ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2020-07-08
    Description: Boron isotope systematics of planktonic foraminifera from core-top sediments and culture experiments have been studied to investigate the sensitivity of δ11B of calcite tests to seawater pH. However, our knowledge of the relationship between δ11B and pH remains incomplete for many taxa. Thus, to expand the potential scope of application of this proxy, we report δ11B data for seven different species of planktonic foraminifera from sediment core tops. We utilize a method for the measurement of small samples of foraminifera and calculate the δ11B-calcite sensitivity to pH for Globigerinoides ruber, Trilobus sacculifer (sacc or without sacc), Orbulina universa, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii, and Globorotalia tumida, including for unstudied core tops and species. These taxa have diverse ecological preferences and are from sites that span a range of oceanographic regimes, including some that are in regions of air–sea equilibrium and others that are out of equilibrium with the atmosphere. The sensitivity of δ11Bcarbonate to δ11Bborate (e.g., Δδ11Bcarbonate∕Δδ11Bborate) in core tops is consistent with previous studies for T. sacculifer and G. ruber and close to unity for N. dutertrei, O. universa, and combined deep-dwelling species. Deep-dwelling species closely follow the core-top calibration for O. universa, which is attributed to respiration-driven microenvironments likely caused by light limitation and/or symbiont–host interactions. Our data support the premise that utilizing boron isotope measurements of multiple species within a sediment core can be utilized to constrain vertical profiles of pH and pCO2 at sites spanning different oceanic regimes, thereby constraining changes in vertical pH gradients and yielding insights into the past behavior of the oceanic carbon pumps.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-15
    Description: The isotope composition of boron (B) in marine biogenic carbonates has been predominantly studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. In order to derive seawater pH from boron isotope ratio data, a number of assumptions related to chemical kinetics and themodynamic isotope exchange reactions are necessary. Furthermore, the boron isotope composition (δ11B) of biogenic carbonates (δ11BCaCO3) is assumed to reflect the δ11B of dissolved borate (B(OH)4−) in seawater. Here we report the development of methodology for measuring the δ11B in biogenic carbonate samples at the multi-collector inductively coupled mass spectrometry facility at Ifremer (Plouzané, France) and the evaluation of δ11BCaCO3 in a diverse range of marine calcifying organisms. We evaluated the δ11BCaCO3 of 6 species of marine calcifiers (a temperate coral, Oculina arbuscula; a coralline red alga, Neogoniolithion sp.; a tropical urchin, Eucidaris tribuloides; a temperate urchin, Arbacia punctulata; a serpulid worm, Hydroides crucigera; and an American oyster, Crassostrea virginica) that were reared for 60 days in isothermal seawater (25 °C) equilibrated with an atmospheric pCO2 of ca. 409 μatm. We observe large inter-species variability in δ11BCaCO3 (ca. 20 ‰) and significant discrepancies between measured δ11BCaCO3 and δ11BCaCO3 expected from established relationships between δ11BCaCO3 and seawater pH. We discuss these results in the context of various proposed mechanisms of biocalcification, including the potential dominant role that internal calcifying site pH plays in regulating CaCO3 saturation state and borate δ11B at the site of calcification and, thus, the δ11B composition of calcifers’ shells and skeletons.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-08
    Description: Boron isotope systematics of planktonic foraminifera from core-top sediments and culture experiments have been studied to investigate the sensitivity of δ11B of their calcite tests to seawater pH. However, our knowledge of the relationship between δ11B and pH remains incomplete for several taxa. Thus, to expand the potential scope of application of this proxy, we report data for 7 different species of planktonic foraminifera from sediment core-tops. We utilize a method for the measurement of small samples of foraminifera and calculate the δ11B-calcite sensitivity to pH for Globigerinoides ruber, Trilobus sacculifer (sacc or w/o sacc), Orbulina universa, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii and Globorotalia tumida, including for unstudied coretops and species. The sensitivity of δ11Bcarbonate to δ11Bborate (eg. Δδ11Bcarbonate/Δδ11Bborate) in core-tops is close to unity. Deep-dwelling species closely follow the core-top calibration for O. universa, which is attributed to respiration-driven microenvironments, likely caused by light limitation for symbiont-bearing foraminifera. These taxa have diverse ecological preferences and are from sites that span a range of oceanographic regimes, including some that are in regions of air-sea equilibrium and others that are out of equilibrium with the atmosphere. Our data support the premise that utilizing boron isotope measurements of multiple species within a sediment core can be utilized to constrain vertical profiles of pH and pCO2 at sites spanning different oceanic regimes, thereby constraining changes in vertical pH gradients and yielding insights into the past behavior of the oceanic carbon pump.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-08
