ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physical Society (APS)
  • GFZ Data Services
  • Institute of Physics
  • Molecular Diversity Preservation International
  • 2020-2024  (206)
  • 2022  (206)
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Physical Society (APS)
    In:  EPIC3Physical Review E, American Physical Society (APS), 105(4), pp. 044310-044310, ISSN: 2470-0045
    Publication Date: 2023-12-05
    Description: Current questions in ecology revolve around instabilities in the dynamics on spatial networks and particularly the effect of node heterogeneity. We extend the master stability function formalism to inhomogeneous biregular networks having two types of spatial nodes. Notably, this class of systems also allows the investigation of certain types of dynamics on higher-order networks. Combined with the generalized modeling approach to study the linear stability of steady states, this is a powerful tool to numerically asses the stability of large ensembles of systems. We analyze the stability of ecological metacommunities with two distinct types of habitats analytically and numerically in order to identify several sets of conditions under which the dynamics can become stabilized by dispersal. Our analytical approach allows general insights into stabilizing and destabilizing effects in metapopulations. Specifically, we identify self-regulation and negative feedback loops between source and sink populations as stabilizing mechanisms and we show that maladaptive dispersal may be stable under certain conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-01-05
    Description: Abstract
    Description: The data publication contains all heat-flow data of onshore Germany. The data release contains data generated between 1959 and 2020 and constitutes a substantial update and extension compared to the last compilation provided by the Geothermal Atlas from Hurter & Haenel (2002). The data set comprises new heat-flow determinations published after 2002 as well as data from before 2002, which were not included in the Hurter & Haenel atlas. The resulting updated database contains 836 determinations of heat flow at 595 locations from 42 publications. 85% of the reported heat-flow values are determined in boreholes, 5% in mines, and further 9 % are from onshore lake measurements using marine probe sensing techniques. The reporting and storing of the database is following the structure of the IHFC Global Heat Flow Database (Fuchs et al., 2021). A comprehensive description, including field classifications and ex-amples of associated data, is documented there. The IHFC database concept introduces parent elements (providing site-specific information), child elements (i.e. heat-flow values determined at the site and associated meta-data) and further fields providing additional information for the eval-uation of heat-flow quality. Thus, it provides a detailed collection of data and meta-data infor-mation, exceeding the sparse information on coordinates, name and heat-flow value provided in Hurter & Haenel (2002). In our release of the German heat-flow values, we have added fields about the applied quality scoring, the reasoning for inclusion or exclusion of data due to quality, and a descriptive field of the regional tectonic or geological units. For details of this procedure see Fuchs et al. (2022). The associated data description provides the full list of data sources (publications), while the DOI landing page only displays digital versions of articles if available.
    Keywords: heat flow ; geothermal potential ; onshore ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC RADIATION 〉 HEAT FLUX ; EARTH SCIENCE 〉 OCEANS 〉 OCEAN HEAT BUDGET 〉 HEAT FLUX ; physical property 〉 temperature
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-02
    Description: Abstract
    Description: This dataset includes the first order (global) distribution of frost cracking intensities (FCI) [°C m], for selected paleoclimate time-slices during Late Cenozoic, as presented in the paper by Sharma et al. (2022). The paleoclimate time-slices correspond to Pre-Industrial (~1850 CE, PI), Mid-Holocene (~6 ka, MH), Last Glacial Maximum (~21 ka, LGM) and Pliocene (~3 Ma, PLIO). The FCI (by segregation ice growth) is predicted using the approach of Andersen et al. (2015), as a function of subsurface thermal gradient and volume of (and distance to) liquid water. The paleo-temperature reconstructions are obtained from ECHAM5 general circulation model (GCM) at T159 spatial resolution (80 km * 80 km) by Mutz et al. (2018). The spatial resolution of FCI dataset is same as ECHAM5 GCM simulations (i.e. 80 km * 80 km). The dataset comprises the following: -Scripts (Python) for modeling FCI for approach described in Sharma et al. (2022). -Global FCI distribution as netCDF and ascii formats. The data is available in both netCDF and ascii formats. However, the model code (attached Python scripts) currently supports only netCDF format. The model scripts can be freely utilized for regional and local studies which require finer resolution dataset. Please refer to the associated data description file for a detailed description of the dataset.
    Description: Methods
    Description: The model is based on the approach of Andersen et al. (2015) to estimate FCI as a function of subsurface thermal gradients up to the depth of 20 m. For segregation ice growth, it additionally considers the influence of volume of water available in the proximity of an ice lens. The boundary condition includes the presence of positive temperatures (T 〉 0 °C) at either boundary (at surface or 20 m depth). The frost cracking is supported if the bedrock temperature is in the frost cracking window (–8 °C and –3 °C). The integrated FCI each grid cell, across Earth’s terrestrial surface was calculated by depth integration of the FCI averaged over a period of 1 year. The unit of FCI data is °C m.
    Keywords: Periglacial processes ; frost weathering ; frost cracking intensity ; paleoclimate ; Cenozoic ; EarthShape ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 GLACIAL PROCESSES 〉 PERIGLACIAL PROCESSES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-04
    Description: Abstract
    Description: In the near-Earth space, there are a large population of high energy electrons trapped by Earth’s magnetic field. These energetic electrons are trapped in the regions called Earth’s ring current and radiation belts. They are very dynamic and show a very strong dependence on solar wind and geomagnetic conditions. These energetic electrons can be dangerous to satellites in the near-Earth space. Therefore, it is very important to understand the mechanisms which drive the dynamics of these energetic electrons. Wave particle interaction is one of the most important mechanisms. Among the waves that can be encountered by the energetic electrons when they move around our Earth, whistler mode chorus waves can cause both acceleration and the loss of energetic electrons in the Earth's radiation belts and ring current. To quantify the effect of chorus waves on energetic electrons, we calculated the bounce-averaged quasi-linear diffusion coefficients using the chorus wave model developed by Wang et al (2019) and extended to higher latitudes according to Wang and Shprits (2019). Using these diffusion coefficients, we calculated the lifetime of the electrons with an energy range from 1 keV to 2 MeV. In each magnetic local time (MLT), we calculate the lifetime for each energy and L-shell using two different methods according to Shprits et al (2007) and Albert and Shprits (2009). We make the calculated electron lifetime database available here. Please notice that the chorus wave model by Wang et al (2019) is valid when Kp 〈= 6. If the user wants to use this lifetime database for Kp 〉6, please be careful and contact the authors.
    Keywords: Electron lifetime ; radiation belts ; ring current ; chorus waves ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 PLASMA WAVES
    Type: Model , Model
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-09
    Description: Abstract
    Description: Mean S-wave coda quality factors (mean-Qc) were estimated from active ultrasonic transmission (UT) measurements acquired during the STIMTEC project in the URL Reiche Zeche (Saxony, Germany). We used S-coda waves of 88 selected UT measurements carried out in 3 differently oriented boreholes (BH10, BH12, BH16) to estimate the spatial change of the coda quality factor in the targeted rock volume, an anisotropic metamorphic gneiss. We also analysed temporal variation in attenuation before and after hydraulic stimulations performed in two boreholes (BH10, BH17). We formed in total 8 UT groups (see data table "2022-004_Blanke-and-Boese_mean_UT_event_locations") from neighbouring UT measurements within different depths and from separated time intervals (see also Tab. 1 in Blanke et al. 2023), and compare mean-Qc estimates of centre frequencies ranging 3-21 kHz of octave-width frequency bands. Our results show a characteristic frequency-dependence and we find that mean-Qc estimates reveal temporal-variations of attenuation more significantly than those obtained from velocity measurements. The temporal variations are strongly connected to hydraulic stimulation activities resulting in a reduction of the coda quality factor where AE events occurred. Analysis of mean-Qc estimates after a temporal resting phase (with no activity in the rock volume) suggests that frequencies 〉 15 kHz indicate healing of small-scale fractures induced by injections. The study shows that coda analysis is a powerful tool for the detection of damage zones and for monitoring changes of the local fracture network within reservoirs important for exploitation or underground storage of gases and liquids.
    Description: Methods
    Description: We applied the S-coda wave analysis of Phillips (1985), which is based on the single isotropic scattering model, to estimate the frequency dependent coda quality factor Qc for each UT measurement at each sensor in the mine. The approach of Sato (1977) allows to start the analysis early in the S-wave coda as waveforms are corrected for geometrical scattering effects. The applied method comprises two parts: 1)Moving window analysis: We followed the results of the sensitivity analysis of Blanke et al. (2019) to select the analysis parameters. We use a moving window length of 1,024 samples, a lapse time of 1.1 x ts (S-onset time), a coda length of 9,000 samples (9 ms), and a minimum signal-to-noise ratio of 2. A reference noise window is selected from the end of the seismogram. Seismograms were filtered in octave-width frequency bands and the Power Spectral Density (PSD) was estimated for the pre-defined moving windows and each frequency band. 2)Regression analysis: A regression line was fitted through the coda amplitude measurements of each frequency band. Qc values were estimated from the slopes of regression lines and uncertainties (2σ standard deviation) were calculated from the slope coefficient estimates. In a final step, mean-Qc estimates per centre frequency were estimated at each sensor for each UT group (see data tables 3-10). Mean-Qc values were estimated from a minimum of 3 neighbouring UT events. Only for group UT1BH16-AFT, some mean-Qc values were estimated from less UT events due to the short borehole section beyond a previously defined damage zone that spatially separates the UT groups.
    Description: Other
    Description: The STIMTEC hydraulic stimulation experiment (see Boese et al. 2022 for details) was conducted between 2018 and 2019 in the URL Reiche Zeche in Freiberg (Germany). The experiment aimed at investigating the role of stimulation processes in enhancing hydraulic properties of crystalline rocks. Active and passive seismic measurements were acquired in strongly foliated metamorphic gneiss during several phases of hydraulic stimulation-, testing-, and validation phases. Active measurements were conducted along two galleries (driftway and vein drift), and in several boreholes with different and mostly downward dipping orientations in the monitored rock volume (dimensions 40 m x 50 m x 30 m). The seismic network consisted of 12 Acoustic emission (AE) sensors (see data table 2), high-frequency accelerometers, and a broadband sensor installed in short and mainly upward trending boreholes above the monitored rock volume. Sensor and UT data configurations are provided by Boese et al. (2021). Hydraulic stimulations were conducted in boreholes BH10 (16-18 July, 2018) and BH17 (21-22 August, 2019) in different depth intervals and with different total injected volumes, resulting in the occurrence of AE events. This AE activity highlights activation and reactivation of fractures at the decimetre scale. The 88 analysed UT measurements (out of 〉 300) were acquired from boreholes BH10, BH12, and BH16. BH10 and BH16 run subparallel about 4.5 m apart and dip approx. 15° downwards. BH12 dips 36° from the driftway and crosses BH10 and BH16 below at approx. 33.9 and 18 m borehole depth, respectively.
    Keywords: ultrasonic transmission ; UT ; coda Q ; quality factor ; S-wave ; attenuation ; scattering ; spatio-temporal analysis ; acoustic emission ; injection ; frequency-dependency ; underground research laboratory ; URL ; Reiche Zeche ; STIMTEC ; active seismicity ; active measurements ; damage zone ; single isotropic scattering model ; borehole ; mine ; meter-scale ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-13
    Description: Abstract
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT, Zitat), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO, Zitat) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks or longer in the case of reprocessing campaigns, are the most delayed. The absolute positional accuracy increases from NRT to PSO. This dataset compiles the PSO products for various LEO missions and GNSS constellation in sp3 format. GNSS Constellation: - GPS LEO Satellites: -ENVISAT -Jason-1 -Jason-2 -Jason-3 -Sentinel-3A -Sentinel-3B -Sentinel-6A -TOPEX Each solution follows specific requirements and parametrizations which are named in the respective processing metric table.
    Description: TechnicalInfo
    Description: Within the scope of various international working groups and services, and mission involvements, such as Copernicus POD QWG, IDS, ILRS, TanDEM-X, GRACE(-FO), different PSO orbits are generated at GFZ. These orbits ensue to the best of one’s ability the specific requirements and are based either on one individual observation technique or on a combination of several. Adopted processing settings and, in the case of dynamic POD, parameterizations and modeling are listed in a respective processing metric table. The orbits are stored in the GFZ Information System and Data Center (ISDC) and to the extent deemed possible freely available for the scientific community world-wide
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; TOR ; TSX ; GRACE-FO ; GPS ; RSO ; SAR ; IGOR ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 ENVISAT ; Earth Observation Satellites 〉 JASON-1 ; Earth Observation Satellites 〉 OSTM/JASON-2 ; Earth Observation Satellites 〉 SATELLITES ; Earth Observation Satellites 〉 Sentinel GMES 〉 SENTINEL-3 ; Earth Observation Satellites 〉 TOPEX/POSEIDON ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 DORIS GROUND STATION BEACON ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPSP ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LRA ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 DORIS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS ; Navigation Platforms 〉 Galileo (Europe's European Satellite Navigation System) ; Navigation Platforms 〉 GPS (Global Positioning System) ; Navigation Platforms 〉 NAVSTAR
    Type: Collection , Collection
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-16
    Description: Abstract
    Description: The dataset presented in this compilation provides the input data used for the geological interpretation and for the model parameterization (Norden et al., 2022) of a 3D seismic survey in the area of the geothermal research platform Groß Schönebeck (carried out in 2017; Krawczyk et al., 2019), focussing on the deep Permo-Carboniferous geothermal targets. The geothermal research platform Groß Schönebeck is located about 50 km north of Berlin, on the southern edge of the Northeast German Basin, and is equipped with two deep wells, the E GrSk 3/90 and Gt GrSk 4/05 boreholes. In this data compilation we provide general data on the location of the boreholes and data on the applied methods and the interpretation of petrophysical properties (density, porosity, permeability, thermal properties) obtained by core analysis and well-log interpretation. Because cores were available for the E GrSk 3/90 borehole only, most of the data is referring to the borehole that was drilled more or less vertically. The other borehole (Gt GrSk 4/05) is a deviated well, drilled as a geothermal production well. Further on, we provide the main interpreted structural reflector horizons of the geological model from surface to the assumed top of sedimentary Carboniferous (for discussion of the uncertainty of this boundary please consider the comments in Norden et al., 2022) and the horizons and 3D grid properties of a parameterized simulation grid for the deep geothermal target (sedimentary Rotliegend and Permo-Carboniferous volcanic rocks).
    Keywords: Groß Schönebeck ; reservoir model ; petrophysical parameterization ; Rotliegend ; Permo-Carboniferous volcanic rocks ; EPOS ; geo-energy test beds ; compound material 〉 rock 〉 igneous rock ; compound material 〉 rock 〉 sedimentary rock ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS 〉 SEDIMENTARY ROCK PHYSICAL/OPTICAL PROPERTIES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS ; In Situ/Laboratory Instruments 〉 Corers ; Models/Analyses 〉 Merged Analysis ; Phanerozoic 〉 Paleozoic 〉 Permian
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-16
    Description: Abstract
    Description: An extensive vertical seismic profiling (VSP) survey using wireline distributed acoustic sensing (DAS) technology was carried out between the 15th and 18th of February 2017 at the geothermal in-situ laboratory Groß Schönebeck, Germany. Borehole measurements were recorded in two 4.3 km deep wells E GrSk 3/90 and Gt GrSk 4/05. Two hybrid fibre optics cables were freely lowered inside the wells to form dense receiver arrays. As a seismic source, four heavy vibroseis trucks were used. The survey consisted of 61 source positions distributed in a spiral pattern around the target area. This data publication consists of raw uncorrelated seismic data acquired for 3D seismic imaging purposes. Supplementary information such as well trajectories, source point coordinates, and the pilot sweep data is also provided. Data related to zero-offset measurements can be found in Henninges et al. (2021, https://doi.org/10.5880/GFZ.4.8.2021.001). Further details on the survey design and data acquisition parameters can be found in Henninges et al. (2021, https://doi.org/10.5194/se-12-521-2021); Martuganova et al. (2021, 2022). Information on high-resolution 3D reflection seismic acquisition campaign carried out at Groß Schönebeck in February–March 2017 can be found in Krawczyk et al. (2019); Bauer et al. (2020); Norden et al. (2022). The 3D DAS VSP processing workflow, 3D DAS imaging results, and comparison with 3D surface seismics are presented in Martuganova et al. (2022).
    Keywords: vertical seismic profiling ; distributed acoustic sensing ; fibre optics ; enhanced geothermal systems ; North German basin ; Groß Schönebeck ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-18
    Description: Abstract
    Description: This publication contains software that can be used to pre-process data from the Globe at Night citizen science project, and then run an analysis to determine the rate of change in sky brightness. The software requires input data, which can be obtained directly from Globe at Night. The data used for our publication "Citizen scientists report global rapid reductions in the visibility of stars from 2011 to 2022" is published here, and can be used as input to the software. The process requires access to the World Atlas of Artificial Night Sky Brightness, which is also available from GFZ Data Services.
    Description: Other
    Description: Copyright © 2022 the authors and their institutions Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: light pollution ; python ; perl ; data ; naked eye limiting magnitude ; skyglow ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC RADIATION ; In Situ Land-based Platforms 〉 FIELD SURVEYS ; In Situ Land-based Platforms 〉 GROUND-BASED OBSERVATIONS ; Solar/Space Observing Instruments 〉 Photon/Optical Detectors ; The Present
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-22
    Description: Abstract
    Description: FlotteKarte is a low-overhead plotting routine using Matplotlib, NumPy, and PyPROJ under the hood. The conceptual idea behind this package is that a map is fully defined through the 2D cartesian coordinates that result from applying the map projection to different geographical data. For displaying data on a two-dimensional canvas, Matplotlib is a powerful tool. Conversion between geographic and projected coordinates can easily be done using PyProj. The gap between these two powerful tools and a polished map lies in potential difficulties when translating spherical line topology to 2D cartesian space, and by introducing typical map decorations such as grids or ticks. FlotteKarte aims to fill this gap with a simple interface. FlotteKarte's philosophy is to work completely within the 2D projected coordinates, that is, very close to the projected data. If projected coordinates of data can be obtained, the data can be drawn directly on the underlying Matplotlib Axes. The Map class can then be used to add typical map decoration to that axes using information that it derives from the numerics of the PROJ projection.
