ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physical Society  (20,628)
  • PANGAEA  (8,650)
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • 2015-2019  (31,320)
  • 1995-1999
  • 1960-1964
  • 2019  (31,320)
Collection
Keywords
Publisher
Years
  • 2015-2019  (31,320)
  • 1995-1999
  • 1960-1964
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-30
    Description: The purpose of this list of digital platforms is to facilitate the research of scientific data (articles, books, conferences, websites, indexers, etc.) by students of all undergraduate levels. The interface of platforms have similarities and because of this, low degree of difficulty of use. I emphasize that the key to an excellent literature search on digital platforms is to choose the right "keyword".
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-09-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-03-27
    Description: The first in situ measurements of seawater density that referred to a geographical position at sea and time of the year were carried out by Count Luigi Ferdinando Marsili between 1679 and 1680 in the Adriatic Sea, Aegean Sea, Marmara Sea, and the Bosporus. Not only was this the first investigation with documented oceanographic measurements carried out at stations, but themeasurements were described in such an accurateway that the authorswere able to reconstruct the observations in modern units. These first measurements concern the ‘‘specific gravity’’ of seawaters (i.e., the ratio between fluid densities). The data reported in the historical oceanographic treatise Osservazioni intorno al Bosforo Tracio (Marsili) allowed the reconstruction of the seawater density at different geographic locations between 1679 and 1680. Marsili’s experimental methodology included the collection of surface and deep water samples, the analysis of the samples with a hydrostatic ampoule, and the use of a reference water to standardize the measurements.Acomparison of reconstructed densities with present-day values shows an agreement within 10%–20% uncertainty, owing to various aspects of the measurement methodology that are difficult to reconstruct from the documentary evidence. Marsili also measured the current speed and the depth of the current inversion in the Bosporus, which are consistent with the present-day knowledge. The experimental data collected in the Bosporus enabledMarsili to enunciate a theory on the cause of the two-layer flow at the strait, demonstrated by his laboratory experiment and later confirmed by many analytical and numerical studies.
    Description: American Meteorological Society.
    Description: Published
    Description: 845 - 860
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: Ocean ; Density currents ; Measurements ; Ship observations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-03-28
    Description: The understanding of the dynamical properties of skyrmion is a fundamental aspect for the realization of a competitive skyrmion based technology beyond CMOS. Most of the theoretical approaches are based on the approximation of a rigid skyrmion. However, thermal fluctuations can drive a continuous change of the skyrmion size via the excitation of thermal modes. Here, by taking advantage of the Hilbert-Huang transform, we demonstrate that at least two thermal modes can be excited which are non-stationary in time. In addition, one limit of the rigid skyrmion approximation is that this hypothesis does not allow for correctly describing the recent experimental evidence of skyrmion Hall angle dependence on the amplitude of the driving force, which is proportional to the injected current. In this work, we show that, in an ideal sample, the combined effect of field-like and damping-like torques on a breathing skyrmion can indeed give rise to such a current dependent skyrmion Hall angle. While here we design and control the breathing mode of the skyrmion, our results can be linked to the experiments by considering that the thermal fluctuations and/or disorder can excite the breathing mode. We also propose an experiment to validate our findings.
    Description: Published
    Description: 224418
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Physics - Mesoscopic Systems and Quantum Hall Effect ; Physics - Mesoscopic Systems and Quantum Hall Effect
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-01-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-03-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3SponGES 2019 General Assembly Meeting, Wageningen, 2019-05-19-2019-05-24Bremerhaven, PANGAEA
    Publication Date: 2019-06-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/zip
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in he balance of salinity variance in a partially stratified estuary: Implications for exchange flow, mixing, and stratification. Journal of Physical Oceanography, 48(12), (2018) 2887-2899., doi: 10.1175/JPO-D-18-0032.1.
    Description: Salinity variance dissipation is related to exchange flow through the salinity variance balance equation, and meanwhile its magnitude is also proportional to the turbulence production and stratification inside the estuary. As river flow increases, estuarine volume-integrated salinity variance dissipation increases owing to more variance input from the open boundaries driven by exchange flow and river flow. This corresponds to the increased efficient conversion of turbulence production to salinity variance dissipation due to the intensified stratification with higher river flow. Through the spring–neap cycle, the temporal variation of salinity variance dissipation is more dependent on stratification than turbulence production, so it reaches its maximum during the transition from neap to spring tides. During most of the transition time from spring to neap tides, the advective input of salinity variance from the open boundaries is larger than dissipation, resulting in the net increase of variance, which is mainly expressed as vertical variance, that is, stratification. The intensified stratification in turn increases salinity variance dissipation. During neap tides, a large amount of enhanced salinity variance dissipation is induced by the internal shear stress near the halocline. During most of the transition time from neap to spring tides, dissipation becomes larger than the advective input, so salinity variance decreases and the stratification is destroyed.
    Description: TW was supported by the National Key R&D Program of China (Grant 2017YFA0604104), National Natural Science Foundation of China (Grant 41706002), Natural Science Foundation of Jiangsu Province (Grant BK20170864), and MEL Visiting Fellowship (MELRS1617). WRG was supported by NSF Grant OCE 1736539. Part of this work is finished during TW’s visit in MEL and WHOI. We would like to acknowledge John Warner for providing the codes of the Hudson estuary model, and Parker MacCready, the editor, and two reviewers for their insightful suggestions on improving the manuscript.
    Description: 2019-06-06
    Keywords: Estuaries ; Dynamics ; Mixing ; Density Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 147(1), (2019): 389-406. doi: 10.1175/MWR-D-18-0158.1.
    Description: The quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.
    Description: The authors are grateful for the funding provided by the Office of Naval Research Propagation of Intra-Seasonal Tropical Oscillations (ONR PISTON) Award N0001416WX01752 and the USNA Trident Scholar program. The authors also appreciate the helpful comments of the two external reviewers.
