Consortium for Astrobiology Research, sponsored by the National Aeronautics and Space Administration Science Mission Directorate (19-ICAR19_2-0007).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bekaert, D. V., Auro, M., Shollenberger, Q. R., Liu, M.-C., Marschall, H., Burton, K. W., Jacobsen, B., Brennecka, G. A., McPherson, G. J., von Mutius, R., Sarafian, A., & Nielsen, S. G. Fossil records of early solar irradiation and cosmolocation of the CAI factory: a reappraisal. Science Advances, 7(40), (2021): eabg8329, https://doi.org/10.1126/sciadv.abg8329.
    Beschreibung: Calcium-aluminum–rich inclusions (CAIs) in meteorites carry crucial information about the environmental conditions of the nascent Solar System prior to planet formation. Based on models of 50V–10Be co-production by in-situ irradiation, CAIs are considered to have formed within ~0.1 AU from the proto-Sun. Here, we present vanadium (V) and strontium (Sr) isotopic co-variations in fine- and coarse-grained CAIs and demonstrate that kinetic isotope effects during partial condensation and evaporation best explain V isotope anomalies previously attributed to solar particle irradiation. We also report initial excesses of 10Be and argue that CV CAIs possess essentially a homogeneous level of 10Be, inherited during their formation. Based on numerical modeling of 50V–10Be co-production by irradiation, we show that CAI formation during protoplanetary disk build-up likely occurred at greater heliocentric distances than previously considered, up to planet-forming regions (~1AU), where solar particle fluxes were sufficiently low to avoid substantial in-situ irradiation of CAIs.
    Beschreibung: This study was funded by NASA Emerging Worlds grant NNX16AD36G to S.G.N. and prepared by LLNL under contract DE-AC52-07NA27344 with release number LLNL-JRNL-819045. M.C.L acknowledges the support by the NASA grant 80NSSC20K0759. The UCLA ion microprobe facility is partially supported by a grant from the NSF Instrumentation and Facilities program.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2022-09-27
    Beschreibung: Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake‐groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike‐and‐Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from 〈0.2 to 〉0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.
    Beschreibung: Article impact statement: The probability of cluster membership quantified using an algorithm should be validated against another probabilistic‐based classifier.
    Beschreibung: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Schlagwort(e): ddc:551.9 ; ddc:551.49
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2022-10-01
    Beschreibung: Copper (Cu) is an essential element for plants and microorganisms and at larger concentrations a toxic pollutant. A number of factors controlling Cu dynamics have been reported, but information on quantitative relationships is scarce. We aimed to (i) quantitatively describe and predict soil Cu concentrations (CuAR) in aqua regia considering site‐specific effects and effects of pH, soil organic carbon (SOC) and cation exchange capacity (CEC), and (ii) study the suitability of mixed‐effects modelling and rule‐based models for the analysis of long‐term soil monitoring data. Thirteen uncontaminated long‐term monitoring soil profiles in southern Germany were analysed. Since there was no measurable trend of increasing CuAR concentrations with time in the respective depth ranges of the sites, data from different sampling dates were combined and horizon‐specific regression analyses including model simplifications were carried out for 10 horizons. Fixed‐ and mixed‐effects models with the site as a random effect were useful for the different horizons and significant contributions (either of main effects or interactions) of SOC, CEC and pH were present for 9, 8 and 7 horizons, respectively. Horizon‐specific rule‐based cubist models described the CuAR data similarly well. Validations of cubist models and mixed‐effects models for the CuAR concentrations in A horizons were successful for the given population after random splitting into calibration and validation samples, but not after independent validations with random splitting according to sites. Overall, site, CEC, SOC and pH provide important information for a description of CuAR concentrations using the different regression approaches. Highlights: Information on quantitative relationships for factors controlling Cu dynamics is scarce. Site, CEC, SOC and pH provide important information for a description of Cu concentrations. Validations of cubist models and mixed‐effects models for A horizons were successful for a closed population of sites.
    Beschreibung: Bavarian State Ministry of the Environment and Consumer Protection http://dx.doi.org/10.13039/501100010219
    Beschreibung: Ministry of Agriculture and Environment Mecklenburg‐Western Pomerania
    Schlagwort(e): ddc:631.4
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science
    In:  EPIC3Science, American Association for the Advancement of Science, 371(6531), pp. 811-818
    Publikationsdatum: 2022-10-01
    Beschreibung: Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion 41 to 42 thousand years ago (ka). We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2022-09-30
    Beschreibung: In recent years, German cities were heavily impacted by pluvial flooding and related damage is projected to increase due to climate change and urbanisation. It is important to ask how to improve urban pluvial flood risk management. To understand the current state of property level adaptation, a survey was conducted in four municipalities that had recently been impacted by pluvial flooding. A hybrid framework based on the Protection Motivation Theory (PMT) and the Protection Action Decision Model (PADM) was used to investigate drivers of adaptive behaviour through both descriptive and regression analyses. Descriptive statistics revealed that participants tended to instal more low‐ and medium‐cost measures than high‐cost measures. Regression analyses showed that coping appraisal increased protection motivation, but that the adaptive behaviour also depends on framing factors, particularly homeownership. We further found that, while threat appraisal solely affects protection motivation and responsibility appraisal affects solely maladaptive thinking, coping appraisal affects both. Our results indicate that PMT is a solid starting point to study adaptive behaviours in the context of pluvial flooding, but we need to go beyond that by, for instance, considering factors of the PADM, such as responsibility, ownership, or respondent age, to fully understand this complex decision‐making process.
    Beschreibung: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Schlagwort(e): ddc:551.489 ; ddc:363.34
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2022-10-04
    Beschreibung: Soil aeration is a critical factor for oxygen‐limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X‐ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): ddc:631.4
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science
    Publikationsdatum: 2022-06-09
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Freeman, D. H., & Ward, C. P. Sunlight-driven dissolution is a major fate of oil at sea. Science Advances, 8(7), (2022): eabl7605, https://doi.org/10.1126/sciadv.abl7605.
    Beschreibung: Oxygenation reactions initiated by sunlight can transform insoluble components of crude oil at sea into water-soluble products, a process called photo-dissolution. First reported a half century ago, photo-dissolution has never been included in spill models because key parameters required for rate modeling were unknown, including the wavelength and photon dose dependence. Here, we experimentally quantified photo-dissolution as a function of wavelength and photon dose, making possible a sensitivity analysis of environmental variables in hypothetical spill scenarios and a mass balance assessment for the 2010 Deepwater Horizon (DwH) spill. The sensitivity analysis revealed that rates were most sensitive to oil slick thickness, season/latitude, and wavelength and less sensitive to photon dose. We estimate that 3 to 17% (best estimate 8%) of DwH surface oil was subject to photo-dissolution, comparable in magnitude to other widely recognized fate processes. Our findings invite a critical reevaluation of surface oil budgets for both DwH and future spills at sea.
    Beschreibung: This work was supported by the Fisheries and Oceans Canada Multi-Partner Research Initiative award to C.P.W. (project #1.06), the NSF Graduate Research Fellowship awarded to D.H.F. (award #174530), and NSF-OCE grant #1841092 to C.P.W.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2022-07-25
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peng, Q., Xie, S.-P., Wang, D., Huang, R. X., Chen, G., Shu, Y., Shi, J.-R., & Liu, W. Surface warming-induced global acceleration of upper ocean currents. Science Advances, 8(16), (2022): eabj8394, https://doi.org/10.1126/sciadv.abj8394.
    Beschreibung: How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.
    Beschreibung: Q.P. is supported by the National Natural Science Foundation of China (42005035), the Science and Technology Planning Project of Guangzhou (202102020935), and the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ2102). D.W. is supported by the National Natural Science Foundation of China (92158204), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311020004). S.-P.X. is supported by the National Science Foundation (AGS-1934392). Y.S. is supported by the National Key Research and Development Program of China (2016YFC1401702). G.C. is supported by National Natural Science Foundation of China (41822602). The numerical simulation is supported by the High-Performance Computing Division and HPC managers of W. Zhou and D. Sui in the South China Sea Institute of Oceanology.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2022-07-26
    Beschreibung: Application of farmyard manure (FYM) is common practice to improve physical and chemical properties of arable soil and crop yields. However, studies on effects of FYM application mainly focussed on topsoils, whereas subsoils have rarely been addressed so far. We, therefore, investigated the effects of 36‐year FYM application with different rates of annual organic carbon (OC) addition (0, 469, 938 and 1875 g C m−2 a−1) on OC contents of a Chernozem in 0–30 cm (topsoil) and 35–45 cm (subsoil) depth. We also investigated its effects on soil structure and hydraulic properties in subsoil. X‐ray computed tomography was used to analyse the response of the subsoil macropore system (≥19 μm) and the distribution of particulate organic matter (POM) to different FYM applications, which were related to contents in total OC (TOC) and water‐extractable OC (WEOC). We show that FYM‐C application of 469 g C m−2 a−1 caused increases in TOC and WEOC contents only in the topsoil, whereas rates of ≥938 g C m−2 a−1 were necessary for TOC enrichment also in the subsoil. At this depth, the subdivision of TOC into different OC sources shows that most of the increase was due to fresh POM, likely by the stimulation of root growth and bioturbation. The increase in subsoil TOC went along with increases in macroporosity and macropore connectivity. We neither observed increases in plant‐available water capacity nor in unsaturated hydraulic conductivity. In conclusion, only very high application of FYM over long periods can increase OC content of subsoil at our study site, but this increase is largely based on fresh, easily degradable POM and likely accompanied by high C losses when considering the discrepancy between OC addition rate by FYM and TOC response in soil. Highlights A new image processing procedure to distinguish fresh and decomposed POM. The increase of subsoil C stock based to a large extend on fresh, labile POM. Potential of arable subsoils for long‐term C storage by large FYM application rates is limited. The increase in TOC has no effect on hydraulic properties of the subsoil.
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): ddc:631.4
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DiBenedetto, M., Qin, Z., & Suckale, J. Crystal aggregates record the pre-eruptive flow field in the volcanic conduit at Kilauea, Hawaii. Science Advances, 6(49), (2020): eabd4850, doi:10.1126/sciadv.abd4850.
