ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (30,482)
  • MDPI Publishing  (18,900)
  • American Meteorological Society
  • 2015-2019  (51,433)
  • 1980-1984
  • 1940-1944
  • 2018  (51,433)
Collection
Publisher
Years
  • 2015-2019  (51,433)
  • 1980-1984
  • 1940-1944
Year
  • 1
    Publication Date: 2021-07-14
    Description: Archaeological exavations,undertaken since 2004 for the construction of the new Naples subway
    Description: Published
    Description: 542-557
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: A.D.79 eruption ; compositional data analysis ; geoarchaeology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-17
    Description: Here we present the results of the inversion of a new geodetic data set covering the 2012 Emilia seismic sequence and the following 1 year of postseismic deformation. Modeling of the geodetic data together with the use of a catalog of 3-D relocated aftershocks allows us to constrain the rupture geometries and the coseismic and postseismic slip distributions for the two main events (Mw 6.1 and 6.0) of the sequence and to explore how these thrust events have interacted with each other. Dislocation modeling reveals that the first event ruptured a slip patch located in the center of the Middle Ferrara thrust with up to 1 m of reverse slip. The modeling of the second event, located about 15 km to the southwest, indicates a main patch with up to 60 cm of slip initiated in the deeper and flatter portion of the Mirandola thrust and progressively propagated postseismically toward the top section of the rupture plane, where most of the aftershocks and afterslip occurred. Our results also indicate that between the two main events, a third thrust segment was activated releasing a pulse of aseismic slip equivalent to a Mw 5.8 event. Coulomb stress changes suggest that the aseismic event was likely triggered by the preceding main shock and that the aseismic slip event probably brought the second fault closer to failure. Our findings show significant correlations between static stress changes and seismicity and suggest that stress interaction between earthquakes plays a significant role among continental en echelon thrusts.
    Description: Published
    Description: 4742–4766
    Description: 1T. Deformazione crostale attiva
    Description: 2T. Sorgente Sismica
    Description: 3T. Storia Sismica
    Description: JCR Journal
    Keywords: continental tectonics ; source geometry ; geodetic modeling ; coulomb stress ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Oceans, Wiley, 123(12), pp. 8862-8876, ISSN: 0148-0227
    Publication Date: 2019-01-25
    Description: The snow cover on Antarctic sea ice persists during most of the year, contributing significantly to the sea ice mass budget due to comprehensive seasonal transition processes within the snowpack as well as at the snow/ice interface. Consequently, snow on sea ice varies not only in depth but also in particular in its physical characteristics such as snow density and stratigraphy. In order to quantify the heterogeneous nature of the Antarctic snowpack on different spatial scales, that is, small (〈10 m), floe‐size (1‐2 km), and regional (seasonal/perennial ice) scales, we present here a case study of snow analyses in the Weddell Sea in austral winter 2013. The resulting high variability of snow parameters in the basal snow layer reveals the need to distinguish between seasonal and perennial ice regimes, when retrieving, for example, snow depth using satellite microwave radiometry. Considering the full vertical snow column, a more detailed distinction of the perennial sea ice regime into, for example, more ice classes is suggested in order to represent the high variability range. For the internal snowpack variability, however, we identify the grain size variability as the main driver, while snow density variations can be neglected. Moving from regional to floe‐size scales, a similar variability range of the studied snow properties is found, suggesting that a large number of snow samples on a few floes is more crucial than covering a large region with fewer floe‐scale measurements. The spatiotemporally heterogeneous variability in snow accumulation, redistribution, and metamorphism is, however, too large to upscale the given findings beyond regional scale.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-19
    Description: The Beaufort Gyre (BG) is the largest liquid freshwater reservoir of the Arctic Ocean. The liquid freshwater content (FWC) significantly increased in the BG in the 2000s during an anticyclonic wind regime and remained at a high level despite a transition to a more cyclonic state in the early 2010s. It is not well understood to what extent the rapid sea ice decline during this period has modified the trend and variability of the BG liquid FWC in the past decade. Our numerical simulations show that about 50% of the liquid freshwater accumulated in the BG in the 2000s can be explained by the sea ice decline caused by the Arctic atmospheric warming. Among this part of the FWC increase, 60% can be attributed to surface freshening associated with the reduction of the net sea ice thermodynamic growth rate, and 40% to changes in ocean circulation, which makes freshwater more accessible to the BG for storage. Thus, the rapid increase of the BG FWC in the 2000s was due to the concurrence of the anticyclonic wind regime and the high freshwater availability. We also find that if the Arctic sea ice had not declined, the liquid FWC in the BG would have shown a stronger decreasing tendency at the beginning of the 2010s owing to the cyclonic wind regime. From our results we argue that changes in sea ice conditions should be adequately taken into account when it comes to understanding and predicting variations of BG liquid FWC in a changing climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-11
    Description: Sea ice formation is accompanied by the rejection of salt which in nature tends to be mixed vertically by the formation of convective plumes. Here we analyze the influence of a salt plume parameterization (SPP) in an atmosphere-sea ice-ocean model. Two 330 years long simulations have been conducted with the AWI Climate Model. In the reference simulation, the rejected salt in the Arctic Ocean is added to the upper-most ocean layer. This approach is commonly used in climate modelling. In another experiment, employing SPP, the rejected salt is vertically redistributed within the mixed layer based on a power law profile that mimics the penetration of salt plumes. We discuss the effects of this redistribution on the simulated mean state and on atmosphere-ocean linkages associated with the intensity of deep water formation. We find that the salt plume parametrization leads to simultaneous increase of sea ice (volume and concentration) and decrease of sea surface salinity in the Arctic. The SPP considerably alters the interplay between the atmosphere and the ocean in the Nordic Seas. The parameterization modifies the ocean ventilation; however, resulting changes in temperature and salinity largely compensate each other in terms of density so that the overturning circulation is not significantly affected.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 123, pp. 779-800, ISSN: 0148-0227
    Publication Date: 2018-12-29
    Description: To better understand the reaction of Arctic coasts to increasing environmental pressure, coastal changes along a 210-km length of the Yukon Territory coast in north-west Canada were investigated. Shoreline positions were acquired from aerial and satellite images between 1951 and 2011. Shoreline change rates were calculated for multiple time periods along the entire coast and at six key sites. Additionally, Differential Global Positioning System (DGPS) measurements of shoreline positions from seven field sites were used to analyze coastal dynamics from 1991 to 2015 at higher spatial resolution. The whole coast has a consistent, spatially averaged mean rate of shoreline change of 0.7 ± 0.2 m/a with a general trend of decreasing erosion from west to east. Additional data from six key sites shows that the mean shoreline change rate decreased from �1.3 ± 0.8 (1950s–1970s) to �0.5 ± 0.6 m/a (1970s–1990s). This was followed by a significant increase in shoreline change to �1.3 ± 0.3 m/a in the 1990s to 2011. This increase is confirmed by DGPS measurements that indicate increased erosion rates at local rates up to �8.9 m/a since 2006. Ground surveys and observations with remote sensing data indicate that the current rate of shoreline retreat along some parts of the Yukon coast is higher than at any time before in the 64-year-long observation record. Enhanced availability of material in turn might favor the buildup of gravel features, which have been growing in extent throughout the last six decades.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-09-24
    Description: The Filchner‐Ronne Ice Shelf, the ocean cavity beneath it, and the Weddell Sea that bounds it, form an important part of the global climate system by modulating ice discharge from the Antarctic Ice Sheet and producing cold dense water masses that feed the global thermohaline circulation. A prerequisite for modeling the ice sheet and oceanographic processes within the cavity is an accurate knowledge of the sub‐ice sheet bedrock elevation, but beneath the ice shelf where airborne radar cannot penetrate, bathymetric data are sparse. This paper presents new seismic point measurements of cavity geometry from a particularly poorly sampled region south of Berkner Island that connects the Filchner and Ronne ice shelves. An updated bathymetric grid formed by combining the new data with existing data sets reveals several new features. In particular, a sill running between Berkner Island and the mainland could alter ocean circulation within the cavity and change our understanding of paleo‐ice stream flow in the region. Also revealed are deep troughs near the grounding lines of Foundation and Support Force ice streams, which provide access for seawater with melting potential. Running an ocean tidal model with the new bathymetry reveals large differences in tidal current velocities, both within the new gridded region and further afield, potentially affecting sub‐ice shelf melt rates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Atmospheres, Wiley, 123(18), pp. 10162-10184, ISSN: 0148-0227
    Publication Date: 2019-04-11
    Description: Understanding the influence of the Arctic troposphere on the climate at midlatitudes is critical for projecting the impacts of ongoing and anticipated Arctic changes such as Arctic amplification and rapid sea ice decline over the Northern Hemisphere. In this study, we analyze a suite of atmospheric model experiments, with and without atmospheric relaxation toward reanalysis data, to study the impacts of the Arctic troposphere on the midlatitude atmospheric circulation and climate variability. The Arctic troposphere is found to strongly impact the interannual variability of the atmospheric circulation and temperature over the midlatitude continents. The major mechanisms for the impacts of Arctic troposphere include the modulation of the large‐scale atmospheric circulation, the associated heat transport over the continents, and the impacts on synoptic variations in the North Atlantic‐European sector. The impact of the Arctic troposphere on the intensity of the Siberian High is an important factor for how the Arctic can influence temperature variability in south Siberia and East Asia. The trends in the Arctic troposphere in recent decades are closely linked to the recent winter cooling in Northern Eurasia. These recent cooling trends are not driven by the trends in sea surface temperature/sea ice, tropical atmosphere, and the stratosphere. It is argued that the temperature trend pattern of warm Arctic‐cold Eurasia is a manifestation of two possibly independent phenomena and the cooling trend is contributed to by the Arctic troposphere through impacting the large‐scale atmospheric circulation, the atmospheric blocking frequency, and the intensity of the Siberian High.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-07-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 45, pp. 1481-1489, ISSN: 0094-8276
    Publication Date: 2018-03-06
    Description: Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3The Depositional Record, Wiley, N/A(N/A), pp. 1-39, ISSN: 20554877
    Publication Date: 2018-09-10