    Keywords: cartography ; python ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 GEOGRAPHIC INFORMATION SYSTEMS 〉 DESKTOP GEOGRAPHIC INFORMATION SYSTEMS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 STATISTICAL APPLICATIONS ; information 〉 information system 〉 geographic information system ; science 〉 geography 〉 cartography ; technology 〉 information technology 〉 multimedia technology
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-24
    Description: Abstract
    Description: The Dec 22nd 2018 flank collapse and tsunami at Anak Krakatau in Indonesia is a key event in geosciences as little is known about the lead-up processes and deformation changes prior to flank failure. We processed Sentinel-1 satellite radar data in both ascending (orbit 171) and descending (orbit 47) acquisition using multi-temporal InSAR with the Small BAseline (SB) method during the 4 years prior to the collapse. The data shows that the flank was already moving for years prior to collapse, demonstrating that developing instability in volcano can be monitored long before a collapse. The southwest flank movement rates averaged approx. 27 cm/yr, but underwent intermittent accelerations coinciding with distinct intrusion events in Jan/Feb 2017 and in Jun 2018. The data archived here supplements the material detailed in Zorn et al. (202X, https://doi.org/XXXXX).
    Description: Methods
    Description: We processed the displacement flank evolution at Anak Krakatau using multi-temporal InSAR technique and exploited the Sentinel-1 data in both ascending (orbit 171) and descending (orbit 47) acquisition orbit in the period between 08th Oct 2014 and 19th Dec 2018. We adopted the Small BAseline (SB) method as implemented in the ENVI SARscape® software, using standard processing methods (Berardino et al., 2002). SB allows for a maximisation of the spatial and temporal coherence, and therefore maximises the displacement measurements over the flank, owing to the combination of interferograms with small normal and temporal baselines. We generate interferograms connecting each image with two previous and two following acquisitions. The original data has been multi-looked resulting in a pixel size of 15 m. We used the 30m resolution Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) via the Earth Resources Observation And Science (EROS) Center 2017 to remove the topographic component from the interferograms and we filter the results using Goldstein filter (Goldstein and Werner, 1998) with tile sizes of 18×18px. Finally we unwrap the interferograms masking out coherence lower than 0.2 and applying two-dimensional phase unwrapping algorithm Snaphu and we refer to the displacement measurement using a reference point located on the most northern part of the island considered stable (Fig. 2A). The final results are 1D displacement maps in ascending and descending line-of-sight (LOS). Due to a significant increase in eruptive activity of Anak Krakatau beginning towards the end of May 2018, coherence was significantly reduced on the SW-flank and many unwrapped points became unreliable and had to be filtered out. To capitalise on the previously better coverage, we split our analyses into two separate datasets, one (short) for interpreting data before the 29th May 2018, containing more reliable points on the SW-flank, and one (full) dataset with fewer points used to interpret activity after.
    Keywords: InSAR ; Volcano flank instability ; Anak Krakatau ; Collapse Hazard ; Monitoring ; Earth Observation Satellites 〉 Sentinel GMES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 VOLCANO
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-02-08
    Description: Abstract
    Description: – A temporary seismic network consisting of 48 long-term and 15 short-term stations was deployed from June 2021 to June 2022. The network comprises 27 broadband stations and 20 short period geophones from the Ruhr-University Bochum, the Geophysical Instrument Pool Potsdam (GIPP) and the RWTH Aachen. The inter-station spacing of the longer-term network is about 2 km and the total extent of the network is about 20 km. The densely populated area and vicinity of active pit mining demanded a balance between dense station placement and avoidance of anthropogenic noise sources. The network serves as a pre-study for the installment of a field laboratory in Eschweiler-Weisweiler, Germany. Details can be found in the accompanying data publication (Finger et al., in preparation). This project has been subsidized through the Cofund GEOTHERMICA, which is supported by the European Union’s HORIZON 2020 programme for research, technological development and demonstration under grant agreement No 731117. Furthermore, this study was supported by the Interreg North-West Europe (Interreg NWE) Programme through the Roll-out of Deep Geothermal Energy in North-West Europe (DGE-ROLLOUT) Project (http://www.nweurope.eu/DGE-Rollout), NWE 892. The Interreg NWE Programme is part of the European Cohesion Policy and is financed by the European Regional Development Fund (ERDF). Waveform data are available from the GEOFON data centre, under network code ZB. Data from some stations are embargoed until Januar 2026 but might be available on request.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; passive seismology ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-02-08
    Description: Abstract
    Description: This data publication is supplementary to the study on headwall erosion rates at Glacier d'Otemma in Switzerland, by Wetterauer et al. (2022). Debris on glacier surfaces stems from steep bedrock hillslopes that tower above the ice, so-called headwalls. Recently, rock walls in high-alpine glacial environments experience increased destabilization due to climate warming. Since supraglacial debris alters the melt behaviour of the ice underneath, increased headwall erosion and debris delivery to glacier surfaces will modify glacial mass balances. Therefore, we expect that the response of glaciers to climate change is likely linked to how headwall erosion responds to climate change. As headwall debris is deposited on the ice surface of valley glaciers it is passively transported downglacier, both supra- and englacially. Where two glaciers join, debris along their margins is merged to form medial moraines. Since medial moraine debris tends to be older downglacier, systematic downglacier-sampling of medial moraine debris and the measurement of in situ-produced cosmogenic 10Be concentrations ([10Be]) hold the potential to assess long-term (〉10^2-10^4 yrs) headwall erosion rates through time. However, to obtain the cosmogenic signals of headwall erosion, [10Be] within supraglacial debris need to be corrected for glacial transport time, as cosmogenic nuclides continue to accumulate during exposure and transport. This additional 10Be accumulation during debris transport can be accounted for by simple downglacier debris trajectory modelling. Providing our 10Be dataset together with detailed information on our 1-D modelling approach is the main objective of this data publication. The data is presented as one single xlsx-file with three different tables. A detailed description of the sample processing and the debris trajectory model are provided in the data description file of this data publication. For more information see our study Wetterauer et al. (2022).
    Description: Other
    Description: The data were collected as part of the project “COLD”, which investigates the Climate Sensitivity of Glacial Landscape Dynamics with a focus on the European Alps. This research receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement 759639.
    Keywords: Alpine glaciers ; medial moraines ; cosmogenic 10Be ; grain size ; headwall erosion rates ; supraglacial debris ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 GLACIAL LANDFORMS 〉 MORAINES 〉 MEDIAL MORAINE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. One sample of thermal water was taken from the production well at Balmatt, Belgium on May 17th 2021 and sent to Hydroisotop for analysis of main cations and anions and heavy metals. It can be seen that the nitrate content is remarkably high. However, all meaurements had to be conducted from the same sample bottle, which had been acidified, presumably with HNO3 which can be expected to be the source of the high nitrate content. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Iron total (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C).
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626/de
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. At Neustadt-Glewe one thermal water sample was taken by GFZ on June 02, 2021 and sent to Hydroisotop for analysis of main cations, anions, heavy metals, DOC, gases and isotopes (18O, 2H, 18O-SO4, 2H, 13C-DIC, 13C-CO2, 13C-CH4, 13C-CxHy, 2H-CH4, 34S-SO4, 34S-H2S, 2H-CH4). There was too little H2S in sample 363469 to conduct the 34S-H2S measurement. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Spec. electr. conductivity (25 degC) Lab.,pH value Lab.,Temperature Lab. (degC),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Chromium total (mg/l),Iron total (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),DOC (mg/l),Hydrogen (Nml/kg),Oxygen (Nml/kg),Nitrogen (Nml/kg),Carbon dioxide (Nml/kg),Methane (Nml/kg),Ethane (Nml/kg),Propane (Nml/kg),Butane (Nml/kg),Pentane (Nml/kg),Helium (Nml/kg),Argon (Nml/kg),Sum Gases (Nml/kg),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB),Sulphur-34 d34S-SO4 (per mille V-CDT),Oxygen-18 d18O-SO4 (per mille VSMOW),Carbon-13 d13C-CO2 (per mille VPDB),Carbon-13 d13C-CH4 (per mille VPDB),Deuterium d2H-CH4 (per mille VSMPW),Carbon-13 d13C-C2H6 (per mille VPDB),Carbon-13 d13C-C3H8 (per mille VPDB),Carbon-13 d13C-i-C4H10 (per mille VPDB),Carbon-13 d13C-n-C4H10 (per mille VPDB) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C) .
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. In order to gain information about the increased methane content (about 65 vol-%) in the gas samples of the Groß Schönebeck production well (GrSk05/05) collected in February 2021 as compared to previous samples in 2010-2018 (10-14 vol-%), three gas samples were sampled by GFZ on 02 March 2021 at the valve at the wellhead when releasing the pressure from the wellhead. Main gas composition was measured by GFZ indicating again predominantly CH4 (63,9-64,2 Vol-%) followed by N2 (30,9 – 31,2 vol.-%) with minor amounts of H2 (3,4 vol-%) and CO2 (0,01-0,04 vol-%). Potential reasons for the increased methane content could be either microbial activity or contribution of fluid / gas from a different source within the reservoir. To determine the origin of methane, therefore, isotope analyses were performed. The samples arrived at Hydroisotop on March 13th 2021 for the analysis of higher hydrocarbons (C2-C5) and their isotopic composition (13C-CO2, 13C -CH4, 13C-CxHy and 2H-CH4). Together with the measured high amounts of higher hydrocarbons (ethane, propane etc.) they indicate a rather thermogenic source of the hydrocarbons. To better clarify the question of the source of methane, additionally, two downhole water samples from two different depths (1500 and 4000 m) were taken by GFZ on 09th and 10th of June 2021 and sent to Hydroisotop for analysis of main cations and anions, heavy metals, trace elements and isotopes (13C-CH4) in July 2021. The water sample composition resembles those of earlier measurements of samples collected in Groß Schönebeck (e.g. Regenspurg et al., 2010). However, since the well had not been in operation for a while a depth differentiation between the sample from 4000 m and the one from 1500 m is obvious. This was already visible by the black precipitate observed in the 4000 m sample, whereas the sample at 1500 m showed da reddish precipitate of presumably iron oxides. It should be noted that the nitrate content of the water samples is unusually high since reducing conditions are expected. This could have been caused by air contact of the sample and subsequent oxidation. Furthermore, a reduced silicon content shows in sample 365871 compared to sample 365870. Given the high temperature of the well, the higher silicon content is more plausible. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),Ethane (vpm),Propane (vpm),i-Butane (vpm),n-Butane (vpm),i-Pentane (vpm),n-Pentane (vpm),Ethene (vpm),Propene (vpm),1-Butene (vpm),Carbon-13 d13C-CO2 (per mille VPDB),Carbon-13 d13C-CH4 (per mille VPDB),Deuterium d2H-CH4 (per mille VPDB),Carbon-13 d13C-C2H6 (per mille VPDB),Carbon-13 d13C-C3H8 (per mille VPDB),Carbon-13 d13C-i-C4H10 (per mille VPDB),Carbon-13 d13C-n-C4H10 (per mille VPDB) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C).
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. On 10th of May 2021, two thermal water samples were taken by TNO before and after the heat exchanger at the geothermal site Heemskerk in the Netherlands. The samples sent to Hydroisotop were analysed for their hydrochemical composition, heavy metal and dissolved organic carbon (DOC) content and stable isotopes (18O, 2H, 13C-DIC). It should be noted that the pH measured in the laboratory diverges from previously observed pH values which in the past have not been reported below 5,4. Concentrations of major ions had initially been reported too low but re-measurement of the samples yielded values in ranges that had previously been recorded. However, the concentraton of Lithium is much higher than expected. In order to resolve these uncertainties, the site Heemskerk will be sampled again. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value Lab.,Temperature Lab. (degC),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Iron total (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),DOC (mg/l),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB). Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C)
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. On 29th and 30th of April 2021 five thermal water samples were taken by Hydroisotop from five different springs/wells located at Wildbad-Einöd. The samples were analysed for hydrochemical composition, heavy metals and dissolved organic carbon (DOC) content. It can be noted that the bromide content of sample 361625 is much lower than the bromide content in the other four springs. Since the chloride content in all springs is the same order of magnitude and Cl/Br ratios are expected to be similar in the same The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Temperature at sampling (degC),Spec. electr. conductivity (25 degC) at sampling (muS/cm),Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value at sampling,pH value Lab.,Temperature Lab. (degC),Dissolved oxygen content (mg/l),Redox potential (mV),Base capacity (pH 8.2) (mmol/l),Alkalinity (pH 4.3) on site (mmol/l),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Nitrite (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Iron total (mg/l),Manganese total (mg/l),DOC (mg/l) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C)
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. At the geothermal site Blumau in Austria five thermal water samples were taken by Hydroisotop at the production and injection well, as well as after the heat exchanger on 29th of June 2020. Besides the hydrochemical composition, dissolved gases, the heavy metal content, DOC and stable isotopes (18O, 2H, 13C-DIC) were analysed. Additionally, three thermal water samples were taken by the operator on 09th of March 2021 and sent to Hydroisotop for DOC measurements. The dataset contains analysis results associated with the research project reflect. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory,Lab No.,Sampling date,Temperature at sampling (degC),Spec. electr. conductivity (25 degC) at sampling,Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value at sampling,pH value Lab.,Temperature Lab. (degC),Dissolved oxygen content (mg/l),Redox potential (mV),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Nitrite (mg/l),Antimony (mg/l),Barium (mg/l),Boron (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Molybdenum (mg/l),Ortho-phosphate (mg/l),Selenium (mg/l),Strontium (mg/l),Sulphide total (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Cadmium (mg/l),Chromium total (mg/l),Cobalt (mg/l),Iron total (mg/l),Copper (mg/l),Nickel (mg/l),Mercury (mg/l),Zinc (mg/l),Tin (mg/l),DOC (mg/l),Hydrogen (Nml/kg),Oxygen (Nml/kg),Nitrogen (Nml/kg),Carbon dioxide (Nml/kg),Methane (Nml/kg),Ethane (Nml/kg),Propane (Nml/kg),Butane (Nml/kg),Pentane (Nml/kg),Ethene (Nml/kg),Propene (Nml/kg),Helium (Nml/kg),Argon (Nml/kg),Sum Gases (Nml/kg),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C).
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. Two thermal water samples were taken by Hydroisotop at the production and injection wells in Insheim on 18th of June 2020. The samples were analysed for their hydrochemical composition, heavy metal and dissolved organic carbon (DOC) content, dissolved gases and stable isotopes of water and gas components (18O, 2H, 34S-H2S, 34S-SO4, 18O-SO4, 13C-DIC, 13C-CO2, 13C-CH4, 2H-CH4). Nitrate and a positive redox potential is present in both water samples when reducing conditions would be expected in a deep geothermal well. On-site measurements showed no oxygen present. It is however possible that air contamination during sampling caused some ammonium to oxidize to nitrate. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Temperature at sampling (degC),Spec. electr. conductivity (25 degC) at sampling (muS/cm),Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value at sampling,pH value Lab.,Dissolved oxygen content (mg/l),Redox potential (mV),Base capacity (pH 8.2) (mmol/l),Alkalinity (pH 4.3) on site (mmol/l),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Molybdenum (mg/l),Total phosphate (mg/l),Ortho-phosphate (mg/l),Silicon (mg/l),Strontium (mg/l),Sulphide total (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Iron total (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),DOC (mg/l),Hydrogen (Nml/kg),Oxygen (Nml/kg),Nitrogen (Nml/kg),Carbon dioxide (Nml/kg),Methane (Nml/kg),Ethane (Nml/kg),Propane (Nml/kg),Butane (Nml/kg),Pentane (Nml/kg),Helium (Nml/kg),Argon (Nml/kg),Sum Gases (Nml/kg),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB),Sulphur-34 d34S-SO4 (per mille V-CDT),Sulphur-34 d34S-H2S (per mille V-CDT),Oxygen-18 d18O-SO4 (per mille VSMOW),Carbon-13 d13C-CO2 (per mille VPDB),Carbon-13 d13C-CH4 (per mille VPDB),Deuterium d2H-CH4 (per mille VPDB). Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C)
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626/de
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-02-14
    Description: Abstract
    Description: The data set comprises petrophysical laboratory data for four carbonate rocks and one sandstone – both in solid rock and crushed state. Rock plugs and particle packings of intentionally crushed and sieved material are investigated. Thereby, eight particle size classes with a mean diameter between 0.032 and 9.66 mm are investigated. The data set includes complex electrical conductivity (from Spectral Induced Polarization – SIP), specific surface (from nitrogen adsorption) and porosity (from mercury intrusion MIP). Further analyses include e.g. particle geometry, Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Computer Tomography (μCT), uniaxial compression strength and mineralogical composition (chemical analysis, XRD).
    Keywords: petrophysics ; laboratory ; crushed rock ; cuttings ; inversion ; particle ; carbonate ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 PHYSICAL/LABORATORY MODELS ; physical property 〉 electricity ; science 〉 natural science 〉 earth science 〉 geophysics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-02-23
    Description: Abstract
    Description: In coastal Arctic permafrost regions, thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release. The geochemical features of a thermokarst lagoon were compared with two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia. This data set includes pH, major cations and anions, alkalinity, salinity, and dissolved iron (ferric and ferrous) concentrations from porewater of lake and lagoon sediments; the concentration and stable isotopic signature of CH4 in small plug samples from the sediment cores; total carbon (TC), total organic carbon (TOC), total nitrogen (TN), and total sulfur (TS) measured from the bulk sediment; and several biomarker indices (e.g. CPI, Paq) were calculated based on n-alkane concentrations to characterize the origin of organic matter (OM) in the lakes.
    Keywords: thermokarst lake ; themokast lagoon ; carbon turnover ; geochemistry ; EARTH SCIENCE 〉 LAND SURFACE 〉 FROZEN GROUND 〉 PERMAFROST
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-03-02
    Description: Abstract
    Description: High resolution debris thickness mapping using land surface temperature maps (LST) and surface energy balance modelling (SEBM). LST data was produced by a radiometric thermal infrared measurements from an uncrewed aerial vehicle (UAV). The SEBM considers the rate of change of heat storage as an energy balance component derived from diurnal temperature variablity.
    Description: Other
    Description: Licence: Licence: GNU General Public Licence (Version 3, 19 November 2007) Copyright (C) 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (Deniz Gök) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/〉.