    Beschreibung: Developing reliable, quantitative conduit models that capture the physical processes governing eruptions is hindered by our inability to observe conduit flow directly. The closest we get to direct evidence is testimony imprinted on individual crystals or bubbles in the conduit and preserved by quenching during the eruption. For example, small crystal aggregates in products of the 1959 eruption of Kīlauea Iki, Hawaii contain overgrown olivines separated by large, hydrodynamically unfavorable angles. The common occurrence of these aggregates calls for a flow mechanism that creates this crystal misorientation. Here, we show that the observed aggregates are the result of exposure to a steady wave field in the conduit through a customized, process-based model at the scale of individual crystals. We use this model to infer quantitative attributes of the flow at the time of aggregate formation; notably, the formation of misoriented aggregates is only reproduced in bidirectional, not unidirectional, conduit flow.
    Beschreibung: M.D. acknowledges support the Stanford Gerald J. Lieberman Fellowship and the Postdoctoral Scholarship from Woods Hole Oceanographic Institution.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Praetorius, S. K., Condron, A., Mix, A. C., Walczak, M. H., McKay, J. L., & Du, J. The role of northeast pacific meltwater events in deglacial climate change. Science Advances, 6(9), (2020): eaay2915, doi:10.1126/sciadv.aay2915.
    Beschreibung: Columbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.
    Beschreibung: The research was partly supported by the NSF through grants ARC-257 1204045 and PLR-1417667. The numerical model simulations used resources from the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Earth's Future, American Geophysical Union (AGU), 10(9), ISSN: 2328-4277
    Publikationsdatum: 2022-11-06
    Beschreibung: In this study we assessed the representation of the sea surface salinity (SSS) and liquid freshwater content (LFWC) of the Arctic Ocean in the historical simulation of 31 CMIP6 models with comparison to 39 Coupled Model Intercomparison Project phase 5 (CMIP5) models, and investigated the projected changes in Arctic liquid and solid freshwater content and freshwater budget in scenarios with two different shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5). No significant improvement was found in the SSS and LFWC simulation from CMIP5 to CMIP6, given the large model spreads in both CMIP phases. The overestimation of LFWC continues to be a common bias in CMIP6. In the historical simulation, the multi-model mean river runoff, net precipitation, Bering Strait and Barents Sea Opening (BSO) freshwater transports are 2,928 ± 1,068, 1,839 ± 3,424, 2,538 ± 1,009, and −636 ± 553 km3/year, respectively. In the last decade of the 21st century, CMIP6 MMM projects these budget terms to rise to 4,346 ± 1,484 km3/year (3,678 ± 1,255 km3/year), 3,866 ± 2,935 km3/year (3,145 ± 2,651 km3/year), 2,631 ± 1,119 km3/year (2,649 ± 1,141 km3/year) and 1,033 ± 1,496 km3/year (449 ± 1,222 km3/year) under SSP5-8.5 (SSP2-4.5). Arctic sea ice is expected to continue declining in the future, and sea ice meltwater flux is likely to decrease to about zero in the mid-21st century under both SSP2-4.5 and SSP5-8.5 scenarios. Liquid freshwater exiting Fram and Davis straits will be higher in the future, and the Fram Strait export will remain larger. The Arctic Ocean is projected to hold a total of 160,300 ± 62,330 km3 (141,590 ± 50,310 km3) liquid freshwater under SSP5-8.5 (SSP2-4.5) by 2100, about 60% (40%) more than its historical climatology.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , NonPeerReviewed
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Torres, J. P., Lin, Z., Watkins, M., Salcedo, P. F., Baskin, R. P., Elhabian, S., Safavi-Hemami, H., Taylor, D., Tun, J., Concepcion, G. P., Saguil, N., Yanagihara, A. A., Fang, Y., McArthur, J. R., Tae, H. S., Finol-Urdaneta, R. K., Özpolat, B. D., Olivera, B. M., & Schmidt, E. W. Small-molecule mimicry hunting strategy in the imperial cone snail, Conus imperialis. Science Advances, 7(11), (2021): eabf2704, https://doi.org/10.1126/sciadv.abf2704.
    Beschreibung: Venomous animals hunt using bioactive peptides, but relatively little is known about venom small molecules and the resulting complex hunting behaviors. Here, we explored the specialized metabolites from the venom of the worm-hunting cone snail, Conus imperialis. Using the model polychaete worm Platynereis dumerilii, we demonstrate that C. imperialis venom contains small molecules that mimic natural polychaete mating pheromones, evoking the mating phenotype in worms. The specialized metabolites from different cone snails are species-specific and structurally diverse, suggesting that the cones may adopt many different prey-hunting strategies enabled by small molecules. Predators sometimes attract prey using the prey’s own pheromones, in a strategy known as aggressive mimicry. Instead, C. imperialis uses metabolically stable mimics of those pheromones, indicating that, in biological mimicry, even the molecules themselves may be disguised, providing a twist on fake news in chemical ecology.
    Beschreibung: Research reported in this publication was supported by NIH R35GM12252, with contributions to biological work from NIH Fogarty International Center U19TW008163, NIH P01GM48677, and DOD CDMRP W81XWH-17-1-0413. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Guillermic, M., Cameron, L. P., De Corte, I., Misra, S., Bijma, J., de Beer, D., Reymond, C. E., Westphal, H., Ries, J. B., & Eagle, R. A. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Science Advances, 7(2), (2021): eaba9958, https://doi.org/10.1126/sciadv.aba9958.
    Beschreibung: The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.
    Beschreibung: R.A.E. and J.B.R. acknowledge support from National Science Foundation grants OCE-1437166 and OCE-1437371. The work was also supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19), cofunded by a grant from the French government under the program “Investissements d’Avenir,” and an IAGC student grant 2017. R.A.E. acknowledges financial and logistical support from the Pritzker Endowment to UCLA IoES, and J.B.R. acknowledges support from the ZMT and the Hanse-Wissenschaftskolleg Fellowship Program and the NSF OCE award #1437371.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. The United States' contribution of plastic waste to land and ocean. Science Advances, 6(44), (2020): eabd0288, doi:10.1126/sciadv.abd0288.
    Beschreibung: Plastic waste affects environmental quality and ecosystem health. In 2010, an estimated 5 to 13 million metric tons (Mt) of plastic waste entered the ocean from both developing countries with insufficient solid waste infrastructure and high-income countries with very high waste generation. We demonstrate that, in 2016, the United States generated the largest amount of plastic waste of any country in the world (42.0 Mt). Between 0.14 and 0.41 Mt of this waste was illegally dumped in the United States, and 0.15 to 0.99 Mt was inadequately managed in countries that imported materials collected in the United States for recycling. Accounting for these contributions, the amount of plastic waste generated in the United States estimated to enter the coastal environment in 2016 was up to five times larger than that estimated for 2010, rendering the United States’ contribution among the highest in the world.
    Beschreibung: This work was funded by Ocean Conservancy through support from the Arthur Vining Davis Foundations.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Skinner, C., Mill, A. C., Fox, M. D., Newman, S. P., Zhu, Y., Kuhl, A., & Polunin, N. V. C. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Science Advances, 7(8), (2021): eabf3792, https://doi.org/10.1126/sciadv.abf3792.
    Beschreibung: Coral reefs were traditionally perceived as productive hot spots in oligotrophic waters. While modern evidence indicates that many coral reef food webs are heavily subsidized by planktonic production, the pathways through which this occurs remain unresolved. We used the analytical power of carbon isotope analysis of essential amino acids to distinguish between alternative carbon pathways supporting four key reef predators across an oceanic atoll. This technique separates benthic versus planktonic inputs, further identifying two distinct planktonic pathways (nearshore reef-associated plankton and offshore pelagic plankton), and revealing that these reef predators are overwhelmingly sustained by offshore pelagic sources rather than by reef sources (including reef-associated plankton). Notably, pelagic reliance did not vary between species or reef habitats, emphasizing that allochthonous energetic subsidies may have system-wide importance. These results help explain how coral reefs maintain exceptional productivity in apparently nutrient-poor tropical settings, but also emphasize their susceptibility to future ocean productivity fluctuations.
    Beschreibung: Sample analysis funding was provided by NERC LSMSF grant BRIS/102/0717 and BRIS/125/1418. C.S. was supported by a Newcastle University SAgE DTA studentship and a cooperative agreement with Banyan Tree.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Richter, M., Nebel, O., Maas, R., Mather, B., Nebel-Jacobsen, Y., Capitanio, F. A., Dick, H. J. B., & Cawood, P. A. An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 6(44), (2020): eabb4340, doi:10.1126/sciadv.abb4340.
    Beschreibung: Earth’s upper mantle, as sampled by mid-ocean ridge basalts (MORBs) at oceanic spreading centers, has developed chemical and isotopic heterogeneity over billions of years through focused melt extraction and re-enrichment by recycled crustal components. Chemical and isotopic heterogeneity of MORB is dwarfed by the large compositional spectrum of lavas at convergent margins, identifying subduction zones as the major site for crustal recycling into and modification of the mantle. The fate of subduction-modified mantle and if this heterogeneity transmits into MORB chemistry remains elusive. Here, we investigate the origin of upper mantle chemical heterogeneity underneath the Western Gakkel Ridge region in the Arctic Ocean through MORB geochemistry and tectonic plate reconstruction. We find that seafloor lavas from the Western Gakkel Ridge region mirror geochemical signatures of an Early Cretaceous, paleo-subduction zone, and conclude that the upper mantle can preserve a long-lived, stationary geochemical memory of past geodynamic processes.