    Description: The detailed Holocene inundation history of the Bermuda North Lagoon may be used as model for transgressive and highstand sequences in carbonate platforms. Sedimentation and facies development were controlled largely by sea‐level rise and antecedent topography. Four late Pleistocene to Holocene sequences may be identified in North Lagoon based on a combined analysis of 200 km shallow reflection seismics and 39 cores including 29 radiometric and U/Th‐ages. The sequences were deposited during sea‐level highstands and are separated by subaerial exposure horizons that formed during sea‐level lowstands. Sequence 1 (inferred MIS 7) consists of well‐cemented carbonate sands. Sequence 2 (MIS 5) is up to 20 m thick and consists of well‐sorted, inter‐reefal sands and reef sediments with mound‐like structures. Sequence 3 (inferred MIS 3) is up to ca 6 m thick and accumulated in topographic lows of the underlying sequences some 20 m below modern sea‐level. Sequence 4 (MIS 1, Holocene) includes lagoonal sediments up to 10 m thick, and reefs that accumulated on topographic highs of the MIS 5 sequences. Holocene sediments in topographic lows include peat, peaty sediment, freshwater mud, restricted marine carbonates, and open lagoonal carbonate sediments deposited in seagrass beds, shallow water, and deeper lagoon areas. Upward fining is an expression of deepening and the development of a reef‐protected lagoon environment. Holocene sedimentation on topographic highs usually lacks freshwater and transitional facies and starts with shallow marine mollusc shell accumulations overlain by carbonate sediments that show fining upward. Packstone (68%), wackestone (22%), grainstone (9%) and mudstone (1%) textures occur in cores, with Halimeda, molluscs, coralline algae and foraminifera being the most common constituent particles; coral fragments are rare. During the Holocene, an estimated volume of 1 km3 of carbonate sediments was deposited in North Lagoon. Average sedimentation rates are estimated to be 0.32 m/kyr.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-09-27
    Description: A climatically-induced acceleration in ocean-driven melting of Antarctic ice shelves would have consequences for both the discharge of continental ice into the ocean and thus global sea level, and for the formation of Antarctic Bottom Water and the oceanic meridional overturning circulation. Using a novel gas-tight in-situ water sampler, noble gas samples have been collected from six locations beneath the Filchner Ice Shelf, the first such samples from beneath an Antarctic Ice shelf. Helium and neon are uniquely suited as tracers of glacial meltwater in the ocean. Basal meltwater fractions range from 3.6% near the ice shelf base to 0.5% near the sea floor, with distinct regional differences. We estimate an average basal melt rate for the Filchner-Ronne Ice Shelf of 177 ± 95 Gt/year, independently confirming previous results. We calculate that up to 2.7% of the meltwater has been refrozen, and we identify a local source of crustal helium.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-03-05
    Description: Ozonesonde data from four sites are analyzed in relation to 191 solar protons events (SPEs) from 1989-2016. Analysis shows ozone depletion (~10-35 km altitude) commencing following the SPEs. Seasonally-corrected ozone data demonstrate that depletions occur only in winter/early-spring above sites where the northern hemisphere polar vortex (PV) can be present. A rapid reduction in stratospheric ozone is observed with the maximum decrease occurring ~10-20 days after SPEs. Ozone levels remain depleted in excess of 30 days. No depletion is observed above sites completely outside the PV. No depletion is observed in relation to 191 random epochs at any site at any time of year. Results point to the role of indirect ozone destruction, most likely via the rapid descent of long-lived NOx species in the PV during the polar winter.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-04-03
    Description: Outlet glaciers of the Greenland Ice Sheet transport ice from the interior to the ocean and contribute directly to sea level rise because because discharge and ablation often exceed the accumulation. To develop a better understanding of these fast flowing glaciers, we investigate the basal conditions of Store Glacier, a large outlet glacier flowing into Uummannaq Fjord in West Greenland. We use two crossing seismic profiles acquired near the centreline, 30 km upstream of the calving front, to interpret the physical nature of the ice and bed. We identify one notably englacial and two notably subglacial seismic reflections on both profiles. The englacial reflection represents a change in crystal orientation fabric, interpreted to be the Holocene–Wisconsin transition. From Amplitude Versus Angle (AVA) analysis we infer that the deepest ∼80 m of ice of the parallel-flow profile below this reflection is anisotropic with an enhancement of simple shear of ∼2. The ice is underlain by ∼45 m of unconsolidated sediments, below which there is a strong reflection caused by the transition to consolidated sediments. In the across-flow profile subglacial properties vary over small scale and the polarity of the ice–bed reflection switches from positive to negative. We interpret these as patches of different basal slipperiness associated with variable amounts of water. Our results illustrate variability in basal properties, and hence ice-bed coupling, at a spatial scale of ∼100 m, highlighting the need for direct observations of the bed to improve the basal boundary conditions in ice-dynamic models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-07-02
    Description: Iron (Fe), cobalt (Co), and vitamin B12 addition experiments were performed in the eastern Equatorial Pacific/Peruvian upwelling zone during the 2015 El Niño event. Near the Peruvian coastline, apparent photosystem II photochemical efficiencies (Fv/Fm) were unchanged by nutrient addition and chlorophyll a tripled in untreated controls over 2 days, indicating nutrient replete conditions. Conversely, Fe amendment further away from the coastline in the high nitrate, low Fe zone significantly increased Fv/Fm and chlorophyll a concentrations. Mean chlorophyll a was further enhanced following supply of Fe + Co and Fe + B12 relative to Fe alone, but this was not statistically significant; further offshore, reported Co depletion relative to Fe could enhance responses. The persistence of Fe limitation in this system under a developing El Niño, as previously demonstrated under non-El Niño conditions, suggests that diminished upwelled Fe is likely an important factor driving reductions in offshore phytoplankton productivity during these events. Plain Language Summary: Phytoplankton productivity in the Equatorial Pacific is critical for curbing CO2 outgassing from upwelling waters and sustaining globally important fisheries. We tested which micronutrients were limiting phytoplankton growth in the Equatorial Pacific during the 2015 El Niño. To date evidence for nutrient limitation status during these events remains indirect. We show iron is limiting offshore of Peru and that cobalt or vitamin B12 could be approaching limitation, with limitation by the latter micronutrients possibly becoming more important further offshore. Linked to satellite data, the new results shed light on critical controls on marine productivity in this biogeochemically/economically important region. Our results suggest reduced upwelled iron-predicted under El Niño conditions would be primarily responsible for observed offshore Peru productivity decreases.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-07-30
    Description: The climate of the Sahara and Arabian Deserts during the Little Ice Age is not well known, due to a lack of annually resolved natural and documentary archives. We present an annual reconstruction of temperature and aridity derived from Sr/Ca and oxygen isotopes in a coral of the desert‐surrounded northern Red Sea. Our data indicate that the eastern Sahara and Arabian Deserts did not experience pronounced cooling during the late Little Ice Age (~1750–1850) but suggest an even more arid mean climate than in the following ~150 years. The mild temperatures are broadly in line with predominantly negative phases of the North Atlantic Oscillation during the Little Ice Age. The more arid climate is best explained by meridional advection of dry continental air from Eurasia. We find evidence for an abrupt termination of the more arid climate after 1850, coincident with a reorganization of the atmospheric circulation over Europe.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-08-08
    Description: Abstract Waterbodies in the arctic permafrost zone are considered a major source of the greenhouse gas methane (CH4) in addition to CH4 emissions from arctic wetlands. However, the spatio-temporal variability of CH4 fluxes from waterbodies compli- cates spatial extrapolation of CH4 measurements from single waterbodies. There- fore, their contribution to the CH4 budget of the arctic permafrost zone is not yet well understood. Using the example of two study areas of 1,000 km2 each in the Mackenzie Delta, Canada, we approach this issue (i) by analyzing correlations on the landscape scale between numerous waterbodies and CH4 fluxes and (ii) by analyzing the influence of the spatial resolution of CH4 flux data on the detected relation- ships. A CH4 flux map with a resolution of 100 m was derived from two aircraft eddy-covariance campaigns in the summers of 2012 and 2013. We combined the CH4 flux map with high spatial resolution (2.5 m) waterbody maps from the Per- mafrost Region Pond and Lake Database and classified the waterbody depth based on Sentinel-1 SAR backscatter data. Subsequently, we reduced the resolution of the CH4 flux map to analyze if different spatial resolutions of CH4 flux data affected the detectability of relationships between waterbody coverage, number, depth, or size and the CH4 flux. We did not find consistent correlations between waterbody characteristics and the CH4 flux in the two study areas across the different resolu- tions. Our results indicate that waterbodies in permafrost landscapes, even if they seem to be emission hot spots on an individual basis or contain zones of above average emissions, do currently not necessarily translate into significant CH4 emis- sion hot spots on a regional scale, but their role might change in a warmer climate. KEYWORDS airborne eddy-covariance, Arctic, CH4, lakes, ponds, remote sensing, Sentinel-1, TerraSAR-X
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC323rd Symposium on Boundary Layers and Turbulence, Renaissance Oklahoma City Convention Center Hotel - Ballroom E, 2018-06-2018-06Renaissance Oklahoma City Convention Center Hotel - Ballroom E, American Meteorological Society
    Publication Date: 2018-08-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-01-02
    Description: We reanalyze existing paleodata of global mean surface temperature ΔTg and radiative forcing ΔR of CO2 and land ice albedo for the last 800,000 years to show that a state‐dependency in paleoclimate sensitivity S, as previously suggested, is only found if ΔTg is based on reconstructions, and not when ΔTg is based on model simulations. Furthermore, during times of decreasing obliquity (periods of land ice sheet growth and sea level fall) the multimillennial component of reconstructed ΔTg diverges from CO2, while in simulations both variables vary more synchronously, suggesting that the differences during these times are due to relatively low rates of simulated land ice growth and associated cooling. To produce a reconstruction‐based extrapolation of S for the future, we exclude intervals with strong ΔTg‐CO2 divergence and find that S is less state‐dependent, or even constant state‐independent), yielding a mean equilibrium warming of 2–4 K for a doubling of CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Biogeosciences, Wiley, 123(2), pp. 406-422, ISSN: 0148-0227
    Publication Date: 2018-08-13
    Description: Reducing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from coastal erosion. Different terrain units were assessed based on surficial geology, morphology, and ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, SOC contents were reduced by 19% and sediment contents by 16%. The SOC content in a 1 m² column of soil varied according to the height of the bluff, ranging from 30 to 662 kg, with a mean value of 183 kg. Forty‐four per cent of the SOC was within the top 1 m of soil and values varied based on surficial materials, ranging from 30 to 53 kg C/m³, with a mean of 41 kg. Eighty per cent of the shoreline was erosive with a mean annual rate of change of −0.7 m/yr. This resulted in a SOC flux per meter of shoreline of 132 kg C/m/yr, and a total flux for the entire 282 km of the Yukon coast of 35.5 × 10^6 kg C/yr (0.036 Tg C/yr). The mean flux of sediment per meter of shoreline was 5.3 × 103 kg/m/yr, with a total flux of 1,832 × 10^6 kg/yr (1.832 Tg/yr). Sedimentation rates indicate that approximately 13% of the eroded carbon was sequestered in nearshore sediments, where the overwhelming majority of organic carbon was of terrestrial origin.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 45, ISSN: 0094-8276
    Publication Date: 2018-11-11