    Keywords: debris-covered glaciers ; debris thickness ; surface energy balance model ; Aircraft 〉 UAV ; EARTH SCIENCE 〉 LAND SURFACE 〉 LAND TEMPERATURE 〉 LAND SURFACE TEMPERATURE
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-03-03
    Description: Abstract
    Description: This dataset provides results from rheological tests of glucose syrup from two suppliers tested within the EPOS Multi-scale Laboratories (MSL) trans-national access (TNA) program 2019 at the Laboratory of Experimental Tectonics (LET), Univ. Roma TRE, Italy. Syrups Glucowheat 45/81 (GW45) and Glucowheat 60/79 (GW60) are produced by Blattmann Schweiz AG, Switzerland (2019 batch). Syrups GlucoSweet 44 (GS44) and GlucoSweet 62 (GS62) are produced by ADEA (Amidi Destrini ed Affini), Italy (2019 batch) . The four tested glucose syrups are labeled according to their DE value (dextrose equivalent value). For tested products from Blattmann Schweiz AG, the second number refers to the weight percentage of dry substance. Glucose syrup GS44 is used in full lithospheric scale analogue experiments at the Tectonic Modelling Lab (TecLab) at the University of Bern, Switzerland as a low-viscosity material simulating the asthenospheric mantle lithosphere to provide isostatic equilibration. The materials have been analyzed using a MCR301 Rheometer (Anton Paar) equipped with parallel plates geometry and rotational regime . To prevent the evaporation of the samples during the measurements, an external water-lock device has been used.
    Keywords: EPOS ; European Plate Observing System ; analogue models of geologic processes ; multi-scale laboratories ; property data of analogue modelling materials ; glucose syrup ; software tools ; force sensor ; temperature measurement ; matlab ; rheometer ; stress exponent ; viscosity ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-03-13
    Description: Abstract
    Description: This data publication contains seismic waveform data of 507 earthquakes recorded during the St1 Deep Heat project in June and July 2018, where the 6.1 km deep OTN-3 well near Helsinki, Finland, was hydraulically stimulated over 49 days (Kwiatek et al., 2019). The waveforms were recorded on a surrounding seismic monitoring network consisting of 12 stations, deployed at epicentral distances between 0.6 to 8.2 km and at depths between 0.23 to 1.15 km. Each station consists of three-component, 4.5 Hz, Sunfull PSH geophones, sampling at 500 Hz. The 507 earthquakes analysed were chosen from the relocated event catalogue by Leonhardt et al. (2021a). The dataset is supplementary material to the Geophysical Research Letters research article of Holmgren et al. (2022), which applied the Empirical Green’s Function technique to examine microseismic rupture behaviour at the Helsinki site.
    Keywords: induced seismicity ; earthquake directivity ; rupture velocity ; earthquake hazard ; hydraulic stimulation ; rupture propagation ; unilateral ruptures ; bilateral ruptures ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; geological process 〉 seismic activity 〉 earthquake
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-03-17
    Description: Abstract
    Description: Tourmaline-cemented magmatic-hydrothermal breccias are a major host to sulphide mineralization in the supergiant Río Blanco–Los Bronces (RB–LB) porphyry Cu-Mo district in central Chile. We made an extensive study of the chemical and boron isotopic composition of tourmaline from this district to shed light on the composition and origin of mineralizing fluids and to test the utility of tourmaline as an indicator mineral by comparing compositions from mineralized and barren breccias. Río Blanco-Los Bronces is a world-class porphyry-type Cu-Mo district of late Miocene age hosted in a granodioritic batholith and related porphyry intrusions in central Chile (33°9’ S latitude, 70°17’W longitude). The porphyry intrusions and related orebodies are distributed along a structurally-controlled NW-SE zone. Mineralization comprises quartz-sulfide veins, disseminated sulfide miner-alization in altered porphyry host rocks and disseminated sulfides in hydrothermal breccias. See Toro et al. (2012) for an overview of the geology, geochronology and mineralization in the district. Descriptions of the mineralized tourmaline breccias are given by Frikken et al. (2005) and Skewes et al. (2003). The data set provided here comprises in-situ chemical analyses of tourmaline by electron microprobe (EPMA) as well as in-situ boron-isotope analyses of tourmaline in the same samples by SIMS. Tourmaline was analysed in 12 samples including 8 from mineralized breccia bodies (Sur-Sur: 4, La Americana: 4), and 2 samples each from barren breccia and nearby granite-hosted tourmaline nodules in the Diamante area. We also give results of mass balance calculations testing the hypoth-esis of a magmatic-hydrothermal origin of the boron.
    Description: Methods
    Description: Electron microprobe (EPMA) Most samples were analyzed at the Technical University, Bergakademie in Freiberg while samples RB304 and RB306 were at the German Research Centre for Geosciences (GFZ) in Potsdam. All analyses were done on carbon-coated polished thin sections with wavelength-dispersive spetrometers, see details below. All mineral formulae were calculated by normalizing to 15 cations on the Y, Z, or T sites as implemented in the software WinTcalc (Yavuz et al., 2014). EPMA analyses in Freiberg employed a JEOL JXA-8900R instrument set at 20 kV accelerating voltage, a beam current of 12 nA, and a beam diameter of 5 microns on the sample surface. The counting times on peak were 15 s for Na, 20 s for Al, Si; 30 s for Fe, Mg; 60 s for Ti, K, V, Ca, Mn, Cr; and 90 s for F. Background counting times were half of those on the respective peak. Calibration standards used: wollastonite (Ca, Si), diopside (Mg), hematite (Fe), albite (Na), rutile (Ti), orthoclase (K, Al), fluorite (F), rhodonite (Mn), V-metal (V). The analyses at the GFZ Potsdam were carried out with a JEOL JXA 8230 electron microprobe equipped with a LaB6-cathode. The accelerating voltage was 15 kV, beam current 10 nA and the beam diameter on sample was 5 microns. Counting times on peak were 10 s for Si, K, and Na; 20 s for Al, F, Ti, Ca, Cl, Mg, Fe and Mn; background counting times were half of those on the respective peaks. Fluorine was not analysed in the GFZ session. Calibration employed the following mineral standards: orthoclase (Si, Al, K), rutile (Ti), diopside (Ca, Mg), synthetic albite (Na), hematite (Fe) and rhodonite (Mn). SIMS Boron isotope analyses employed the Cameca 1280-HR instrument at the GFZ Potsdam operated in multicollection mode with Faraday cups. Analyses were made on polished thin sections after cleaning in pure ethanol and gold coating in vacuum. The 16O- primary beam of approx. 5nA current and 13 kV energy was focused to about 5 microns on the sample surface. Secondary ions were extracted with a 10 kV potential and no offset voltage. Each analysis was preceded by a 90 s sputtering followed by 20 cycles of 10B (4 s integration time) and 11B (2 s integration) per cycle. The mass resolution M/ΔM of 2000 was more than enough to separate 11B and 10B1H masses. Instrumental mass fractionation and analytical quality were determined by repeated analyses of reference materials dravite (Harvard #108796) and schorl (Harvard #112566) described by Dyar et al. (2001) during each analytical session (see Table 3). The internal precision of each analysis (1 standard deviation / mean of 20 cycles) was typically around 0.1‰. Repeatability on the individual reference tourmalines was between 0.1 and 0.2%, and the combined 1 s.d. variability of all analyses from both reference materials was 〈0.8‰. This variability includes any matrix effect resulting from different chemical composition of the tourmalines and is taken as an estimate for the overall uncertainty. After correction for instrument mass fractionation, the 11B/10B ratios were converted to δ11B values relative to NIST SRM 951 (11B/10B = 4.04362 according to Catanzaro et al., 1970).
    Description: Other
    Description: Acknowledgements: The study was supported by the Chilean Commission for Scientific and Technological Research (CONICYT) and the German Academic Exchange Service (DAAD). We thank Thomas Seifert and Lothar Ratschbacher for support in Freiberg including expenses for field visits, sample preparation and analyses. The EPMA analyses were conducted with the help of Bernhard Schulz and Joachim Krause in Freiberg and Oona Appelt in Potsdam. The SIMS analyses in Potsdam were done with the expert help of Frederic Couffignal.
    Keywords: tourmaline ; porphyry copper ; Andes ; chemical element 〉 element of group III 〉 boron ; In Situ/Laboratory Instruments 〉 Probes 〉 ELECTRON MICROPROBES ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 SIMS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-03-20
    Description: Abstract
    Description: Gas hydrates are ice-like crystalline solids in which water molecules trap gas molecules in clathrate structures. They can preserve in low temperatures and elevated pressures and may exist in permafrost or deep marine environments. Natural gas hydrates are especially sensitive to the changes in temperature and pressure due to environmental changes. This can result in hydrate decomposition, which in turn may release enormous amounts of CH4 as the main component of natural gas hydrates. This study was an effort to use the molecular simulations for the estimation of possible gas release from the destabilization of natural gas hydrate reservoirs in response to environmental changes. The dissociation data for simple CH4 hydrates, CH4-C3H8 hydrates and CH4-C2H6-C3H8-CO2 mixed hydrates were provided by using molecular dynamics (MD) simulations. The MD simulations could provide a better understanding of the phenomena involved in the dissociation process of gas hydrates and help to explain the experimental observations. It would be one of the best molecular simulation tools for calculating time-dependent properties. The simple CH4 form structure I (sI) hydrates, while the above-mentioned binary and multicomponent gas mixtures can form structure II (sII) hydrates. Different simulation boxes were designed based on the structures and guest molecules of the gas hydrates. The simulation for CH4 hydrates was done via thermal stimulation above the ice point and depressurization below the ice point. For the mixed hydrates, the simulation data were only provided via thermal stimulation above the ice point. The dataset showed the simulation source files as well as the calculated time-dependent properties of gas hydrates upon the dissociation process. This included the simulation trajectories, gas density profiles, order parameters, ratios of large-to-small cavities, normalized rates of cavity decomposition, and gas compositions. This dataset contains the inputs/outputs of four simulation runs which include the molecular coordinate and structure (.gro file) and trajectory (.xtc file), as well as the calculated time-dependent properties (.vmd and .xls files) for each run. The simulation time and length were presented in nanoseconds (ns) and nanometers (nm), respectively. Further details on the simulation methodology, procedures, and calculations have been provided in the following sections.
    Keywords: CH4 hydrate dissociation ; Mixed gas hydrates dissociation ; Molecular dynamics simulation ; Environmental changes ; EARTH SCIENCE 〉 CLIMATE INDICATORS 〉 PALEOCLIMATE INDICATORS 〉 PERMAFROST/METHANE RELEASE ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 GAS HYDRATES ; experiment 〉 simulation 〉 mathematical method ; experiment 〉 simulation 〉 modelling
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-03-23
    Description: Abstract
    Description: Definitive digital values of the Earth's magnetic field recorded during 1991..2019 at INTERMAGNET observatories around the world. Data includes minute, hourly and daily vector values, along with observatory baseline values for quality control. Annual means are also included. All data is included on the single downloadable archive files. This is the 28th annual publication in the series. Some national data institutions may have related DOIs that describe subsets of the data. These DOIs are shown under "Related DOIs to be quoted". For more information on the data formats used in this publication and the technical standards used to create the data, please refer to the INTERMAGNET Technical Manual and the Technical note TN6 "INTERMAGNET Definitive One-second Data Standard".
    Description: Methods
    Description: Geomagnetic data is recorded and quality controlled at the institutions responsible for each observatory. Before becoming a member of INTERMAGNET, institutes must make a detailed submission for each observatory that is to join. This submission is verified by a committee in INTERMAGNET before the observatory is admitted. Only data from INTERMAGNET members is published by INTERMAGNET. Each annual definitive data set is checked for quality by a team of data checkers in INTERMAGNET before the data is admitted to the series for that year.
    Description: Other
    Description: The International Real-time Magnetic Observatory Network (INTERMAGNET) is the global network of observatories, monitoring the Earth's magnetic field. The INTERMAGNET programme exists to establish a global network of cooperating digital magnetic observatories, adopting modern standard specifications for measuring and recording equipment, in order to facilitate data exchange and the production of geomagnetic products in close to real time. INTERMAGNET also coordinates the publication of quality-controlled, definitive geomagnetic data from its affiliated observatories.
    Keywords: definitive data ; INTERMAGNET ; geomagnetism ; magnetism ; observatory ; definitive ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 GEOLOGICAL ADVISORIES 〉 GEOMAGNETISM ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GEOMAGNETIC STATIONS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-03-27
    Description: Abstract
    Description: This data publication is supplementary to a study on the effect of large boulders and bedrock fracture patterns on hillslope denudation rates in the Chilean Coastal Cordillera, by Lodes et al. (submitted). Hillslope denudation rates are primarily determined by tectonic uplift rates, but landscape morphology is also controlled by climate and lithological properties such as bedrock fractures. Fracture patterns can influence the locations of ridges and valleys in landscapes through lowering surface grain sizes in fractured areas, and therefore the residence time of fractured hillslope material, dictating differential denudation rates. In this project, we used 10Be cosmogenic nuclide analysis to quantify the denudation rates of fractured bedrock, boulders, and soil on hillslopes, and compared the orientations of surrounding streams and faults, to understand the effects of fracturing and faulting on denudation rates, fluvial incision, and grain size in three field sites along a climate gradient in the Chilean Coastal Cordillera. In the humid and semi-arid climate zones, we found that denudation rates for unfractured bedrock and large hillslope boulders (10 to 15 m Myr-1) are lower than for soil (15 to 20 m Myr-1), indicating that exposed bedrock and boulders retard hillslope denudation rates. In the mediterranean climate zone, hillslope denudation rates are higher (40-140 m Myr-1) and show a less consistent pattern, likely due to steeper slopes. LiDAR-derived stream orientations support a fracture-control on landscape denudation in the three field sites, which we link with fracture density. Together, our results thus provide new insights into how fracture patterns can dictate topographic highs and valleys through grain size reduction. The main objective of this data publication is to provide our 10Be dataset which we used to calculate denudation rates for bedrock, boulders, and soils.
    Description: Methods
    Description: We conducted fieldwork in Chile in February 2019 and March 2020. We collected 32 samples from bedrock, boulders, and topsoil in three field areas (Nahuelbuta National Park, La Campana National Park, and Private Reserve Santa Gracia) for cosmogenic 10Be analysis. A detailed description of the field areas can be found in Lodes et al. (submitted). We collected bedrock samples by chipping off and amalgamating 10-15 pieces (~25 cm2 and 〈2cm thick) of bedrock in an area of ~20 m x 20 m. Boulder samples consist of similarly-size chips from 10-15 different boulders of similar size, from an area of ~40 m x 40 m, depending on the abundance of boulders. We collected soil samples from the area surrounding the sampled boulders. The samples are assigned with IGSNs, which are listed in the accompanying data table 2022-004_Lodes-et-al_Data.
    Keywords: 10Be ; cosmogenic radionuclides ; geomorphology ; fractures ; landscape morphology ; tectonic geomorphology ; erosion ; denudation ; boulders ; hillslopes ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY 〉 FLUVIAL LANDFORMS/PROCESSES ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY 〉 TECTONIC LANDFORMS/PROCESSES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES ; land 〉 geomorphic process 〉 erosion ; science 〉 geography 〉 geomorphology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-03-31
    Description: Abstract
    Description: This data repository contains the IGMAS+ (Gotze and Lahmeyer, 1988; Schmidt et al., 2011, 2020) files of the four end-member structural and density models used to analyze the rift architecture of the Red Sea. The user can directly open the files in IGMAS+ (https://igmas.git-pages.gfz-potsdam.de/igmas-pages/, accessed 12.08.2022) to explore the gravity response of these configurations. The end-member scenarios include two end-type margin architectures following Huismans and Beaumont (2011): Type I - outlined by narrow regions (less than about 100 km wide) of thinned continental crust and exhumed (and serpentinized) continental lithospheric mantle along the continent-ocean transition, and Type II - outlined by (ultra)wide regions (up to 500 km) of thin continental crust and the removal of the lithospheric mantle. In addition, we include two options for distribution of oceanic crust in the Red Sea: limited - confined only to regions of magnetic stripes following Schettino et al. (2016), and extended - in which oceanic crust is available in vast areas within the basin, following Augustin et al. (2021).
    Keywords: Red Sea ; Lithospheric configuration ; Rift architecture ; 3D gravity models ; EARTH SCIENCE ; EARTH SCIENCE 〉 OCEANS 〉 MARINE GEOPHYSICS 〉 MARINE GRAVITY FIELD ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS
    Type: Model , Model
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-04-06
    Description: Abstract
    Description: The atmospheric concentration of CO2 at which global glaciation (snowball) bifurcation occurs, changes throughout Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective, but also an important prerequisite for understanding past Snowball Earth episodes as well as the conditions for habitability on Earth and other planets. Here we use the coupled climate model CLIMBER-3α in an Aquaplanet configuration to scan for the Snowball bifurcation point for time slices spanning the last 4 billion years, thus quantifying the time evolution of the bifurcation and identifying a qualitative shift in critical state dynamics.
    Description: Methods
    Description: To scan for the Snowball bifurcation for more than a dozen time slices throughout Earth’s history, we use the relatively fast Earth-system model of intermediate complexity CLIMBER-3α. It consists of a modified version of the ocean general circulation model (OGCM) MOM3 with a horizontal resolution of 3.75◦× 3.75◦ and 24 vertical levels, a dynamic/thermodynamic sea-ice model the same horizontal resolution and a fast statistical-dynamical atmosphere model with a coarse horizontal resolution of 22.5◦ in longitude and 7.5◦ in latitude. The sea-ice model explicitly takes into account sea-ice dynamics, a factor which has been found to be of crucial importance for the Snowball bifurcation. The effects of snow cover on sea ice are explicitly taken into account. The main limitations of the model relate to its simplified atmosphere component. For more details see the corresponding paper.
    Keywords: paleoclimate ; Snowball Earth ; global glaciation ; snowball bifurcation ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 GLACIATION ; EARTH SCIENCE SERVICES 〉 MODELS 〉 COUPLED CLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-04-21
    Description: Abstract
    Description: This data publication encompasses a set of global tidal levels for individual epochs between 21 ka BP and present-day, the underlying global partial tides solutions (sea surface elevations and transports), and the global mean tidal dissipation as calculated from 8 partial tides. The data set was produced using the purely-hydrodynamical ocean tide model TiME, which was recently upgraded in the framework of the DFG-project Nerograv (https://www.lrg.tum.de/iapg/nerograv/) and which can be used for several applications: first, the reconstruction of indicative ranges for paleo sea levels markers, e.g. sea-level index points (SLIPs), second, to derive open boundary conditions for high-resolution regional paleo tide simulations, and third, to provide constraints for tidal deep ocean dissipation when running ocean general circulations models (OGCMs). The gridded information was transferred to a number of files in netcdf-format on a rotated-pole grid. The next section describes the creation of the data in more detail. Please also consider the data description for more details about the creation of this data set.