    Beschreibung: O.N. was supported by the Australian Research Council (grant FT140101062). P.A.C. was supported by the Australian Research Council (grant FL160100168). H.J.B.D. was supported by the NSF (grants PLR 9912162, PLR 0327591, OCE 0930487, and OCE 1434452). M.R. was supported by a graduate scholarship of Monash University and the SEAE.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2023-01-26
    Beschreibung: Erosion is a severe threat to the sustainable use of agricultural soils. However, the structural resistance of soil against the disruptive forces steppe soils experience under field conditions has not been investigated. Therefore, 132 topsoils under grass‐ and cropland covering a large range of physico‐chemical soil properties (sand: 2–76%, silt: 18–80%, clay: 6–30%, organic carbon: 7.3–64.2 g kg−1, inorganic carbon: 0.0–8.5 g kg−1, pH: 4.8–9.5, electrical conductivity: 32–946 μS cm−1) from northern Kazakhstan were assessed for their potential erodibility using several tests. An adjusted drop‐shatter method (low energy input of 60 Joule on a 250‐cm3 soil block) was used to estimate the stability of dry soil against weak mechanical forces, such as saltating particles striking the surface causing wind erosion. Three wetting treatments with various conditions and energies (fast wetting, slow wetting, and wet shaking) were applied to simulate different disruptive effects of water. Results indicate that aggregate stability was higher for grassland than cropland soils and declined with decreasing soil organic carbon content. The results of the drop‐shatter test suggested that 29% of the soils under cropland were at risk of wind erosion, but only 6% were at high risk (i.e. erodible fraction 〉60%). In contrast, the fast wetting treatment revealed that 54% of the samples were prone to become “very unstable” and 44% “unstable” during heavy rain or snowmelt events. Even under conditions comparable to light rain events or raindrop impact, 53–59% of the samples were “unstable.” Overall, cropland soils under semi‐arid conditions seem much more susceptible to water than wind erosion. Considering future projections of increasing precipitation in Kazakhstan, we conclude that the risk of water erosion is potentially underestimated and needs to be taken into account when developing sustainable land use strategies. Highlights Organic matter is the important binding agent enhancing aggregation in steppe topsoils. Tillage always declines aggregate stability even without soil organic carbon changes. All croplands soil are prone to wind or water erosion independent of their soil properties. Despite the semi‐arid conditions, erosion risk by water seems higher than by wind.
    Beschreibung: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Schlagwort(e): ddc:631.4 ; climate change ; land use ; soil organic carbon ; soil texture ; water erosion ; wind erosion
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2023-01-20
    Beschreibung: Stable hydrogen isotope ratios (δ2H values) in structural hydroxyl groups of pedogenic clay minerals are inherited from the surrounding water at the time of their formation. Only non‐exchangeable H preserves the environmental forensic and paleoclimate information (δ2Hn value). To measure δ2Hn values in structural H of clay minerals and soil clay fractions, we adapted a steam equilibration method by accounting for high hygroscopicity. Our δ2Hn values for USGS57 biotite (−95.3 ± SD 0.9‰) and USGS58 muscovite (30.7 ± 1.4‰) differed slightly but significantly from the reported δ2H values (−91.5 ± 2.4‰ and −28.4 ± 1.6‰), because the minerals contained 1.1%–4.4% of exchangeable H. The low SD of replicate measurements (n = 3) confirmed a high precision. The clay separation method including destruction of Fe oxides, carbonates and soil organic matter, and dispersion did not significantly change the δ2Hn values of five different clay minerals. However, we were unable to remove all organic matter from the soil clay fractions resulting in an estimated bias of 1‰ in two samples and 15‰ in the carbon‐richest sample. Our results demonstrate that δ2Hn values of structural H of clay minerals and soil clay fractions can be reliably measured without interference from atmospheric water and the method used to separate the soil clay fraction. Highlights We tested steam equilibration to determine stable isotope ratios of structural H in clay. Gas‐tight capsule sealing in Ar atmosphere was necessary to avoid remoistening. Our steam equilibration method showed a high accuracy and precision. The clay separation method did not change stable isotope ratios of structural H in clay.
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): ddc:549 ; controlled isotope exchange technique ; deuterium ; montmorillonite ; soil clay separation ; soil organic matter removal ; steam equilibration ; structural H ; USGS57 biotite ; vermiculite ; δ2H
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 12(12), ISSN: 1942-2466
    Publikationsdatum: 2023-06-21
    Beschreibung: Ocean models at eddy-permitting resolution are generally overdissipative, damping the intensity of the mesoscale eddy field. To reduce overdissipation, we propose a simplified, kinematic energy backscatter parametrization built into the viscosity operator in conjunction with a new flow-dependent coefficient of viscosity based on nearest neighbor velocity differences. The new scheme mitigates excessive dissipation of energy and improves global ocean simulations at eddy-permitting resolution. We find that kinematic backscatter substantially raises simulated eddy kinetic energy, similar to an alternative, previously proposed dynamic backscatter parametrization. While dynamic backscatter is scale aware and energetically more consistent, its implementation is more complex. Furthermore, it turns out to be computationally more expensive, as it applies, among other things, an additional prognostic subgrid energy equation. The kinematic backscatter proposed here, by contrast, comes at no additional computational cost, following the principle of simplicity. Our primary focus is the discretization on triangular unstructured meshes with cell placement of velocities (an analog of B-grids), as employed by the Finite-volumE Sea ice-Ocean Model (FESOM2). The kinematic backscatter scheme with the new viscosity coefficient is implemented in FESOM2 and tested in the simplified geometry of a zonally reentrant channel as well as in a global ocean simulation on a 1/4° mesh. This first version of the new kinematic backscatter needs to be tuned to the specific resolution regime of the simulation. However, the tuning relies on a single parameter, emphasizing the overall practicality of the approach.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , NonPeerReviewed
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 13(10), ISSN: 1942-2466
    Publikationsdatum: 2023-06-21
    Beschreibung: We propose to make the damping time scale, which governs the decay of pseudo-elastic waves in the Elastic Viscous Plastic (EVP) sea-ice solvers, independent of the external time step and large enough to warrant numerical stability for a moderate number of internal time steps. A necessary condition is that the forcing on sea ice varies slowly on the damping time scale, in which case an EVP solution may still approach a Viscous Plastic one, but on a time scale longer than a single external time step. In this case, the EVP method becomes very close to the recently proposed modified EVP (mEVP) method in terms of stability and simulated behavior. In a simple test case dealing with sea ice breaking under the forcing of a moving cyclone, the EVP method with an enlarged damping time scale can simulate linear kinematic features which are very similar to those from the traditional EVP implementation, although a much smaller number of internal time steps is used. There is more difference in sea-ice thickness and linear kinematic features simulated in a realistic Arctic configuration between using the traditional and our suggested choices of EVP damping time scales, but it is minor considering model uncertainties associated with choices of many other parameters in sea-ice models.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , NonPeerReviewed
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(22), ISSN: 0094-8276
    Publikationsdatum: 2023-06-21
    Beschreibung: Based on the ERA5 reanalysis, we report on statistically significant impacts of transient cyclones on sea ice concentration (SIC) in the Atlantic sector of the Arctic Ocean in winter under “New Arctic” conditions (2000–2020). This includes a pattern of reduced SIC prior to and during cyclones for the whole study domain, while a regional difference between increased SIC in the Barents Sea and reduced SIC in the Greenland Sea is found as the net effect from 3 days prior to 5 days after the cyclone passage. Generally, locally low to medium SIC conditions combined with intense cyclones drive highest SIC changes. There are indications that both thermodynamic and dynamic effects contribute to the SIC changes, but a detailed quantification is required in future research. We provide evidence that cyclone impacts on SIC have amplified compared to the “Old Arctic” (1979–1999), particularly in the Barents Sea.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 127(10), ISSN: 2169-8953
    Publikationsdatum: 2023-06-21
    Beschreibung: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro-, meso- and macrozooplankton) in the ocean biogeochemical model FESOM-REcoM. In the presented model, microzooplankton is a fast-growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow-growing group with a low temperature optimum. Meso- and macrozooplankton produce fast-sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light-controlled Sverdrup system to a dilution-controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on-going and future environmental change in model projections.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2024-01-18
    Beschreibung: The North Atlantic Basin is a major sink for atmospheric carbon dioxide (CO2) due in part to the extensive plankton blooms which form there supported by nutrients supplied by the three-dimensional ocean circulation. Hence, changes in ocean circulation and/or stratification may influence primary production and biological carbon export. In this study, we assess this possibility by evaluating inorganic nutrient budgets for 2004 and 2010 in the North Atlantic based on observations from the transatlantic A05-24.5°N and the Greenland-Portugal OVIDE hydrographic sections, to which we applied a box inverse model to solve the circulation and estimate the across-section nutrient transports. Full water column nutrient budgets were split into upper and lower meridional overturning circulation (MOC) limbs. According to our results, anomalous circulation in early 2010, linked to extreme negative NAO conditions, led to an enhanced northward advection of more nutrient-rich waters by the upper overturning limb, which resulted in a significant nitrate and phosphate convergence north of 24.5°N. Combined with heaving of the isopycnals, this anomalous circulation event in 2010 favored an enhancement of the nutrient consumption (5.7 ± 4.1 kmol-P s−1) and associated biological CO2 uptake (0.25 ± 0.18 Pg-C yr−1, upper-bound estimate), which represents a 50% of the mean annual sea–air CO2 flux in the region. Our results also suggest a transient state of deep silicate divergence in both years. Both results are indicative of a MOC-driven modulation of the biological carbon uptake (by the upper MOC limb) and nutrient inventories (by the lower MOC limb) in the North Atlantic.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2024-01-19
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In recent years, many two‐dimensional (2D) hydrodynamic models have been extended to include the direct rainfall method (DRM). This allows their application as a hydrological‐hydrodynamic model for the determination of floodplains in one model system. In previous studies on DRM, the role of catchment hydrological processes (CaHyPro) and its interaction with the calibration process was not investigated in detail. In the present, case‐oriented study, the influence of the spatiotemporal distribution of the processes precipitation and runoff formation in combination with the 2D model HEC‐RAS is investigated. In a further step, a conceptual approach for event‐based interflow is integrated. The study is performed on the basis of a single storm event in a small rural catchment (low mountain range, 38 km〈sup〉2〈/sup〉) in Hesse (Germany). The model results are evaluated against six quality criteria and compared to a simplified baseline model. Finally, the calibrated improved model is contrasted with a calibrated baseline model. The results show the enhancement of the model results due to the integration of the CaHyPro and highlight its interplay with the calibrated model parameters.〈/p〉