    Description: 2019-07-07
    Keywords: Maritime Continent ; Madden-Julian oscillation ; Quasibiennial oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-10-29
    Description: The ozonesonde is a small balloon-borne instrument that is attached to a standard radiosonde to measure profiles of ozone from the surface to 35 km with ∼100-m vertical resolution. Ozonesonde data constitute a mainstay of satellite calibration and are used for climatologies and analysis of trends, especially in the lower stratosphere where satellites are most uncertain. The electrochemical concentration cell (ECC) ozonesonde has been deployed at ∼100 stations worldwide since the 1960s, with changes over time in manufacture and procedures, including details of the cell chemical solution and data processing. As a consequence, there are biases among different stations and discontinuities in profile time series from individual site records. For 22 years the Jülich (Germany) Ozonesonde Intercomparison Experiment (JOSIE) has periodically tested ozonesondes in a simulation chamber designated the World Calibration Centre for Ozonesondes (WCCOS) by WMO. During October–November 2017 a JOSIE campaign evaluated the sondes and procedures used in Southern Hemisphere Additional Ozonesondes (SHADOZ), a 14-station sonde network operating in the tropics and subtropics. A distinctive feature of the 2017 JOSIE was that the tests were conducted by operators from eight SHADOZ stations. Experimental protocols for the SHADOZ sonde configurations, which represent most of those in use today, are described, along with preliminary results. SHADOZ stations that follow WMO-recommended protocols record total ozone within 3% of the JOSIE reference instrument. These results and prior JOSIEs demonstrate that regular testing is essential to maintain best practices in ozonesonde operations and to ensure high-quality data for the satellite and ozone assessment communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Coordination Workshop SPP 1158, 2019-09-25-2019-09-27Bremerhaven, PANGAEA
    Publication Date: 2019-09-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-03-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of sponges and echinoderms in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Sponges: The map of interpolated occurrence of sponges is based on quantitative abundance data (Gerdes 2014 a - o) and on semi-quantitative data obtained by W. Arntz (retired; formerly AWI) (see Teschke & Brey 2019a for presence / absence records of the latter dataset). The abundance data were classified to be merged with the semi-quantitative data and an inverse distance weighted method was performed on the united dataset. Areas with very common occurrence of sponges occurred on the shelf near Brunt Ice Shelf along Riiser - Larsen Ice Shelf to Ekstrøm Ice Shelf. Echinoderms: A cluster analysis with species x station datasets of asteroids (Teschke & Brey 2019b), ophiuroids (Teschke & Brey 2019c) and holothurians (Gutt et al. 2014) from the Antarctic Weddell Sea indicated a particular cold-water echinoderm fauna on the Filchner shelf. We approximated this potential habitat by bottom temperature ≤ -1°, based on seawater temperature data from the Finite Element Sea Ice - Ocean Model provided by R. Timmermann (AWI). More information on the spatial analysis is given in working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (available at https://www.ccamlr.org/en/wg-emm-16).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of demersal and pelagic fishes in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Antarctic toothfish: The map of Dissostichus mawsoni occurrence probability is based on catch per unit effort (CPUE) data from the database of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) (data request: 03-08-2016) and on bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO). We fitted a four-parameter Weibull model to the simulated CPUE data per depth interval by means of the R package \textquotesinglefitdistrplus\textquotesingle. The highest D. mawsoni occurrence probability was shown at depths between 1500 and 2000 m and only approximately 20 % of the Antarctic toothfish population occurred deeper than 2000 m. Antarctic silverfish: The map of interpolated abundances of Pleuragramma antarctica was based on pelagic trawl survey data, which were collected during "Polarstern" cruises ANT-I/2, ANT-III/3 and in the context of the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6, ANT-XXIV/2). The first mentioned data were provided by V. Siegel (retired; formerly Th\"unen Institute), the LAKRIS data by H. Flores (AWI). Those data were complemented by benthic trawl survey data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI) as well as by data on counts of fish species from trawl and dredge samples by Drescher et. (2012), Ekau et al. (2012a, b), Hureau et al. (2012), Kock et al. (2012) and W\"ohrmann et al. (2012). An inverse distance weighted interpolation was performed for a 10 nautical mile radius around each record. Areas with highest numbers of P. antarctica (〉 36 individuals/1000 m²) occurred offshore Riiser -Larsen Ice Shelf and on the southern Weddell Sea continental shelf offshore Filchner Ice Shelf. Demersal fish: The map of predicted habitat suitability for demersal fish is based on data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI). The habitat suitability model was developed by the use of the modelling package "biomod2". Most suitable habitat conditions for demersal fish in the wider Weddell Sea occurred on the continental shelf between approx. 5° and 30°W, on the shelf west and east of the tip of the Antarctic Peninsula as well as around the South Shetland and South Orkney Islands. Nesting sites of demersal fish: The map on observation of nesting sites of demersal fish is based on data, which were collected during "Polarstern" cruises ANT-XXVII/3, ANT-XXIX/9 and ANT-XXXI/2 and were obtained by T. Lund\"alv (retired; formerly University of Gothenburg), D. Gerdes (retired; formerly AWI) and E. Riginella (University of Padova), respectively. Those data were complemented by a literature research. Most nesting sites were observed west of 25°W, north of the tip of the Antarctic Peninsula and along the west coast of the Antarctic Peninsula. More information is given in the working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management CCAMLR (available at https://www.ccamlr.org/en/wg-emm-16). Revised versions of the spatial analysis are described in working paper WG-SAM-17/30 and WS-SM-18/13 submitted to the CCAMLR Working Group on Statistics, Assessments and Modelling and the CCAMLR Workshop on Spatial Management, respectively (available at https://www.ccamlr.org/en/wg-sam-17; https://www.ccamlr.org/en/ws-sm-1
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-09-07
    Description: Here, we provided four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic krill, Euphausia superba, (adults and larvae) and ice krill, Euphausia crystallorophias, in the wider Weddell Sea. The files were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic krill (adults): The map of predicted habitat suitability for adult Antarctic krill was based on krill data from the database KRILLBASE (Atkinson et al., 2017; data request: 26-09-13). Those data were complemented by krill data, which were collected (a) during the Norwegian Antarctic research expedition 1976/77 (M/V "Polarsirkel"), (b) during two Soviet research cruises (RV "Gizhiga", 1977; RV "Volny Vetter", 1983), (c) in the context of the Lazarev Sea Krill Survey ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/2, ANT-XXIII/6, ANT-XXIV/2) as well as (d) during "Polarstern" cruise ANT-XXIX/3. The habitat suitability model was developed by the use of the modelling package "biomod2". As predictor variables, we used (i) dissolved oxygen from the World Ocean Atlas 2013, (ii) ice coverage from AMSR-E sea ice maps, (iii) seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI), (iv) bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO) and (v) SeaWiFS chlorophyll-a concentration data. Most suitable habitat conditions for the Antarctic krill seem to occur near the tip of the Antarctic Peninsula, on the continental slope between 15°W and 15°E and on the Maud Rise plateau. Antarctic krill (larvae): The map of interpolated abundances of krill larvae is based on abundance data, which were collected (a) during the Norwegian Antarctic research expeditions 1976/77, 1977/78 and 1979/80 (M/V "Polarsirkel"), (b) in the context of the First International BIOMASS Experiment survey (FIBEX) (Walther Herwig cruise 1981) and the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6) as well as (c) during "Polarstern" cruise ANT-VII/4 and the combined "Polarstern" (ANT-VIII/2) and R.V. "Akademik Fedorova" cruise. An inverse distance weighted (IDW) interpolation was performed for a 30 km radius around each krill larvae record. Areas with highest numbers of E. superba larvae (〉 1000 individuals/m²) occurred west of the Prime Meridian from approximately 65°S to the ice shelf. Ice krill (adults): The map of the potential habitat of E. crystallorophias was approximated by water depth from 0 m to 550 m, using bathymetric data from IBCSO, and mean sea surface temperature ≤ 0°C based on temperature data from FESOM provided by R. Timmermann (AWI). The map of interpolated density of individuals of E. crystallorophias is based on abundance data, which were collected (a) during the Norwegian Antarctic research expedition 1979/80 (M/V "Polarsirkel"), (b) during the German Antarctic research cruise 1975/76 with "Walther Herwig", (c) in the context of the Lazarev Sea Krill Survey ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/2, ANT-XXIII/6, ANT-XXIV/2) as well as (d) during "Polarstern" cruise ANT-V/1-3, ANT-VII/4 and ANT-XXIX/3. An IDW interpolation was performed for a 30 km radius around each record of ice krill. Areas with highest densities of E. crystallorophias individuals occurred on the south-eastern Weddell Sea shelf and near the tip of the Antarctic Peninsula. Volker Siegel (retired; formerly Th\"unen Institute) provided the data for the Antarctic krill and ice krill. More information on the spatial analysis is given in working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (available at https://www.ccamlr.org/en/wg-emm-16)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic petrels, Ad\'elie penguins (breeders and non-breeders) and Emperor penguins in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic petrel (Thalassoica antarctica): We approximated potential foraging habitats of T. antarctica according to existing literature by ice coverage from AMSR-E sea ice maps, bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO), and seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI). Subsequently, we combined our Antarctic petrel model with the kernel utilization distribution model from Descamps et al. (2016). The authors kindly provided us with shape files showing the kernel utilization summer and winter distribution of Antarctic petrel breeding at Svarthamaren. Breeding locations and estimated number of breeding pairs were taken from van Franeker et al. (1999). Favourable habitat conditions for Antarctic petrels were predicted for the Lazarev Sea and along the eastern coast of the Weddell Sea, particularly for the area off the Fimbul Ice Shelf and along the coast between approx. 