    Keywords: Tidal Dissipation ; Bessel Functions ; Data-unconstrained Ocean Tide Modelling ; Tidal Synthesis ; Linear Admittance Theory ; Analytical Modelling ; EARTH SCIENCE 〉 OCEANS 〉 COASTAL PROCESSES 〉 SEA LEVEL RISE ; EARTH SCIENCE 〉 OCEANS 〉 COASTAL PROCESSES 〉 SHORELINE DISPLACEMENT ; EARTH SCIENCE 〉 OCEANS 〉 COASTAL PROCESSES 〉 TIDAL HEIGHT ; EARTH SCIENCE 〉 OCEANS 〉 TIDES 〉 TIDAL COMPONENTS ; EARTH SCIENCE 〉 OCEANS 〉 TIDES 〉 TIDAL CURRENTS ; EARTH SCIENCE 〉 OCEANS 〉 TIDES 〉 TIDAL HEIGHT ; EARTH SCIENCE 〉 OCEANS 〉 TIDES 〉 TIDAL RANGE ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 PALEOCLIMATE RECONSTRUCTIONS 〉 SEA LEVEL RECONSTRUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 COASTAL PROCESSES 〉 SEA LEVEL CHANGE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-04-26
    Description: Abstract
    Description: Organic matter (OM) is known to be an important reductant in sediment-hosted base metal deposits like the European Kupferschiefer. However, the precise nature of interactions between OM and hydrothermal fluids are still debated as well as how the interconnected reactions develop over geological timescales. This dataset provides for the first time bulk, compositional and stable isotope data of hydrocarbons, biomarkers and organonitrogen, -sulfur and-oxygen (NSO) compounds for the mineralized Kupferschiefer Spremberg-Graustein field in Eastern Germany based on samples from two drill cores. The study aims to help to better understand the role that organic matter plays during the mineralisation and formation of the sedimentary ore deposit within the Kupferschiefer with a focus on stable hydrogen isotope compositions and NSO compositional data to especially address the origin and to assess the oxidative nature of the brines that caused the mineralization in the Spremberg-Graustein field. The data publication includes bulk, compositional and stable isotope data on inorganic metals and organic matter. The data about metal contents were generated using ICP-MS while those on the organic matter were generated using Rock-Eval pyrolysis, a microscope, a Soxhlet apparatus, medium pressure liquid chromatography (MPLC), gas chromatography with flame ionization (GC-FID) and mass spectrometric detection (GC-MS), gas chromatography isotope ratio mass spectrometry (GC-IRMS) and ultrahigh resolution mass spectrometry (Fourier Transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) with Electrospray ionization (ESI) and Atmospheric pressure photoionization (APPI). The full description of samples, methods and data is given in the following sections.
    Keywords: Kupferschiefer ; Permian ; Organic Matter ; NSO compounds ; hydrogen exchange ; metal porphyrins ; compound specific stable hydrogen isotopic composition ; FT-ICR-MS ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS 〉 PETROLEUM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-05-09
    Description: Abstract
    Description: This data publication contains a high resolution molecular dataset of a study aiming to trace variations in organic carbon sourcing along the Kali Gandaki River in Central Nepal. The data are on samples from different materials in the landscape (litter, soil, bedrock) and river sediments. On these samples we measured the extractable lipid fraction by measured by negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). The data was generated between 2015-05 and 2017-12. Please consult the associated data description and Menges et al. (2020) for more details.
    Keywords: organic carbon ; lipids ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 SEDIMENT CHEMISTRY ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY 〉 FLUVIAL LANDFORMS/PROCESSES ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 MASS SPECTROMETERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-06-14
    Description: Abstract
    Description: We present an outstanding record of local, dense Large-N seismic and distributed acoustic sensor observations of a meteoroid from July 2, 2021 in Iceland. Our dataset includes high-quality observations from seven small aperture arrays of few hundred meters, an infrasound array, and a rotational station, all located within the distance range of 300 km. The high-frequency data show a variety of different phases associated with the source process along the atmospheric trajectory, including impulsive negative 1 first ground motions, a complex coda wave train about 2.5 s long thereafter, an azimuth-dependent stopping phase with reversed polarity between 1-25 s after the first arrival, which is resolved over only a few kilometers. The ground motion amplitude between the first and last arrivals is generally elevated. We associate the waveform in the 2.5 s coda with meteor-atmosphere interactions and nonlinear plasma processes that produce an oscillating shock-wave source pulse. Our data suggest a small azimuth-dependent deflection or dispersion of this source pulse, which may be related to the meteoroid’s deceleration in the atmosphere. We present a finite-length kinematic line-source pulse model that consistently explains the different phases inside and outside the Mach cone segment of our images, their wave amplitude variations, and a polarity change between the first phase and the terminating phase. The previously undiscovered rich directivity effects can also explain seemingly contradictory, time-dependent wave energy beam-directions at the various small aperture arrays and along the DAS cable. A combination of conventional locations and a Bayesian inversion of first and stopping phase arrivals led to a precise localization of the meteor trajectory.
    Keywords: Large-N seismometers networks ; Distributed fibre optic sensing ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METEORITES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METEORITES 〉 METEORITE ORIGIN
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-06-12
    Description: Abstract
    Description: The Fagradalsfjall eruption from 19 March to 18 September 2021 featured lava fountaining episodes from 2 May to 14 June. These episodes were recorded as tremor pulses on our broadband seismic station NUPH (Nanometrics Trillium Compact 120s) at 5.5 km southeast of the active vent. We used the seismic data bandpass filtered between 1 and 4 Hz to mark the start and end of 7058 tremor pulses. The catalog hence comprises 14116 markers, that are statistically further evaluated in Eibl et al. (in review). From 2 May to 14 June, several changes in pulse duration and repose time were found and used to subdivide this time interval into 6 periods with characteristic pulse pattern. We find exponentially decreasing pulse durations, coexisting short and long pulses and stable pulse durations superimposed by gradually increasing or suddenly decreasing repose times. We discuss the findings in the context of an evolving shallow-conduit container, the crater geometries, partial collapses from the crater rim and the amount of accumulating outgassed magma in Eibl et al. (in review). This data publications releases the catalog of 14116 tremor pulses /lava fountaining episodes.
    Description: Methods
    Description: We installed a Trillium Compact 120 s seismometer (Nanometrics) as station NUPH (9F seismic network) at the southeast corner of Núpshlídarháls 5.5 km southeast of the eruptive site in Geldingadalir, Iceland. The instrument stood on a concrete base slab shielded from wind and rain using a bucket partly covered by rocks. The instrument was powered using batteries from 16 March, solar panels from 24 March and a wind generator at 10 m distance from 6 April 2021. Data were sampled at 200 Hz, they were stored on a Datacube and regularly downloaded. We used a compass to align the instrument to geographic north.
    Keywords: eruption catalogue ; Iceland ; seismology ; volcanic tremor ; lava fountaining ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 GEYSER ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-06-12
    Description: Abstract
    Description: This dataset includes paleomagnetic and rock magnetic analyses from four sediment cores collected on continental slope of Storfjorden (EG-02, EG-03, SV-04) and Kveithola (GeoB17603-3) trough‐mouth fans and two cores collected at the crest of the Bellsund (GS191-01PC) and Isfjorden (GS191-02PC) sediment drifts (NW Barents Sea). The dataset gave the opportunity to reconstruct variation of past geomagnetic field at high latitude for the last 22 kya and define the path of the virtual geomagnetic pole (VGP). Data are presented as two metadata table: one with definitions of the column heads and one with the core details; six tables with the data on the measured rock magnetic and paleomagnetic parameters and 3 tables with the results of data analyses and elaboration. List of tables is as follows: 1) Metadata: definition of columns heads; 2) Metadata: core details; 3) GS191-01PC: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core GS191-01PC; 4) GS191-02PC: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core GS191-02PC; 5) EG03: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core EG03; 6) EG02: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core EG02; 7) SV04: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core SV04; 8) GeoB17603-3: down-core variation of rock magnetic and paleomagnetic parameters [k (10E-05 SI); ARM (A/m); MDF (mT); NRM (A/m); MAD (°); Incl PCA (°); Decl PCA (°)] for Core GeoB17603-3; 9) Cores Correlation: GS191-01PC depth (cm) and ARM (A/m) down-core variations for core GS191-01PC (master core); GS191-02PC depth (cm), GS191-02PC depth transferred to GS191-01PC depth (cm), ARM (A/m) down-core for core GS191-02PC and correlation tie points; GeoB17603-3 depth (cm), GeoB17603-3 depth transferred to GS191-01PC depth (cm), ARM (A/m) down-core for core GeoB17603-3 and correlation tie points; EG02 depth (cm), EG02 depth transferred to GS191-01PC depth (cm), ARM (A/m) down-core for core EG02 and correlation tie points; EG03 depth (cm), EG03 depth transferred to GS191-01PC depth (cm), ARM (A/m) down-core and correlation tie points; SV04 depth (cm), SV04 transferred to GS191-01PC (cm), ARM (A/m) down-core for core SV04 and correlation tie points; 10) Age model: age model for Core GS191-01PC; GS191-02PC; EG02; EG03; SV04 and correlation tie points; 11) NBS stack: paleomagnetic inclination, declination and RPI variations for NBS22.2k stack. In order to define high-resolution correlation between the cores the along-core variation of rock magnetic and paleomagnetic parameters (Sagnotti et al., 2011; Caricchi et al., 2018; Caricchi et al., 2019) have been integrated with the distribution of characteristic lithofacies (Lucchi et al., 2013), and the available age constraints (Sagnotti et al., 2011; Caricchi et al., 2018, Caricchi et al., 2019; Caricchi et al., 2020). Core to core correlation has been reconstructed by means of the StratFit software (Sagnotti and Caricchi, 2018), which is based on the Excel forecast function and linear regression between subsequent couples of selected tie-points. The data are presented as one Excel sheet with eleven tables and in tab-delimited ASCII format in the zip folder: 2022-028_Caricchi-et-al_data-txt.zip.
    Description: SeriesInformation
    Description: Supplement to Caricchi, C., Campuzano S.A., Sagnotti L., Macrì P., Lucchi R.G. (2022) Reconstruction of the Virtual Geomagnetic Pole (VGP) path at high latitude for the last 22 kyr: the role of radial field flux patches as VGP attractor. EPSL
    Keywords: Geomagnetic paleosecular variation ; Relative paleointensity ; Flux lobes ; Levantine Iron Age Anomaly ; Marine sediment cores ; Arctic region ; Paleomagnetism ; Rock magnetism ; EPOS ; multi-scale laboratories ; Core ; Quaternary ; Paleomagnetic data ; Demagnetization type AF ; sedimentary core ; Barents Sea ; Svalbard Arcipelago ; Fram Straits ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 PALEOMAGNETIC DATA ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 STRATIGRAPHIC SEQUENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 PALEOMAGNETISM ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-06-20
    Description: Abstract
    Description: Archäobotanische Untersuchung (Samen, Früchte, Holz) zum Frühneolithikum (Älteste bis Jüngste Bandkeramik, LBK I-V) und zur späten Vorrömischen Eisenzeit (Germanen). Fundstellentyp: ländliche Siedlung. Ort: Hanau-Mittelbuchen, Am Simmichborn, Hinter dem Hain (MB), Main-Kinzig-Kreis, Hessen, Germany. Gefördert durch die Deutsche Forschungsgemeinschaft (DFG), Aktenzeichen KR 1569/1 (SPP 190 Romanisierung), KR 1569/2.
    Description: Abstract
    Description: Archaeobotanical finds (seeds, fruits, wood) of the Early Neolithic (Linear Pottery Culture, LBK I-V) and the Late Iron Age (Germans). Site type: open settlement. Place: Hanau-Mittelbuchen, Am Simmichborn, Hinter dem Hain (MB), Main-Kinzig-Kreis, Hessen, Germany. Funded by the German Research Foundation (DFG), grant number KR 1569/1 (SPP 190 Romanisierung), KR 1569/2.
    Description: Other
    Description: Die hier vorliegende Datenpublikation stellt die mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) und der hessenARCHÄOLOGIE (hA, Landesamt für Denkmalpflege Hessen, Wiesbaden/DE) erarbeiteten Daten der archäobotanischen Arbeitsgruppe Wiesbaden über das Datenzentrum des Deutschen GeoForschungsZentrums GFZ Data Services unter Leitung von Dr. Kirsten Elger Open Access bereit. Die dieser Datenpublikation zugrunde liegenden Daten wurden mit dem seit 1997 entwickelten, Microsoft Access basierten Datenbankprogramm ArboDat 2016 erfasst. ArboDat ist ein Medium, selbst oder von anderen erarbeitete archäobotanische Großrest-Daten archäologischer Ausgrabungen zu archivieren und gleichzeitig ein offenes Forschungsinstrument für vielfältige Auswertungen (für die weitere Beschreibung siehe das zugehörige README_de). ArboDat 2016 ist inzwischen in mehr als 40 archäobotanischen Laboren in Ägypten, Belgien, Bulgarien, Deutschland, Frankreich, Griechenland, Großbritannien, Österreich, Polen und der Schweiz in Nutzung. Das Programm mit dem zugehörigen Handbuch wird archäobotanischen Arbeitsstellen für ihre wissenschaftliche Arbeit unentgeltlich zur Verfügung gestellt. Das detaillierte Handbuch ermöglicht einen einfachen Einstieg in die Datenerfassung und Auswertungen ohne Access-Kenntnisse (https://doi.org/10.48440/hA-ArboDat_manual_de).
    Description: Other
    Description: The existing data publication comprises research data from the archaeobotanical work group in Wiesbaden funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the hessenARCHÄOLOGIE (hA, Archaeobotanical Department, Landesamt für Denkmalpflege Hessen, Wiesbaden/DE). The data are made open access through the ArboDat 2016 Datacentre hosted at the GFZ which was made available under the direction of Dr. Kirsten Elger, GFZ Data Services. The data provided have been recorded with the database programme ArboDat 2016, developed since 1997 and based on Microsoft Access. ArboDat 2016 is a medium for archiving one's own archaeobotanical macro-remains data from archaeological excavations or those compiled by other authors and a research tool for manifold data evaluations (for further description please refer to the associated README_en). ArboDat 2016 is now distributed among more than 40 archaeobotanical working groups in Austria, Belgium, Bulgaria, Egypt, France, Germany, the United Kingdom, Greece and Switzerland. The programme and the manual are given free of charge to archaeobotanical researchers. The detailed manual (https://doi.org/10.48440/hA-ArboDat_manual_en) is aimed to help new users to get started with ArboDat 2016 even without knowledge of Microsoft Access.
    Keywords: archäologische Fundstelle ; Archäobotanik ; botanische Großreste ; Archäologie ; archaeological site ; archaeobotany ; botanical macroremains ; archaeology ; Samen ; Früchte ; Holz ; seeds ; fruits ; wood ; Frühneolithikum ; Älteste bis Jüngste Bandkeramik ; LBK I-V ; Vorrömische Eisenzeit ; Germanen ; Early Neolithic ; Earliest until Youngest Linear Pottery Culture ; Late Iron Age ; Germans ; ländliche Siedlung ; open settlement ; Linearbandkeramik ; Linear Pottery Culture ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 HUMAN SETTLEMENTS 〉 ARCHAEOLOGICAL AREAS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-06-20
    Description: Abstract
    Description: Definitive digital values of the Earth's magnetic field recorded during 1991..2019 at INTERMAGNET observatories around the world. Data includes minute, hourly and daily vector values, along with observatory baseline values for quality control. Annual means are also included. All data is included on the single downloadable archive files. This is the 28th annual publication in the series. Some national data institutions may have related DOIs that describe subsets of the data. These DOIs are shown under "Related DOIs to be quoted". For more information on the data formats used in this publication and the technical standards used to create the data, please refer to the INTERMAGNET Technical Manual and the Technical note TN6 "INTERMAGNET Definitive One-second Data Standard".
    Description: Methods
    Description: Geomagnetic data is recorded and quality controlled at the institutions responsible for each observatory. Before becoming a member of INTERMAGNET, institutes must make a detailed submission for each observatory that is to join. This submission is verified by a committee in INTERMAGNET before the observatory is admitted. Only data from INTERMAGNET members is published by INTERMAGNET. Each annual definitive data set is checked for quality by a team of data checkers in INTERMAGNET before the data is admitted to the series for that year.
    Description: Other
    Description: The International Real-time Magnetic Observatory Network (INTERMAGNET) is the global network of observatories, monitoring the Earth's magnetic field. The INTERMAGNET programme exists to establish a global network of cooperating digital magnetic observatories, adopting modern standard specifications for measuring and recording equipment, in order to facilitate data exchange and the production of geomagnetic products in close to real time. INTERMAGNET also coordinates the publication of quality-controlled, definitive geomagnetic data from its affiliated observatories.
    Keywords: definitive data ; INTERMAGNET ; geomagnetism ; magnetism ; observatory ; definitive ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 GEOLOGICAL ADVISORIES 〉 GEOMAGNETISM ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GEOMAGNETIC STATIONS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-06-23
    Description: Abstract
    Description: This publication provides mineralogical and geochemical data of two 6-m-deep weathering profiles formed from granitic rock. They are located in different climate zones (Mediterranean and humid) and are close to the national parks of La Campana and Nahuelbuta in the Chilean Coastal Cordillera. Additional rock samples from adjacent boreholes were used to relate the regolith to the bedrock. The profiles were sampled in February and March 2020 as part of the German Science Foundation (DFG) priority research program SPP-1803 “EarthShape: Earth Surface Shaping by Biota”. The goal of this project is to obtain a holistic view on the interplay of the geosphere and the biosphere under different climatic conditions and to investigate weathering mechanisms. The aim of this publication is to provide the data basis for understanding the weathering processes that control the development of the profiles in relation to different climatic conditions. To this end, we measured the geochemistry with X-ray fluorescence, extracted Fe, Al and Si with oxalate/dithionite, determined the grain sizes by wet sieving and pipetting, measured the magnetic susceptibility, and analysed the mineral content of bulk samples and clay fractions with X-ray diffraction. The data are compiled in one Excel file and all results of the X-ray diffraction measurements are available as RAW- and TXT files.