    Description: Reading the sediment record in terms of past climates is challenging since linking climate change to the associated responses of sedimentary systems is not always straightforward. Here we analyze the erosional response of landscapes on the Tibetan Plateau to interglacial climate forcing. Using the theory of dynamical systems on Holocene time series of geochemical proxies, we derive a sedimentary response model that accurately simulates observed proxy variation in three lake records. The model suggests that millennial variations in sediment composition reflect a self-organization of landscapes in response to abrupt climate change between 11.6 and 11.9 ka BP. The self-organization is characterized by oscillations in sediment supply emerging from a feedback between physical and chemical erosion processes, with estimated response times between 3,000 to 18,000 years depending on catchment topography. The implications of our findings emphasize the need for landscape response models to decipher the paleoclimatic code in continental sediment records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-09-23
    Description: River flooding is among the most destructive of natural hazards globally, causing widespread loss of life, damage to infrastructure and economic deprivation. Societies are currently under increasing threat from such floods, predominantly from increasing exposure of people and assets in flood‐prone areas, but also as a result of changes in flood magnitude, frequency, and timing. Accurate flood hazard and risk assessment are therefore crucial for the sustainable development of societies worldwide. With a paucity of hydrological measurements, evidence from the field offers the only insight into truly extreme events and their variability in space and time. Historical, botanical, and geological archives have increasingly been recognized as valuable sources of extreme flood event information. These different archives are here reviewed with a particular focus on the recording mechanisms of flood information, the historical development of the methodological approaches and the type of information that those archives can provide. These studies provide a wealthy dataset of hundreds of historical and palaeoflood series, whose analysis reveals a noticeable dominance of records in Europe. After describing the diversity of flood information provided by this dataset, we identify how these records have improved and could further improve flood hazard assessments and, thereby, flood management and mitigation plans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-11-01
    Description: The global ocean contains a massive reservoir of dissolved organic carbon (DOC), rivaling the atmosphere's pool of CO2. The most recalcitrant fractions have mean radiocarbon ages of ~4,000 years in the Atlantic to ~6,000 years in the Pacific. Knowing the radiocarbon signatures of DOC and the molecular composition of dissolved organic matter (DOM) is crucial to develop understanding of the persistence and lifetime of the DOC pool. In this research, we collected samples from the deep North Pacific in August 2013 (aboard the RV Melville) to couple the Δ14C content of solid-phase-extracted DOM (Δ14C-SPE-DOM) with its molecular composition in the ocean's oldest deep waters. We find that deep waters in this region held a mean Δ14C-SPE-DOM value of −554 ± 9‰ (~6,400 14C years), substantially more depleted than that in the deep Atlantic, which held a mean Δ14C-SPE-DOM value of −445 ± 5‰. While we find a more degraded molecular composition of DOM in the deep Pacific than the deep Atlantic, the molecular formulae within the Island of Stability (Lechtenfeld et al., 2014, https://doi.org/10.1016/j.gca.2013.11.009), are largely retained. These results imply that a fraction of deep DOM is resistant to removal and present in both the deep Atlantic and Pacific Oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 45(19), pp. 10360-10368, ISSN: 0094-8276
    Publication Date: 2018-12-07
    Description: In situ observations of mid-ocean ridge spreading events are rare, and no observations exist at ultraslow spreading ridges. In 2013, two earthquake swarms and prominent, tidally modulated harmonic tremor were accidentally recorded by ocean bottom seismometers at the Southwest Indian Ridge. After relative relocation, the first swarm shows downward migrating hypocenters, while the second swarm immediately spreads over a steeply dipping plane originating at the same location as the first swarm. The tremor signal is temporally connected to the swarms and persists for more than 20 days after the second swarm. Polarization analysis points to two source locations above the seismically active area at 2- to 8-km depth. We interpret swarms and tremor as evidence for a dike intrusion event that caused disruption to an existent hydrothermal system. The tremor may be generated by enhanced hydrothermal circulation caused by the added heat of the intrusion with increased flow during low tides.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, ISSN: 0094-8276
    Publication Date: 2018-10-02
    Description: With retreating sea ice and increasing human activities in the Arctic come a growing need for reliable sea ice forecasts up to months ahead. We exploit the subseasonal‐to‐seasonal prediction database and provide the first thorough assessment of the skill of operational forecast systems in predicting the location of the Arctic sea ice edge on these time scales. We find large differences in skill between the systems, with some showing a lack of predictive skill even at short weather time scales and the best producing skillful forecasts more than 1.5 months ahead. This highlights that the area of subseasonal prediction in the Arctic is in an early stage but also that the prospects are bright, especially for late summer forecasts. To fully exploit this potential, it is argued that it will be imperative to reduce systematic model errors and develop advanced data assimilation capacity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-10-14
    Description: Semiautomated methods for microscopic image acquisition, image analysis, and taxonomic identification have repeatedly received attention in diatom analysis. Less well studied is the question whether and how such methods might prove useful for clarifying the delimitation of species that are difficult to separate for human taxonomists. To try to answer this question, three very similar Fragilariopsis species endemic to the Southern Ocean were targeted in this study: F. obliquecostata, F. ritscheri, and F. sublinearis. A set of 501 extended focus depth specimen images were obtained using a standardized, semiautomated microscopic procedure. Twelve diatomists independently identified these specimen images in order to reconcile taxonomic opinions and agree upon a taxonomic gold standard. Using image analyses, we then extracted morphometric features representing taxonomic characters of the target taxa. The discriminating ability of individual morphometric features was tested visually and statistically, and multivariate classification experiments were performed to test the agreement of the quantitatively defined taxa assignments with expert consensus opinion. Beyond an updated differential diagnosis of the studied taxa, our study also shows that automated imaging and image analysis procedures for diatoms are coming close to reaching a broad applicability for routine use.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-02-12
    Description: In recent years, sea-ice conditions in the Arctic Ocean changed substantially toward a younger and thinner sea-ice cover. To capture the scope of these changes and identify the differences between individual regions, in situ observations from expeditions are a valuable data source. We present a continuous time series of in situ measurements from the N-ICE2015 expedition from January to June 2015 in the Arctic Basin north of Svalbard, comprising snow buoy and ice mass balance buoy data and local and regional data gained from electromagnetic induction (EM) surveys and snow probe measurements from four distinct drifts. The observed mean snow depth of 0.53 m for April to early June is 73% above the average value of 0.30 m from historical and recent observations in this region, covering the years 1955–2017. The modal total ice and snow thicknesses, of 1.6 and 1.7 m measured with ground-based EM and airborne EM measurements in April, May, and June 2015, respectively, lie below the values ranging from 1.8 to 2.7 m, reported in historical observations from the same region and time of year. The thick snow cover slows thermodynamic growth of the underlying sea ice. In combination with a thin sea-ice cover this leads to an imbalance between snow and ice thickness, which causes widespread negative freeboard with subsequent flooding and a potential for snow-ice formation. With certainty, 29% of randomly located drill holes on level ice had negative freeboard.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Blue Technologies: Production and Use of Marine Molecules, Wiley, 896 p., ISBN: ISBN: 978-3-527-3413
    Publication Date: 2018-02-28
    Description: Neurotoxins belonging to the group of saxitoxin (STX) and tetrodotoxin (TTX) analogs are guanidinium alkaloids that share a common high affinity and ion flux blockage capacity for voltage-gated sodium ion channels (Nav. Members of the STX group, also known as paralytic shellfish toxins (PST), are produced among three genera of marine dinoflagellate and several genera of phylogenetically distant and primarily freshwater filamentous cyanobacteria. The origin of the biosynthetic genes in dinoflagellates remains controversial and may represent single or multiple horizontal gene transfer (HGT) events from progenitor eubacteria and/or cyanobacteria. The TTXs occur primarily among marine puffer fish and a host of terrestrial amphibians. The biosynthetic pathway has not been completely elucidated and the origin of tetrodotoxicity,including the syndrome puffer fish poisoning (PFP) in human seafood consumers,remains somewhat enigmatic. Although symbiotic bacteria are most often invoked as the source of TTX in macrofauna, endogenous biosynthesis independent of bacteria cannot be excluded. Integration of knowledge on the biogenic origins, linked to heterogeneity of the biogeographical and phylogenetic distribution of these respective toxin groups, provides the basis for rational inferences and reasonable speculation about the functional role in aquatic and terrestrial ecosystems. Recent identification of the biosynthetic genes for STX analogs in both cyanobacteria and dinoflagellates has yielded insights into biosynthetic mechanisms of toxin heterogeneity among strains and the evolutionary origins of their respective elements of the toxin gene clusters. Although it is not fully understood how or why these molecules are produced in nature, development of improved detection methods will make possible the discovery of new sources and analogs. Once genetic mechanisms for toxin biosynthesis are fully incorporated with modeling of receptor binding interactions and the structural–functional affinities of the ion channels, this will facilitate further biotechnological exploitation of these exquisite bioactive compounds and point the way toward future development of pharmaceuticals and therapeutic applications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-03-01
    Description: Freshwater bivalves of the order Unionoida display an uncommon phenotypic plasticity with high interpopulation and intrapopulation morphological variability, which could be advantageous for coping with habitat modifications. However, unionoids have suffered a marked population decline in different parts of the world in the last decades. A decline in some populations of the South American long‐lived freshwater mussel Diplodon chilensis as a consequence of habitat deterioration has recently been recorded. Ontogenetic allometry and shape variation in shells of D. chilensis from 2 different sites, Paimun lake and Chimehuin river, North Patagonia, Argentina, have been studied. For these purposes, geometric morphometric methods were used. Shell shape shows differences between sites, which the shells from Chimehuin river show less intrapopulation variability; are more elongated, with the anterior part extended upwards and the posterior part downwards; and show a steeper anterior curvature at the umbo compared to those from Paimún lake. These characteristics make shell shape more streamlined to withstand river current. Furthermore, the extended posterior‐ventral part in river shells coincides with higher foot weight that would improve anchoring to the river rocky–sandy substrate. River shells present a bounded eco‐morphotype whereas the higher variability of lake shells includes the “river eco‐morphotype.” Growth is allometric throughout life in both sites and is not sex‐dependent. The success of river repopulation programmes using mussels from lake populations may be increased by transplanting selected individuals that show “river eco‐morphotype.”