15°E to 10°W within a water depth range from approx. 500 m to 2500 m. Breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 764, 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). Suitable foraging habitats for breeding Ad\'elies from colonies from which no tracking data were not available were approximated by a 50 km buffer and a 50-100 km ring buffer around each colony according to the recommendations of a CCAMLR MPA planning workshop. Breeding locations and estimated abundance of breeding pairs were taken from Lynch and LaRue (2014). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highly suitable foraging habitats occurred about 50 km away from the colonies on King Georg Island, the colony in Hope Bay (Graham Land) and the colonies on the South Orkney Islands. Non-breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of non-breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highest habitat utilisation was concentrated in relative small areas (e.g., close to King Georg Island). However, the non-breeding Ad\'elies seemed to roam through large parts of the Weddell Sea. Emperor penguins (Aptenodytes forsteri): The probability map of A. forsteri occurrence was developed as a function of distance to colony and colony size from Fretwell et al. (2012, 2014) as well as from sea ice concentration from AMSR-E sea ice maps. Our model of emperor penguin foraging distribution during breeding season showed that the probability of occurrence is highest at the Halley and Dawson colony near Brunt Ice Shelf and at the Atka colony near Ekstrøm Ice Shelf. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 (for T. antarctica) submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-s
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of seals in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Spatial distribution of seals based on aerial surveys: The map of the spatial distribution of crabeater seals is based on modelled seal abundances from Flores et al. (2008) and Forcada et al. (2012). These modelled abundances were supplemented by abundance data derived from Bester et al. (1995, 2002) and by point data from Pl\"otz et al. (2011a-e), which were translated into abundance values by the count method for line transect data. The calculated data on seal abundances from Pl\"otz et al. (2011a-e) and Bester et al. (1995, 2002) were interpolated using the inverse distance weighted method. The combined data set of modelled and interpolated abundances showed highest absolute seal abundances offshore the Riiser-Larsen Ice Shelf and Quarisen Ice Shelf. Spatial distribution of seals based on tracking data: The map of probability of seal occurrence is based on all tracking data publicly available for the wider Weddell Sea from the MEOP data portal "Marine Mammals Exploring the Oceans Pole to Pole" (data request: 14-11-2016). In addition, we have used MEOP data (UK data: ct27, ct70; German data: ct113, wd06, wd07) for which unconditional sharing is not yet accepted. These data were provided by Lars Boehme (University of St. Andrews) and Horst Bornemann (AWI), respectively. Furthermore, the data from the MEOP data portal were complemented by tracking data sets on southern elephant seals (Tosh et al. 2009, James et al. 2012), Weddell seals (McIntyre et al. 2013) and crabeater seals (Nachtsheim et al. 2016). All tracking data united were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). The tracking data analysis indicated frequent occurrence of seals in a larger area off the Brunt and Filchner Ice Shelf (approx. 25°W-40°W), and in smaller patches along the eastern Weddell Sea ice shelfs as well as in the region around the tip of the Antarctic Peninsula. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-sam-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-09-07
    Description: Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of Antarctic petrels, Ad\'elie penguins (breeders and non-breeders) and Emperor penguins in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Antarctic petrel (Thalassoica antarctica): We approximated potential foraging habitats of T. antarctica according to existing literature by ice coverage from AMSR-E sea ice maps, bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO), and seawater temperature data from the Finite Element Sea Ice - Ocean Model (FESOM) provided by R. Timmermann (AWI). Subsequently, we combined our Antarctic petrel model with the kernel utilization distribution model from Descamps et al. (2016). The authors kindly provided us with shape files showing the kernel utilization summer and winter distribution of Antarctic petrel breeding at Svarthamaren. Breeding locations and estimated number of breeding pairs were taken from van Franeker et al. (1999). Favourable habitat conditions for Antarctic petrels were predicted for the Lazarev Sea and along the eastern coast of the Weddell Sea, particularly for the area off the Fimbul Ice Shelf and along the coast between approx. 15°E to 10°W within a water depth range from approx. 500 m to 2500 m. Breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 764, 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). Suitable foraging habitats for breeding Ad\'elies from colonies from which no tracking data were not available were approximated by a 50 km buffer and a 50-100 km ring buffer around each colony according to the recommendations of a CCAMLR MPA planning workshop. Breeding locations and estimated abundance of breeding pairs were taken from Lynch and LaRue (2014). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highly suitable foraging habitats occurred about 50 km away from the colonies on King Georg Island, the colony in Hope Bay (Graham Land) and the colonies on the South Orkney Islands. Non-breeding Ad\'elie penguins (Pygoscelis adeliae): The map of potential foraging habitats of non-breeding P. adeliae is based on British Antarctic Survey (BAS) Inventory data from Phil Trathan (ID 754) and Mike Dunn and P. Trathan (ID 773, 779), a dataset from BAS (P. Trathan) and Instituto Ant\'artico Argentino (Mercedes Santos) (ID 753) and a dataset from the US AMLR Program from Jefferson Hinke and Wayne Trivelpiece (NOAA) (ID 910), which are stored in the Birdlife International\textquotesingles Seabird Tracking Database (data request: 20-10-2015). The tracking data were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). Jefferson Hinke (NOAA) kindly provided us with support running the R script. Highest habitat utilisation was concentrated in relative small areas (e.g., close to King Georg Island). However, the non-breeding Ad\'elies seemed to roam through large parts of the Weddell Sea. Emperor penguins (Aptenodytes forsteri): The probability map of A. forsteri occurrence was developed as a function of distance to colony and colony size from Fretwell et al. (2012, 2014) as well as from sea ice concentration from AMSR-E sea ice maps. Our model of emperor penguin foraging distribution during breeding season showed that the probability of occurrence is highest at the Halley and Dawson colony near Brunt Ice Shelf and at the Atka colony near Ekstrøm Ice Shelf. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 (for T. antarctica) submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-s
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-09-07
    Description: Here we provide two ArcGIS map packages with georeferenced files on the spatial distribution of seals in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area in the Weddell Sea. Spatial distribution of seals based on aerial surveys: The map of the spatial distribution of crabeater seals is based on modelled seal abundances from Flores et al. (2008) and Forcada et al. (2012). These modelled abundances were supplemented by abundance data derived from Bester et al. (1995, 2002) and by point data from Pl\"otz et al. (2011a-e), which were translated into abundance values by the count method for line transect data. The calculated data on seal abundances from Pl\"otz et al. (2011a-e) and Bester et al. (1995, 2002) were interpolated using the inverse distance weighted method. The combined data set of modelled and interpolated abundances showed highest absolute seal abundances offshore the Riiser-Larsen Ice Shelf and Quarisen Ice Shelf. Spatial distribution of seals based on tracking data: The map of probability of seal occurrence is based on all tracking data publicly available for the wider Weddell Sea from the MEOP data portal "Marine Mammals Exploring the Oceans Pole to Pole" (data request: 14-11-2016). In addition, we have used MEOP data (UK data: ct27, ct70; German data: ct113, wd06, wd07) for which unconditional sharing is not yet accepted. These data were provided by Lars Boehme (University of St. Andrews) and Horst Bornemann (AWI), respectively. Furthermore, the data from the MEOP data portal were complemented by tracking data sets on southern elephant seals (Tosh et al. 2009, James et al. 2012), Weddell seals (McIntyre et al. 2013) and crabeater seals (Nachtsheim et al. 2016). All tracking data united were processed with a state-space model described by Johnson et al. (2008) and were implemented in the R package crawl (Johnson 2011). The tracking data analysis indicated frequent occurrence of seals in a larger area off the Brunt and Filchner Ice Shelf (approx. 25°W-40°W), and in smaller patches along the eastern Weddell Sea ice shelfs as well as in the region around the tip of the Antarctic Peninsula. More information on the spatial analysis is given in working paper WG-EMM-16/03 and WG-SAM-17/30 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management (EMM) and the CCAMLR Working Group on Statistics, Assessments and Modelling (SAM), respectively (available at https://www.ccamlr.org/en/wg-emm-16 and https://www.ccamlr.org/en/wg-sam-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1889-1904, doi:10.1175/JPO-D-19-0053.1.