    Schlagwort(e): ddc:551.48 ; 2D hydrodynamic modeling ; calibration ; direct rainfall modeling ; hydrological processes ; radar data ; runoff formation
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publikationsdatum: 2024-01-22
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 24(12), ISSN: 1525-2027
    Publikationsdatum: 2024-01-22
    Beschreibung: In the Fram Strait, mid-ocean ridge spreading is represented by the ultra-slow system of the Molloy Ridge, the Molloy Transform Fault and the Knipovich Ridge. Sediments on oceanic and continental crust are gas charged and there are several locations with documented seafloor seepage. Sedimentary faulting shows recent stress release in the sub-surface, but the drivers of stress change and its influence on fluid flow are not entirely understood. We present here the results of an 11-month-long ocean bottom seismometer survey conducted over the highly faulted sediment drift northwards from the Knipovich Ridge to monitor seismicity and infer the regional state of stress. We obtain a detailed earthquake catalog that improves the spatial resolution of mid-ocean ridge seismicity compared with published data. Seismicity at the Molloy Transform Fault is occurring southwards from the bathymetric imprint of the fault, as supported by a seismic profile. Earthquakes in the northern termination of the Knipovich Ridge extend eastwards from the ridge valley, which together with syn-rift faulting identified in seismic reflection data, suggests that a portion of the currently active spreading center is buried under sediments away from the bathymetric expression of the rift valley. This hints at the direct link between crustal rifting processes and faulting in shallow sediments. Two earthquakes occur close to the seepage system of the Vestnesa Ridge further north from the network. We suggest that deeper rift structures, reactivated by gravity and/or post-glacial subsidence, may lead to accommodation of stress through shallow extensional faults, therefore impacting seepage dynamics.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2023-11-18
    Beschreibung: Spatiotemporal characterisation of the soil redox status within the capillary fringe (CF) is a challenging task. Air‐filled porosities (ε), oxygen concentration (O〈sub〉2〈/sub〉) and soil redox potential (EH) are interrelated soil variables within active biogeochemical domains such as the CF. We investigated the impact of water table (WT) rise and drainage in an undisturbed topsoil and subsoil sample taken from a Calcaric Gleysol for a period of 46 days. We merged 1D (EH and matric potential) and 2D (O〈sub〉2〈/sub〉) systems to monitor at high spatiotemporal resolution redox dynamics within self‐constructed redoxtron housings and complemented the data set by a 3D pore network characterization using X‐ray microtomography (X‐ray μCT). Depletion of O〈sub〉2〈/sub〉 was faster in the organic matter‐ and clay‐rich aggregated topsoil and the CF extended 〉10 cm above the artificial WT. The homogeneous and less‐aggregated subsoil extended only 4 cm above the WT as indicated by ε–O〈sub〉2〈/sub〉–EH data during saturation. After drainage, 2D O〈sub〉2〈/sub〉 imaging revealed a fast aeration towards the lower depths of the topsoil, which agrees with the connected ε derived by X‐ray μCT (ε〈sub〉CT_conn〈/sub〉) of 14.9% of the total porosity. However, small‐scaled anoxic domains with O〈sub〉2〈/sub〉 saturation 〈5% were apparent even after lowering the WT (down to 0.25 cm〈sup〉2〈/sup〉 in size) for 23 days. These domains remained a nucleus for reducing soil conditions (E〈sub〉H〈/sub〉 〈 −100 mV), which made it challenging to characterise the soil redox status in the CF. In contrast, the subsoil aeration reached O〈sub〉2〈/sub〉 saturation after 8 days for the complete soil volume. Values of ε〈sub〉CT_conn〈/sub〉 around zero in the subsoil highlighted that soil aeration was independent of this parameter suggesting that other variables such as microbial activity must be considered when predicting the soil redox status from ε alone. The use of redoxtrons in combination with localised redox‐measurements and image based pore space analysis resulted in a better 2D/3D characterisation of the pore system and related O〈sub〉2〈/sub〉 transport properties. This allowed us to analyse the distribution and activity of microbiological niches highly associated with the spatiotemporal variable redox dynamics in soil environments. Highlights: The time needed to turn from reducing to oxidising (period where all platinum electrodes feature E〈sub〉H〈/sub〉 〉 300 mV) condition differ for two samples with contrasting soil structure. The subsoil with presumably low O〈sub〉2〈/sub〉 consumption rates aerated considerably faster than the topsoil and exclusively by O〈sub〉2〈/sub〉 diffusion through medium‐ and fine‐sized pores. To derive the soil redox status based upon the triplet ε–O〈sub〉2〈/sub〉–E〈sub〉H〈/sub〉 is challenging at present in heterogeneous soil domains and larger soil volumes than 250 cm〈sup〉3〈/sup〉. Undisturbed soil sampling along with 2D/3D redox measurement systems (e.g., redoxtrons) improve our understanding of redox dynamics within the capillary fringe.
    Schlagwort(e): ddc:631.4 ; environmental monitoring ; incubation experiments ; redox processes ; soil reducing conditions ; undisturbed soil ; X‐ray microtomography
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(20), ISSN: 0094-8276
    Publikationsdatum: 2023-11-20
    Beschreibung: Surface processes alter the water stable isotope signal of the surface snow after deposition. However, it remains an open question to which extent surface post-depositional processes should be considered when inferring past climate information from ice core records. Here, we present simulations for the Greenland Ice Sheet, combining outputs from two climate models with an isotope-enabled snowpack model. We show that surface vapor exchange and associated fractionation imprint a climate signal into the firn, resulting in an increase in the annual mean value of δ18O by +2.3‰ and a reduction in d-excess by −6.3‰. Further, implementing isotopic fractionation during surface vapor exchange improves the representation of the observed seasonal amplitude in δ18O from 65.0% to 100.2%. Our results stress that surface vapor exchange is important in the climate proxy signal formation and needs consideration when interpreting ice core climate records.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2023-11-17
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈sec xmlns:mml="http://www.w3.org/1998/Math/MathML" id="ejss13362-sec-1003" xml:lang="en"〉 〈p xml:lang="en"〉Long‐term experiments (LTEs) have provided data to modellers and agronomists to investigate changes and dynamics of soil organic carbon (SOC) under different cropping systems. As treatment changes have occurred due to agricultural advancements, so too have analytical soil methods. This may lead to method bias over time, which could affect the robust interpretation of data and conclusions drawn. This study aims to quantify differences in SOC due to changes in dry combustion methods over time, using soil samples of a LTE established in 1963 that focuses on mineral and organic fertilizer management in the temperate zone of Northeast Germany. For this purpose, 1059 soil samples, collected between 1976 and 2008, have been analysed twice, once with their historical laboratory method right after sampling, and a second time in 2016 when all samples were analysed using the same elementary analyser. In 9 of 11 soil sampling campaigns, a paired 〈italic toggle="no"〉t〈/italic〉‐test provided evidence for significant differences in the historical SOC values when compared with the re‐analysed concentrations of the same LTE sample. In the sampling years 1988 and 2004, the historical analysis obtained about 0.9 g kg〈sup〉−1〈/sup〉 lower SOC compared with the re‐analysed one. For 1990 and 1998, this difference was about 0.4 g kg〈sup〉−1〈/sup〉. Correction factors, an approach often used to correct for different analytical techniques, could only be applied for 5 of 11 sampling campaigns to account for constant and proportional systematic method error. For this particular LTE, the interpretation of SOC changes due to agronomic management (here fertilization) deviates depending on the analytical method used, which may weaken the explanatory power of the historical data. We demonstrate that analytical method changes over time present one of many challenges in the interpretation of time series data of SOC dynamics. Therefore, LTE site managers need to ensure providing all necessary protocols and data in order to retrace method changes and if necessary recalculate SOC.〈/p〉 〈/sec〉〈sec xmlns:mml="http://www.w3.org/1998/Math/MathML" id="ejss13362-sec-0003" xml:lang="en"〉 〈title〉Highlights〈/title〉 〈p xml:lang="en"〉〈list list-type="bullet" id="ejss13362-list-0001"〉 〈list-item id="ejss13362-li-0001"〉〈p〉A total of 1059 LTE soil samples taken between 1976 and 2008 were re‐analysed for SOC in 2016〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0002"〉〈p〉Several methodological changes for SOC determination led to significant different SOC concentration in the same sample〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0003"〉〈p〉Interpretation and time series of LTE soil data suffer from consideration of analytical method changes and poor documentation of the same〈/p〉〈/list-item〉 〈list-item id="ejss13362-li-0004"〉〈p〉Soil archive establishment, thorough method protocols and diligent proficiency testing after soil method changes ameliorate the dilemma〈/p〉〈/list-item〉 〈/list〉〈/p〉 〈/sec〉
    Beschreibung: Brandenburger Staatsministerium für Wissenschaft, Forschung und Kultur http://dx.doi.org/10.13039/501100004581
    Beschreibung: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100004937
    Beschreibung: https://doi.org/10.4228/zalf-acge-b683
    Schlagwort(e): ddc:631.4 ; Bland–Altman ; carbon stocks ; data trueness ; Deming regression ; method bias ; soil archive ; soil survey
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 125(2), ISSN: 2169-8953
    Publikationsdatum: 2024-01-30
    Beschreibung: Climate change in the Arctic leads to permafrost degradation and to associated changes infreshwater geochemistry. There is a limited understanding of how disturbances such as active layerdetachments or retrogressive thaw slumps impact water quality on a catchment scale. This study investigateshow permafrost degradation affects concentrations of dissolved organic carbon (DOC), total dissolvedsolids (TDS), suspended sediment, and stable water isotopes in adjacent Low Arctic watersheds. Weincorporated data on disturbance between 1952 and 2015, as well as sporadic runoff and geochemistry dataof streams nearby. Our results show that the total disturbed area decreased by 41% between 1952 and 2015,whereas the total number of disturbances increased by 66% in all six catchments. The spatial variabilityof hydrochemical parameters is linked to catchment properties and not necessarily reflected at the outflow.Degrading ice‐wedge polygons were found to increase DOC concentrations upstream in Ice Creek West,whereas hydrologically connected disturbances were linked to increases in TDS and suspended sediment.Although we found a great spatial variability of hydrochemical concentrations along the paired watershed,there was a linear relationship between catchment size and daily DOC, total dissolved nitrogen, and TDSfluxes for all six streams. Suspended sedimentflux on the contrary did not show a clear relationship as onehydrologically connected retrogressive thaw slump impacted the overallflux in one of the streams.Understanding the spatial variability of water quality will help to model the lateral geochemicalfluxes fromArctic catchments
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2024-01-31
    Beschreibung: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    facet.materialart.