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-03-06
    Description: Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geochemistry Geophysics Geosystems, Wiley, 19, pp. 1199-1216, ISSN: 1525-2027
    Publication Date: 2019-04-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-04-03
    Description: Marine-terminating outlet glaciers of the Greenland ice sheet make significant contributions to global sea level rise, yet the conditions that facilitate their fast flow remain poorly constrained owing to a paucity of data. We drilled and instrumented seven boreholes on Store Glacier, Greenland, to monitor subglacial water pressure, temperature, electrical conductivity and turbidity along with englacial ice temperature and deformation. These observations were supplemented by surface velocity and meteorological measurements to gain insight into the conditions and mechanisms of fast glacier flow. Located 30km from the calving front, each borehole drained rapidly on attaining ∼600m depth indicating a direct connection with an active subglacial hydrological system. Persistently high subglacial water pressures indicate low effective pressure (180 − 280 kPa), with small amplitude variations correlated with notable peaks in surface velocity driven by the diurnal melt cycle and longer periods of melt and rainfall. The englacial deformation profile determined from borehole tilt measurements indicates that 63-71% of total ice motion occurred at the bed, with the remaining 29-37% predominantly attributed to enhanced deformation in the lowermost 50-100 m of the ice column. We interpret this lowermost 100m to be formed of warmer, pre-Holocene ice overlying a thin (0 − 8 m) layer of temperate basal ice. Our observations are consistent with a spatially-extensive and persistently-inefficient subglacial drainage system that we hypothesize comprises drainage both at the ice-sediment interface and through subglacial sediments. This configuration has similarities to that interpreted beneath dynamically-analogous Antarctic ice streams, Alaskan tidewater glaciers, and glaciers in surge.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Global Biogeochemical Cycles, Wiley, 32(5), pp. 799-816, ISSN: 0886-6236
    Publication Date: 2018-07-31
    Description: Phytoplankton harvests light by integrating chlorophyll in protein‐pigment complexes (photosystems) that are variable in number and size. In ecosystem models, the capacity of light harvesting is described as the pool of chlorophyll. Since most of the variability in phytoplankton chlorophyll content is driven by acclimation to changing nutrient and light conditions, photoacclimation is generally parameterized as a regulation of chlorophyll synthesis with changing light. However, photosystems can also be degraded, and of the few process‐based models that have been proposed in the literature for the representation of their degradation and repair, none of them have been extended to more realistic conditions offered by pelagic biogeochemical models. We proposed three potential parameterizations to treat the degradation of photosystems as a function of light intensity and included them as a source of variation in the size of the chlorophyll pool in Regulated Ecosystem Model
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-06-09
    Description: In this study we present dissolved and particulate 230Th and 232Th results, as well as particulate 234Th data, obtained as part of the GEOTRACES central Arctic Ocean sections GN04 (2015) and IPY11 (2007). Samples were analyzed following GEOTRACES methods, and compared to previous results from 1991. We observe significant decreases in 230Th concentrations in the deep waters of the Nansen Basin. We ascribe this non-steady state removal process to a variable release and scavenging of trace metals near an ultra-slow spreading ridge. This finding demonstrates that hydrothermal scavenging in the deep-sea may vary on annual time scales and highlights the importance of repeated GEOTRACES sections
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-10-29
    Description: A reconstruction method was developed for hyperspectral remote sensing reflectance (Rrs)data in the visible domain (400–700 nm) based on in situ observations. A total of 2,647 Rrs spectra were collected over a wide variety of water environments including open ocean, coastal and inland waters. Ten schemes with different band numbers (6 to 15) were tested based on a nonlinear model. It was found that the accuracy of the reconstruction increased with the increase of input band numbers. Eight of these schemes met the accuracy criterion with the mean absolute error (MAE) and mean relative error (MRE)values between reconstructed and in situ Rrs less than 0.00025 sr-1 and 5%, respectively. We chose the eight-band scheme for further evaluation because of its decent performance. The results revealed that the parameterization derived by the eight-band scheme was efficient for restoring Rrs spectra from different water bodies. In contrast to the previous studies that used a linear model with 15 spectral bands, the nonlinear model with the eight-band scheme yielded a comparable reconstruction performance. The MAE andMRE values were generally less than 0.00016 sr-1 and 3% respectively; much lower than the uncertainties in satellite-derived Rrs products. Furthermore, a preliminary experiment of this method on the data from the Hyperspectral Imager for the Coastal Ocean (HICO) showed high potential in the future applications for reconstructing Rrs spectra from space-borne optical sensors. Overall, the eight-band scheme with our non-linear model was proven to be optimal for hyperspectral Rrs reconstruction in the visible domain.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-03-26
    Description: Some researchers view radon emissions as a precursor to earthquakes, especially those of high magnitude [e.g., Wang et al., 2014; Lombardi and Voltattorni, 2010], but the debate in the scientific community about the applicability of the gas to surveillance systems remains open. Yet radon “works” at Italy’s Mount Etna, one of the world’s most active volcanoes, although not specifically as a precursor to earthquakes. In a broader sense, this naturally radioactive gas from the decay of uranium in the soil, which has been analyzed at Etna in the past few years, acts as a tracer of eruptive activity and also, in some cases, of seismic–tectonic phenomena. To deepen the understanding of tectonic and eruptive phenomena at Etna, scientists analyzed radon escaping from the ground and compared those data with measurements gathered continuously by instrumental networks on the volcano. Here Etna is a boon to scientists—it’s traced by roads, making it easy to access for scientific observation. Dense monitoring networks, managed by the Istituto Nazionale di Geofisica e Vulcanologia, Catania–Osservatorio Etneo (INGV-OE), have been continuously observing the volcano for more than 40 years. This continuous dense monitoring made the volcano the perfect open-air laboratory for deciphering how eruptive activity may influence radon emissions.
    Description: This work was supported by the Mediterranean Supersite Volcanoes (MED-SUV) project, which has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement 308665.
    Description: Published
    Description: 7
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Radon ; seismic activity ; Etna ; volcanic activity ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-03-25
    Description: Archaeological excavations over the last 40 years in Campania (southern Italy) confirm intense human occupation since the early Bronze Age (EBA). A pedological analysis of a ∼9 m deep pedos-tratigraphic sequence at Palma Campania (Naples) provides insights into fertility, rates of soil formation, and environmental conditions over the past 10 kyr. Fourteen volcanic soils formed in parent materials from Vesuvius and Campi Flegrei volcanic eruptions were analyzed. Results show that soils differ markedly in terms of thickness, andic properties, chemical fertility, and degree of development. Chemical properties, along with specific soil micromorphological features (such as silt coatings, laminar structure, iron segregations), are interpreted in terms of pedogenetic pro-cesses and used to reconstruct past environmental conditions. The degree of soil development, evaluated on the basis of organic matter content and some andic properties, proved more indica-tive of climate and geomorphological stability than duration of pedogenesis. Since the excavation also revealed an extensive EBA paleosurface and soil, targeted analyses were carried out to gain a better understanding of the impact of human activities and domestic animals on soil properties.