    Description: A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.
    Description: MAS was supported by the National Science Foundation (NSF) under Grants OCE-1558742 and OCE-1534618. RSP, PL, and DM were supported by NSF under Grants OCE-1558742 and OCE-1259618. WJvA was supported by the Helmholtz Infrastructure Initiative FRAM. TWNH and MA were supported by NSF under Grants OCE-1633124 and OCE-118123.
    Description: 2020-07-01
    Keywords: Baroclinic flows ; Frontogenesis/frontolysis ; Meridional overturning circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-27
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Marine Science and Engineering 6(4), (2018): 144. doi:10.3390/jmse6040144.
    Description: Geochronologies derived from sediment cores in coastal locations are often used to infer event bed characteristics such as deposit thicknesses and accumulation rates. Such studies commonly use naturally occurring, short-lived radioisotopes, such as Beryllium-7 (7Be) and Thorium-234 (234Th), to study depositional and post-depositional processes. These radioisotope activities, however, are not generally represented in sediment transport models that characterize coastal flood and storm deposition with grain size patterns and deposit thicknesses. We modified the Community Sediment Transport Modeling System (CSTMS) to account for reactive tracers and used this capability to represent the behavior of these short-lived radioisotopes on the sediment bed. This paper describes the model and presents results from a set of idealized, one-dimensional (vertical) test cases. The model configuration represented fluvial deposition followed by periods of episodic storm resuspension. Sensitivity tests explored the influence on seabed radioisotope profiles by the intensities of bioturbation and wave resuspension and the thickness of fluvial deposits. The intensity of biodiffusion affected the persistence of fluvial event beds as evidenced by 7Be. Both resuspension and biodiffusion increased the modeled seabed inventory of 234Th. A thick fluvial deposit increased the seabed inventory of 7Be and 234Th but mixing over time greatly reduced the difference in inventory of 234Th in fluvial deposits of different thicknesses.
    Description: The Bureau of Ocean Energy Management (BOEM) provided funding for Birchler, Harris, and Kniskern. During his M.S. program Birchler received additional funds from VIMS’ Office of Academic Studies. This work was partially supported by the U.S. Geological Survey, Coastal and Marine Geology Program.
    Keywords: Numerical model ; Sediment transport ; Marine ; Short-lived radioisotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(2), (2019): 549-573. doi: 10.1175/JCLI-D-18-0413.1.
    Description: Time series of surface meteorology and air–sea fluxes from the northern Bay of Bengal are analyzed, quantifying annual and seasonal means, variability, and the potential for surface fluxes to contribute significantly to variability in surface temperature and salinity. Strong signals were associated with solar insolation and its modulation by cloud cover, and, in the 5- to 50-day range, with intraseasonal oscillations (ISOs). The northeast (NE) monsoon (DJF) was typically cloud free, with strong latent heat loss and several moderate wind events, and had the only seasonal mean ocean heat loss. The spring intermonsoon (MAM) was cloud free and had light winds and the strongest ocean heating. Strong ISOs and Tropical Cyclone Komen were seen in the southwest (SW) monsoon (JJA), when 65% of the 2.2-m total rain fell, and oceanic mean heating was small. The fall intermonsoon (SON) initially had moderate convective systems and mean ocean heating, with a transition to drier winds and mean ocean heat loss in the last month. Observed surface freshwater flux applied to a layer of the observed thickness produced drops in salinity with timing and magnitude similar to the initial drops in salinity in the summer monsoon, but did not reproduce the salinity variability of the fall intermonsoon. Observed surface heat flux has the potential to cause the temperature trends of the different seasons, but uncertainty in how shortwave radiation is absorbed in the upper ocean limits quantifying the role of surface forcing in the evolution of mixed layer temperature.
    Description: The deployment of the Woods Hole Oceanographic Institution (WHOI) mooring and RW and JTF were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453. DS acknowledges support from the Ministry of Earth Sciences under India’s National Monsoon Mission. HS acknowledges support from the Office of Naval Research Grants N00014-13-1-0453 and N00014-17-12398. The deployment of the WHOI mooring was done by RV Sagar Nidhi and the recovery by RV Sagar Kanya; the help of the crew and science parties is gratefully acknowledged as is the ongoing support at NIOT in Chennai and by other colleagues in India of this mooring work. The work of the staff of the WHOI Upper Ocean Process Group in the design, building, deployment, and recovery of the mooring and in processing the data is gratefully acknowledged. The software for the wavelet analysis was provided by Torrence and Compo (1998). Feedback on the paper by Dr. Amit Tandon and two anonymous reviewers is gratefully acknowledged. This paper is dedicated to Dr. Frank Bradley.
    Description: 2019-06-28
    Keywords: Atmosphere-ocean interaction ; Monsoons ; Air-sea interaction ; Surface fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography, 49 (2), (2019): 607-630, doi:10.1175/JPO-D-18-0166.1.
    Description: The Lagrangian motion in the eddy field produced from an unstable retrograde jet along the shelf break is studied from idealized numerical experiments with a primitive equation model. The jet is initially in thermal wind balance with a cross-isobath density gradient and is not subjected to any atmospheric forcing. Over the course of the model integration, the jet becomes unstable and produces a quasi-stationary eddy field over a 2-month period. During this period, the cross-slope flow at the shelf break is characterized by along-slope correlation scales of O(10) km and temporal correlation scales of a few days. The relative dispersion of parcels across isobaths is found to increase with time as tb, where 1 〈 b 〈 2. This mixed diffusive–ballistic regime appears to reflect the combined effects of (i) the short length scales of velocity correlation at the shelf break and (ii) the seaward excursion of monopolar and dipolar vortices. Cross-slope dispersion is greater offshore of the front than inshore of the front, as offshore parcels are both subducted onshore below density surfaces and translated offshore with eddies. Nonetheless, the exchange of parcels across the jet remains very limited on the monthly time scale. Particles originating from the bottom experience upward displacements of a few tens of meters and seaward displacements of O(100) km, suggesting that the eddy activity engendered by an unstable along-slope jet provides another mechanism for bottom boundary layer detachment near the shelf edge.
    Description: The author expresses his gratitude to the researchers who contributed to the development and public dissemination of POM [for a list of contributors, see Mellor (2002) and comments in the source code]. Discussions with Kenneth Brink, Hyodae Seo, and Weifeng Zhang have been helpful. Comments provided by Kenneth Brink on a draft are gratefully acknowledged. The criticism from two anonymous reviewers allowed us to better focus the manuscript and to significantly improve its clarity. This work has been supported by Grant OCE-1556400 from the U.S. National Science Foundation.