    Unbekannt
    Annual Reviews
    In:  EPIC3Annual Review of Marine Science, Annual Reviews, 16(1), pp. 513-536, ISSN: 1941-1405
    Publikationsdatum: 2024-01-31
    Beschreibung: 〈jats:p〉 For decades, multiple-driver/stressor research has examined interactions among drivers that will undergo large changes in the future: temperature, pH, nutrients, oxygen, pathogens, and more. However, the most commonly used experimental designs—present-versus-future and ANOVA—fail to contribute to general understanding or predictive power. Linking experimental design to process-based mathematical models would help us predict how ecosystems will behave in novel environmental conditions. We review a range of experimental designs and assess the best experimental path toward a predictive ecology. Full factorial response surface, fractional factorial, quadratic response surface, custom, space-filling, and especially optimal and sequential/adaptive designs can help us achieve more valuable scientific goals. Experiments using these designs are challenging to perform with long-lived organisms or at the community and ecosystem levels. But they remain our most promising path toward linking experiments and theory in multiple-driver research and making accurate, useful predictions. 〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 129(1), ISSN: 2169-8953
    Publikationsdatum: 2024-01-26
    Beschreibung: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Erosion of permafrost coasts due to climate warming releases large quantities of organic carbon (OC) into the Arctic Ocean. While burial of permafrost OC in marine sediments potentially limits degradation, resuspension of sediments in the nearshore zone potentially enhances degradation and greenhouse gas production, adding to the “permafrost carbon feedback.” Recent studies, focusing on bulk sediments, suggest that permafrost OC derived from coastal erosion is predominantly deposited close to shore. However, bulk approaches disregard sorting processes in the coastal zone, which strongly influence the OC distribution and fate. We studied soils and sediments along a transect from the fast‐eroding shoreline of Herschel Island—〈jats:italic〉Qikiqtaruk〈/jats:italic〉 (Yukon, Canada) to a depositional basin offshore. Sample material was fractionated by density (1.8 g cm〈jats:sup〉−3〈/jats:sup〉) and size (63 μm), separating loose OC from mineral‐associated OC. Each fraction was analyzed for element content (TOC, TN), carbon isotopes (δ〈jats:sup〉13〈/jats:sup〉C, Δ〈jats:sup〉14〈/jats:sup〉C), molecular biomarkers (〈jats:italic〉n〈/jats:italic〉‐alkanes, 〈jats:italic〉n〈/jats:italic〉‐alkanoic acids, lignin phenols, cutin acids), and mineral surface area. The OC partitioning between fractions changes considerably along the transect, highlighting the importance of hydrodynamic sorting in the nearshore zone. Additionally, OC and biomarker loadings decrease along the land‐ocean transect, indicating significant loss of OC during transport. However, molecular proxies for degradation show contrasting trends, suggesting that OC losses are not always well reflected in its degradation state. This study, using fraction partitioning that crosses land‐ocean boundaries in a way not done before, aids to disentangle sorting processes from degradation patterns, and provides quantitative insight into losses of thawed and eroded permafrost OC.〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2024-01-24
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Flood risk assessments require different disciplines to understand and model the underlying components hazard, exposure, and vulnerability. Many methods and data sets have been refined considerably to cover more details of spatial, temporal, or process information. We compile case studies indicating that refined methods and data have a considerable effect on the overall assessment of flood risk. But are these improvements worth the effort? The adequate level of detail is typically unknown and prioritization of improvements in a specific component is hampered by the lack of an overarching view on flood risk. Consequently, creating the dilemma of potentially being too greedy or too wasteful with the resources available for a risk assessment. A “sweet spot” between those two would use methods and data sets that cover all relevant known processes without using resources inefficiently. We provide three key questions as a qualitative guidance toward this “sweet spot.” For quantitative decision support, more overarching case studies in various contexts are needed to reveal the sensitivity of the overall flood risk to individual components. This could also support the anticipation of unforeseen events like the flood event in Germany and Belgium in 2021 and increase the reliability of flood risk assessments.〈/p〉
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Beschreibung: BMBF http://dx.doi.org/10.13039/501100002347
    Beschreibung: Federal Environment Agency http://dx.doi.org/10.13039/501100010809
    Beschreibung: http://howas21.gfz-potsdam.de/howas21/
    Beschreibung: https://www.umwelt.niedersachsen.de/startseite/themen/wasser/hochwasser_amp_kustenschutz/hochwasserrisikomanagement_richtlinie/hochwassergefahren_und_hochwasserrisikokarten/hochwasserkarten-121920.html
    Beschreibung: https://download.geofabrik.de/europe/germany.html
    Beschreibung: https://emergency.copernicus.eu/mapping/list-of-components/EMSN024
    Beschreibung: https://data.jrc.ec.europa.eu/collection/id-0054
    Beschreibung: https://oasishub.co/dataset/surface-water-flooding-footprinthurricane-harvey-august-2017-jba
    Beschreibung: https://www.wasser.sachsen.de/hochwassergefahrenkarte-11915.html
    Schlagwort(e): ddc:551.48 ; decision support ; extreme events ; integrated flood risk management ; risk assessment
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2024-01-26
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The increasing demand for biomass for food, animal feed, fibre and bioenergy requires optimization of soil productivity, while at the same time, protecting other soil functions such as nutrient cycling and buffering, carbon storage, habitat for biological activity and water filter and storage. Therefore, one of the main challenges for sustainable agriculture is to produce high yields while maintaining all the other soil functions. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soils that generate those functions. We developed a soil model to simulate the impact of various agricultural management options and climate change on soil functions by integrating the relevant processes mechanistically and in a systemic way. As a special feature, we include the dynamics of soil structure induced by tillage and biological activity, which is especially relevant in arable soils. The model operates on a 1D soil profile consisting of a number of discrete layers with dynamic thickness. We demonstrate the model performance by simulating crop growth, root growth, nutrient and water uptake, nitrogen cycling, soil organic matter turnover, microbial activity, water distribution and soil structure dynamics in a long‐term field experiment including different crops and different types and levels of fertilization. The model is able to capture essential features that are measured regularly including crop yield, soil organic carbon, and soil nitrogen. In this way, the plausibility of the implemented processes and their interactions is confirmed. Furthermore, we present the results of explorative simulations comparing scenarios with and without tillage events to analyse the effect of soil structure on soil functions. Since the model is process‐based, we are confident that the model can also be used to predict quantities that have not been measured or to estimate the effect of management measures and climate states not yet been observed. The model thus has the potential to predict the site‐specific impact of management decisions on soil functions, which is of great importance for the development of a sustainable agriculture that is currently also on the agenda of the ‘Green Deal’ at the European level.〈/p〉
    Beschreibung: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Beschreibung: https://git.ufz.de/bodium/bodium_v1.0
    Schlagwort(e): ddc:631.4 ; agriculture ; computational model ; simulation ; soil microbiology ; soil structure ; sustainable soil
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(1), ISSN: 0094-8276
    Publikationsdatum: 2024-03-28
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2024-03-22
    Beschreibung: Soil fauna drives crucial processes of energy and nutrient cycling in agricultural systems, and influences the quality of crops and pest incidence. Soil tillage is the most influential agricultural manipulation of soil structure, and has a profound influence on soil biology and its provision of ecosystem services. The objective of this study was to quantify through meta‐analyses the effects of reducing tillage intensity on density and diversity of soil micro‐ and mesofaunal communities, and how these effects vary among different pedoclimatic conditions and interact with concurrent management practices. We present the results of a global meta‐analysis of available literature data on the effects of different tillage intensities on taxonomic and functional groups of soil micro‐ and mesofauna. We collected paired observations (conventional vs. reduced forms of tillage/no‐tillage) from 133 studies across 33 countries. Our results show that reduced tillage intensity or no‐tillage increases the total density of springtails (+35%), mites (+23%), and enchytraeids (+37%) compared to more intense tillage methods. The meta‐analyses for different nematode feeding groups, life‐forms of springtails, and taxonomic mite groups showed higher densities under reduced forms of tillage compared to conventional tillage on omnivorous nematodes (+53%), epedaphic (+81%) and hemiedaphic (+84%) springtails, oribatid (+43%) and mesostigmatid (+57%) mites. Furthermore, the effects of reduced forms of tillage on soil micro‐ and mesofauna varied with depth, climate and soil texture, as well as with tillage method, tillage frequency, concurrent fertilisation, and herbicide application. Our findings suggest that reducing tillage intensity can have positive effects on the density of micro‐ and mesofaunal communities in areas subjected to long‐term intensive cultivation practices. Our results will be useful to support decision making on the management of soil faunal communities and will facilitate modelling efforts of soil biology in global agroecosystems. HIGHLIGHTS Global meta‐analysis to estimate the effect of reducing tillage intensity on micro‐ and mesofauna Reduced tillage or no‐tillage has positive effects on springtail, mite and enchytraeid density Effects vary among nematode feeding groups, springtail life forms and mite suborders Effects vary with texture, climate and depth and depend on the tillage method and frequency