    Description: Published
    Description: 193-217
    Description: 1VV. Altro
    Description: JCR Journal
    Keywords: degree of soil development ; paleopedology ; soil chronosequence ; soil fertility ; 04 solid earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-04-02
    Description: Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed‐talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal‐scale expansion rates of 0.16, 0.38, and 0.58 m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91 m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400 years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80 m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum‐Arctic coastal lowland regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 45(23), pp. 12991-12998, ISSN: 0094-8276
    Publication Date: 2021-02-16
    Description: The classic scenario for the generation of Dansgaard-Oeschger (DO) events assumes a link to changes in the Atlantic Meridional Overturning Circulation (AMOC) induced by North Atlantic freshwater perturbations. Recent proxy data emphasize the existence of leads and lags between DO fingerprints in Greenland and Antarctic records, highlighting the potential of a Southern Hemisphere control on these events. Investigating this possibility, we provide a conceptual model resulting from phase space reconstructions based on the northern and southern ice core records. The resulting patterns closely resemble AMOC hysteresis, consistent with a northern abrupt warming linked to gradual global temperature changes. This suggests that rapid DO warmings associated with abrupt AMOC transitions from a relatively weak (cold stadial) state to a stronger (warm inter-stadial) state can be controlled by global forcing that can be linked to the Southern Hemisphere, rather than by the end of a local temporary forcing in the North Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geochemistry Geophysics Geosystems, Wiley, 19, pp. 4673-4693, ISSN: 1525-2027
    Publication Date: 2019-01-16
    Description: In the African – Southern Ocean gateway several water masses originating in the Atlantic, Indian and Southern oceans meet and mix. As a consequence, the gateway is crucial for the maintenance of the global thermohaline circulation. Newly acquired multichannel seismic reflection data collected across the southern Mozambique Ridge are used to reconstruct the impact of paleoceanographic modifications on the Neogene and Quaternary circulation in the northeastern African – Southern Ocean gateway. The data show the occurrence of mid-Miocene (~15 Ma) to early Pliocene (~5 Ma) contourite drifts and erosional features interpreted as evidence for the onset of current-controlled sedimentation in the late Neogene resulting from mid-Miocene cooling and closure of the Indonesian gateway. The Quaternary is characterized by a relocation of Antarctic Bottom Water inflow and the inception of two branches of North Atlantic Deep Water circulation subsequent to the final closure of the Central American Seaway and the Northern Hemisphere Glaciation. Therefore, the two events triggered the onset of unhindered deep and bottom water circulation from the Atlantic into the Indian Ocean, whereas Antarctic Intermediate Water circulation decreased due to the final closure of the Indonesian gateway. Our results show that tectonic and climatic events, which themselves may be linked, continuously modified the Cenozoic paleoceanic circulation in the African – Southern Ocean gateway, and indicate that ocean gateways governing the global water mass exchange act as an excellent location to reconstruct such modifications based on the interpretationof contourite drifts and erosional features.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research: Earth Surface, Wiley, 123, pp. 2802-2826
    Publication Date: 2018-12-20
    Description: Recovery Glacier reaches far into the East Antarctic Ice Sheet. Recent projections point out that its dynamic behavior has a considerable impact on future Antarctic ice loss (Golledge et al., 2017, https://doi.org/10.1002/2016GL072422). Subglacial lakes are thought to play a major role in the initiation of the rapid ice flow (Bell et al., 2007, https://doi.org/10.1038/nature05554). Satellite altimetry observations have even suggested several actively filling and draining subglacial lakes beneath the main trunk (B. E. Smith et al., 2009, https://doi.org/10.3189/002214309789470879). We present new data of the geometry of this glacier and investigate its basal properties employing radio-echo sounding. Using ice sheet modeling, we were able to constrain estimates of radar absorption in the ice, but uncertainties remain large. The magnitude of the basal reflection coefficient is thus still poorly known. However, its spatial variability, in conjunction with additional indicators, can be used to infer the presence of subglacial water. We find no clear evidence of water at most of the previously proposed lake sites. Especially, locations, where altimetry detected active lakes, do not exhibit lake characteristics in radio-echo sounding. We argue that lakes far upstream the main trunk are not triggering enhanced ice flow, which is also supported by modeled subglacial hydrology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99, Suppl. S (2018): S21-S26, doi:10.1175/BAMS-D-17-0128.1.
    Description: NOAA Coral Reef Conservation Program; National Science Foundation OCE 1537338, OCE 1605365, OCE 1031971
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1555-1566, doi:10.1175/JPO-D-17-0231.1.
    Description: A primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1Hz for 4–5min. Depth-average current fluctuations U0 within each burst are dominated by wave orbital velocities uw that account for 80%–90%of the burst variance and have a magnitude of order 10 cm s21, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (rCdaUavgjUavgj, where r is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw 5 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [rCda(Uavg 1 U0)jUavg 1 U0j)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.
    Description: The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST. S. Lentz was supported for the analysis by NSF Award OCE-1558343.
    Description: 2019-01-13
    Keywords: Coastal flows ; Currents ; Dynamics ; Gravity waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99 (2018): 513-520, doi:10.1175/BAMS-D-16-0323.1.
    Description: Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).
    Description: This work was supported by NOAA Ocean and Atmospheric Research and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and by the Innovative Technology for Arctic Exploration (ITAE) program at JISAO/PMEL. Jayne, Robbins, and Ekholm were supported by ONR (N00014-12-10110).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 35 (2018): 893-910, doi:10.1175/JTECH-D-17-0102.1.
    Description: Rotary sidescan sonars are widely used to image the seabed given their high temporal and spatial resolution. This high resolution is necessary to resolve bedform dynamics and evolution; however, sidescan sonars do not directly measure bathymetry, limiting their utility. When sidescan sonars are mounted close to the seabed, bedforms may create acoustical “shadows” that render previous methods that invert the backscatter intensity to estimate bathymetry and are based on the assumption of a fully insonified seabed ineffective. This is especially true in coastal regions, where bedforms are common features whose large height relative to the water depth may significantly influence the surrounding flow. A method is described that utilizes sonar shadows to estimate bedform height and asymmetry. The method accounts for the periodic structure of bedform fields and the projection of the shadows onto adjacent bedforms. It is validated with bathymetric observations of wave-orbital ripples, with wavelengths ranging from 0.3 to 0.8 m, and tidally reversing megaripples, with wavelengths from 5 to 8 m. In both cases, bathymetric-measuring sonars were deployed in addition to a rotary sidescan sonar to provide a ground truth; however, the bathymetric sonars typically measure different and smaller areas than the rotary sidescan sonar. The shadow-based method and bathymetric-measuring sonar data produce estimates of bedform height that agree by 34.0% ± 27.2% for wave-orbital ripples and 16.6% ± 14.7% for megaripples. Errors for estimates of asymmetry are 1.9% ± 2.1% for wave-orbital ripples and 11.2% ± 9.6% for megaripples.
    Description: This project is partially supported by the National Science Foundation through a Graduate Research Fellowship and a Massachusetts Institute of Technology Energy Initiative Fellowship. Additionally, funding used in developing the method was obtained from NSF Grants OCE-1634481 and OCE-1635151. Field work was funded under ONR Grants N00014-06-10329 and N00014-13-1-0364.
    Keywords: Ocean ; Acoustic measurements/effects ; Algorithms ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2127-2140, doi:10.1175/JPO-D-18-0035.1.
    Description: Shipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
    Description: Funding for this project was provided by the National Science Foundation under Grant OCE-1259618.
    Description: 2019-03-11
    Keywords: Boundary currents ; Coastal flows ; Instability ; Ocean circulation ; Potential vorticity ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 435-453, doi:10.1175/JPO-D-17-0122.1.
    Description: Observations of surface waves, currents, and turbulence at the Columbia River mouth are used to investigate the source and vertical structure of turbulence in the surface boundary layer. Turbulent velocity data collected on board freely drifting Surface Wave Instrument Float with Tracking (SWIFT) buoys are corrected for platform motions to estimate turbulent kinetic energy (TKE) and TKE dissipation rates. Both of these quantities are correlated with wave steepness, which has previously been shown to determine wave breaking within the same dataset. Estimates of the turbulent length scale increase linearly with distance from the free surface, and roughness lengths estimated from velocity statistics scale with significant wave height. The vertical decay of turbulence is consistent with a balance between vertical diffusion and dissipation. Below a critical depth, a power-law scaling commonly applied in the literature works well to fit the data. Above this depth, an exponential scaling fits the data well. These results, which are in a surface-following reference frame, are reconciled with results from the literature in a fixed reference frame. A mapping between free-surface and mean-surface reference coordinates suggests 30% of the TKE is dissipated above the mean sea surface.
    Description: Funding for this project was provided by the Office of Naval Research as part of the RIVET-II DRI, and for the DARLA group.
    Keywords: Ocean ; Estuaries ; Gravity waves ; Turbulence ; Wave breaking ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 573-590, doi:10.1175/JPO-D-17-0206.1.
    Description: Motivated by the proximity of the Northern Recirculation Gyre and the deep western boundary current in the North Atlantic, an idealized model is used to investigate how recirculation gyres and a deep flow along a topographic slope interact. In this two-layer quasigeostrophic model, an unstable jet imposed in the upper layer generates barotropic recirculation gyres. These are maintained by an eddy-mean balance of potential vorticity (PV) in steady state. The authors show that the topographic slope can constrain the northern recirculation gyre meridionally and that the gyre’s adjustment to the slope leads to increased eddy PV fluxes at the base of the slope. When a deep current is present along the topographic slope in the lower layer, these eddy PV fluxes stir the deep current and recirculation gyre waters. Increased proximity to the slope dampens the eddy growth rate within the unstable jet, altering the geometry of recirculation gyre forcing and leading to a decrease in overall eddy PV fluxes. These mechanisms may shape the circulation in the western North Atlantic, with potential feedbacks on the climate system.
    Description: We gratefully acknowledge an AMS graduate fellowship (IALB) and U.S. National Science Foundation Grants OCE-1332667 and 1332834 (IALB and JMT).
    Description: 2018-09-06
    Keywords: Boundary currents ; Meridional overturning circulation ; Mesoscale processes ; Ocean circulation ; Potential vorticity ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 739-748, doi:10.1175/JPO-D-17-0089.1.
    Description: McDougall and Ferrari have estimated the global deep upward diapycnal flow in the boundary layer overlying continental slopes that must balance both downward diapycnal flow in the deep interior and the formation of bottom water around Antarctica. The decrease of perimeter of isopycnal surfaces with depth and the observed decay with height above bottom of turbulent dissipation in the deep ocean play a key role in their estimate. They argue that because the perimeter of seamounts increases with depth, the net effect of mixing around seamounts is to produce net downward diapycnal flow. While this is true along much of a seamount, it is shown here that diapycnal flow of the densest water around the seamount is upward, with buoyancy being transferred from water just above. The same is true for midocean ridges, whose perimeter is constant with depth. It is argued that mixing around seamounts and especially midocean ridges contributes positively to the global deep overturning circulation, reducing the amount of turbulence demanded over the continental slopes to balance the buoyancy budget for the bottom and deep water.