    Description: 2020-02-18
    Keywords: Dispersion ; Eddies ; Frontogenesis/frontolysis ; Instability ; Lagrangian circulation/transport ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1577-1592, doi:10.1175/JPO-D-18-0124.1.
    Description: The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
    Description: This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795. We thank the captain, crew, and engineers at APL/UW for their hard work and skill.
    Description: 2020-06-11
    Keywords: Abyssal circulation ; Bottom currents ; Boundary currents ; Channel flows ; Mixing ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(9), (2019): 2337-2343, doi:10.1175/JPO-D-19-0097.1.
    Description: The weakly unstable, two-layer model of baroclinic instability is studied in a configuration in which the flow is perturbed at the inflow section of a channel by a slow and periodic perturbation. In a parameter regime where the governing equation would be the Lorenz equations for chaos if the development occurs only in time, the solution behavior becomes considerably more complex as a function of time and downstream coordinate. In the absence of the beta effect it has earlier been shown that the chaotic behavior along characteristics renders the solution nearly discontinuous in the slow downstream coordinate of the asymptotic model. The additional presence of the beta effect, although expunging the chaos for large enough values of the beta parameter, also provides an additional mechanism for abrupt spatial change.
    Description: 2020-02-28
    Keywords: Cyclogenesis/cyclolysis ; Eddies ; Microscale processes/variability ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric Sciences 76(10), (2019): 3013-3027, doi:10.1175/JAS-D-19-0095.1.
    Description: Recently Nakamura and Huang proposed a semiempirical, one-dimensional model of atmospheric blocking based on the observed budget of local wave activity in the boreal winter. The model dynamics is akin to that of traffic flow, wherein blocking manifests as traffic jams when the streamwise flux of local wave activity reaches capacity. Stationary waves modulate the jet stream’s capacity to transmit transient waves and thereby localize block formation. Since the model is inexpensive to run numerically, it is suited for computing blocking statistics as a function of climate variables from large-ensemble, parameter sweep experiments. We explore sensitivity of blocking statistics to (i) stationary wave amplitude, (ii) background jet speed, and (iii) transient eddy forcing, using frequency, persistence, and prevalence as metrics. For each combination of parameters we perform 240 runs of 180-day simulations with aperiodic transient eddy forcing, each time randomizing the phase relations in forcing. The model climate shifts rapidly from a block-free state to a block-dominant state as the stationary wave amplitude is increased and/or the jet speed is decreased. When eddy forcing is increased, prevalence increases similarly but frequency decreases as blocks merge and become more persistent. It is argued that the present-day climate lies close to the boundary of the two states and hence its blocking statistics are sensitive to climate perturbations. The result underscores the low confidence in GCM-based assessment of the future trend of blocking under a changing climate, while it also provides a theoretical basis for evaluating model biases and understanding trends in reanalysis data.
    Description: The main results of this paper emerged from a group project during Rossbypalooza, a student-led summer school at the University of Chicago in June 2018, with the theme of “Understanding climate through simple models.” The authors thank the participants of the summer school for their valuable feedback. Constructive criticisms of the two anonymous reviewers greatly improved the quality of the manuscript. The work is supported by NSF Grants AGS1563307 and AGS1810964
    Keywords: Blocking ; Nonlinear dynamics ; Planetary waves ; Potential vorticity ; Wave breaking ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1973-1994, doi: 10.1175/JPO-D-18-0194.1.
    Description: Using 18 days of field observations, we investigate the diurnal (D1) frequency wave dynamics on the Tasmanian eastern continental shelf. At this latitude, the D1 frequency is subinertial and separable from the highly energetic near-inertial motion. We use a linear coastal-trapped wave (CTW) solution with the observed background current, stratification, and shelf bathymetry to determine the modal structure of the first three resonant CTWs. We associate the observed D1 velocity with a superimposed mode-zero and mode-one CTW, with mode one dominating mode zero. Both the observed and mode-one D1 velocity was intensified near the thermocline, with stronger velocities occurring when the thermocline stratification was stronger and/or the thermocline was deeper (up to the shelfbreak depth). The CTW modal structure and amplitude varied with the background stratification and alongshore current, with no spring–neap relationship evident for the observed 18 days. Within the surface and bottom Ekman layers on the shelf, the observed velocity phase changed in the cross-shelf and/or vertical directions, inconsistent with an alongshore propagating CTW. In the near-surface and near-bottom regions, the linear CTW solution also did not match the observed velocity, particularly within the bottom Ekman layer. Boundary layer processes were likely causing this observed inconsistency with linear CTW theory. As linear CTW solutions have an idealized representation of boundary dynamics, they should be cautiously applied on the shelf.
    Description: An Australian Research Council Discovery Project (DP 140101322), and a UWA Research Collaboration Award funded this work. T. L. Schlosser acknowledges the support of an Australian Government Research Training Program (RTP) Scholarship. We thank the crew, volunteers and scientists who aided in the field data collection aboard the R/V Revelle, which was funded by the National Science Foundation (OCE-1129763). The continental slope moorings, T4 (M32) and T3 (M44), were also funded by the National Science Foundation (OCE-1129763) and were conceived, planned, and executed by Matthew Alford, Jennifer Mackinnon, Jonathan Nash, Harper Simmons, and Gunnar Voet. We also thank Harper Simmons for the combined R/V Revelle multibeam and Geoscience Australia bathymetry used in this study. We thank the two anonymous reviewers whose comments improved this work.
    Description: 2020-01-16
    Keywords: Australia ; Continental shelf/slope ; Boundary currents ; Dynamics ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Vage, K., Pickart, R. S., Valdimarsson, H., Torres, D. J., & Jonsson, S. The emergence of the North Icelandic Jet and its evolution from northeast Iceland to Denmark Strait. Journal of Physical Oceanography, 49(10), (2019): 2499-2521, doi:10.1175/JPO-D-19-0088.1.
    Description: The North Icelandic Jet (NIJ) is an important source of dense water to the overflow plume passing through Denmark Strait. The properties, structure, and transport of the NIJ are investigated for the first time along its entire pathway following the continental slope north of Iceland, using 13 hydrographic/velocity surveys of high spatial resolution conducted between 2004 and 2018. The comprehensive dataset reveals that the current originates northeast of Iceland and increases in volume transport by roughly 0.4 Sv (1 Sv ≡ 106 m3 s−1) per 100 km until 300 km upstream of Denmark Strait, at which point the highest transport is reached. The bulk of the NIJ transport is confined to a small area in Θ–S space centered near −0.29° ± 0.16°C in Conservative Temperature and 35.075 ± 0.006 g kg−1 in Absolute Salinity. While the hydrographic properties of this transport mode are not significantly modified along the NIJ’s pathway, the transport estimates vary considerably between and within the surveys. Neither a clear seasonal signal nor a consistent link to atmospheric forcing was found, but barotropic and/or baroclinic instability is likely active in the current. The NIJ displays a double-core structure in roughly 50% of the occupations, with the two cores centered at the 600- and 800-m isobaths, respectively. The transport of overflow water 300 km upstream of Denmark Strait exceeds 1.8 ± 0.3 Sv, which is substantially larger than estimates from a year-long mooring array and hydrographic/velocity surveys closer to the strait, where the NIJ merges with the separated East Greenland Current. This implies a more substantial contribution of the NIJ to the Denmark Strait overflow plume than previously envisaged.