    Description: The boron isotope composition (δ11B) of marine biogenic carbonates has been predominantly studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. However, a number of assumptions regarding chemical kinetics and thermodynamic isotope exchange reactions are required to derive seawater pH from δ11B biogenic carbonates. It is also probable that δ11B of biogenic carbonate reflects seawater pH at the organism's site of calcification, which may or may not reflect seawater pH. Here, we report the development of methodology for measuring the δ11B of biogenic carbonate samples at the multi-collector inductively coupled mass spectrometry facility at Ifremer (Plouzané, France) and the evaluation of δ11BCaCO3 in a diverse range of marine calcifying organisms reared for 60 days in isothermal seawater (25 °C) equilibrated with an atmospheric pCO2 of ca. 409 µatm. Average δ11BCaCO3 composition for all species evaluated in this study range from 16.27 to 35.09 ‰, including, in decreasing order, coralline red alga Neogoniolithion sp. (35.89 ± 3.71 ‰), temperate coral Oculina arbuscula (24.12 ± 0.19 ‰), serpulid worm Hydroides crucigera (19.26 ± 0.16 ‰), tropical urchin Eucidaris tribuloides (18.71 ± 0.26 ‰), temperate urchin Arbacia punctulata (16.28 ± 0.86 ‰), and temperate oyster Crassostrea virginica (16.03 ‰). These results are discussed in the context of each species' proposed mechanism of biocalcification and other factors that could influence skeletal and shell δ11B, including calcifying site pH, the proposed direct incorporation of isotopically enriched boric acid (instead of borate) into biogenic calcium carbonate, and differences in shell/skeleton polymorph mineralogy. We conclude that the large inter-species variability in δ11BCaCO3 (ca. 20 ‰) and significant discrepancies between measured δ11BCaCO3 and δ11BCaCO3 expected from established relationships between abiogenic δ11BCaCO3 and seawater pH arise primarily from fundamental differences in calcifying site pH amongst the different species. These results highlight the potential utility of δ11B as a proxy of calcifying site pH for a wide range of calcifying taxa and underscore the importance of using species-specific seawater-pH–δ11BCaCO3 calibrations when reconstructing seawater pH from δ11B of biogenic carbonates.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2024-02-07
    Description: Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promoted by elevated pCO2. To investigate the mechanisms underlying corals’ complex responses to global change, three species of tropical zooxanthellate corals (Stylophora pistillata, Pocillopora damicornis, and Seriatopora hystrix) and one species of asymbiotic cold-water coral (Desmophyllum pertusum, syn. Lophelia pertusa) were cultured under a range of ocean acidification and warming scenarios. Under control temperatures, all tropical species exhibited increased calcification rates in response to increasing pCO2. However, the tropical species’ response to increasing pCO2 flattened when they lost symbionts (i.e., bleached) under the high-temperature treatments—suggesting that the loss of symbionts neutralized the benefit of increased pCO2 on calcification rate. Notably, the cold-water species that lacks symbionts exhibited a negative calcification response to increasing pCO2, although this negative response was partially ameliorated under elevated temperature. All four species elevated their calcifying fluid pH relative to seawater pH under all pCO2 treatments, and the magnitude of this offset (Δ[H+]) increased with increasing pCO2. Furthermore, calcifying fluid pH decreased along with symbiont abundance under thermal stress for the one species in which calcifying fluid pH was measured under both temperature treatments. This observation suggests a mechanistic link between photosymbiont loss (‘bleaching’) and impairment of zooxanthellate corals’ ability to elevate calcifying fluid pH in support of calcification under heat stress. This study supports the assertion that thermally induced loss of photosymbionts impairs tropical zooxanthellate corals’ ability to cope with CO2-induced ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-23
    Description: The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO 2 ) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO 2 beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO 2 record spanning the past 66 million years. This newly constructed record provides clearer evidence for higher Earth system sensitivity in the past and for the role of CO 2 thresholds in biological and cryosphere evolution. Editor’s summary The concentration of atmospheric carbon dioxide is a fundamental driver of climate, but its value is difficult to determine for times older than the roughly 800,000 years for which ice core records are available. The Cenozoic Carbon dioxide Proxy Integration Project (CenCO2PIP) Consortium assessed a comprehensive collection of proxy determinations to define the atmospheric carbon dioxide record for the past 66 million years. This synthesis provides the most complete record yet available and will help to better establish the role of carbon dioxide in climate, biological, and cryosphere evolution. — H. Jesse Smith