    Description: Methods
    Description: Two 6-m-deep soil pits were manually dug next to boreholes. These boreholes reached the bedrock of the weathering profiles. Each soil pit was sampled by 20 bulk samples (approx. 3 kg/sample) to cover the entire soil pit profile. These samples were separated with a rotary splitter and sample aliquots were used for 1) grain size determination (sieving and pipetting) and clay separation at the Department of Applied Geochemistry and the Chair of Ecohydrology and Landscape Evaluation (Technische Universität Berlin, Germany), 2) oxalate and dithionite extraction (Fe, Al and Si) at the Chair of Soil Science (Technische Universität Berlin, Germany), 3) X-ray diffraction analysis (XRD) at the Department of Applied Geochemistry (Technische Universität Berlin, Germany), magnetic susceptibility measurements at the Department of Geosciences (University of Tübingen, Germany), and 4) X-ray fluorescence analysis (XRF) by Fluxana® (Bedburg-Hau, Germany). In addition to the soil pits, wireline rotary drilling (PQ3-sized crown; core diameter ~80 mm) with potable water was used to recover core runs of up to 1.5 m length and to reach the bedrock of the weathering profiles. Representative bedrock and weathered rock samples were separated from the core. Bedrock samples were processed like soil pit samples to analyse the bulk geochemistry and mineralogy, and polished sample slabs were geochemically mapped with micro-X-ray fluorescence at the Department of Applied Geochemistry (Technische Universität Berlin, Germany). Additionally, bedrock and weathered rock samples were impregnated with blue-dyed artificial resin and thin-sectioned for light-microscopical and electron microprobe investigations at the Department of Applied Geochemistry (Technische Universität Berlin, Germany) and the German Research Centre for Geosciences (Potsdam, Germany).
    Keywords: Coastal Cordillera ; secondary minerals ; Critical Zone ; EarthShape ; weathering ; La Campana ; Nahuelbuta ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 CHEMICAL WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 MINERAL DISSOLUTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2023-06-27
    Description: Abstract
    Description: The data set is a compilation of more than 300 CO2-rich mineral waters and mofettes in the NW Bohemia/Vogtland region. It is a combination of historical data from numerous books and reports, recent scientific papers, as well as own field observations. The oldest literature sources related to these geogenic CO2 gas emissions were mentioned in the 18th century. These springs were famous for their delicious acidic mineral water – so called “Sauerbrunnen” or "Säuerlinge". However, some gas emission sites and their springs dried and disappeared during the centuries, but they were an important meeting point in the villages (water supply) and were therefore mentioned in old geological or historical reports. The coordinates of these former locations could only be estimated. The dataset contains geographic coordinates, Czech and German site names, as well as the location type.
    Keywords: mofette ; CO2-rich mineral waters ; NW-Bohemia ; Vogtland ; Eger Rift ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS 〉 NATURAL GAS 〉 NATURAL GAS VERTICAL/GEOGRAPHIC DISTRIBUTION ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 SPRINGS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-07-06
    Description: Abstract
    Description: In 2020 and 2021 the STIMTEC-X hydraulic stimulation experiment was performed at ca.~130 m below surface at the Reiche Zeche underground research laboratory in Freiberg, Saxony/Germany. The project temporally followed the STIMTEC experiment at the same site and aimed at understanding the stress heterogeneity of the anisotropic and metamorphic gneiss rock mass. The STIMTEC-X experiment applied the hydraulic stimulation technique in several boreholes at the mine-scale. Complementary to the stimulations, there were active seismic ultrasonic transmission data acquired before the stimulations. We use a seismic monitoring network consisting of six single-component acoustic emission (AE) sensors (sensitivity 1-60 kHz), six hydrophone-like AE sensors (sensitivity 1-40 kHz) and four to twelve single-component Wilcoxon accelerometers (sensitivity 50 Hz-25 kHz). The AE sensors and remained stationary in sub-horizontal and upwards reaching boreholes, the accelerometers were mostly installed along the tunnel walls with one accelerometer in a shallow borehole in each tunnel, and the hydrophone-like AE sensors were installed in the down-going water filled boreholes, but repositioned for each measurement campaign (Figure 1). This data set of 120 active ultrasonic transmission (UT) measurements is supplementary to Boese et al. (2022, in review), which introduces some of the active measurement campaigns of the STIMTEC-X experiment in detail. The whole data set togetter with the “Ultrasonic transmission measurements from six boreholes from the STIMTEC experiment, Reiche Zeche Mine, Freiberg (Saxony, Germany)” [https://doi.org/10.5880/GFZ.4.2.2021.002] was used to evaluate performance measures such as sensitivity and frequency bandwith, coupling, placement and polarity of the hydrophone-like AE sensor compared to AE sensors. The active seismic data provided here are from seven boreholes (BH01, BH05, BH06, BH10, BH14, BH18, BH19) as shown in Figure 1. There are nine tables provided as metadata of which seven contain the STIMTEC-X sensor coordinates for each measurement campaign, the event information of all the 120 UT measurements and the UT picks. The UT measurements were recorded with a sampling rate of 1 MHz and results from an automatic stack of 1024 UT pulses generated by the ultrasonic transmitter and recorded by the STIMTEC-X sensors. The UT measurements are saved in binary file format (fsf file format). Fsf-files can be processed with FOCI software: https://www.induced.pl/software/foci. Each fsf file contains 32768 samples, which corresponds to 0.032768 seconds. All UT event files were manual inspected and phase arrivals identified. These are stored in the fsf-file header as well as in the table STIMTECX_UT_picks.csv.
    Keywords: Ultrasonic transmission ; Acoustic emission sensor ; velocity calibration ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Accelerometers 〉 ACCELEROMETERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-07-11
    Description: Abstract
    Description: The new data set along the TRANSALP geophysical transect in the European Alps consists of three types: (i) new apatite and zircon fission data, (ii) a MOVE™ structural-kinematic model for the tectonic evolution along the transect since the Oligocene, and (iii) PECUBE input/output thermo-kinematic model data corresponding to the structural-kinematic MOVE™ model. The fission track data are provided as *.csv data tables formatted to be ideally opened and viewed in RadialPlotter (Vermeesch, 2009) or alternatively in any spreadsheet editor (e.g., Microsoft Excel). The MOVE™ files require the software MOVE™ licensed by Petroleum Experts. The PECUBE input/output files can be opened with any text editor (e.g., Microsoft Visual Code) or data analysis software (e.g., MATLAB™).
    Description: Methods
    Description: Apatite and zircon mineral extraction were conducted for four samples following standard techniques. Samples were crushed and sieved before undergoing magnetic and heavy liquid separation. Apatite and zircon separates were embedded in epoxy resin and Teflon™ sheets, respectively. The sample mounts were polished to expose internal surfaces at approximately half the grain size. Apatite mounts were etched in 5.5 mol HNO3 for 20 seconds at 21 ºC (Donelick et al., 2005), and zircon mounts in a KOH:NaOH eutectic melt at 228 ºC until fission tracks were visible (Garver, 2003). We employed the mica external detector method (Gleadow et al., 1981) for all samples to determine the Uranium content. After neutron irradiation at the nuclear reactor BR1 in Mol/Belgium, micas were etched in 40% HF for 30 minutes at 21 ºC. Spontaneous and induced fission tracks were counted at 1000x magnification on a Zeiss Axiolmager M2m microscope with AutoScan® soft- and hardware. Fission-track ages are calculated using the ζ age calibration method (Hurford & Greene, 1983) using ζ-values of 249.9±8.9 and 121.7±4.1 for the AFT and ZFT systems, respectively. Data visualization and age mixture distribution analyses were aided by RadialPlotter (Vermeesch, 2009). Reconstruction of rock trajectories along TRANSALP were performed in MOVE™ through orogen-scale upper lithospheric cross-section balancing in 2D (e.g., Dahlstrom, 1969). Cross-section balancing provides a tool to reconstruct the displacement of rock material over geologic time scales while maintaining equal rock area before and after deformation under a brittle regime and honoring observed geology. Maintenance of line lengths before and after a deformation step is ensured above active décollements, whereas beneath, we assume crustal thickening occurs through unspecified ‘distributed deformation’ reflecting a hybrid ductile/brittle state. This enabled us to implement a simplified evolution of the Mohorovičić discontinuity (Moho) with time. Shortening above the décollement gives us a precise estimate of the area that needs to be accommodated between the décollement and the Moho. In this process, the Moho has been warped downward by the amount of space displaced between the décollement and the Moho with each deformation step (Fig. 4), assuming that crustal thickening is achieved through distributed deformation’ until the Moho reaches its present-day shape as determined by Kummerow et al. (2004). In this forward kinematic modeling process, we added flexural and isostatic crustal responses to rock displacement and different modes of erosion (i.e., changing the angle of taper topography). For details related to implementation of the geological structures and crustal parameters, please refer to the companion paper. Viable structural-kinematic models are used to track rock displacement and simulate heat advection in a thermal model. The thermal model used is a University of Tübingen modified version of PECUBE (‘Pecube-D’; Whipp et al., 2009; Braun, 2003; McQuarrie & Ehlers, 2015; 2017). Pecube-D is modified from the original version of Pecube to include integration with the Move structural restoration software (McQuarrie and Ehlers, 2015), detrital thermochronometer age analysis (Whipp et al., 2009; Whipp and Ehlers, 2020), and inverse modelling of cooling ages for sample exhumation rates (Thiede and Ehlers, 2013). It solves the three-dimensional heat transport equation for user-defined topographies and surface boundary conditions. Age prediction algorithms for the (U-Th)/He and fission-track systems in apatite and zircon follow Farley (2000), Crowley et al. (1991), Reiners et al. (2004), and Brandon et al. (1998).
    Keywords: TRANSALP ; thermochronology ; continental collision ; subduction polarity ; thermo-kinematic modelling ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS ; geology ; surface processes ; tectonics ; thermochronology
    Type: Collection , Collection
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-08-04
    Description: Abstract
    Description: This data publication presents global high-frequency mass variability that is induced by individual oceanic and atmospheric partial tides. While the atmospheric component is obtained by conducting a tidal analysis of numerical weather data data, the oceanic component has been produced using the hydro-dynamical ocean tide model TiME that was recently upgraded in the framework of the DFG-funded Research Group NEROGRAV ( https://www.lrg.tum.de/iapg/nerograv/) and can be used for gravimetric applications. The overall goal of this project is to facilitate the analysis of gravimetric data sets (e.g. GRACE/GRACE-FO) by improving the understanding of sensor data, processing strategies, and background models. The data set presented herein contributes to this goal as the here described tidally induced mass variations are an important part of the described background models. As tidal variability is usually described as a superposition of so-called partial tides, the presented mass variations can be attributed to individual partial tide frequencies and are thus represented by individual files for each partial tide frequencies. Here, not only the effect of direct gravitation exerted by the ocean and atmospheric mass is included but also gravity variations due to the elastic yielding of the solid Earth in response to water and atmospheric mass redistribution (the load tide) are allowed for. The information describing the partial tides has been transformed to fully normalized Stokes Coefficients describing harmonic in-phase and quadrature component fields as those are especially handy for gravimetric purposes. Additionally, a set of files that allows further expansion of the ensemble of ocean partial tides via linear admittance theory is provided.
    Keywords: Atmospheric Tides ; Atmospheric Reanalysis ; Tidal Analysis ; Satellite Gravimetry ; Spherical Harmonic Functions ; Stokes Coefficients ; Ocean Tidal Dynamics ; Radiational Tides ; Third-Degree Ocean Tides ; Ocean Tide Modeling ; EARTH SCIENCE 〉 ATMOSPHERE ; EARTH SCIENCE 〉 OCEANS ; EARTH SCIENCE 〉 OCEANS 〉 OCEAN PRESSURE 〉 SEA LEVEL PRESSURE ; EARTH SCIENCE 〉 OCEANS 〉 TIDES ; EARTH SCIENCE 〉 OCEANS 〉 TIDES 〉 TIDAL COMPONENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-08-04
    Description: Abstract
    Description: This dataset includes raw data used in the paper by Reitano et al. (2022), focused on the effect of imposed boundary conditions (regional slope and rainfall rate) on the morphological evolution of analogue landscapes; the paper also focuses on applicability of stream power laws on analogue models, defining if and how the parametrization used in natural landscapes works in analogue ones. The experiments have been carried out at Laboratory of Experimental Tectonics (LET), University “Roma Tre” (Rome). Detailed descriptions of the experimental apparatus and experimental procedures implemented can be found in the paper to which this dataset refers. Here we present: • Pictures recording the evolution of the models. • GIFs showing time-lapses of models. • Raw DEMs of the models, used for extracting data later discusses in the paper. • Raw channels data (.mat files).
    Description: Methods
    Description: We took digital images during the evolution of the experiments. These images are stored in the “2022_029_Reitano-et-al_Pictures_and_GIFs” folder. Digital Images The qualitative evolution of the analogue models has been recorded using a digital top-view camera (Canon EOS 200D). Digital pictures have not been modified with other imaging software. Data from models' surface Laser scan provides a point cloud, composed by x, y, z coordinated of the points composing the model surface (the number of points is function of the laser resolution). The laser scans are converted to raw DEMs, here stored in the “DEMs” folder. Bottom left corner in the DEMs is randomly chosen to be -70 ∙ 103 m. No data values equal to -9999. Cell size is 1 mm. Channels data are collected into “Channels” folder. These data are .png channel longitudinal profiles and StreamOBJ files (.mat, TopoToolbox) containing all channels information. For every model and for every chosen time step (see Supplementary Information of the paper), we selected four rivers. These rivers are plotted together at the same time step. Eroded volumes and Incision rates We create a numeric regular grid on the model surface. The eroded volumes are extracted calculating the cumulative difference in elevation (Δz) of the same cells at consecutive times. The cells dimension is function of the horizontal resolution of the laser scan (here 0.05 mm). Knowing the cell dimensions and the corresponding Δz, is it possible to obtain the total volume of eroded material at every time step. Incision rates are computed finding the value of incision for every point forming the selected channels. These values of incision are then divided for the time step at which they are collected, obtaining the incision rate through time.
    Keywords: Erosional laws ; Analogue modelling ; Tectonic geomorphology ; EPOS ; multi-scale laboratories ; analogue models of geologic processes ; property data of analogue modelling materials ; EARTH SCIENCE 〉 CLIMATE INDICATORS 〉 ATMOSPHERIC/OCEAN INDICATORS 〉 PRECIPITATION INDICATORS 〉 PRECIPITATION VARIABILITY ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY 〉 FLUVIAL LANDFORMS/PROCESSES ; EARTH SCIENCE 〉 LAND SURFACE 〉 GEOMORPHOLOGY 〉 TECTONIC LANDFORMS/PROCESSES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; hydrosphere 〉 hydrologic cycle 〉 hydrographic network
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-08-04
    Description: Abstract
    Description: This data publication presents global high-frequency mass variability that is induced by individual oceanic and atmospheric partial tides. While the atmospheric component is obtained by conducting a tidal analysis of numerical weather data data, the oceanic component has been produced using the hydro-dynamical ocean tide model TiME that was recently upgraded in the framework of the DFG-funded Research Group NEROGRAV and can be used for gravimetric applications. The overall goal of this project is to facilitate the analysis of gravimetric data sets (e.g. GRACE/GRACE-FO) by improving the understanding of sensor data, processing strategies, and background models. The data set presented herein contributes to this goal as the here described tidally induced mass variations are an important part of the described background models. As tidal variability is usually described as a superposition of so-called partial tides, the presented mass variations can be attributed to individual partial tide frequencies and are thus represented by individual files for each partial tide frequencies. Here, not only the effect of direct gravitation exerted by the ocean and atmospheric mass is included but also gravity variations due to the elastic yielding of the solid Earth in response to water and atmospheric mass redistribution (the load tide) are allowed for. The information describing the partial tides has been transformed to fully normalized Stokes Coefficients describing harmonic in-phase and quadrature component fields as those are especially handy for gravimetric purposes. Additionally, a set of files that allows further expansion of the ensemble of ocean partial tides via linear admittance theory is provided.
    Description: Other
    Description: A deep understanding of mass distribution and mass transport in System Earth is needed to answer central questions in hydrology, oceanography, glaciology, geophysics and climate research. The necessary information is primarily derived from satellite mission data as observed by GRACE (Gravity Recovery and Climate Experiment) and GRACE-FO (Follow-on) describing the gravity field of the Earth and its temporal variations. The research group (RG) „New Refined Observations of Climate Change from Spaceborne Gravity Missions" (NEROGRAV, https://www.lrg.tum.de/iapg/nerograv/), funded by the German Research Foundation (DFG), develops since May 2019 new analysis methods and modeling approaches to improve GRACE and GRACE-FO mission data analysis and focuses on geophysical applications that benefit from significantly reduced error levels in the time series of monthly gravity fields. Phase 1 lasted from May 2019 till April 2022. After successful evaluation in January 2022 the second phase started in January 2023. The central hypothesis of the research group, slightly updated for phase 2, is: “Only by concurrently improving and better understanding of sensor data, background models, and processing strategies of satellite gravimetry, the resolution, accuracy, and long-term consistency of mass transport series can be significantly increased; the science return in various fields of application improved and the potential of future technological sensor developments fully exploited.“ All groups participating in NEROGRAV have a long-term heritage of expertise in geodetic data acquisition and modeling and will additionally contribute their unique complementary expertise from various neighboring disciplines such as oceanography, hydrology, solid Earth, geophysics and atmospheric and climate sciences. Therefore, it is expected that the second funding phase will not only create significantly improved GRACE/GRACE-FO gravity field models over two decades, but also enable geophysical applications based on this long-term series such as quantifying North Atlantic deep water transports as indicator for variations in the Atlantic Meridional Overturning Circulation (AMOC), assessment of hydrometeorological extreme events or identification of climatic signatures in variations of the terrestrial water storage. Important results and datasets of phase 1 can be found at GFZ´s Data Services.
    Keywords: Atmospheric Tides ; Atmospheric Reanalysis ; Tidal Analysis ; Satellite Gravimetry ; Spherical Harmonic Functions ; Stokes Coefficients ; Ocean Tidal Dynamics ; Radiational Tides ; Third-Degree Ocean Tides ; Ocean Tide Modeling ; EARTH SCIENCE 〉 ATMOSPHERE ; EARTH SCIENCE 〉 OCEANS ; EARTH SCIENCE 〉 OCEANS 〉 OCEAN PRESSURE 〉 SEA LEVEL PRESSURE ; EARTH SCIENCE 〉 OCEANS 〉 TIDES ; EARTH SCIENCE 〉 OCEANS 〉 TIDES 〉 TIDAL COMPONENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-08-21
    Description: Abstract
    Description: The interactive web page contains supplementary information to Acoustic signals of a meteoroid recorded on a large-N seismic network and fibre optic cables. It aggregates the probabilistic trajectory inversion results for the observed meteor explosion above south Iceland on July 2, 2022. These inversion results of a hypersonic moving source model (MSM) are based on travel time picks of the first arrival (A1) and the last arrival (LA), both, in homogeneous and layered atmospheric model. Additionally we present the inversion results of a simple point source model (PSM) based on the arrival times of A1 and LA.