    Description: This work was supported by National Science Foundation Grant OCE- 1232962.
    Description: 2018-09-29
    Keywords: Abyssal circulation ; Boundary currents ; Buoyancy ; Diapycnal mixing ; Mass fluxes/transport ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 643-646, doi:10.1175/JPO-D-17-0240.1.
    Description: A simple oceanic model is presented for source–sink flow on the β plane to discuss the pathways from source to sink when transport boundary layers have large enough Reynolds numbers to be inertial in their dynamics. A representation of the flow as a Fofonoff gyre, suggested by prior work on inertial boundary layers and eddy-driven circulations in two-dimensional turbulent flows, indicates that even when the source and sink are aligned along the same western boundary the flow must intrude deep into the interior before exiting at the sink. The existence of interior pathways for the flow is thus an intrinsic property of an inertial circulation and is not dependent on particular geographical basin geometry.
    Description: 2018-09-12
    Keywords: Abyssal circulation ; Bottom currents ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 479-509, doi:10.1175/JPO-D-16-0283.1.
    Description: Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.
    Description: S. Ramachandran acknowledges support from the National Science Foundation through award OCE 1558849 and the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17- 1-2355. A. Tandon acknowledges support from the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17-1-2355. J. T. Farrar and R. A. Weller were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453, to collect the UCTD data and process theUCTD and shipboard meteorological data. J. Nash, J. Mackinnon, and A. F. Waterhouse acknowledge support from the U. S. Office of Naval Research, Grants N00014-13-1-0503 and N00014-14-1-0455. E. Shroyer acknowledges support from the U. S. Office of Naval Research, Grants N00014-14-10236 and N00014-15- 12634. A. Mahadevan acknowledges support fromthe U. S. Office of Naval Research, Grant N00014-13-10451. A. J. Lucas and R. Pinkel acknowledge support from the U. S. Office of Naval Research, Grant N00014-13-1-0489.
    Description: 2018-08-26
    Keywords: Indian Ocean ; Baroclinic flows ; Potential vorticity ; Fronts ; Monsoons ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 607-623, doi:10.1175/JPO-D-17-0189.1.
    Description: The roles of straining and dissipation in controlling stratification are derived analytically using a vertical salinity variance method. Stratification is produced by converting horizontal variance to vertical variance via straining, that is, differential advection of horizontal salinity gradients, and stratification is destroyed by the dissipation of vertical variance through turbulent mixing. A numerical model is applied to the Changjiang estuary in order to demonstrate the salinity variance balance and how it reveals the factors controlling stratification. The variance analysis reveals that dissipation reaches its maximum during spring tide in the Changjiang estuary, leading to the lowest stratification. Stratification increases from spring tide to neap tide because of the increasing excess of straining over dissipation. Throughout the spring–neap tidal cycle, straining is almost always larger than dissipation, indicating a net excess of production of vertical variance relative to dissipation. This excess is balanced on average by advection, which exports vertical variance out of the estuarine region into the plume. During neap tide, tidal straining shows a general tendency of destratification during the flood tide and restratification during ebb, consistent with the one-dimensional theory of tidal straining. During spring tide, however, positive straining occurs during flood because of the strong baroclinicity induced by the intensified horizontal salinity gradient. These results indicate that the salinity variance method provides a valuable approach for examining the spatial and temporal variability of stratification in estuaries and coastal environments.
    Description: X. Li was supported by the China Scholarship Council. W. R. Geyer was supported by NSF Grants OCE 1736539 and OCE 1634480. J. Zhu was supported by the National Natural Science Foundation of China (41476077 and 41676083). H. Wu was supported by the National Natural Science Foundation of China (41576088 and 41776101).
    Description: 2018-09-08
    Keywords: Ocean ; Estuaries ; Freshwater ; Mixing ; Numerical analysis/modeling ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 6245-6261, doi:10.1175/JCLI-D-17-0513.1.
    Description: Reconstructions of sea surface temperature (SST) based on instrumental observations suggest that the equatorial Pacific zonal SST gradient has increased over the twentieth century. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al., observations of a concurrent weakening of the zonal atmospheric (Walker) circulation are not. Here we show, using heat and momentum budget calculations on an ocean reanalysis dataset, that a seasonal weakening of the zonal atmospheric circulation is in fact consistent with cooling in the eastern equatorial Pacific (EEP) and thus an increase in the zonal SST gradient. This cooling is driven by a strengthening Equatorial Undercurrent (EUC) in response to decreased upper-ocean westward momentum associated with weakening equatorial zonal wind stress. This process can help to reconcile the seemingly contradictory twentieth-century trends in the tropical Pacific atmosphere and ocean. Moreover, it is shown that coupled general circulation models (CGCMs) do not correctly simulate this process; we identify a systematic bias in the relationship between changes in equatorial surface zonal wind stress in the EEP and EUC strength that may help to explain why observations and CGCMs have opposing trends in the zonal SST gradient over the twentieth century.
    Description: 2019-01-11
    Keywords: Tropics ; Atmosphere-ocean interaction ; Climate change ; Climate models ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1831-1848, doi:10.1175/JPO-D-18-0068.1.
    Description: We present a simplified theory using reduced-gravity equations for North Atlantic Deep Water (NADW) and its variation driven by high-latitude deep-water formation. The theory approximates layer thickness on the eastern boundary with domain-averaged layer thickness and, in tandem with a mass conservation argument, retains fundamental physics for cross-equatorial flows on interannual and longer forcing time scales. Layer thickness anomalies are driven by a time-dependent northern boundary condition that imposes a southward volume flux representative of a variable source of NADW and damped by diapycnal mixing throughout the basin. Moreover, an outflowing southern boundary condition imposes a southward volume flux that generally differs from the volume flux at the northern boundary, giving rise to temporal storage of NADW within the Atlantic basin. Closed form analytic solutions for the amplitude and phase are provided when the variable source of NADW is sinusoidal. We provide a nondimensional analysis that demonstrates that solution behavior is primarily controlled by two parameters that characterize the meridional extent of the southern basin and the width of the basin relative to the equatorial deformation radius. Similar scaling applied to the time-lagged equations of Johnson and Marshall provides a clear connection to their results. Numerical simulations of reduced-gravity equations agree with analytic predictions in linear, turbulent, and diabatic regimes. The theory introduces a simple analytic framework for studying idealized buoyancy- and wind-driven cross-equatorial flows on interannual and longer time scales.
    Description: This research was supported by the National Science Foundation under Grant OCE- 1634468.
    Description: 2019-02-15
    Keywords: North Atlantic Ocean ; Tropics ; Meridional overturning circulation ; Ocean circulation ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 7565-7581, doi:10.1175/JCLI-D-18-0108.1.
    Description: There is mounting evidence that the width of the tropics has increased over the last few decades, but there are large differences in reported expansion rates. This is, likely, in part due to the wide variety of metrics that have been used to define the tropical width. Here we perform a systematic investigation into the relationship among nine metrics of the zonal-mean tropical width using preindustrial control and abrupt quadrupling of CO2 simulations from a suite of coupled climate models. It is shown that the latitudes of the edge of the Hadley cell, the midlatitude eddy-driven jet, the edge of the subtropical dry zones, and the Southern Hemisphere subtropical high covary interannually and exhibit similar long-term responses to a quadrupling of CO2. However, metrics based on the outgoing longwave radiation, the position of the subtropical jet, the break in the tropopause, and the Northern Hemisphere subtropical high have very weak covariations with the above metrics and/or respond differently to increases in CO2 and thus are not good indicators of the expansion of the Hadley cell or subtropical dry zone. The differing variability and responses to increases in CO2 among metrics highlights that care is needed when choosing metrics for studies of the width of the tropics and that it is important to make sure the metric used is appropriate for the specific phenomena and impacts being examined.
    Description: DW acknowledges support from NSF AGS-1403676.
    Description: 2019-02-08
    Keywords: Hadley circulation ; Hydrologic cycle ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2457-2475, doi:10.1175/JPO-D-17-0186.1.
    Description: A subpolar marginal sea, like the Nordic seas, is a transition zone between the temperature-stratified subtropics (the alpha ocean) and the salinity-stratified polar regions (the beta ocean). An inflow of Atlantic Water circulates these seas as a boundary current that is cooled and freshened downstream, eventually to outflow as Deep and Polar Water. Stratification in the boundary region is dominated by a thermocline over the continental slope and a halocline over the continental shelves, separating Atlantic Water from Deep and Polar Water, respectively. A conceptual model is introduced for the circulation and water mass transformation in a subpolar marginal sea to explore the potential interaction between the alpha and beta oceans. Freshwater input into the shelf regions has a slight strengthening effect on the Atlantic inflow, but more prominently impacts the water mass composition of the outflow. This impact of freshwater, characterized by enhancing Polar Water outflow and suppressing Deep Water outflow, is strongly determined by the source location of freshwater. Concretely, perturbations in upstream freshwater sources, like the Baltic freshwater outflow into the Nordic seas, have an order of magnitude larger potential to impact water mass transports than perturbations in downstream sources like the Arctic freshwater outflow. These boundary current dynamics are directly related to the qualitative stratification in transition zones and illustrate the interaction between the alpha and beta oceans.
    Description: This research was supported by the Research Council of Norway project NORTH. Support for the publication was provided by the University of Bergen. Ocean Outlook has supported a research visit for EL to Woods Hole Oceanographic Institute where much of the current work has been carried out. Support forMAS was provided by the National Science Foundation Grant OCE-1558742.
    Keywords: Continental shelf/slope ; Baroclinic flows ; Boundary currents ; Buoyancy ; Freshwater ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Description: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Description: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-10-16
    Keywords: Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2799-2827, doi:10.1175/JPO-D-18-0057.1.