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: It is thought that the active physiological regulation of the chemistry of a parent fluid is an important process in the biomineralization of scleractinian corals. Biological regulation of calcification fluid pH (pHCF) and other carbonate chemistry parameters ([CO32−]CF, DICCF, and ΩCF) may be challenged by CO2 driven acidification and temperature. Here, we examine the combined influence of changing temperature and CO2 on calcifying fluid regulation in four common Caribbean coral species—Porites astreoides, Pseudodiploria strigosa, Undaria tenuifolia, and Siderastrea siderea. We utilize skeletal boron geochemistry (B/Ca and δ11B) to probe the pHCF, [CO32−]CF, and DICCF regulation in these corals, and δ13C to track changes in the sources of carbon for calcification. Temperature was found to not influence pHCF regulation across all pCO2 treatments in these corals, in contrast to recent studies on Indo-Pacific pocilloporid corals. We find that [DIC]CF is significantly lower at higher temperatures in all the corals, and that the higher temperature was associated with depletion of host energy reserves, suggesting [DIC]CF reductions may result from reduced input of respired CO2 to the DIC pool for calcification. In addition, δ13C data suggest that under high temperature and CO2 conditions, algal symbiont photosynthesis continues to influence the calcification pool and is associated with low [DIC]CF in P. strigosa and P. astreoides. In P. astreoides this effect is also associated with an increase in chlorophyll a concentration in coral tissues at higher temperatures. These observations collectively support the assertion that physicochemical control over coral calcifying fluid chemistry is coupled to host and symbiont physiological responses to environmental change, and reveals interspecific differences in the extent and nature of this coupling.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Boron/Calcium ratio; Boron/Calcium ratio, standard deviation; Calcification/Dissolution; Calcification rate; Calcification rate, standard deviation; Calcifying fluid, calcite saturation state; Calcifying fluid, calcite saturation state, standard deviation; Calcifying fluid, carbonate ion; Calcifying fluid, carbonate ion, standard deviation; Calcifying fluid, dissolved inorganic carbon; Calcifying fluid, dissolved inorganic carbon, standard deviation; Calcifying fluid, pH; Calcifying fluid, pH, standard deviation; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Porites astreoides; Pseudodiploria strigosa; Replicates; Salinity; Salinity, standard deviation; Siderastrea siderea; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature; Temperature, water; Temperature, water, standard deviation; Treatment: partial pressure of carbon dioxide; Treatment: temperature; Tropical; Type; Undaria tenuifolia; δ11B; δ11B, standard deviation; δ13C; δ13C, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 2940 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promoted by elevated pCO2. To investigate the mechanisms underlying corals' complex responses to global change, three species of tropical zooxanthellate corals (Stylophora pistillata, Pocillopora damicornis, and Seriatopora hystrix) and one species of asymbiotic cold-water coral (Desmophyllum pertusum, syn. Lophelia pertusa) were cultured under a range of ocean acidification and warming scenarios. Under control temperatures, all tropical species exhibited increased calcification rates in response to increasing pCO2. However, the tropical species' response to increasing pCO2 flattened when they lost symbionts (i.e., bleached) under the high-temperature treatments—suggesting that the loss of symbionts neutralized the benefit of increased pCO2 on calcification rate. Notably, the cold-water species that lacks symbionts exhibited a negative calcification response to increasing pCO2, although this negative response was partially ameliorated under elevated temperature. All four species elevated their calcifying fluid pH relative to seawater pH under all pCO2 treatments, and the magnitude of this offset (Δ[H+]) increased with increasing pCO2. Furthermore, calcifying fluid pH decreased along with symbiont abundance under thermal stress for the one species in which calcifying fluid pH was measured under both temperature treatments. This observation suggests a mechanistic link between photosymbiont loss ('bleaching') and impairment of zooxanthellate corals' ability to elevate calcifying fluid pH in support of calcification under heat stress. This study supports the assertion that thermally induced loss of photosymbionts impairs tropical zooxanthellate corals' ability to cope with CO2-induced ocean acidification.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard error; Ammonium; Ammonium, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Benthic animals; Benthos; Bicarbonate; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Buoyant mass; Calcification/Dissolution; Calcification rate; Calcification rate, standard deviation; Calcifying fluid, pH; Calcifying fluid, pH, standard deviation; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard error; Cnidaria; Dry mass; Dry mass, standard deviation; Experiment duration; Fragments; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Lophelia pertusa; Mass, standard deviation; Mortality; Mortality/Survival; Nitrate; Nitrate, standard error; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Phosphate; Phosphate, standard error; Pocillopora damicornis; Salinity; Salinity, standard error; Score; Score, standard deviation; Seriatopora hystrix; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Stylophora pistillata; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 1378 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...