    Beschreibung: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Beschreibung: https://doi.org/10.20387/bonares-eh0f-hj28
    Schlagwort(e): ddc:631.4 ; agricultural land use ; conservation agriculture ; conventional agriculture ; soil biodiversity ; soil cultivation
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(4), ISSN: 0094-8276
    Publikationsdatum: 2024-03-27
    Beschreibung: The eruption of the Hunga Tonga‐Hunga Ha'apai volcano on 15 January 2022 was one of the most explosive eruptions of the last decades. The amount of water vapor injected into the stratosphere was unprecedented in the observational record, increasing the stratospheric water vapor burden by about 10%. Using model runs from the ATLAS chemistry and transport model and Microwave Limb Sounder (MLS) satellite observations, we show that while 20%–40% more water vapor than usual was entrained into the Antarctic polar vortex in 2023 as it formed, the direct chemical effect of the increased water vapor on Antarctic ozone depletion in June through October was minor (less than 4 DU). This is because low temperatures in the vortex, as occur every year in the Antarctic, limit water vapor to the saturation pressure and thus reset any anomalies through the process of dehydration before they can affect ozone loss.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 128(10), ISSN: 2169-8953
    Publikationsdatum: 2024-04-11
    Beschreibung: Human activities have increasingly changed terrestrial particulate organic carbon (POC) export to the coastal ocean since the Industrial Age (19th century). However, the influence of human perturbations on the composition and flux of terrestrial biospheric and petrogenic POC sub-pools remains poorly constrained. Here, we examined 13C and 14C compositions of bulk POC and source-specific biomarkers (fatty acids, FA) from two nearshore sediment cores collected in the Pearl River-derived mudbelt, to determine the impacts of human perturbations of the Pearl River watershed on the burial of terrestrial POC in the coastal ocean over the last century. Our results show that although agricultural practices and deforestation during the 1930s–1950s increased C4 plant coverage in the watershed, the export fluxes of terrestrial biospheric and petrogenic POC remained rather unchanged; however, added perturbations since 1974, including increasing coal consumption, embankment and dam constructions caused massive export of both petrogenic POC and relatively fresh terrestrial biospheric POC from the river delta. Our data reveal that human activities substantially enhance the transfer of petrogenic POC and fresh biospheric POC to the coastal ocean after ca. 1974, with the latter process acting as an important sink for anthropogenic CO2.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(24), ISSN: 0094-8276
    Publikationsdatum: 2024-04-22
    Beschreibung: Statistical analysis of reanalysis and observed data reveals that high dust surface mass concentration in northern Greenland is associated with a Pacific Decadal Oscillation like pattern in its negative phase in the North Pacific as well as with La Niña conditions in the tropical Pacific region. The sea surface temperature anomalies in the Pacific realm resemble the Interdecadal Pacific Oscillation (IPO). The associated atmospheric circulation pattern, in the form of a wave-train from the North Pacific to the Eurasian continent, favors enhanced dust uptake and transport toward the northern Greenland. Similar patterns are associated with a low-resolution stacked record of five Ca2+ ice cores, that is, ngt03C93.2 (B16), ngt14C93.2 (B18), ngt27C94.2 (B21), GISP2−B, and NEEM-2011-S1, from northern Greenland, a proxy for regional dust concentration, during the last 400 years. We argue that northern Greenland ice core dust records could be used as proxies for the IPO and related teleconnections.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 128(4), ISSN: 2169-8953
    Publikationsdatum: 2024-04-19
    Beschreibung: The greenhouse gas (GHG) balance of boreal peatlands in permafrost regions will be affected by climate change through disturbances such as permafrost thaw and wildfire. Although the future GHG balance of boreal peatlands including ponds is dominated by the exchange of both carbon dioxide (CO2) and methane (CH4), disturbance impacts on fluxes of the potent GHG nitrous oxide (N2O) could contribute to shifts in the net radiative balance. Here, we measured monthly (April to October) fluxes of N2O, CH4, and CO2 from three sites located across the sporadic and discontinuous permafrost zones of western Canada. Undisturbed permafrost peat plateaus acted as N2O sinks (−0.025 mg N2O m−2 d−1), but N2O uptake was lower from burned plateaus (−0.003 mg N2O m−2 d−1) and higher following permafrost thaw in the thermokarst bogs (−0.054 mg N2O m−2 d−1). The thermokarst bogs had below-ambient N2O soil gas concentrations, suggesting that denitrification consumed atmospheric N2O during reduction to dinitrogen. Atmospheric uptake of N2O in peat plateaus and thermokarst bogs increased with soil temperature and soil moisture, suggesting sensitivity of N2O consumption to further climate change. Four of five peatland ponds acted as N2O sinks (−0.018 mg N2O m−2 d−1), with no influence of thermokarst expansion. One pond with high nitrate concentrations had high N2O emissions (0.30 mg N2O m−2 d−1). Overall, our study suggests that the future net radiative balance of boreal peatlands will be dominated by impacts of wildfire and permafrost thaw on CH4 and CO2 fluxes, while the influence from N2O is minor.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    facet.materialart.
    Unbekannt
    Annual Reviews
    In:  EPIC3Annual Review of Marine Science, Annual Reviews, 16(1), pp. 417-441, ISSN: 1941-1405
    Publikationsdatum: 2024-03-01
    Beschreibung: The genus Phaeocystis is globally distributed, with blooms commonly occurring on continental shelves. This unusual phytoplankter has two major morphologies: solitary cells and cells embedded in a gelatinous matrix. Only colonies form blooms. Their large size (commonly 2 mm but up to 3 cm) and mucilaginous envelope allow the colonies to escape predation, but data are inconsistent as to whether colonies are grazed. Cultured Phaeocystis can also inhibit the growth of co-occurring phytoplankton or the feeding of potential grazers. Colonies and solitary cells use nitrate as a nitrogen source, although solitary cells can also grow on ammonium. Phaeocystis colonies might be a major contributor to carbon flux to depth, but in most cases, colonies are rapidly remineralized in the upper 300 m. The occurrence of large Phaeocystis blooms is often associated with environments with low and highly variable light and high nitrate levels, with Phaeocystis antarctica blooms being linked additionally to high iron availability. Emerging results indicate that different clones of Phaeocystis have substantial genetic plasticity, which may explain its appearance in a variety of environments. Given the evidence of Phaeocystis appearing in new systems, this trend will likely continue in the near future.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2024-03-13
    Beschreibung: Since the 1980s various international directives and frameworks have acknowledged the potential of risk communication to foster community empowerment. However, to achieve empowerment, communication has to be effective. When it comes to natural disasters, such as earthquakes, science communication requires the involvement of communities as a whole, promoting bottom-up strategies and proactive engagement. In this light, we conducted a scoping review of scientific publications on seismic risk communication in Europe published between 2000 and 2022. We focused on how seismic risk communication has changed in that time span, looking for targeted approaches, tools, recipients and channels. Here we provide an overview of the results obtained from the analysis of 109 selected publications, also highlighting the importance of scientific communication as a transnational problem, due to the mobility of modern society. Our study reveals that seismic risk communication in Europe is becoming increasingly proactive, focusing on a bottom-up strategy that relies on youth to build the resilience of future generations. The potential for the community empowerment has been primarily addressed with seismic risk communication during the pre-crisis phase of the disaster, when risk awareness can be effectively raised. Social media are increasingly used to provide timely and actionable information in times of crisis, to engage citizens within a two-way risk communication model, in the pre-crisis time, and to provide scientific data for post-disaster processing. The future agenda of seismic risk communication in Europe should focus on building trust with the public, moving towards a three-way model of seismic risk communication and, even more importantly, taking action to curb the spread of fake news and their negative impact on disaster management. Last but not least, more efforts should be made to link practice and theory and explicitly build seismic risk communication on theoretical models.
    Beschreibung: Published
    Beschreibung: San Francisco, California, USA
    Beschreibung: OS: Terza missione
    Schlagwort(e): Seismic risk ; communication ; Europe ; scoping review ; 04.06. Seismology ; 05.08. Risk ; 05.09
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2024-03-13
    Beschreibung: In mid-September 2021 there was a rapid increase in geophysical and geochemical parameters on the island of Vulcano, Italy, reaching alarming values. This phase of unrest aroused serious concern among Civil Protection, local authorities and the scientific community due to the risk of phreatomagmatic activity, with potentially serious repercussions on the inhabitants of the island and on visiting tourists. The beginning of the unrest was marked by a high occurrence rate of local micro-seismicity related to fluid dynamics within the shallower hydrothermal system (mainly Long Period and Very Long Period events); Volcano-Tectonic (VT) earthquakes increased in late October after most of the monitored parameters reached their climax. Afterwards, major episodes of VT activity were also recorded from March to April and at the end of the year 2022, when an earthquake of ML 4.6 occurred on December 4, SW of the island of Vulcano. Here, we analyze the VT earthquakes from January 2020 to December 2022, in terms of space-time distribution, energy release and focal mechanisms in the framework of the regional geodynamic context and in the light of the main characteristics of the seismic activity recorded in the Vulcano area over the past 36 years.