    Description: Six different research vessels were involved in the collection of the data used in this study: RRS James Clark Ross, R/V Knorr, R/V Bjarni Sæmundsson, R/V Håkon Mosby, NRV Alliance, and R/V Kristine Bonnevie. We thank the captain and crew of each of these vessels for their hard work as well as the many watch standers who have sailed on the cruises and helped collect the measurements. We also thank Frank Bahr for processing the VMADCP data collected on NRV Alliance and Magnús Danielsen for the processing of the hydrographic data collected on R/V Bjarni Sæmundsson. We acknowledge Leah Trafford McRaven for assistance with Fig. 1 and two anonymous reviewers for their helpful comments, which improved the manuscript. Funding for the project was provided by the Bergen Research Foundation Grant BFS2016REK01 (K. Våge and S. Semper), the Norwegian Research Council under Grant Agreement 231647 (K. Våge), and the U.S. National Science Foundation Grants OCE-1259618 and OCE-1756361 (R. S. Pickart and D. J. Torres), as well as OCE-1558742 (R. S. Pickart). The dataset is available on PANGAEA under https://doi.pangaea.de/10.1594/PANGAEA.903535.
    Keywords: Ocean ; Continental shelf/slope ; Ocean circulation ; Transport ; Intermediate waters ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(13), (2019): 3883-3898, doi:10.1175/JCLI-D-18-0735.1.
    Description: While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.
    Description: FL and MSL are thankful for the financial support from the National Science Foundation (NSF) Physical Oceanography Program (NSF-OCE-12-59102, NSF-OCE-12-59103). The NCAR contribution was supported by the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) under Climate Variability and Predictability Program (CVP) Grant NA13OAR4310138 and by the NSF Collaborative Research EaSM2 Grant OCE-1243015. NCAR is sponsored by the NSF. NPH is supported by NERC programs U.K. OSNAP (NE/K010875) and ACSIS (National Capability, NE/N018044/1). Y-OK is supported by NOAA CPO CVP (NA17OAR4310111) and NSF EaSM2 grant (OCE-1242989). AR is supported by NASA-ROSES Modeling, Analysis and Prediction 2016 NNX16AC93G-MAP. RZ is supported by NOAA/OAR. Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (http://doi.org/10.17882/42182). Data from the RAPID-MOCHA-WBTS array funded by NERC, NSF and NOAA are freely available from www.rapid.ac.uk/rapidmoc. We thank Stephen Griffies for providing access to the GFDL-MOM025 COREII simulation output and Matthew Harrison and Xiaoqin Yan for their comments on the manuscript. We also thank the anonymous reviewers for their valuable comments.
    Description: 2020-06-11
    Keywords: North Atlantic Ocean ; Deep convection ; Meridional overturning circulation ; Model comparison
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(9), (2019): 2237-2254, doi: 10.1175/JPO-D-18-0181.1.
    Description: A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.
    Description: This research was supported by the Air Sea Interaction Regional Initiative (ASIRI) under ONR Grant N00014-13-1-0451 (SE and AM) and ONR Grant N00014-13-1-0477 (VH and LC). Additionally, AM and SE thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support; VH and LC were further supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156. We thank Joe LaCasce, Dhruv Balwada, and one anonymous reviewer for helpful comments and discussions that significantly improved this manuscript. The authors thank the captain and crew of the R/V Roger Revelle. The SVP-type drifters are part of the Global Drifter Program and supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156 and are available under http://www.aoml.noaa.gov/phod/dac/. The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS, http://www.marine.copernicus.eu).
    Keywords: Dispersion ; Fronts ; Mesoscale processes ; Subgrid-scale processes ; Trajectories ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 36(10), (2019): 1997-2014, doi: 10.1175/JTECH-D-19-0029.1.
    Description: While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.
    Description: This analysis was supported by NSF Grants OCE-1657896 and OCE-1736930 to Kirincich, OCE-1658475 to Emery and Washburn and OCE-1736709 to Flament. Flament is also supported by NOAA’s Integrated Ocean Observing System through Award NA11NOS0120039. The authors thank Lindsey Benjamin, Alma Castillo, Ken Constantine, Benedicte Dousset, Ian Fernandez, Mael Flament, Dave Harris, Garrett Hebert, Ben Hodges, Victoria Futch, Matt Guanci, and Philip Moravcik for assistance in building, deploying, and operating the radars.
    Description: 2020-04-11
    Keywords: Ocean ; Coastal flows ; Algorithms ; Radars/Radar observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(8), (2019): 2185-2205. doi:10.1175/JCLI-D-18-0538.1.
    Description: Much attention has been paid to the climatic impacts of changes in the Kuroshio Extension, instead of the Kuroshio in the East China Sea (ECS). This study, however, reveals the prominent influences of the lateral shift of the Kuroshio at interannual time scale in late spring [April–June (AMJ)] on the sea surface temperature (SST) and precipitation in summer around the ECS, based on high-resolution satellite observations and ERA-Interim. A persistent offshore displacement of the Kuroshio during AMJ can result in cold SST anomalies in the northern ECS and the Japan/East Sea until late summer, which correspondingly causes anomalous cooling of the lower troposphere. Consequently, the anomalous cold SST in the northern ECS acts as a key driver to robustly enhance the precipitation from the Yangtze River delta to Kyushu in early summer (May–August) and over the central ECS in late summer (July–September). In view of the moisture budget analysis, two different physical processes modulated by the lateral shift of the Kuroshio are identified to account for the distinct responses of precipitation in early and late summer, respectively. First, the anomalous cold SST in the northern ECS induced by the Kuroshio offshore shift is likely conducive to the earlier arrival of the mei-yu–baiu front at 30°–32°N and its subsequent slower northward movement, which may prolong the local rainy season, leading to the increased rain belt in early summer. Second, the persistent cold SST anomalies in late summer strengthen the near-surface baroclinicity and the associated strong atmospheric fronts embedded in the extratropical cyclones over the central ECS, which in turn enhances the local rainfall.
    Description: We appreciate three anonymous reviewers for their thoughtful and constructive comments. This work is supported by the National Key Research and Development Program of China (2016YFA0601804), the National Natural Science Foundation of China (NSFC) Projects (91858102, 41490643, 41490640, 41506009, U1606402) and the OUC–WHOI joint research program (21366).
    Description: 2019-10-01
    Keywords: Continental shelf/slope ; Atmosphere-ocean interaction ; Boundary currents ; Precipitation ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(4), (2019): 1035-1053, doi:10.1175/JPO-D-18-0136.1.
    Description: Ocean stratification and the vertical extent of the mixed layer influence the rate at which the ocean and atmosphere exchange properties. This process has direct impacts for anthropogenic heat and carbon uptake in the Southern Ocean. Submesoscale instabilities that evolve over space (1–10 km) and time (from hours to days) scales directly influence mixed layer variability and are ubiquitous in the Southern Ocean. Mixed layer eddies contribute to mixed layer restratification, while down-front winds, enhanced by strong synoptic storms, can erode stratification by a cross-frontal Ekman buoyancy flux. This study investigates the role of these submesoscale processes on the subseasonal and interannual variability of the mixed layer stratification using four years of high-resolution glider data in the Southern Ocean. An increase of stratification from winter to summer occurs due to a seasonal warming of the mixed layer. However, we observe transient decreases in stratification lasting from days to weeks, which can arrest the seasonal restratification by up to two months after surface heat flux becomes positive. This leads to interannual differences in the timing of seasonal restratification by up to 36 days. Parameterizing the Ekman buoyancy flux in a one-dimensional mixed layer model reduces the magnitude of stratification compared to when the model is run using heat and freshwater fluxes alone. Importantly, the reduced stratification occurs during the spring restratification period, thereby holding important implications for mixed layer dynamics in climate models as well as physical–biological coupling in the Southern Ocean.