    Keywords: Meteoroid ; Fireball ; Trajectory ; Seismic Inversion ; EARTH SCIENCE ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC PHENOMENA ; SPACE SCIENCE 〉 ASTROPHYSICS
    Type: InteractiveResource , InteractiveResource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-09-05
    Description: Abstract
    Description: Platinum-group elements (PGE) in the Bushveld Complex (South Africa) are mainly recovered from pristine, unweathered ores of the Merensky Reef, UG-2, and the Platreef. Weathered PGE ores are currently not mined due to uneconomic recovery rates achieved by conventional metallurgical methods although weathered ores can contain a high PGE content. In order to understand the behavior of PGE during weathering, five drill cores containing fresh and weathered Merensky Reef (originating from the Twickenham and Richmond properties of AngloPlatinum in the eastern Bushveld Complex), were studied by microprobe. Polished thick section of the samples with high PGE content was created and then analyzed after microscopic evaluation of the most promising section (with a high platinum-group mineral (PGM) content) In the pristine ores, the PGM occur dominantly as sulfides, arsenides, and tellurides. They are mainly found in contact or close to base metal sulfides (BMS). In the oxidized ores, discrete, relict PGM are rare, indicating remobilization of the PGE during weathering. Microprobe data reveal traces of PGE within secondary minerals (e.g. Fe-hydroxides, chlorites etc.).
    Keywords: Bushveld Complex ; Merensky Reef ; PGE ; PGM ; supergene ores ; weathering ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 ELEMENTS 〉 TRACE ELEMENTS ; In Situ/Laboratory Instruments 〉 Probes 〉 ELECTRON MICROPROBES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-09-21
    Description: Abstract
    Description: The increasingly high number of big data applications in seismology has made quality control tools to filter, discard, or rank data of extreme importance. In this framework, machine learning algorithms, already established in several seismic applications, are good candidates to perform the task flexibility and efficiently. sdaas (seismic data/metadata amplitude anomaly score) is a Python library and command line tool for detecting a wide range of amplitude anomalies on any seismic waveform segment such as recording artifacts (e.g., anomalous noise, peaks, gaps, spikes), sensor problems (e.g., digitizer noise), metadata field errors (e.g., wrong stage gain in StationXML). The underlying machine learning model, based on the isolation forest algorithm, has been trained and tested on a broad variety of seismic waveforms of different length, from local to teleseismic earthquakes to noise recordings from both broadband and accelerometers. For this reason, the software assures a high degree of flexibility and ease of use: from any given input (waveform in miniSEED format and its metadata as StationXML, either given as file path or FDSN URLs), the computed anomaly score is a probability-like numeric value in [0, 1] indicating the degree of belief that the analyzed waveform represents an anomaly (or outlier), where scores ≤0.5 indicate no distinct anomaly. sdaas can be employed for filtering malformed data in a pre-process routine, assign robustness weights, or be used as metadata checker by computing randomly selected segments from a given station/channel: in this case, a persistent sequence of high scores clearly indicates problems in the metadata
    Keywords: Machine learning ; Isolation forest ; Sesimic data anomaly detection ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers 〉 SEISMOMETERS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-10-16
    Description: Abstract
    Description: This database contains major and trace element compositions of European tephra and metadata for the datasets and lakes they were found in. It was created by collecting data from scientific literature to support the synchronisation of annually-resolved lake sediment records during the Last Glacial Interglacial Transition (25 ka BP to 8 ka BP). 49 individual tephra layers across 19 varved lake records have been included, with Lago di Grande Monticchio being the largest contributor of geochemical data with 28 layers. The Vedde Ash and Laacher See tephra are the most common layers, being found in 6 different varved records, and highlight the potential of refining the absolute age estimates for these tephra layers using varve chronologies and for synchronising regional paleoclimate archives. This project is the first stage in a 5-years plan funded by the Past Global Changes (PAGES) Data Stewardship Scholarship to incorporate a global dataset of tephra geochemical data in varved sediment records. Further stages of this project will focus on different regions and timescales.
    Keywords: Terrestrial Records; Varved Sediments; Lakes; Chronology; Tephra; Volcano Ash; Geochemistry; Major Elements; Trace Elements; Europe; ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 VOLCANIC DEPOSITS ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 OCEAN/LAKE RECORDS 〉 SEDIMENTS ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 OCEAN/LAKE RECORDS 〉 VARVE DEPOSITS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 ELEMENTS 〉 MAJOR ELEMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 ELEMENTS 〉 TRACE ELEMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-01-08
    Description: Abstract
    Description: The Gravity field and steady-state ocean circulation explorer (GOCE) satellite mission carries three platform magnetometers. After careful calibration, the data acquired through these can be used for scientific purposes by removing artificial disturbances from other satellite payload systems. This dataset is based on the dataset provided by Michaelis and Korte (2022) and uses a similar format. The platform magnetometer data has been calibrated against CHAOS7 magnetic field model predic-tions for core, crustal and large-scale magnetospheric field (Finlay et al., 2020) and is provided in the ‘chaos’ folder. The calibration results using a Machine Learning approach are provided in the ‘calcorr’ folder. Michaelis’ dataset can be used as an extension to this dataset for additional infor-mation, as they are connected using the same timestamps to match and relate the same data points. The exact approach based on Machine Learning is described in the referenced publication. The data is provided in NASA CDF format (https://cdf.gsfc.nasa.gov/) and accessible at: ftp://isdcftp.gfz-potsdam.de/platmag/MAGNETIC_FIELD/GOCE/ML/v0204/ and further de-scribed in a README.
    Description: Methods
    Description: The data was recorded onboard the GOCE satellite mission with varying time intervals of the differ-ent subsystems measuring. The magnetometer measurements (16s intervals) were aligned to match the closest position measurement (1s intervals) and interpolated accordingly. All other avail-able data of different intervals was interpolated and aligned to the same timestamps. The data was calibrated using a Machine Learning approach involving Neural Networks, the whole method of calibration is described precisely in the referenced publication. The data was mainly processed for its calibration which yields a lower residual compared to a refer-ence model than the uncalibrated data, more details about the many steps involved can be found in the referenced publication.
    Keywords: GOCE satellite ; machine learning ; platform magnetometers ; calibration ; Earth Observation Satellites 〉 Earth Explorers 〉 GOCE ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Magnetic Field/Electric Field Instruments 〉 MAGNETOMETERS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-01-24
    Description: Abstract
    Description: The atmosphere model of the Geophysical Fluid Dynamics Laboratory (GFDL-AM2) is coupled to a slab ocean in order to analyse the monsoon's sensitivity to changes in various forcing parameters on a planet with idealized topography. This monsoon planet design of a water planet with a zonal circumglobal land stripe allows to extract the relevant monsoon behaviour and reduces the influence of topography. Besides the width and location of the land stripe, the atmospheric CO2 concentration, incoming solar radiation, sulfate aerosol concentration and surface albedo are variied. Horizontal grid resolution is 2° latitude x 2.5° longitude. For the vertical grid, a hybrid coordinate grid with 24 vertical levels is implemented. The lowest model level starts about 30 m above the surface and the top level is at about 3 hPa. The vertical resolution is decreasing towards higher altitudes. Advective and physics time steps are 10 minutes and 0.5 hours, for atmopsheric radiation 3 hours time steps are used. Instead of an ocean general circulation model, a mixed-layer slab ocean is used.
    Keywords: Monsoon dynamics ; idealized topography ; EARTH SCIENCE 〉 ATMOSPHERE 〉 PRECIPITATION
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-02-02
    Description: Abstract
    Description: Global database of isotopic and major element compositions of kimberlites and carbonatites as compiled in: Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; et al. (2017): Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2017.03.011
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: GEOROC Expert Dataset ; kimberlite ; carbonatite ; major elements ; Sr-Nd-Hf isotopes ; C-O isotopes ; perovskite ; aillikite ; compound material 〉 igneous material 〉 igneous rock 〉 exotic composition igneous rock 〉 carbonatite ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-02-02
    Description: Abstract
    Description: Global geochemistry database for cratonic / anorogenic lamproites and related potassic rocks (compiled and screened from GEOROC in April 2020). Related key publication: Ngwenya, Ntando S.; Tappe, Sebastian (2021): Diamondiferous lamproites of the Luangwa Rift in central Africa and links to remobilized cratonic lithosphere. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2020.120019
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: GEOROC Expert Dataset ; cratonic ; trace elements ; major elements ; ankaratrite ; carbonatite ; kamafugite ; katungite ; kimberlite ; lamproite ; lamprophyre ; leucitite ; mafitite ; mafurite ; melilitite ; nephelinite ; orangeite ; pyroxenite ; ugandite ; compound material 〉 igneous material 〉 igneous rock 〉 exotic composition igneous rock 〉 carbonatite ; compound material 〉 igneous material 〉 igneous rock 〉 ultramafic igneous rock 〉 pyroxenite ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 ELEMENTS 〉 MAJOR ELEMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 ELEMENTS 〉 TRACE ELEMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-02-02
    Description: Abstract
    Description: A compilation of 90,688 published radiometric dates for sedimentary rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from igneous and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.007, respectively.
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: Earth and Environmental Sciences ; GEOROC Expert Dataset ; radiometric dates ; sedimentary rocks ; South America ; Argentina ; Bolivia ; Brazil ; Chile ; Colombia ; Peru ; carbonate ; charcoal ; enamel ; bone ; microfossils ; mollusc ; organic material ; peat ; whole rock ; wood ; adularia ; alunite ; amphibole ; apatite ; biotite ; plagioclase ; sanidine ; zircon ; Ar40_Ar39 ; C14 ; Fission track counting ; He ; K-Ar ; Pb206_U238 ; Pb207_Pb206 ; Pb207_U235 ; Sr-Sr ; U-Pb ; U-Th-He ; U-Th-Sm-He ; compound material 〉 rock 〉 sedimentary rock ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-02-02
    Description: Abstract
    Description: A compilation of 29,574 published radiometric dates for metamorphic rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from igneous and sedimentary rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.006, respectively.
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: Earth and Environmental Sciences ; GEOROC Expert Dataset ; radiometric dates ; metamorphic rocks ; South America ; Argentina ; Bolivia ; Brazil ; Chile ; Colombia ; Ecuador ; Peru ; bentonite ; granite ; tonalite ; tuff ; whole rock ; actinolite ; adularia ; albite ; allanite ; alunite ; amphibole ; apatite ; biotite ; chlorite ; cryptomelane ; cummingtonite ; feldspar ; fuchsite ; glaucophane ; hornblende ; illite ; jarosite ; K feldspar ; kaolinite ; manganese oxide ; mica ; microcline ; molybdenite ; monazite ; muscovite ; natroalunite ; orthoclase ; phengite ; phlogopite ; plagioclase ; pyrophyllite ; quartz ; rutile ; sericite ; titanite ; tremolite ; xenotime ; zircon ; Ar40_Ar39 ; C14 ; Electron spin resonance age analysis ; Fission track counting ; He ; K-Ar ; Ne21 ; Pb206_U238 ; Pb207_Pb206 ; Rb-Sr ; Re-Os ; Sm-Nd ; Th-Pb ; U-Pb ; U-Th-He ; U-Th-Sm-He ; compound material 〉 rock 〉 composite genesis rock 〉 metamorphic rock ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE MEASUREMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-02-02
    Description: Abstract
    Description: A compilation of 39,070 published radiometric dates for igneous rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from sedimentary and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.006 and https://doi.org/10.5880/digis.e.2023.007, respectively.
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: Earth and Environmental Sciences ; GEOROC Expert Dataset ; radiometric dates ; igneous rocks ; South America ; Argentina ; Bolivia ; Brazil ; Chile ; Colombia ; Ecuador ; Peru ; ash ; charcoal ; pumice ; volcanic glass ; whole rock ; basalt ; diorite ; monzodiorite ; obsidian ; monzonite ; actinolite ; adularia ; alunite ; amphibole ; apatite ; biotite ; clinopyroxene ; hornblende ; illite ; K feldspar ; kaersutite ; mica ; molybdenite ; monazite ; muscovite ; natrojarosite ; nepheline ; olivine ; orthoclase ; phlogopite ; plagioclase ; pyroxene ; rutile ; sanidine ; sericite ; titanite ; zircon ; Ar40_Ar39 ; C14 ; Electron spin resonance age analysis ; Fission track counting ; He ; K-Ar ; Pb-Pb ; Pb206_U238 ; Pb207_Pb206 ; Pb207_U235 ; Rb-Sr ; Re-Os ; Sm-Nd ; U-Pb ; U-Th ; U-Th-He ; U-Th-Pb ; compound material 〉 rock 〉 igneous rock ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-02-13
    Description: Abstract
    Description: Major and trace element concentrations and Sr, Nd, Hf, Pb isotope ratios of global mid ocean ridge and ocean island basalt whole-rock compositions from the GEOROC and PetDB databases (2021-2022). Key publications: Stracke, A., Willig, M., Genske, F., Béguelin, P., & Todd, E. (2022). Chemical Geodynamics Insights From a Machine Learning Approach. In Geochemistry, Geophysics, Geosystems (Vol. 23, Issue 10). https://doi.org/10.1029/2022GC010606 Stracke, A., Willig, M., Genske, F., Béguelin, P., & Todd, E. (2022). Chemical and radiogenic isotope data of ocean island basalts from Tristan da Cunha, Gough, St. Helena, and the Cook-Austral Islands [dataset]. GRO.data. https://doi.org/10.25625/BQENGN
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: major elements ; trace elements ; isotopes ; whole-rock ; mineral ; glass ; igneous:volcanic:mafic ; oceanic spreading center ; oceanic fracture zone ; oceanic island ; seamount ; aseismic ridge ; alkali basalt ; andesite ; ankaramite ; basalt ; basanite ; benmoreite ; carbonatite ; dacite ; dolerite ; foidite ; hawaiite ; icelandite ; melilitite ; mugearite ; nephelinite ; oceanite ; phonolite ; phonotephrite ; picrite ; picrobasalt ; rhyodacite ; rhyolite ; tachylyte ; tephrite ; tholeiite ; trachyandesite ; trachybasalt ; trachyphonolite ; trachyte ; tristanite ; MORB ; OIB ; MORB-Arctic ; MORB-Atlantic ; MORB-Gakkel ; MORB-Indian ; MORB-Pacific ; Amsterdam Island ; Ascension ; Austral-Cook Islands ; Azores ; Cameroon Line ; Canary Islands ; Cape Verde Islands ; Caroline Islands ; Christmas Island ; Faroe Islands ; Galapagos ; Gambier ; Gough ; Hawaii ; Iceland ; Jan Mayen ; Kerguelen ; Madeira ; Marquesas ; Mauritius ; Ninetyeast ridge ; Pitcairn ; Reunion ; Samoa ; Society Islands ; St. Helena ; St. Paul ; Tristan da Cunha ; Walvis Ridge ; GEOROC Expert Dataset ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-02-20
    Description: Abstract
    Description: This data repository contains the 3D steady-state thermal field computed for the South Caribbean and NW South America down to 75 km depth, the modelled hypocentral temperatures, the depths to the upper and lower stability transitions, as well as the seismogenic thickness calculated from selected earthquakes of the ISC Bulletin (International Seismological Centre, 2022). All methodological details can be found in the main publication (see section 2). We used the uppermost 75 km of the gravity-constrained structural and density model of Gómez-García et al. (2020, 2021) to derive the 3D thermal configuration of the study area. A steady-state approach was followed, in which upper and lower boundary conditions were set to run the thermal experiments using the software GOLEM (Cacace & Jacquey, 2017; Jacquey & Cacace, 2017). We selected earthquakes from the ISC Bulletin from January 1980 to January 2021 (International Seismological Centre, 2022), considering the magnitude of completeness for different periods, removing earthquakes without depth, set as 0 km or fixed, as well as those with reported hypocentral depth errors 〉30 km. Of this set, we selected the crustal earthquakes, located between the topo-bathymetry from the GEBCO relief (Weatherall et al., 2015) and the Moho depth from the GEMMA model (Reguzzoni & Sampietro, 2015), interpolated to a resolution of 5 km. From this earthquake subset we computed the upper and lower stability transitions for seismogenesis, as the 10th and 90th percentiles (D10 and D90), respectively, of the hypocentral depths. These percentiles were mapped on a latitude-longitude grid, using for each grid node its 20 closest earthquakes as sample. The hypocentral temperatures and the temperatures at the D10 and D90 crustal depths were calculated from the lithospheric-scale thermal model. Lastly, the crustal seismogenic thickness was computed as the difference between D90 and D10 for each grid node. For more details about the modelling approach and interpretation of the results, we kindly ask the reader to refer to the main publication: Gomez-Garcia et al., (2022).
    Keywords: 3D thermal model ; seismogenic thickness ; earthquake hypocentral temperatures ; seismogenic zone ; northwestern South America ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~8GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The goal of Inter-Wind is to investigate and predict the induced seismic signals of wind turbines at different locations in Southern Germany. The experiments involve various sensor types and data loggers.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; passive seismology ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~39GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Ireland Array is an array of 20 broadband seismometers that was operated by the Dublin Institute for Advanced Studies across the Republic of Ireland. The array comprised up to 20 stations running simultaneously, all equipped with Trillium 120PA seismometers and Taurus data loggers. The 20 stations were installed in 2010–2012. Some of the stations were moved to new locations in Ireland in the course of the operation of the array, either in order to enhance the data sampling of the island or when the old deployment sites became unsuitable. Ireland Array dramatically increased the seismic data sampling of Ireland and enabled advances and discoveries in the studies of the structure and evolution of Ireland’s crust and lithosphere, seismicity of Ireland, and mechanisms of the Paleogene intraplate volcanism in Ireland and surroundings.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~2.4TB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-02-22
    Description: Abstract
    Description: This field campaign aimed at densifying the station coverage on the Armutlu Peninsula in the eastern Sea of Marmara. The Armutlu peninsula is directly crossed by the Armutlu fault, located roughly ~50 km away from the Istanbul metropolitan region. The main objective of this experiment is to characterize the seismic and aseismic deformation of this region. Waveform data are available from the GEOFON data centre, under network code 9P.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-03-28
    Description: Abstract
    Description: This dataset comprises the PCEEJ equatorial electrojet model current intensity values (mA/m). The PCEEJ is an empirical model based on the principal component analysis of satellite and ground equatorial electrojet data, described in detail in Soares et al. (2022), to which this data publication is supplement to. The model data is provided as text files (.csv extension) and Matlab-formatted files (.mat extension). For text files, there is one file per year (file name labeled with the corresponding year). For the Matlab format, there is only one Matlab file that contains all years as separate variables (variable name labeled with the corresponding year). Each yearly file/variable corresponds to a matrix: the rows represent local time/longitude bins and the columns represent days of year. The local time/longitude bins (rows) always sum up to 432 (12 local time intervals and 36 longitude intervals). The day of year (columns) always starts in January 1st and ends in December 31st, leading to a total of 365 or 366. The PCEEJ model values of 13 years from 2003 to 2010 and from 2014 to 2018 are provided. The PCEEJ basis functions (principal components) are provided in the text and Matlab files labeled as ‘PC_Functions’. The ‘PC_Functions’ data is given as a 432x10 matrix, in which 432 stands for the aforementioned local time/longitude bins and 10 represents the 10 principal components used to obtain the PCEEJ model (in ascending order). Two additional auxiliary indices, namely ‘lt_index’ and ‘lon_index’ are also contained as text and Matlab files. These indices represent the corresponding local time and longitude values of each row of the PCEEJ yearly files and ‘PC_Functions’ files.