    Description: The fjords that connect Greenland’s glaciers to the ocean are gateways for importing heat to melt ice and for exporting meltwater into the ocean. The transport of heat and meltwater can be modulated by various drivers of fjord circulation, including freshwater, local winds, and shelf variability. Shelf-forced flows (also known as the intermediary circulation) are the dominant mode of variability in two major fjords of east Greenland, but we lack a dynamical understanding of the fjord’s response to shelf forcing. Building on observations from east Greenland, we use numerical simulations and analytical models to explore the dynamics of shelf-driven flows. For the parameter space of Greenlandic fjords, we find that the fjord’s response is primarily a function of three nondimensional parameters: the fjord width over the deformation radius (W/Rd), the forcing time scale over the fjord adjustment time scale, and the forcing amplitude (shelf pycnocline displacements) over the upper-layer thickness. The shelf-forced flows in both the numerical simulations and the observations can largely be explained by a simple analytical model for Kelvin waves propagating around the fjord. For fjords with W/Rd 〉 0.5 (most Greenlandic fjords), 3D dynamics are integral to understanding shelf forcing—the fjord dynamics cannot be approximated with 2D models that neglect cross-fjord structure. The volume flux exchanged between the fjord and shelf increases for narrow fjords and peaks around the resonant forcing frequency, dropping off significantly at higher- and lower-frequency forcing.
    Description: This work was funded by NSF Grant OCE-1536856 and by the NOAA Climate and Global Change Postdoctoral Fellowship.
    Keywords: Estuaries ; Glaciers ; Baroclinic flows ; Coastal flows ; Kelvin waves ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4847-4863, doi:10.1175/JCLI-D-17-0802.1.
    Description: The sensitivity of sea ice to the temperature of inflowing Atlantic water across the Greenland–Scotland Ridge is investigated using an eddy-resolving configuration of the Massachusetts Institute of Technology General Circulation Model with idealized topography. During the last glacial period, when climate on Greenland is known to have been extremely unstable, sea ice is thought to have covered the Nordic seas. The dramatic excursions in climate during this period, seen as large abrupt warming events on Greenland and known as Dansgaard–Oeschger (DO) events, are proposed to have been caused by a rapid retreat of Nordic seas sea ice. Here, we show that a full sea ice cover and Arctic-like stratification can exist in the Nordic seas given a sufficiently cold Atlantic inflow and corresponding low transport of heat across the Greenland–Scotland Ridge. Once sea ice is established, continued sea ice formation and melt efficiently freshens the surface ocean and makes the deeper layers more saline. This creates a strong salinity stratification in the Nordic seas, similar to today’s Arctic Ocean, with a cold fresh surface layer protecting the overlying sea ice from the warm Atlantic water below. There is a nonlinear response in Nordic seas sea ice to Atlantic water temperature with simulated large abrupt changes in sea ice given small changes in inflowing temperature. This suggests that the DO events were more likely to have occurred during periods of reduced warm Atlantic water inflow to the Nordic seas.
    Description: The research was supported by the Centre for Climate Dynamics at the Bjerknes Centre for Climate Research. The research leading to these results is part of the ice2ice project funded by the European Research Council under the European Community Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 610055.
    Keywords: Ocean ; Arctic ; Sea ice ; Ocean dynamics ; Paleoclimate ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 773-794, doi:10.1175/JPO-D-17-0205.1.
    Description: Fourteen autonomous profiling floats, equipped with CTDs, were deployed in the deep eastern and western basins of the Gulf of Mexico over a four-year interval (July 2011–August 2015), producing a total of 706 casts. This is the first time since the early 1970s that there has been a comprehensive survey of water masses in the deep basins of the Gulf, with better vertical resolution than available from older ship-based surveys. Seven floats had 14-day cycles with parking depths of 1500 m, and the other half from the U.S. Argo program had varying cycle times. Maps of characteristic water masses, including Subtropical Underwater, Antarctic Intermediate Water (AAIW), and North Atlantic Deep Water, showed gradients from east to west, consistent with their sources being within the Loop Current (LC) and the Yucatan Channel waters. Altimeter SSH was used to characterize profiles being in LC or LC eddy water or in cold eddies. The two-layer nature of the deep Gulf shows isotherms being deeper in the warm anticyclonic LC and LC eddies and shallower in the cold cyclones. Mixed layer depths have an average seasonal signal that shows maximum depths (~60 m) in January and a minimum in June–July (~20 m). Basin-mean steric heights from 0–50-m dynamic heights and altimeter SSH show a seasonal range of ~12 cm, with significant interannual variability. The translation of LC eddies across the western basin produces a region of low homogeneous potential vorticity centered over the deepest part of the western basin.
    Description: The authors were supported by the Department of the Interior, Bureau of Ocean Energy Management (BOEM), Contract M08PC20043 to Leidos, Inc., Raleigh, North Carolina.
    Description: 2018-10-04
    Keywords: Eddies ; Mixing ; Potential vorticity ; Surface layer ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 905-923, doi:10.1175/JPO-D-17-0133.1.
    Description: Observations of turbulent kinetic energy, dissipation, and turbulent stress were collected in the middle reaches of Chesapeake Bay and were used to assess second-moment closure predictions of turbulence generated beneath breaking waves. Dissipation scaling indicates that the turbulent flow structure observed during a 10-day wind event was dominated by a three-layer response that consisted of 1) a wave transport layer, 2) a surface log layer, and 3) a tidal, bottom boundary layer limited by stable stratification. Below the wave transport layer, turbulent mixing was limited by stable stratification. Within the wave transport layer, where dissipation was balanced by a divergence in the vertical turbulent kinetic energy flux, the eddy viscosity was significantly underestimated by second-moment turbulence closure models, suggesting that breaking waves homogenized the mixed surface layer to a greater extent than the simple model of TKE diffusing away from a source at the surface. While the turbulent transport of TKE occurred largely downgradient, the intermittent downward sweeps of momentum generated by breaking waves occurred largely independent of the mean shear. The underprediction of stress in the wave transport layer by second-moment closures was likely due to the inability of the eddy viscosity model to capture the nonlocal turbulent transport of the momentum flux beneath breaking waves. Finally, the authors hypothesize that large-scale coherent turbulent eddies played a significant role in transporting momentum generated near the surface to depth.
    Description: This work was supported by National Science Foundation Grants OCE-1061609 and OCE-1339032.
    Description: 2018-10-19
    Keywords: Mixing ; Turbulence ; Waves, oceanic ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 35 (2018): 281-297, doi:10.1175/JTECH-D-17-0076.1.
    Description: The wavenumber spectrum of sea surface height (SSH) is an important indicator of the dynamics of the ocean interior. While the SSH wavenumber spectrum has been well studied at mesoscale wavelengths and longer, using both in situ oceanographic measurements and satellite altimetry, it remains largely unknown for wavelengths less than ~70 km. The Surface Water Ocean Topography (SWOT) satellite mission aims to resolve the SSH wavenumber spectrum at 15–150-km wavelengths, which is specified as one of the mission requirements. The mission calibration and validation (CalVal) requires the ground truth of a synoptic SSH field to resolve the targeted wavelengths, but no existing observational network is able to fulfill the task. A high-resolution global ocean simulation is used to conduct an observing system simulation experiment (OSSE) to identify the suitable oceanographic in situ measurements for SWOT SSH CalVal. After fixing 20 measuring locations (the minimum number for resolving 15–150-km wavelengths) along the SWOT swath, four instrument platforms were tested: pressure-sensor-equipped inverted echo sounders (PIES), underway conductivity–temperature–depth (UCTD) sensors, instrumented moorings, and underwater gliders. In the context of the OSSE, PIES was found to be an unsuitable tool for the target region and for SSH scales 15–70 km; the slowness of a single UCTD leads to significant aliasing by high-frequency motions at short wavelengths below ~30 km; an array of station-keeping gliders may meet the requirement; and an array of moorings is the most effective system among the four tested instruments for meeting the mission’s requirement. The results shown here warrant a prelaunch field campaign to further test the performance of station-keeping gliders.
    Description: The authors would like to acknowledge the funding sources: the SWOT mission (JW, LF, DM); NASA Projects NNX13AE32G, NNX16AH76G, and NNX17AH54G (TF); and NNX16AH66G and NNX17AH33G (BQ). AF and MF were funded by the Keck Institute for Space Studies (which is generously supported by the W. M. Keck Foundation) through the project Science-driven Autonomous and Heterogeneous Robotic Networks: A Vision for Future Ocean Observations (http://kiss.caltech.edu/?techdev/seafloor/seafloor.html).
    Description: 2018-08-07
    Keywords: Altimetry ; In situ oceanic observations ; Profilers, oceanic ; Satellite observations ; Sensitivity studies ; Planning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 163-174, doi:10.1175/JPO-D-17-0161.1.
    Description: The general problem of exchange from a shallow shelf across sharp topography to the deep ocean forced by narrow, cross-shelf wind jets is studied using quasigeostrophic theory and an idealized primitive equation numerical model. Interest is motivated by katabatic winds that emanate from narrow fjords in southeast Greenland, although similar topographically constrained wind jets are found throughout the world’s oceans. Because there is no net vorticity input by the wind, the circulation is largely confined to the region near the forcing. Circulation over the shelf is limited by bottom friction for weakly stratified flows, but stratification allows for much stronger upper-layer flows that are regulated by weak coupling to the lower layer. Over the sloping topography, the topographic beta effect limits the deep flow, while, for sufficient stratification, the upper-layer flow can cross the topography to connect the shelf to the open ocean. This can be an effective transport mechanism even for short, strong wind events because damping of the upper-layer flow is weak. A variety of transients are generated for an abrupt onset of winds, including short topography Rossby waves, long topographic Rossby waves, and inertial waves. Using parameters representative of southeast Greenland, katabatic wind events will force an offshore transport of O(0.4) Sv (1 Sv ≡ 106 m3 s−1) that, when considered for 2 days, will result in an offshore flux of O(5 × 1010) m3.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1533170.
    Description: 2018-07-18
    Keywords: Coastal flows ; Downslope winds ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1533-1541, doi:10.1175/JPO-D-17-0267.1.