    Beschreibung: Published
    Beschreibung: San Francisco, California, USA
    Beschreibung: OST3 Vicino alla faglia
    Schlagwort(e): earthquakes ; monitoring ; volcano unrest ; Vulcano ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 128(10), ISSN: 2169-9003
    Publikationsdatum: 2024-03-14
    Beschreibung: Radio Echo Sounding (RES) surveys conducted in May 2010 and April 2011 revealed a 2 km2 flat area with increased bed reflectivity at the base of Isunnguata Sermia at the western margin of the Greenland Ice Sheet. This flat reflector was located within a localized subglacial hydraulic potential (hydropotential) minimum, as part of a complex and elongated trough system. By analogy with comparable features in Antarctica, the initial interpretation of such a feature was a potential subglacial lake. In September 2013 a co-located seismic survey revealed a 1,750 m by 540 and 37 m thick stratified lens-shaped bedform at the base of a subglacial trough system. Amplitude Versus Angle (AVA) analysis yields a derived reflection coefficient R = 0.09 ± 0.14 indicative of consolidated sediments possibly overlain by dilatant till. The bed and flank on the northern side of the trough consist of unconsolidated, possibly water-bearing sediments with R = −0.10 ± 0.08, whereas on the southern side it consists of more consolidated material. We interpret the trough as a key component of the wider subglacial drainage network, for which the sediments on its northern side act as a localized water-storage reservoir. Given the observation of seasonally forming and rapidly draining supraglacial meltwater lakes in this area, we interpret the lens-shaped bedform as deposited by episodically ponding meltwater within the subglacial trough system. Our results highlight the importance of transient subglacial hydrological and sedimentological processes such as drainage events for the interaction of ice sheets and their substrates, to understand ice dynamics in a warming climate.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2024-03-14
    Beschreibung: The presence of clouds in the Arctic regulates the surface energy budget (SEB) over the sea-ice surface and the ice-free ocean. Following several previous field campaigns, the cloud-radiation relationship, including cloud vertical structure and phase, has been elucidated; however, modeling of this relationship has matured slowly. In recognition of the recent decline in the Arctic sea-ice extent, representation of the cloud system in numerical models should consider the effects of areas covered by sea ice and ice-free areas. Using an in situ stationary meteorological observation data set obtained over the ice-free Arctic Ocean by the Japanese Research Vessel Mirai (September 2014), coordinated evaluation of six regional climate models (RCMs) with nine model runs was performed by focusing on clouds and the SEB. The most remarkable findings were as follows: (1) reduced occurrence of unstable stratification with low-level cloud water in all models in comparison to the observations, (2) significant differences in cloud water representations between single- and double-moment cloud schemes, (3) extensive differences in partitioning of hydrometeors including solid/liquid precipitation, and (4) pronounced lower-tropospheric air temperature biases. These issues are considered as the main sources of SEB uncertainty over ice-free areas of the Arctic Ocean. The results from a coupled RCM imply that the SEB is constrained by both the atmosphere and the ocean (and sea ice) with considerable feedback. Coordinated improvement of both stand-alone atmospheric and coupled RCMs would promote a more comprehensive and improved understanding of the Arctic air-ice-sea coupled system.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 126(12), ISSN: 2169-9003
    Publikationsdatum: 2024-03-14
    Beschreibung: Bedforms of Thwaites Glacier, West Antarctica both record and affect ice flow, as shown by geophysical data and simple models. Thwaites Glacier flows across the tectonic fabric of the West Antarctic rift system with its bedrock highs and sedimentary basins. Swath radar and seismic surveys of the glacier bed have revealed soft-sediment flutes 100 m or more high extending 15 km or more across basins downglacier from bedrock highs. Flutes end at prominent hard-bedded moats on stoss sides of the next topographic highs. We use simple models to show that ice flow against topography increases pressure between ice and till upglacier along the bed over a distance that scales with the topography. In this basal zone of high pressure, ice-contact water would be excluded, thus increasing basal drag by increasing ice-till coupling and till flux, removing till to allow bedrock erosion that creates moats. Till carried across highlands would then be deposited in lee-side positions forming bedforms that prograde downglacier over time, and that remain soft on top through feedbacks that match till-deformational fluxes from well upglacier of the topography. The bedforms of the part of Thwaites surveyed here are prominent because ice flow has persisted over a long time on this geological setting, not because ice flow is anomalous. Bedform development likely has caused evolution of ice flow over time as till and lubricating water were redistributed, moats were eroded and bedforms grew.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(6), ISSN: 0094-8276
    Publikationsdatum: 2024-03-18
    Beschreibung: Understanding the material properties and physical conditions of basal ice is crucial for a comprehensive understanding of Antarctic ice‐sheet dynamics. Yet, direct data are sparse and difficult to acquire. Here, we employ ultra‐wideband radar to map high‐backscatter zones near the glacier bed within East Antarctica's Jutulstraumen drainage basin. Our backscatter analysis reveals that the basal ice in an area of ∼10,000 km² is composed of along‐flow oriented sediment‐laden basal ice units connected to the basal substrate, extending up to several hundred meters thick. Three‐dimensional thermomechanical modeling supports that these units form via basal freeze‐on of subglacial water that originated from further upstream. Our findings suggest that basal freeze‐on, and the entrainment and transport of subglacial material play a significant role in an accurate representation of material, physical, and rheological properties of the Antarctic ice sheet's basal ice, ultimately enhancing the accuracy and reliability of ice‐sheet modeling.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    Publikationsdatum: 2024-03-18
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Temperature and soil moisture are known to control pesticide mineralization. Half‐life times (DT〈sub〉50〈/sub〉) derived from pesticide mineralization curves generally indicate longer residence times at low soil temperature and moisture but do not consider potential changes in the microbial allocation of pesticide‐derived carbon (C). We aimed to determine carbon use efficiency (CUE, formation of new biomass relative to total C uptake) to better understand microbial utilization of pesticide‐derived C under different environmental conditions and to support the conventional description of degradation dynamics based on mineralization. We performed a microcosm experiment at two MCPA (2‐methyl‐4‐chlorophenoxyacetic acid) concentrations (1 and 20 mg kg〈sup〉−1〈/sup〉) and defined 20°C/pF 1.8 as optimal and 10°C/pF 3.5 as limiting environmental conditions. After 4 weeks, 70% of the initially applied MCPA was mineralized under optimal conditions but MCPA mineralization reached less than 25% under limiting conditions. However, under limiting conditions, an increase in CUE was observed, indicating a shift towards anabolic utilization of MCPA‐derived C. In this case, increased C assimilation implied C storage or the formation of precursor compounds to support resistance mechanisms, rather than actual growth since we did not find an increase in the 〈italic toggle="no"〉tfdA〈/italic〉 gene relevant to MCPA degradation. We were able to confirm the assumption that under limiting conditions, C assimilation increases relative to mineralization and that C redistribution, may serve as an explanation for the difference between mineralization and MCPA dissipation‐derived degradation dynamics. In addition, by introducing CUE to the temperature‐ and moisture‐dependent degradation of pesticides, we can capture the underlying microbial constraints and adaptive mechanisms to changing environmental conditions.〈/p〉
    Beschreibung: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Changing environmental conditions alter the MCPA degradation dynamics and the allocation of pesticide‐derived carbon to anabolic or catabolic metabolism.〈boxed-text position="anchor" content-type="graphic" id="ejss13417-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:13510754:media:ejss13417:ejss13417-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Beschreibung: Collaborative Research Center 1253 CAMPOS (DFG)
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Beschreibung: DFG Priority Program 2322 “Soil System”
    Beschreibung: Ellrichshausen Foundation
    Beschreibung: Research Training Group “Integrated Hydrosystem modeling”
    Beschreibung: https://doi.org/10.5281/zenodo.5081655
    Schlagwort(e): ddc:631.4 ; anabolism ; carbon use efficiency ; catabolism ; effect of soil moisture and temperature ; gene‐centric process model ; MCPA biodegradation
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    Publikationsdatum: 2024-02-08
    Beschreibung: Shells of the giant clam Tridacna can provide decade-long records of past environmental conditions via their geochemical composition and structurally through growth banding. Counting the daily bands can give an accurate internal age model with high temporal resolution, but daily banding is not always visually retrievable, especially in fossil specimens. We show that daily geochemical cycles (e.g., Mg/Ca) are resolvable via highly spatially resolved laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS; 3 \xc3\x97 33 \xce\xbcm laser slit) in our Miocene (\xe2\x88\xbc10 Ma) specimen, even in areas where daily banding is not visually discernible. By applying wavelet transformation on the measured daily geochemical cycles, we quantify varying daily growth rates throughout the shell. These growth rates are thus used to build an internal age model independent of optical daily band countability. Such an age model can be used to convert the measured elemental ratios from a function of distance to a function of time, which helps evaluate paleoenvironmental proxy data, for example, regarding the timing of sub-seasonal events. Furthermore, the quantification of daily growth rates across the shell facilitates the evaluation of (co)dependencies between growth rates and corresponding elemental compositions.
    Schlagwort(e): Tridacna
    Repository-Name: National Museum of Natural History, Netherlands
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    Publikationsdatum: 2024-02-09
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Gas transport in soils is usually assumed to be purely diffusive, although several studies have shown that non‐diffusive processes can significantly enhance soil gas transport. These processes include barometric air pressure changes, wind‐induced pressure pumping and static air pressure fields generated by wind interacting with obstacles. The associated pressure gradients in the soil can cause advective gas fluxes that are much larger than diffusive fluxes. However, the contributions of the respective transport processes are difficult to separate. We developed a large chamber system to simulate pressure fields and investigate their influence on soil gas transport. The chamber consists of four subspaces in which pressure is regulated by fans that blow air in or out of the chamber. With this setup, we conducted experiments with oscillating and static pressure fields. CO〈sub〉2〈/sub〉 concentrations were measured along two soil profiles beneath the chamber. We found a significant relationship between static lateral pressure gradients and the change in the CO〈sub〉2〈/sub〉 profiles (R〈sup〉2〈/sup〉 = 0.53; 〈italic toggle="no"〉p〈/italic〉‐value 〈2e‐16). Even small pressure gradients between −1 and 1 Pa relative to ambient pressure resulted in an increase or decrease in CO〈sub〉2〈/sub〉 concentrations of 8% on average in the upper soil, indicating advective flow of air in the pore space. Positive pressure gradients resulted in decreasing, negative pressure gradients in increasing CO〈sub〉2〈/sub〉 concentrations. The concentration changes were probably caused by an advective flow field in the soil beneath the chamber generated by the pressure gradients. No effect of oscillating pressure fields was observed in this study. The results indicate that static lateral pressure gradients have a substantial impact on soil gas transport and therefore are an important driver of gas exchange between soil and atmosphere. Lateral pressure gradients in a comparable range can be induced under windy conditions when wind interacts with terrain features. They can also be caused by chambers used for flux measurements at high wind speed or by fans used for head‐space mixing within the chambers, which yields biased flux estimates.〈/p〉
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): ddc:631.4 ; advective flux ; chamber flux measurements ; static air pressure fields ; wind‐induced pressure pumping
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Global Biogeochemical Cycles, American Geophysical Union (AGU), 38(1), ISSN: 0886-6236
    Publikationsdatum: 2024-02-13
    Beschreibung: The availability of silicon (Si) in the ocean plays an important role in regulating biogeochemical and ecological processes. The Si budget of the Arctic Ocean appears balanced, with inputs equivalent to outputs, though it is unclear how a changing climate might aggravate this balance. In this study, we focus on Si cycling in Arctic coastal areas and continental shelf sediments to better constrain the Arctic Ocean Si budget. We provide the first estimate of amorphous Si (ASi) loading from erosion of coastal Yedoma deposits (30–90 Gmol yr−1), demonstrating comparable rates to particulate Si loading from rivers (10–90 Gmol yr−1). We found a positive relationship between surface sediment ASi and organic matter content on continental shelves. Combining these values with published Arctic shelf sediment properties and burial rates we estimate 70 Gmol Si yr−1 is buried on Arctic continental shelves, equivalent to 4.5% of all Si inputs to the Arctic Ocean. Sediment dissolved Si fluxes increased with distance from river mouths along cruise transects of shelf regions influenced by major rivers in the Laptev and East Siberian seas. On an annual basis, we estimate that Arctic shelf sediments recycle approximately up to twice as much DSi (680 Gmol Si) as is loaded from rivers (340–500 Gmol Si).