    Description: MdP acknowledges numerous research visits to the Department of Marine Science, University of Gothenburg, and a visit to Woods Hole Oceanographic Institution, which greatly enhanced this work. We thank SANAP and the captain and crew of the S.A. Agulhas II for their assistance in the deployment and retrieval of the gliders. We acknowledge the work of SAMERC-STS for housing, managing, and piloting the gliders. SS was supported by NRF-SANAP Grant SNA14071475720 and a Wallenberg Academy Fellowship (WAF 2015.0186). Lastly, SS thanks the numerous technical assistance, advice, and IOP hosting provided by Geoff Shilling and Craig Lee of the Applied Physics Laboratory, University of Washington.
    Description: 2020-04-11
    Keywords: Atmosphere-ocean interaction ; Fronts ; Oceanic mixed layer ; In situ oceanic observations ; Interannual variability ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1639-1649, doi: 10.1175/JPO-D-18-0154.1.
    Description: Using a recently developed asymptotic theory of internal solitary wave propagation over a sloping bottom in a rotating ocean, some new qualitative and quantitative features of this process are analyzed for internal waves in a two-layer ocean. The interplay between different singularities—terminal damping due to radiation and disappearing quadratic nonlinearity, and reaching an “internal beach” (e.g., zero lower-layer depth)—is discussed. Examples of the adiabatic evolution of a single solitary wave over a uniformly sloping bottom under realistic conditions are considered in more detail and compared with numerical solutions of the variable-coefficient, rotation-modified Korteweg–de Vries (rKdV) equation.
    Description: LAO is thankful to Yu. Stepanyants for broad discussions of mutual benefit. KRH was supported by Grant N00014-18-1-2542 from the Office of Naval Research.
    Description: 2020-06-13
    Keywords: Internal waves ; Differential equations ; Nonlinear models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society, 100(5), (2019): 897-908, doi:10.1175/BAMS-D-19-0130.1.
    Description: As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.
    Description: This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019):1463-1483, doi: 10.1175/JPO-D-18-0213.1.
    Description: A set of float trajectories, deployed at 1500- and 2500-m depths throughout the deep Gulf of Mexico from 2011 to 2015, are analyzed for mesoscale processes under the Loop Current (LC). In the eastern basin, December 2012–June 2014 had 〉40 floats per month, which was of sufficient density to allow capturing detailed flow patterns of deep eddies and topographic Rossby waves (TRWs), while two LC eddies formed and separated. A northward advance of the LC front compresses the lower water column and generates an anticyclone. For an extended LC, baroclinic instability eddies (of both signs) develop under the southward-propagating large-scale meanders of the upper-layer jet, resulting in a transfer of eddy kinetic energy (EKE) to the lower layer. The increase in lower-layer EKE occurs only over a few months during meander activity and LC eddy detachment events, a relatively short interval compared with the LC intrusion cycle. Deep EKE of these eddies is dispersed to the west and northwest through radiating TRWs, of which examples were found to the west of the LC. Because of this radiation of EKE, the lower layer of the eastern basin becomes relatively quiescent, particularly in the northeastern basin, when the LC is retracted and a LC eddy has departed. A mean west-to-east, anticyclone–cyclone dipole flow under a mean LC was directly comparable to similar results from a previous moored LC array and also showed connections to an anticlockwise boundary current in the southeastern basin.
    Description: The authors were supported by the Department of the Interior, Bureau of Ocean Energy Management (BOEM), Contract M08PC20043 to Leidos, Inc., Raleigh, NC. The authors also wish to acknowledge the enthusiastic support of Dr. Alexis Lugo-Fernández, the BOEM Contracting Officer’s Technical Representative, during the study into the Deep Circulation of the Gulf of Mexico, using Lagrangian Methods. Thanks go to the captains and crews of the R/V Pelican and B/O Justo Sierra, J. Malbrough (LUMCON), J. Singer (Leidos), J. Valdes (WHOI), B. Guest (WHOI), and the CANEK group (CICESE).
    Description: 2020-05-29
    Keywords: Bottom currents ; Eddies ; Instability ; Lagrangian circulation/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 36(4), (2019): 733-744, doi:10.1175/JTECH-D-18-0050.1.
    Description: Sea-Bird Scientific SBE 41CP CTDs are used on autonomous floats in the global Argo ocean observing program to measure the temperature and salinity of the upper ocean. While profiling, the sensors are subject to dynamic errors as they profile through vertical gradients. Applying dynamic corrections to the temperature and conductivity data reduces these errors and improves sensor accuracy. A series of laboratory experiments conducted in a stratified tank are used to characterize dynamic errors and determine corrections. The corrections are adapted for Argo floats, and recommendations for future implementation are presented.
    Description: 2020-04-23
    Keywords: Data processing ; In situ oceanic observations ; Instrumentation/sensors ; oceanic ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather Climate and Society 11(3), (2019):465-487, doi: 10.1175/WCAS-D-18-0134.1.
    Description: As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.
    Description: This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report.
    Description: 2020-05-21
    Keywords: North America ; Climate prediction ; Planning ; Policy ; Risk assessment ; Societal impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019):1619-1637, doi:10.1175/JPO-D-18-0175.1.
    Description: Although the hydrodynamics of river meanders are well studied, the influence of curvature on flow in estuaries, with alternating tidal flow and varying water levels and salinity gradients, is less well understood. This paper describes a field study on curvature effects in a narrow salt-marsh creek with sharp bends. The key observations, obtained during times of negligible stratification, are 1) distinct differences between secondary flow during ebb and flood, with helical circulation as in rivers during ebb and a reversed circulation during flood, and 2) maximum (ebb and flood) streamwise velocities near the inside of the bend, unlike typical river bend flow. The streamwise velocity structure is explained by the lack of a distinct point bar and the relatively deep cross section in the estuary, which means that curvature-induced inward momentum redistribution is not overcome by outward redistribution by frictional and topographic effects. Through differential advection of the along-estuary salinity gradient, the laterally sheared streamwise velocity generates lateral salinity differences, with the saltiest water near the inside during flood. The resulting lateral baroclinic pressure gradient force enhances the standard helical circulation during ebb but counteracts it during flood. This first leads to a reversed secondary circulation during flood in the outer part of the cross section, which triggers a positive feedback mechanism by bringing slower-moving water from the outside inward along the surface. This leads to a reversal of the vertical shear in the streamwise flow, and therefore in the centrifugal force, which further enhances the reversed secondary circulation.
    Description: This project was funded by NSF Grant OCE-1634490. During this work W.M. Kranenburg was supported as USGS Postdoctoral Scholar at Woods Hole Oceanographic Institution. A.M.P. Garcia was supported by the Michael J. Kowalski Fellowship in Ocean Science and Engineering (AMPG), and the Diversity Fellowship of the MIT Office of the Dean of Graduate Education (AMPG). The authors thank Jay Sisson for the technical support and Peter Traykovski for providing the bathymetric data. Also, the suggestions for improvement by Dr. K. Blanckaert and an anonymous reviewer are thankfully acknowledged.
    Keywords: Estuaries ; Advection ; Baroclinic flows ; Barotropic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 100(5), (2019): 909-912, doi: 10.1175/BAMS-D-18-0319.1.