    Keywords: Equatorial Electrojet ; Principal Component Analysis ; Geomagnetic Satellite Observations ; Geomagnetic Observatories ; EARTH SCIENCE SERVICES 〉 MODELS 〉 SOLAR-ATMOSPHERE/SPACE-WEATHER MODELS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GEOMAGNETIC STATIONS ; Solar/Space Observing Instruments 〉 Magnetic Field/Electric Field Instruments
    Type: Model , Model
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-04-11
    Description: Abstract
    Description: Understanding physical processes prior and during eruptions remains challenging, due to uncertainties about subsurface structures and undetected processes within the volcano. Here, the authors use a dedicated fibre-optic cable to obtain strain data and identify volcanic events and image hidden near-surface volcanic structural features at Etna volcano, Italy. In the paper Jousset et al. (2022), we detect and characterize strain signals associated with explosions, and we find evidences for non-linear grain interactions in a scoria layer of spatially variable thickness. We also demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms, and we identify very small volcanic events, which we relate to fluid migration and degassing. We recorded seismic signals from natural and man-made sources with 2-m spacing along a 1.5-km-long fibre-optic cable layout near the summit of actives craters of Etna volcano, Italy. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS. This data publication contains the full data set used for the analysis. This data set comprises strain-rate data from 1 iDAS interrogator (~750 traces), velocity data from 15 geophones and 4 broadband seismometers, and infrasonic pressure data from infrasound sensors. For further explanation of the data and related processing steps, please refer to Jousset et al. (2022). Waveform data are available from the GEOFON data centre, under network code 9N.
    Keywords: fibre optics ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Volcano ; Velocity ; DAS ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-04-11
    Description: Abstract
    Description: “Gakkel Deep is a pilot project that installed a network of four broadband ocean bottom seismometers (OBS) near Gakkel Deep, the deepest depression in the Arctic Ocean, at the eastern end of the ultraslow spreading Gakkel Ridge. The area is covered year-round by sea ice. In order to enable a safe recovery of the OBS in a sea ice covered ocean, the OBS were modified to include a positioning system that allows to track the instruments at meter accuracy during descent and ascent and when stuck beneath ice floes. This pilot studied aimed at testing the recovery procedure of the OBS, checking the performance of the modified instrument design, getting an overview of ambient seismic noise at the bottom of the Arctic Ocean and at contributing to a better understanding of the origin of the Gakkel Deep depression with more than 3000 m of topography. The network is shaped as a rectangle with 8 km and 10 km side length and is centered at about 82°N 119.5°E at water depths between 3600 m and 4100 m. It is positioned slightly to the east of the present plate boundary in an area with volcanic structures. Instruments from the German Instrument Pool of Amphibian Seismology (DEPAS) were deployed during RV Polarstern cruise PS115/2 on September 15, 2018. Instrument recovery was completed during RV Polarstern cruise PS122/1 on September 27, 2019. The data set contains about 377 days of continuous records at 250 Hz sample rate. The station locations were determined with Ultra Short Baseline (USBL) ranging, the accuracy is approx. 10 m. The non-linear clock drift was determined by means of noise cross-correlations and applied to the data set. Waveform data are available from the GEOFON data centre, under network code 8F and are embargoed until June 2025.
    Keywords: In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; OBS ; DEPAS ; Passive seismic ; Local network ; Temporary ; Velocity ; Hydrophones ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-04-29
    Description: Abstract
    Description: This data repository contains a brief description of the building classification scheme for physical vulnerability to tsunamis and corresponding fragility functions originally proposed by Medina, 2019. These fragility functions are used as input to construct their associated state-dependent fragility functions using scaling factors, which were obtained as ad-hoc calibration parameters. A Python script to produce a file with such a model is provided along with the needed inputs and resulting output files.
    Description: Other
    Description: In recent decades, the risk to society due to natural hazards has increased globally. To counteract this trend, effective risk management is necessary, for which reliable information is essential. Most existing natural hazard and risk information systems address only single components of a complex risk assessment chain, such as, for instance, focusing on specific hazards or simple loss measures. Complex interactions, such as cascading effects, are typically not considered, as well as many of the underlying sources of uncertainty. This can lead to inadequate or even miss-leading risk management strategies, thus hindering efficient prevention and mitigation measures, and ultimately undermining the resilience of societies. Therefore, experts from different disciplines work together in the joint project RIESGOS 2.0 (Scenario-based multi-risk assessment in the Andes region) and develop innovative scientific methods for the evaluation of complex multi-risk situations with the aim to transfer the results as web services into a demonstrator for a multi-risk information system.
    Keywords: fragility function ; tsunami vulnerability ; multi-hazard ; attributes ; RIESGOS ; Scenario-based multi-risk assessment in the Andes region ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 TSUNAMIS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-04-29
    Description: Abstract
    Description: This folder contains the scripts, input and output files required to calculate the inter-scheme conversion matrices for building types and the implicit damage states of their respective fragility models for two selected vulnerability schemes: one for earthquakes and the other for tsunamis. They were used in previous studies to characterize the residential building stock of Lima. The outcomes generated in this data repository are valuable inputs to then calculate the disaggregated and cumulative damage and losses expected for cascading hazard scenarios.
    Description: Other
    Description: In recent decades, the risk to society due to natural hazards has increased globally. To counteract this trend, effective risk management is necessary, for which reliable information is essential. Most existing natural hazard and risk information systems address only single components of a complex risk assessment chain, such as, for instance, focusing on specific hazards or simple loss measures. Complex interactions, such as cascading effects, are typically not considered, as well as many of the underlying sources of uncertainty. This can lead to inadequate or even miss-leading risk management strategies, thus hindering efficient prevention and mitigation measures, and ultimately undermining the resilience of societies. Therefore, experts from different disciplines work together in the joint project RIESGOS 2.0 (Scenario-based multi-risk assessment in the Andes region) and develop innovative scientific methods for the evaluation of complex multi-risk situations with the aim to transfer the results as web services into a demonstrator for a multi-risk information system.
    Keywords: machine learning ; vulnerability ; multi-hazard ; earthquake fragility ; tsunami fragility ; cumulative damage ; Bayesian approach ; RIESGOS ; Scenario-based multi-risk assessment in the Andes region ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 TSUNAMIS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-05-13
    Description: Abstract
    Description: This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). •The TanDEM-X RSO cover the period: ofrom 2010 173 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
    Description: Other
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay.
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; TOR ; TDX ; GPS ; RSO ; SAR ; IGOR ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 SATELLITES ; Earth Observation Satellites 〉 TDX ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 AIRCRAFT MOTION SENSOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 BLACKJACK ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS-RO RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 RO ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-05-13
    Description: Abstract
    Description: This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-A. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). •The GRACE RSO cover the period: - GRACE-A from 2004 200 to 2017 334 - GRACE-B from 2004 200 to 2017 245 (this DOI) The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
    Description: Other
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay.
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; GRACE ; GPS ; RSO ; BlackJack ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; Earth Observation Satellites 〉 SATELLITES ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Photon/Optical Detectors 〉 Cameras 〉 GRACE SCA ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 AIRCRAFT MOTION SENSOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS-RO RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 RO ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 GRACE LRR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 HAIRS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-05-13
    Description: Abstract
    Description: This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-A. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). •The GRACE RSO cover the period: - GRACE-A from 2004 200 to 2017 334 (this DOI) - GRACE-B from 2004 200 to 2017 245 The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
    Description: Other
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay.
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; GRACE ; GPS ; RSO ; BlackJack ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; Earth Observation Satellites 〉 SATELLITES ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Photon/Optical Detectors 〉 Cameras 〉 GRACE SCA ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 AIRCRAFT MOTION SENSOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS-RO RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 RO ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 GRACE LRR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 HAIRS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-17
    Description: Abstract
    Description: The Irish Seismological Lithospheric Experiment (ISLE) was originally designed to investigate the deep lithospheric and asthenospheric structure across the late-Caledonian Iapetus Suture Zone in southern Ireland. The project was a collaboration between the Dublin Institute for Advanced Studies (DIAS), Ireland, and the Geophysical Institute (GPI) of the University of Karlsruhe, Germany. It was the first passive teleseismic experiment conducted in Ireland, building upon a large body of earlier work on the crustal structure offshore and onshore Ireland, based on controlled source seismics and potential field studies. The Irish Seismological Upper Mantle Experiment (ISUME) was a continuation of ISLE by DIAS to extend the data coverage to most of Ireland. Data are available at the GEOFON data centre under network code 1M.
    Keywords: In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 668.9GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Project SWEAP (Southwest Indian Ridge Earthquakes and Plumes), a collaborative effort led by the Alfred-Wegener-Institute, installed a network of 10 broad-band ocean bottom seismometers (OBS) along the ultraslow-spreading Oblique Supersegment of the Southwest Indian Ridge. The presented data set covers the continuous records of 8 stations of the network provided by the DEPAS instrument pool. One station of the original network could not be recovered, another one did not return data. The instruments were spaced at roughly 15 km intervals in a triangular shape network to either side of the rift axis covering about 60 km along axis between 13°E and 13.8°E and 60 km across axis between 52°S and 52.6°S. The determination of the OBS positions is described by Schmid et al. (2016). The network design was optimized for detecting and locating deep seismicity in the area. The rift valley was filled with soft silica ooze, producing considerable delay of S-phases at selected stations. Instrument deployment started during RV Polarstern cruise ANT-XXIX/2 on December 05 2012. Instrument recovery was completed during RV Polarstern cruise ANT-XXIX/8 on November 26 2013. 5 Refraction seismic lines were acquired by RV Polarstern cruise ANT-XXIX/8 from November 17 to 19 in 2013. All OBS could be synchronized with the GPS clock upon recovery such that skew values describing the clock drift are available for all stations. The non-linear clock drift of station SWE05 was determined by means of noise cross-correlations and applied to the data set. All other stations show a linear drift, which was corrected.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; DEPAS ; OBS
    Type: Dataset , Seismic Network
    Format: 161GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-21
    Description: Abstract
    Description: This dataset includes five stations of an Ocean Bottom Seismometer (OBS) experiment conducted at the southern end of the Fonualei Rift and Spreading Center in the Lau Basin, southwestern Pacific. The OBS recorded continuously for 32-days on 4 components, including a hydrophone and a 3-component 4.5 Hz geophone. The experiment was conducted during RV Sonne cruise SO267, project ARCHIMEDES I.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; OBS
    Type: Dataset , Seismic Network
    Format: 61GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 8.3GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-06-10
    Description: Abstract
    Description: Global database of  〉20, 000 geochemical analyses of Neogene-Quaternary intraplate volcanic rocks. The database collates major, trace element and Sr-Nd-Pb isotopic data for whole-rock samples 〈20 Ma old that were published between 1990 and 2020. Database as published in Ball et al. (2021). Key publication: Ball, P. W., White, N. J., Maclennan, J., & Stephenson, S. N. (2021). Global influence of mantle temperature and plate thickness on intraplate volcanism. Nature Communications, 12(1), 2045. https://doi.org/10.1038/s41467-021-22323-9
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: intraplate ; volcanic ; major elements ; trace elements ; Sr87_Sr86 ; Nd143_Nd144 ; Pb206_Pb204 ; Pb207_Pb206 ; Pb208_Pb204 ; andesite ; basalt ; basaltic andesite ; basaltic trachyandesite ; basanite ; dacite ; foidite ; phonolite ; phonotephrite ; picrobasalt ; rhyolite ; tephriphonolite ; trachyandesite ; trachybasalt ; trachyte ; Sr-Nd-Pb isotopes ; GEOROC Expert Dataset ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; Phanerozoic 〉 Cenozoic 〉 Neogene ; Phanerozoic 〉 Cenozoic 〉 Quaternary
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-06-20
    Description: Abstract
    Description: This data publication includes the half-hourly Hp30 and ap30 indices as well as the hourly Hp60 and ap60 indices, collectively denoted as Hpo. This dataset is based on near real-time geomagnetic observatory data provided by 13 contributing observatories. It is derived and distributed by GFZ German Research Centre for Geosciences. When using the Hpo index, please cite this data publication as well as the accompanying publication Yamazaki et al. (submitted), which serves as documentation of the Hpo. The dataset is organised in yearly files, which, for the current year, are updated on a monthly basis. Typically, during the second week of a month, the data for the previous month is appended to the current year's file. The files are in ASCII files and start with header lines marked with # (hash). The Hpo index was developed within the H2020 project SWAMI (grant agreement No 776287) and is produced by Geomagnetic Observatory Niemegk, GFZ German Research Centre for Geosciences. It derives from the same 13 geomagnetic observatories that also contribute to the Kp index (Matzka et al., 2021, https://doi.org/10.5880/Kp.0001). They are listed as contributors to this data publication. With the introduction of the DOI for the Hpo index (Matzka et al, 2021, https://doi.org/10.5880/Hpo.0001), this DOI landing page and the associated HTTPS server linked to the DOI become the primary archive of Hpo (while the other established index distribution mechanisms at GFZ will be maintained in parallel). With the DOI, the dataset can grow with time, but a change of the data, once published, is not possible. If necessity arises in the future to correct already published values, then the corrected dataset will be published with a new DOI. Older DOIs and data sets will then still be available. For each DOI, an additional versioning mechanism will be available to document changes to the files such as header or format changes, which do not affect the integrity of the data. The DOI https://doi.org/10.5880/Hpo.0002 identifies the current version. A format description and a version history are provided in the data download folder.