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Global Biogeochemical Cycles, American Geophysical Union (AGU), 38(1), ISSN: 0886-6236
    Publikationsdatum: 2024-02-13
    Beschreibung: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year−1 in observational product and +0.54 PgCO2-e year−1 in model median) and CH4 (+0.21 PgCO2-e year−1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%–60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2024-02-27
    Beschreibung: Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO〈jats:sub〉2〈/jats:sub〉 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO〈jats:sub〉2〈/jats:sub〉 sink with lower net CO〈jats:sub〉2〈/jats:sub〉 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO〈jats:sub〉2〈/jats:sub〉 sink was located in western Canada (median: −52 g C m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH〈jats:sub〉4〈/jats:sub〉 m〈jats:sup〉−2〈/jats:sup〉 y〈jats:sup〉−1〈/jats:sup〉). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO〈jats:sub〉2〈/jats:sub〉 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    Publikationsdatum: 2024-02-28
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Hydrogeological information about an aquifer is difficult and costly to obtain, yet essential for the efficient management of groundwater resources. Transferring information from sampled sites to a specific site of interest can provide information when site‐specific data is lacking. Central to this approach is the notion of site similarity, which is necessary for determining relevant sites to include in the data transfer process. In this paper, we present a data‐driven method for defining site similarity. We apply this method to selecting groups of similar sites from which to derive prior distributions for the Bayesian estimation of hydraulic conductivity measurements at sites of interest. We conclude that there is now a unique opportunity to combine hydrogeological expertise with data‐driven methods to improve the predictive ability of stochastic hydrogeological models.〈/p〉
    Beschreibung: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉〈italic〉Article impact statement〈/italic〉: This article introduces hierarchical clustering as a method for defining a notion of site similarity; the aim of this method is to improve the derivation of prior distributions in Bayesian methods in hydrogeology.〈/p〉
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Beschreibung: https://github.com/GeoStat-Bayesian/geostatDB
    Beschreibung: https://github.com/GeoStat-Bayesian/exPrior
    Beschreibung: https://github.com/GeoStat-Bayesian/siteSimilarity
    Schlagwort(e): ddc:551.49 ; hydrogeological sites ; hydrogeological modeling
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 25(1), ISSN: 1525-2027
    Publikationsdatum: 2024-03-04
    Beschreibung: Mineral dust accumulated on the ocean floor is an important archive for reconstructing past atmospheric circulation changes and climatological conditions in the source areas. Dust emitted from Southern Hemisphere dust sources is widely deposited over the oceans. However, there are few records of dust deposition over the open ocean, and a large need for extended geographical coverage exists. We present a large data set (134 surface sediment samples) of Late Holocene dust deposition from seafloor surface sediments covering the entire South Atlantic Ocean. Polymodal grain-size distributions of the lithogenic fraction indicate that the sediments are composed of multiple sediment components. By using end-member modeling, we attempt to disentangle the dust signal from non-aeolian sediments. Combined with 230Th-normalized lithogenic fluxes, we quantified the specific deposition fluxes for mineral dust, crrent-sorted sediments and ice-rafted debris (IRD). Although the method could not completely separate the different components in every region, it shows that dust deposition off the most prominent dust source for the South Atlantic Ocean—southern South America—amounts up to approximately 0.7 g cm−2 Kyr−1 and decreases downwind. Bottom-current-sorted sediments and IRD are mostly concentrated around the continental margins. The ratio of the coarse to fine dust end members reveals input from north African dust sources to the South Atlantic. The majority of the observations are in good agreement with new model simulations. This extensive and relevant data set of dust grain size and deposition fluxes to the South Atlantic could be used to calibrate and validate further model simulations.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 128(2), ISSN: 2169-9003
    Publikationsdatum: 2024-04-29
    Beschreibung: The stable water isotopic composition in firn and ice cores provides valuable information on past climatic conditions. Because of uneven accumulation and post-depositional modifications on local spatial scales up to hundreds of meters, time series derived from adjacent cores differ significantly and do not directly reflect the temporal evolution of the precipitated snow isotopic signal. Hence, a characterization of how the isotopic profile in the snow develops is needed to reliably interpret the isotopic variability in firn and ice cores. By combining digital elevation models of the snow surface and repeated high-resolution snow sampling for stable water isotope measurements of a transect at the East Greenland Ice-core Project campsite on the Greenland Ice Sheet, we are able to visualize the buildup and post-depositional changes of the upper snowpack across one summer season. To this end, 30 cm deep snow profiles were sampled on six dates at 20 adjacent locations along a 40 m transect. Near-daily photogrammetry provided snow height information for the same transect. Our data shows that erosion and redeposition of the original snowfall lead to a complex stratification in the δ18O signature. Post-depositional processes through vapor-snow exchange affect the near surface snow with d-excess showing a decrease in surface and near-surface layers. Our data suggests that the interplay of stratigraphic noise, accumulation intermittency, and local post-depositional processes form the proxy signal in the upper snowpack.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), 129(3), ISSN: 2169-9313
    Publikationsdatum: 2024-04-24
    Beschreibung: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Extensive investigation of continental rift systems has been fundamental for advancing the understanding of extensional tectonics and modes of formation of new ocean basins. However, current rift classification schemes do not account for conjugate end members formed by Large Igneous Province crust, referring to thick mafic crust, sometimes including continental fragments. Here, we investigate the rifting of William's Ridge (Kerguelen Plateau) and Broken Ridge, components of the Kerguelen Large Igneous Province now situated in the Southeast Indian Ocean, and incorporate these end members into the deformation migration concept for rifted margins. We use multichannel seismic reflection profiles and data from scientific drill cores acquired on both conjugate margins to propose, for the first time, a combined tectono‐stratigraphic framework. We interpret seismic patterns, tectonic features, and magnetic anomaly picks to determine an across‐strike structural domain classification. This interpretation considers the rift system overall to be “magma‐poor” despite being located proximal to the Kerguelen plume but suggests that syn‐rift interaction between the Kerguelen mantle plume and the lithospheric structure of William's Ridge and Broken Ridge has controlled the along‐strike segmentation of both conjugates. We integrate seismic reflection and bathymetric data to test the hypothesis of predominantly transform motion, between the Australian and Antarctic plates, in Late Cretaceous and Paleogene time.〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(2), ISSN: 2169-9275
    Publikationsdatum: 2024-05-01
    Beschreibung: We present a 700 km airborne electromagnetic survey of late-spring fast ice and sub-ice platelet layer (SIPL) thickness distributions from McMurdo Sound to Cape Adare, providing a first-time inventory of fast ice thickness close to its annual maximum. The overall mode of the consolidated ice (including snow) thickness was 1.9 m, less than its mean of 2.6 ± 1.0 m. Our survey was partitioned into level and rough ice, and SIPL thickness was estimated under level ice. Although level ice, with a mode of 2.0 m and mean of 2.0 ± 0.6 m, was prevalent, rough ice occupied 41% of the transect by length, 50% by volume, and had a mode of 3.3 m and mean of 3.2 ± 1.2 m. The thickest 10% of rough ice was almost 6 m on average, inclusive of a 2 km segment thicker than 8 m in Moubray Bay. The thickest ice occurred predominantly along the northwestern Ross Sea, due to compaction against the coast. The adjacent pack ice was thinner (by ∼1 m) than the first-year fast ice. In Silverfish Bay, offshore Hells Gate Ice Shelf, New Harbor, and Granite Harbor, the SIPL transect volume was a significant fraction (0.30) of the consolidated ice volume. The thickest 10% of SIPLs averaged nearly 3 m thick, and near Hells Gate Ice Shelf the SIPL was almost 10 m thick, implying vigorous heat loss to the ocean (∼90 W m −2). We conclude that polynya-induced ice deformation and interaction with continental ice influence fast ice thickness in the western Ross Sea.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    Publikationsdatum: 2024-05-30
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Deep‐ploughing far beyond the common depth of 30 cm was used more than 50 years ago in Northern Germany with the aim to break root‐restricting layers and thereby improve access to subsoil water and nutrient resources. We hypothesized that effects of this earlier intervention on soil properties and yields prevailed after 50 years. Hence, we sampled two sandy soils and one silty soil (Cambisols and a Luvisol) of which half of the field had been deep‐ploughed 50 years ago (soils then re‐classified as Treposols). The adjacent other half was not deep‐ploughed and thus served as the control. At all the three sites, both deep‐ploughed and control parts were then conventionally managed over the last 50 years. We assessed yields during the dry year 2019 and additionally in 2020, and rooting intensity at the year of sampling (2019), as well as changes in soil structure, carbon and nutrient stocks in that year. We found that deep‐ploughing improved yields in the dry spell of 2019 at the sandy sites, which was supported by a more general pattern of higher NDVI indices in deep‐ploughed parts for the period from 2016 to 2021 across varying weather conditions. Subsoil stocks of soil organic carbon and total plant‐available phosphorus were enhanced by 21%–199% in the different sites. Root biomass in the subsoil was reduced due to deep‐ploughing at the silty site and was increased or unaffected at the sandy sites. Overall, the effects of deep‐ploughing were site‐specific, with reduced bulk density in the buried topsoil stripes in the subsoil of the sandy sites, but with elevated subsoil density in the silty site. Hence, even 50 years after deep‐ploughing, changes in soil properties are still detectable, although effect size differed among sites.〈/p〉
    Beschreibung: BonaRes http://dx.doi.org/10.13039/501100022576
    Schlagwort(e): ddc:631.4 ; aggregates ; carbon sequestration ; deep‐ploughing ; macronutrients ; subsoil ; Treposol
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    facet.materialart.
    Unbekannt
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(19), ISSN: 0094-8276
    Publikationsdatum: 2024-05-29
    Beschreibung: The sensitivity of sea ice to the contrasting seasonal and perennial snow properties in the southeastern and northwestern Weddell Sea is not yet considered in sea ice model and satellite remote sensing applications. However, the analysis of physical snowpack properties in late summer in recent years reveals a high fraction of melt-freeze forms resulting in significant higher snow densities in the northwestern than in the eastern Weddell Sea. The resulting lower thermal conductivity of the snowpack, which is only half of what has been previously assumed in models in the eastern Weddell Sea, reduces the sea ice bottom growth by 18 cm during winter. In the northwest, however, the potentially formed snow ice thickness of 22 cm at the snow/ice interface contributes to additional 7 cm of thermodynamic ice growth at the bottom. This sensitivity study emphasizes the enormous impact of unappreciated regional differences in snowpack properties on the thermodynamic ice growth.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...