    Description: The open availability and wide accessibility of digital scientific resources, such as articles and datasets, is becoming the norm for twenty-first-century science. Geoscience researchers are now being asked by funding agencies and scientific publishers to archive and cite data to support open access but often struggle to understand, interpret, and fulfill these requirements. To fulfill the promise of new open data initiatives, 1) scientific resources (e.g., data and software) must be collected and documented properly; 2) repository services, including preservation and storage capabilities, must be maintained, supported, and improved over time; and 3) governance institutions must be established. These issues were discussed in the Geoscience Digital Data Resource and Repository Service (GeoDaRRS) workshop,1 held in August 2018, at NCAR. The workshop brought together more than 60 geoscience researchers, technology experts, scientific publishers, funders, and data repository personnel to discuss data management challenges and opportunities within the geosciences. This included exploring whether new services are needed to complement existing data facilities, particularly in the areas of 1) data management planning support resources and 2) repository services for geoscience researchers who have data that do not fit in any existing repository. More details on the workshop agenda and recommendations are available in the final workshop report (Mayernik et al. 2018).
    Description: The National Science Foundation (NSF) provided the funding support for this workshop. We also thank Cecilia Banner and Elizabeth Faircloth of NCAR for administrative and logistical support.
    Description: 2020-06-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1561-1575, doi:10.1175/JPO-D-19-0002.1.
    Description: Within the pycnocline, where diapycnal mixing is suppressed, both the vertical movement (uplift) of isopycnal surfaces and upward motion along sloping isopycnals supply nutrients to the euphotic layer, but the relative importance of each of these mechanisms is unknown. We present a method for decomposing vertical velocity w into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces and the adiabatic vertical velocity of isopycnal surfaces . We show that , where is the isopycnal slope and is the geometric aspect ratio of the flow, and that accounts for 10%–25% of the total vertical velocity w for isopycnal slopes representative of the midlatitude pycnocline. We perform the decomposition of w in a process study model of a midlatitude eddying flow field generated with a range of isopycnal slopes. A spectral decomposition of the velocity components shows that while is the largest contributor to vertical velocity, is of comparable magnitude at horizontal scales less than about 10 km, that is, at submesoscales. Increasing the horizontal grid resolution of models is known to increase vertical velocity; this increase is disproportionately due to better resolution of , as is shown here by comparing 1- and 4-km resolution model runs. Along-isopycnal vertical transport can be an important contributor to the vertical flux of tracers, including oxygen, nutrients, and chlorophyll, although we find weak covariance between vertical velocity and nutrient anomaly in our model.
    Description: MAF was supported by a National Defense Science and Engineering Graduate Fellowship and AM by NSF OCE-I434788. The authors thank Glenn Flierl and Ruth Curry for helpful conversations, and three anonymous reviewers for comments that improved the manuscript.
    Description: 2020-06-11
    Keywords: Baroclinic flows ; Mesoscale processes ; Small scale processes ; Subgrid-scale processes ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 36(9), (2019): 1789-1812, doi:10.1175/JTECH-D-18-0223.1.
    Description: Temporal vertical eddy viscosity coefficient (VEVC) in an Ekman layer model is estimated using an adjoint method. Twin experiments are carried out to investigate the influences of several factors on inversion results, and the conclusions of twin experiments are 1) the adjoint method is a capable method to estimate different kinds of temporal distributions of VEVCs; 2) the gradient descent algorithm is better than CONMIN and L-BFGS for the present problem, although the posterior two algorithms perform better on convergence efficiency; 3) inversion results are sensitive to initial guesses; 4) the model is applicable to different wind conditions; 5) the inversion result with thick boundary layer depth (BLD) is slightly better than thin BLD; 6) inversion results are more sensitive to observations in upper layers than those in lower layers; 7) inversion results are still acceptable when data noise exists, indicating the method can sustain noise to a certain degree; 8) a regularization method is proved to be useful to improve the results for present problem; and 9) the present method can tolerate the existence of balance errors due to the imperfection of governing equations. The methodology is further validated in practical experiments where Ekman currents are derived from Bermuda Testbed Mooring data and assimilated. Modeled Ekman currents coincide well with observed ones, especially for upper layers. The results demonstrate that the assumptions of depth dependence and time dependence are equally important for VEVCs. The feasibility of the typical Ekman model, the imperfection of Ekman balance equations, and the deficiencies of the present method are discussed. This method provides a potential way to realize the time variations of VEVCs in ocean models.
    Description: The authors thank the seven reviewers for the constructive suggestions which have greatly improved the manuscript. Financial support is provided by the National Key Research and Development Plan of China (Grants 2017YFA0604100 and 2017YFC1404000), the National Natural Science Foundation of China (Grants 41876086 and 41806012), Scientific Research Fund of the Second Institute of Oceanography, MNR (Grant JG1819), and the Fundamental Research Funds for the Central Universities of China. Jicai thanks the support of China Scholarship Council for the visiting research in WHOI, and he also thanks the host of WHOI. BTM data are provided by Ocean Physics Laboratory, University of California, Santa Barbara (http://opl.ucsb.edu).
    Description: 2020-03-10
    Keywords: Data assimilation ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-02-23
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(5) (2019): 1551-1571. doi:10.1175/JCLI-D-18-0444.1.
    Description: Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability.
    Description: We thank Ori Adam, Nick Davis, Isaac Held, Tim Merlis, Lorenzo Polvani, and one anonymous reviewer for helpful comments and suggestions. We thank U.S. CLIVAR and the International Space Science Institute (ISSI) for funding working groups that stimulated this project. We thank all members of the working groups for helpful discussions, and the U.S. CLIVAR and ISSI offices and their sponsoring agencies (NASA,NOAA,NSF,DOE, ESA, Swiss Confederation, Swiss Academy of Sciences, and University of Bern) for supporting these groups and activities.We acknowledge WCRP’sWorking Group on CoupledModelling, which is responsible for CMIP, and we thank the climate modeling groups (Table 2) for producing and making available their model output. For CMIP, the U.S. DOE PCMDI provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
    Description: 2019-08-06
    Keywords: Hadley circulation ; Climate models ; Reanalysis data ; Multidecadal variability ; Pacific decadal oscillation ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-03-31
    Description: Coeval changes in atmospheric CO2 and 14C contents during the last deglaciation are often attributed to ocean circulation changes that released carbon stored in the deep ocean during the Last Glacial Maximum (LGM). Work is being done to generate records that allow for the identification of the exact mechanisms leading to the accumulation and release of carbon from the oceanic reservoir, but these mechanisms are still the subject of debate. Here we present foraminifera 14C data from five cores in a transect across the Chilean continental margin between ~540 and ~3,100 m depth spanning the last 20,000 years. Our data reveal that during the LGM, waters at ~2,000 m were 50% to 80% more depleted in Δ14C than waters at ~1,500 m when compared to modern values, consistent with the hypothesis of a glacial deep ocean carbon reservoir that was isolated from the atmosphere. During the deglaciation, our intermediate water records reveal homogenization in the Δ14C values between ~800 and ~1,500 m from ~16.5–14.5 ka cal BP to ~14–12 ka cal BP, which we interpret as deeper penetration of Antarctic Intermediate Water. While many questions still remain, this process could aid the ventilation of the deep ocean at the beginning of the deglaciation, contributing to the observed ~40 ppm rise in atmospheric pCO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), 124(8), pp. 5503-5528, ISSN: 2169-9275
    Publication Date: 2022-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-09-10
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-09-17
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-09-09
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-09-16
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-09-11
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-09-16
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-09-11
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-09-11
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-09-11
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-09-11
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-09-11
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-20
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-09-03
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-30
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-30
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-29
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-29
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-30
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-28
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-23
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-26
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-27
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-27
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-28
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-27
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-26
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-26
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-22
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-22
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-19
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-19
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-26
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-16
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-24
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-25
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-24
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-23
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-13
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
  • 97
  • 98
    Publication Date: 2019-07-30
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-11
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-04
    Print ISSN: 2470-0010
    Electronic ISSN: 2470-0029
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...