    Description: Other
    Description: Version history: 2022-03-26 ---------- Publication of Version Hpo.0002. This version replaces version Hpo.0001. The Hpo, like the Kp nowcast, is based on the FMI algorithm (see Matzka et al., 2021, https://doi.org/10.1029/2020SW002641) and goes through a rescaling procedure to be more similar to the definitive Kp values. The data in version Hpo.0001 from 2018 onwards suffered from a slight error in this rescaling algorithm, causing for example somewhat too few Hpo 0 values and somewhat too many Hpo 0.333 values. This error was corrected for version Hpo.0002. The values from 1995 to 2017 are identical for both versions. 2021-04-26 ---------- Publication of Version Hpo.0001
    Keywords: Hpo ; Hpo index ; Hp30 ; ap30 ; Hp60 ; ap60 ; Kp ; Kp index ; ap index ; geomagnetism ; space weather ; space physics ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 GEOMAGNETIC INDICES 〉 KP INDEX ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 AURORAE ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 GEOMAGNETIC INDICES ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 MAGNETIC FIELDS/MAGNETIC CURRENTS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 MAGNETIC STORMS ; EARTH SCIENCE 〉 SUN-EARTH INTERACTIONS 〉 IONOSPHERE/MAGNETOSPHERE DYNAMICS 〉 SOLAR WIND
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-01-12
    Description: Raw, SEGY and other supplementary data are presented from the seismic refraction / wide-angle reflection profile, TTZ-South, in Poland and Ukraine. The purpose of this 550 km long seismic profile was to reveal the lithospheric structure along the Teisseyre-Tornquist Zone (TTZ), a major geophysical boundary in Europe.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-01-12
    Description: This field campaign aimed at densifying the station coverage on the Armutlu Peninsula in the eastern Sea of Marmara. The Armutlu peninsula is directly crossed by the Armutlu fault, located roughly ~50 km away from the Istanbul metropolitan region. The main objective of this experiment is to characterize the seismic and aseismic deformation of this region. Waveform data are available from the GEOFON data centre, under network code 9P.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-01-12
    Description: This dataset contains subaquatic passive seismic recordings taken in September 2021 at 88 locations off Tuktoyaktuk Island as well as in a small lake (“Lake 3”) between the villages of Tuktoyaktuk and Inuvik, Northwest Territories, Canada. The measurements were part of the “Mackenzie Delta Permafrost Field Campaign” (mCan2021) within the “Modular Observation solutions for Earth Systems” (MOSES) program. Data is from a seismic intermediate-bandwidth seismic sensor lowered for few minutes to the bottom of the sea and lake, respectively, and from underwater short-period sensors deployed for a few days. The aim of the study was to determine the depth of the subaquatic permafrost (local lake and oceanic locations). Raw data is provided in proprietary “Cube” format and standard mseed format.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-01-12
    Description: This data publication contains a seismic survey which was acquired in the Mont Terri Underground Rock Laboratory (URL) in January 2019. The aim of the SI-A experiment (Seismic Imaging Ahead of and around underground infrastructure) is to provide a seismic characterization at the meso scale and to investigate the feasibility of tomographic and reflection imaging in argillaceous environments. The survey covered the different facies types of Opalinus Clay: shaly facies, carbonate -rich sandy facies and sandy facies (Bossart et al. 2017). Three different seismic sources (impact, vibro, ELVIS) were used to acquire the seismic data. The impact and magnetostrictive vibro sources were particularly designed for seismic exploration in the underground (Giese et al. 2005, Richter et al. 2018). The ELVIS source was mainly designed for near-surface investigations on roads or in open terrain (Krawczyk et al. 2012). All data were recorded on 32 3-component geophones (GS-14-L3, 28 Hz) which were deployed in 2 m deep boreholes, fixed at the tip of rock anchors. The data publication covers raw and preprocessed data stored in SEG-Y format.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-01-04
    Description: This dataset provides friction data from ring-shear tests on glass beads with a diameter of 200-300 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.51 , µD = 0.40, and µR = 0.44, respectively (Table 5). Cohesion of the material ranges between 40 Pa and 70 Pa. The material shows a minor rate-weakening of ~1% per ten-fold change in shear velocity v and a stick-slip behaviour at low shear velocities and at high loads.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-01-04
    Description: This dataset provides friction data from ring-shear tests on glass beads with a diameter of 100-200 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.50 , µD = 0.39, and µR = 0.46, respectively (Table 5). Cohesion of the material is close to zero Pa. The material shows a minor rate-weakening of ~1% per ten-fold change in shear velocity v and a stick-slip behaviour at low shear velocities and at high loads.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-01-04
    Description: This dataset provides friction data from ring-shear tests on glass beads with a diameter of less than 50 µm used in analogue modelling of tectonic processes as a rock analogue for “weak” layers in the earth’s upper crust (e.g. Klinkmüller et al., 2016; Ritter et al., 2016; Lohrmann et al., 2003) or as “seismogenic” crust (Rudolf et al., 2022). The glass beads are characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.47 , µD = 0.44, and µR = 0.47, respectively (Table 5). Cohesion of the material ranges between 50 Pa and 70 Pa. The material shows a neglectable rate-weakening of 〈1% per ten-fold change in shear velocity v.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2023-01-10
    Description: A temporary seismic network consisting of 48 long-term and 15 short-term stations was deployed from June 2021 to June 2022. The network comprises 27 broadband stations and 20 short period geophones from the Ruhr-University Bochum, the Geophysical Instrument Pool Potsdam (GIPP) and the RWTH Aachen. The inter-station spacing of the longer-term network is about 2 km and the total extent of the network is about 20 km. The densely populated area and vicinity of active pit mining demanded a balance between dense station placement and avoidance of anthropogenic noise sources. The network serves as a pre-study for the installment of a field laboratory in Eschweiler-Weisweiler, Germany. Details can be found in the accompanying data publication (Finger et al., in preparation). This project has been subsidized through the Cofund GEOTHERMICA, which is supported by the European Union’s HORIZON 2020 programme for research, technological development and demonstration under grant agreement No 731117. Furthermore, this study was supported by the Interreg North-West Europe (Interreg NWE) Programme through the Roll-out of Deep Geothermal Energy in North-West Europe (DGE-ROLLOUT) Project (http://www.nweurope.eu/DGE-Rollout), NWE 892. The Interreg NWE Programme is part of the European Cohesion Policy and is financed by the European Regional Development Fund (ERDF). Waveform data are available from the GEOFON data centre, under network code ZB. Data from some stations are embargoed until Januar 2026 but might be available on request.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-01-10
    Description: A sequence of three strong (M W 7.2–6.4) and several moderate (M W 4.4–5.7) earthquakes struck the Pamir Plateau and surrounding mountain ranges of Tajikistan, China, and Kyrgyzstan in 2015–2017. With a local seismic network in operation in the Xinjiang province since August 2015, an aftershock network on the Pamir Plateau of Tajikistan since February 2016, and additional permanent regional seismic stations, we were able to record the succession of the fore-, main-, and aftershock sequences at local distances with good azimuthal coverage. We located 11,784 seismic events and determined the moment tensor for 33 earthquakes. The seismicity delineates the major tectonic structures of the Pamir, i.e., the thrusts that absorb shortening along the plateau thrust front, and the strike-slip and normal faults that dissect the Plateau into a westward extruding and a northward advancing block. Fault ruptures were activated subsequently at increasing distances from the initial M W 7.2 Sarez. All mainshock areas but the initial one exhibited foreshock seismicity which was not modulated by the occurrence of the earlier earthquakes. The tabular ASCII data of the seismic event catalog consist of origin date, time, location, depth and magnitude of the events, along with the quality measures: number of P- and S-wave arrival time picks, location root-mean-square misfit and localization method. The tabular ASCII data of the moment tensor catalog consist of origin date, time, location, the six independent components of the moment tensor, the moment magnitude, and the orientation of the preferred fault plane parameterized as fault strike, dip and rake.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-01-10
    Description: The goal of Inter-Wind is to investigate and predict the induced seismic signals of wind turbines at different locations in Southern Germany. The experiments involve various sensor types and data loggers.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-01-10
    Description: The dataset contains SEG-Y data of a 3D seismic in situ experiment in the Mont Terri URL, Switzerland. The data were acquired using a pneumatic impact source and 3-C geophones, installed in boreholes or on the tunnel wall. The data publication covers the raw data (individual hits per shot point) and the vertically stacked data stored in SEG-Y format. The survey geometry (source coordinates, receiver coordinates) is included.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-01-17
    Description: This data set includes digital image correlation data from analog earthquakes experiments. The data consists of grids of surface strain and time series of surface displacement (horizontal and vertical) and strain. The data have been derived using a stereo camera setup and processed with LaVision Davis 10 software. Detailed descriptions of the experiments and results regarding the surface pattern of the strain can be found in Kosari et al. (in review), to which this data set is supplementary. We use an analog seismotectonic scale model approach (Rosenau et al., 2019 and 2017) to generate a catalog of analog megathrust earthquakes (Table 1). The presented experimental setup is modified from the 3D setup used in Rosenau et al. (2019) and Kosari et al. ( 2020). The subduction forearc model wedge is set up in a glass-sided box (1000 mm across strike, 800mm along strike, and 300 mm deep) with a dipping, elastic basal conveyor belt and a rigid backwall. An elastoplastic sand-rubber mixture (50 vol.% quartz sandG12: 50 vol.% EPDM rubber) is sieved into the setup representing a 240 km long forearc segment from the trench to the volcanic arc. The shallow part of the wedge includes a basal layer of sticky rice grains characterized by unstable stick-slip sliding representing the seismogenic zone. Stick-slip sliding in rice is governed by a rate-and-state dependent friction law similar to natural rocks. According to Coulomb wedge theory (Dahlen et al., 1984), two types of wedge configurations have been designed: a “compressional” configuration represents an interseismically compressional and coseismically stable wedge (compressional configuration), and a “critical” configuration, which is interseismically stable (close to critically compressional) and may reach a critical extensional state coseismically (critical configuration). In the compressional configuration, a flat-top (surface slope α=0) wedge overlies a single large rectangular in map view stick-slip patch (Width*Length=200*800 mm) over a 15-degree dipping basal thrust. In the critical configuration, the surface angle of the elastoplastic wedge varies from the coastal segment onshore (α=10) to the inner-wedge offshore (α=15) segments over a 5-degree dipping basal thrust. Slow continuous compression of the wedge by moving the basal conveyor belt at a speed velocity of 0.05 mm/s simulates plate convergence and results in the quasi-periodic nucleation of quasi-periodic stick-slip events (analog earthquakes) within the rice layer. The wedge responds elastically to these basal slip events, similar to crustal rebound during natural subduction megathrust earthquakes.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2023-01-17
    Description: This dataset provides friction data from ring-shear tests (RST) on twice broken rice used in the GEC Laboratory in CY Cergy Paris University in stick-slip experiments. They were obtained by Sarah Visage as part of her doctoral training (funded by the ANR DISRUPT programme) during an invitation at the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. Like any granular material, the twice broken rice is characterized by several internal friction coefficients μ and cohesions C, classicaly qualified as dynamic, static, and reactivation coefficients. In adition, since the rice exhibits a stick slip behaviour, the various shear - velocity or shear-displacement curves exhibit high frequency oscillations and we therefore define maximum, minimum, and mean values corresponding respectively to the curve peaks, curve troughs and smoothed curve.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-01-17
    Description: This dataset provides friction data from ring-shear tests (RST) for wheat flour used as a fine-grained, cohesive analogue material for simulating brittle upper crustal rocks in the analogue labor-atory of the Institute of Geophysics of the Czech Academy of Science (IGCAS). It is characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak friction coefficients µP of the tested material is ~0.72, dynamic friction coeffi-cients µD is ~0.67 and reactivation friction coefficients µR is ~0.70. Cohesions of the material range between 27 and 50 Pa. The material shows a minor rate-weakening of ~1.5% per ten-fold change in shear velocity v and a stick-slip behaviour at low shear velocities.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-01-17
    Description: As a supplement to Huang et al. (2022) “The influence of sediments, lithosphere and upper mantle (anelastic) with lateral heterogeneity on ocean tide loading and ocean tide dynamics”, we provide for the advanced earth model LH-Lyon-3Dae [consisting of 3D elastic sediments, lithosphere and 3D anelastic upper mantle structures, see Huang et al.(2022) for details] the solutions of vertical ocean tide loading (OTL) displacement, self-attraction and loading (SAL) elevation, and ocean tides. Solutions for three tidal constituents, i.e., M2, K1 and Mf, are given. As a comparison, solutions based on the 1D elastic model PREM and the 1D anelastic LH-Lyon-1Dae are also presented. With these solutions, the primary results in Huang et al. (2022) such as the model amplitude differences, RMS differences and the predictions in GNSS stations can be reconstructed.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-01-17
    Description: The data set is a compilation of more than 300 CO2-rich mineral waters and mofettes in the NW Bohemia/Vogtland region. It is a combination of historical data from numerous books and reports, recent scientific papers, as well as own field observations. The oldest literature sources related to these geogenic CO2 gas emissions were mentioned in the 18th century. These springs were famous for their delicious acidic mineral water – so called “Sauerbrunnen” or "Säuerlinge". However, some gas emission sites and their springs dried and disappeared during the centuries, but they were an important meeting point in the villages (water supply) and were therefore mentioned in old geological or historical reports. The coordinates of these former locations could only be estimated. The dataset contains geographic coordinates, Czech and German site names, as well as the location type.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2023-01-17
    Description: This data repository contains the 3D steady-state thermal field computed for the South Caribbean and NW South America down to 75 km depth, the modelled hypocentral temperatures, the depths to the upper and lower stability transitions, as well as the seismogenic thickness calculated from selected earthquakes of the ISC Bulletin (International Seismological Centre, 2022). All methodological details can be found in the main publication (see section 2). We used the uppermost 75 km of the gravity-constrained structural and density model of Gómez-García et al. (2020, 2021) to derive the 3D thermal configuration of the study area. A steady-state approach was followed, in which upper and lower boundary conditions were set to run the thermal experiments using the software GOLEM (Cacace amp; Jacquey, 2017; Jacquey amp; Cacace, 2017). We selected earthquakes from the ISC Bulletin from January 1980 to January 2021 (International Seismological Centre, 2022), considering the magnitude of completeness for different periods, removing earthquakes without depth, set as 0 km or fixed, as well as those with reported hypocentral depth errors gt;30 km. Of this set, we selected the crustal earthquakes, located between the topo-bathymetry from the GEBCO relief (Weatherall et al., 2015) and the Moho depth from the GEMMA model (Reguzzoni amp; Sampietro, 2015), interpolated to a resolution of 5 km. From this earthquake subset we computed the upper and lower stability transitions for seismogenesis, as the 10th and 90th percentiles (D10 and D90), respectively, of the hypocentral depths. These percentiles were mapped on a latitude-longitude grid, using for each grid node its 20 closest earthquakes as sample. The hypocentral temperatures and the temperatures at the D10 and D90 crustal depths were calculated from the lithospheric-scale thermal model. Lastly, the crustal seismogenic thickness was computed as the difference between D90 and D10 for each grid node. For more details about the modelling approach and interpretation of the results, we kindly ask the reader to refer to the main publication: Gomez-Garcia et al., (2022).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2023-01-17
    Description: This dataset provides information about the hydrostatic and wet signal delays from a network of 23 GNSS stations in northwestern Argentina between 2010-2021. It is based on Global Navigation Satellite System (GNSS) remote sensing techniques for the estimation of the atmospheric total delay and its gradients. Additionally, the hydrostatic counterpart and its gradients were calculated from the ERA5 dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF) with ray-tracing algorithms. The wet delays, as well as their gradients, were calculated by subtracting the hydrostatic fraction from the total proportion. Lastly, the wet signal delays were also computed using solely the ERA5 dataset.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2023-01-30
    Description: This dataset comprises the PCEEJ equatorial electrojet model current intensity values (mA/m). The PCEEJ is an empirical model based on the principal component analysis of satellite and ground equatorial electrojet data, described in detail in Soares et al. (2022), to which this data publication is supplement to. The model data is provided as text files (.csv extension) and Matlab-formatted files (.mat extension). For text files, there is one file per year (file name labeled with the corresponding year). For the Matlab format, there is only one Matlab file that contains all years as separate variables (variable name labeled with the corresponding year). Each yearly file/variable corresponds to a matrix: the rows represent local time/longitude bins and the columns represent days of year. The local time/longitude bins (rows) always sum up to 432 (12 local time intervals and 36 longitude intervals). The day of year (columns) always starts in January 1st and ends in December 31st, leading to a total of 365 or 366. The PCEEJ model values of 13 years from 2003 to 2010 and from 2014 to 2018 are provided. The PCEEJ basis functions (principal components) are provided in the text and Matlab files labeled as ‘PC\_Functions’. The ‘PC\_Functions’ data is given as a 432x10 matrix, in which 432 stands for the aforementioned local time/longitude bins and 10 represents the 10 principal components used to obtain the PCEEJ model (in ascending order). Two additional auxiliary indices, namely ‘lt\_index’ and ‘lon\_index’ are also contained as text and Matlab files. These indices represent the corresponding local time and longitude values of each row of the PCEEJ yearly files and ‘PC\_Functions’ files.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-01-30
    Description: This data publication includes the half-hourly Hp30 and ap30 indices as well as the hourly Hp60 and ap60 indices, collectively denoted as Hpo. This dataset is based on near real-time geomagnetic observatory data provided by 13 contributing observatories. It is derived and distributed by GFZ German Research Centre for Geosciences. When using the Hpo index, please cite this data publication as well as the accompanying publication Yamazaki et al. (submitted), which serves as documentation of the Hpo. The dataset is organised in yearly files, which, for the current year, are updated on a monthly basis. Typically, during the second week of a month, the data for the previous month is appended to the current year's file. The files are in ASCII files and start with header lines marked with # (hash). The Hpo index was developed within the H2020 project SWAMI (grant agreement No 776287) and is produced by Geomagnetic Observatory Niemegk, GFZ German Research Centre for Geosciences. It derives from the same 13 geomagnetic observatories that also contribute to the Kp index (Matzka et al., 2021, https://doi.org/10.5880/Kp.0001). They are listed as contributors to this data publication. With the introduction of the DOI for the Hpo index (Matzka et al, 2021, https://doi.org/10.5880/Hpo.0001), this DOI landing page and the associated HTTPS server linked to the DOI become the primary archive of Hpo (while the other established index distribution mechanisms at GFZ will be maintained in parallel). With the DOI, the dataset can grow with time, but a change of the data, once published, is not possible. If necessity arises in the future to correct already published values, then the corrected dataset will be published with a new DOI. Older DOIs and data sets will then still be available. For each DOI, an additional versioning mechanism will be available to document changes to the files such as header or format changes, which do not affect the integrity of the data. The DOI https://doi.org/10.5880/Hpo.0002 identifies the current version. A format description and a version history are provided in the data download folder.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-01-18
    Description: The Flood Similarity Workflow is part of the Flood Event Explorer (FEE, Eggert et al., 2022), developed at the GFZ German Research Centre for Geosciences . It is funded by the Initiative and Networking Fund of the Helmholtz Association through the Digital Earth project (https://www.digitalearth-hgf.de/). River floods and associated adverse consequences are caused by complex interactions of hydro-meteorological and socio-economic pre-conditions and event characteristics. The Flood Similarity Workflow supports the identification, assessment and comparison of hydro-meteorological controls of flood events. The analysis of flood events requires the exploration of discharge time series data for hundreds of gauging stations and their auxiliary data. Data availability and accessibility and standard processing techniques are common challenges in that application and addressed by this workflow. The Flood Similarity Workflow allows the assessment and comparison of arbitrary flood events. The workflow includes around 500 gauging stations in Germany comprising discharge data and the associated extreme value statistics as well as precipitation and soil moisture data. This provides the basis to identify and compare flood events based on antecedent catchment conditions, catchment precipitation, discharge hydrographs, and inundation maps. The workflow also enables the analysis of multidimensional flood characteristics including aggregated indicators (in space and time), spatial patterns and time series signatures. The added value of the Flood Event Explorer comprises two major points. First, scientist work on a common, homogenized database of flood events and their hydro-meteorological controls for a large spatial and temporal domain , with fast and standardized interfaces to access the data. Second, the standardized computation of common flood indicators allows a consistent comparison and exploration of flood events.
    Language: English
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2023-01-18
    Description: We present a dataset of in-situ measurements in the marginal area of a CO2- and brine-rich cavernous structure in an underground salt mine. The data were collected within the framework of the BMBF-project ProSalz. One aim was to reveal the sources and dynamics of fluid movement as well as temporal and spatial distribution of fluids in a potentially weakened cavern rim. Over a period of three years pressure and gas monitoring was carried out along a transect from a cavernous structure to undisturbed rock salt. In addition, temperature and relative humidity data from the underground gallery were recorded. The gas inflow into isolated borehole sections provided an insight into short- and long-term changes of gas migration patterns in rock salt. Pressure increases of up to 4kPa/day and CO2 concentrations of up to 1.2%, especially at the start of the campaign were measured. The gas migration is coupled to discrete fractures and was limited spatially and temporary. Overall, gas occurrences were not correlated to their distance to the cavern, suggesting no wide-ranging fluid-rock interaction within the rim of the investigated natural cavernous structure in rock salt.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2023-01-18
    Description: The dataset comprises a range of variables describing characteristics of flood events and river catchments for 480 gauging stations in Germany and Austria. The event characteristics are asscoiated with annual maximum flood events in the period from 1951 to 2010. They include variables on event precipitation, antecedent catchment state, event catchment response, event timing, and event types. The catchment characteristics include variables on catchment area, catchment wetness, tail heaviness of rainfall, nonlinearity of catchment response, and synchronicity of precipitation and catchment state. The variables were compiled as potential predictors of heavy tail behaviour of flood peak distributions. They are based on gauge observations of discharge, E-OBS meteorological data (Haylock et al. 2008), mHM hydrological model simulations (Samaniego et al., 2010), 4DAS climate reanalysis data (Primo et al., 2019), and the 25x25 m resolution EU-DEM v1.1. A short description of the data processing is included in the file inventory and more details can be found in Macdonald et al. (2022).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...