ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-21
    Description: Trains are now recognized as powerful sources for seismic interferometry based on noise correlation, but the optimal use of these signals still requires a better understanding of their source mechanisms. Here, we present a simple approach for modeling train-generated signals inspired by early work in the engineering community, assuming that seismic waves are emitted by sleepers regularly spaced along the railway and excited by passing train wheels. Our modeling reproduces well seismological observations of tremor-like emergent signals and of their harmonic spectra. We illustrate how these spectra are modulated by wheel spacing, and how their high-frequency content is controlled by the distribution of axle loads over the rail, which mainly depends on ground stiffness beneath the railway. This is summarized as a simple rule of thumb that predicts the frequency bands in which most of train-radiated energy is expected, as a function of train speed and of axle distance within bogies. Furthermore, we identify two end-member mechanisms—single stationary source versus single moving load—that explain two types of documented observations, characterized by different spectral signatures related to train speed and either wagon length or sleeper spacing. In view of using train-generated signals for seismic applications, an important conclusion is that the frequency content of the signals is dominated by high-frequency harmonics and not by fundamental modes of vibrations. Consequently, most train traffic worldwide is expected to generate signals with a significant high-frequency content, in particular in the case of trains traveling at variable speeds that produce truly broadband signals. Proposing a framework for predicting train-generated seismic wavefields over meters to kilometers distance from railways, this work paves the way for high-resolution passive seismic imaging and monitoring at different scales with applications to near-surface surveys (aquifers, civil engineering), natural resources exploration, and natural hazard studies (landslides, earthquakes, and volcanoes).
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~8GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~8GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...