    Description: Our study analyzes measurements primarily from two Floating Instrument Platform (FLIP) field programs and from the Air–Sea Interaction Tower (ASIT) site to examine the relationship between the wind and sea surface stress for contrasting conditions. The direct relationship of the surface momentum flux to U2 is found to be better posed than the relationship between and U, where U is the wind speed and is the friction velocity. Our datasets indicate that the stress magnitude often decreases significantly with height near the surface due to thin marine boundary layers and/or enhanced stress divergence close to the sea surface. Our study attempts to correct the surface stress estimated from traditional observational levels by using multiple observational levels near the surface and extrapolating to the surface. The effect of stability on the surface stress appears to be generally smaller than errors due to the stress divergence. Definite conclusions require more extensive measurements close to the sea surface.
    Description: This work was supported by the U.S. Office of Naval Research through Award N00014-16-1-2600. We
    Description: 2019-01-10
    Keywords: Atmosphere-ocean interaction ; Marine boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1815-1830, doi:10.1175/JPO-D-17-0275.1.
    Description: Recent progress in direct numerical simulations (DNSs) of stratified turbulent flows has led to increasing attention to the validity of the constancy of the dissipation flux coefficient Γ in the Osborn’s eddy diffusivity model. Motivated by lack of observational estimates of Γ, particularly under weakly stratified deep-ocean conditions, this study estimates Γ using deep microstructure profiles collected in various regions of the North Pacific and Southern Oceans. It is shown that Γ is not constant but varies significantly with the Ozmidov/Thorpe scale ratio ROT in a fashion similar to that obtained by previous DNS studies. Efficient mixing events with Γ ~ O(1) and ROT ~ O(0.1) tend to be frequently observed in the deep ocean (i.e., weak stratification), while moderate mixing events with Γ ~ O(0.1) and ROT ~ O(1) tend to be observed in the upper ocean (i.e., strong stratification). The observed negative relationship between Γ and ROT is consistent with a simple scaling that can be derived from classical turbulence theories. In contrast, the observed results exhibit no definite relationships between Γ and the buoyancy Reynolds number Reb, although Reb has long been thought to be another key parameter that controls Γ.
    Description: This study was supported by MEXT KAKENHI Grant JP15H05824 and JSPS KAKENHI Grant JP15H02131.
    Description: 2019-02-15
    Keywords: Abyssal circulation ; Mixing ; Subgrid-scale processes ; Turbulence ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 7751-7769, doi:10.1175/JCLI-D-18-0184.1.
    Description: Decadal variability of the subsurface ocean heat content (OHC) in the Indian Ocean is investigated using a coupled climate model experiment, in which observed eastern tropical Pacific sea surface temperature (EPSST) anomalies are specified. This study intends to understand the contributions of external forcing relative to those of internal variability associated with EPSST, as well as the mechanisms by which the Pacific impacts Indian Ocean OHC. Internally generated variations associated with EPSST dominate decadal variations in the subsurface Indian Ocean. Consistent with ocean reanalyses, the coupled model reproduces a pronounced east–west dipole structure in the southern tropical Indian Ocean and discontinuities in westward-propagating signals in the central Indian Ocean around 100°E. This implies distinct mechanisms by which the Pacific impacts the eastern and western Indian Ocean on decadal time scales. Decadal variations of OHC in the eastern Indian Ocean are attributed to 1) western Pacific surface wind anomalies, which trigger oceanic Rossby waves propagating westward through the Indonesian Seas and influence Indonesian Throughflow transport, and 2) zonal wind anomalies over the central tropical Indian Ocean, which trigger eastward-propagating Kelvin waves. Decadal variations of OHC in the western Indian Ocean are linked to conditions in the Pacific via changes in the atmospheric Walker cell, which trigger anomalous wind stress curl and Ekman pumping in the central tropical Indian Ocean. Westward-propagating oceanic Rossby waves extend the influence of this anomalous Ekman pumping to the western Indian Ocean.
    Description: This research was supported by the Independent Research and Development Program at WHOI to CCU, an NSF OCE PO grant (NSF OCE- 1242989) to Young-Oh Kwon, NOAA CP CVP grants (NA15OAR4310176 and NA17OAR4310255) to Hyodae Seo, and a research grant fromtheMinistry of Science and Technology of the People’s Republic of China to Tsinghua University (2017YFA0603902).
    Description: 2019-02-13
    Keywords: Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018):1941-1950, doi:10.1175/JPO-D-17-0194.1.
    Description: Subglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tidewater glaciers. These plumes have been traditionally modeled using classical plume theory, and their characteristic parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex near-wall plume dynamics. In this study, corrections to the classical plume theory are introduced to account for the presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result suggests a significant increase in the melting estimates by the current parameterization. However, the volume flux in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.
    Description: This work was supported by the Linné FLOW Centre at KTH and the Academy of Finland Center of Excellence Programme Grant 307331 (author Ezhova) and by VR Swedish Research Council GrantVR2014-5001 (author Brandt). Support to author Cenedese was given by NSF Project OCE-1434041.
    Description: 2019-02-27
    Keywords: Buoyancy ; Entrainment ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 511-529, doi:10.1175/JPO-D-17-0140.1.
    Description: The large-scale circulation of the bottom layer of the Gulf of Mexico is analyzed, with special attention to the historically least studied western basin. The analysis is based on 4 years of data collected by 158 subsurface floats parked at 1500 and 2500 m and is complemented with data collected by current meter moorings in the western basin during the same period. Three main circulation patterns stand out: a cyclonic boundary current, a cyclonic gyre in the abyssal plain, and the very high eddy kinetic energy observed in the eastern Gulf. The boundary current and the cyclonic gyre appear as distinct features, which interact in the western tip of the Yucatan shelf. The persistence and continuity of the boundary current is addressed. Although high variability is observed, the boundary flow serves as a pathway for water to travel around the western basin in approximately 2 years. An interesting discovery is the separation of the boundary current over the northwestern slope of the Yucatan shelf. The separation and retroflection of the along-slope current appears to be a persistent feature and is associated with anticyclonic eddies whose genesis mechanism remains to be understood. As the boundary flow separates, it feeds into the westward flow of the deep cyclonic gyre. The location of this gyre—named the Sigsbee Abyssal Gyre—coincides with closed geostrophic contours, so eddy–topography interaction via bottom form stresses may drive this mean flow. The contribution to the cyclonic vorticity of the gyre by modons traveling under Loop Current eddies is discussed.
    Description: This work was supported by the Bureau of Ocean Energy Management (BOEM) under Contract M10PC00112 assigned to Leidos, Inc.
    Keywords: Seas/gulfs/bays ; Abyssal circulation ; Boundary currents ; Lagrangian circulation/transport ; Large-scale motions ; Trajectories
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4157-4174, doi:10.1175/JCLI-D-17-0654.1.
    Description: Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
    Description: This research was supported by a scholarship from the China Scholarship Council (CSC) to X. J., a research fellowship by the Alexander von Humboldt Foundation to C. C. U., an NSF OCE PO Grant (OCE- 1242989) to Y.-O. K., the ONR Young Investigator Award (N00014-15-1-2588) to H. S., and a research grant from the Ministry of Science and Technology of the People’s Republic of China to Tsinghua University (2017YFA0603902).
    Description: 2018-10-30
    Keywords: Atmosphere-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 2771-2796, doi:10.1175/JCLI-D-17-0061.1.
    Description: The Generalized Equilibrium Feedback Analysis (GEFA) is used to distinguish the influence of the Oyashio Extension (OE) and the Kuroshio Extension (KE) variability on the atmosphere from 1979 to 2014 from that of the main SST variability modes, using seasonal mean anomalies. Remote SST anomalies are associated with each single oceanic regressor, but the multivariate approach efficiently confines their SST footprints. In autumn [October–December (OND)], the OE meridional shifts are followed by a North Pacific Oscillation (NPO)-like signal. The OE influence is not investigated in winter [December–February (DJF)] because of multicollinearity, but a robust response with a strong signal over the Bering Sea is found in late winter/early spring [February–April (FMA)], a northeastward strengthening of the Aleutian low following a northward OE shift. A robust response to the KE variability is found in autumn, but not in winter and late winter when the KE SST footprint becomes increasingly small and noisy as regressors are added in GEFA. In autumn, a positive PDO is followed by a northward strengthening of the Aleutian low and a southward shift of the storm track in the central Pacific, reflecting the surface heat flux footprint in the central Pacific. In winter, the PDO shifts the maximum baroclinicity and storm track southward, the response strongly tilts westward with height in the North Pacific, and there is a negative NAO-like teleconnection. In late winter, the North Pacific NPO-like response to the PDO interferes negatively with the response to the OE and is only detected when the OE is represented in GEFA. A different PDO influence on the atmospheric circulation is found from 1958 to 1977.
    Description: This research has received funding from the European Union 7th Framework Program (FP7 2007-2013) under Grant Agreement 308299 (NACLIM) and from NSF Grants AGS CLD 1035423 and OCE PO 1242989.
    Keywords: Atmosphere-ocean interaction ; Boundary currents ; Pacific decadal oscillation ; Atmosphere-ocean interaction ; Empirical orthogonal functions ; Regression analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1367-1373, doi:10.1175/JPO-D-17-0185.1.
    Description: An earlier study indicates that the side melting of icebergs subject to vertically homogeneous horizontal velocities is controlled by two distinct regimes, which depend on the melt plume behavior and produce a nonlinear dependence of side melt rate on velocity. Here, we extend this study to consider ice blocks melting in a two-layer vertically sheared flow in a laboratory setting. It is found that the use of the vertically averaged flow speed in current melt parameterizations gives an underestimate of the submarine side melt rate, in part because of the nonlinearity of the dependence of the side melt rate on flow speed but also because vertical shear in the horizontal velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. An observational record of 90 icebergs in a Greenland fjord suggests that this effect could produce an average underestimate of iceberg side melt rates of 21%.
    Description: A. F. was supported by NA14OAR4320106 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. C. C. was supported by NSF OCE-1658079 and F. S. was supported by NSF OCE-1657601 and NSF PLR-1743693.
    Description: 2018-12-12
    Keywords: Ocean ; Antarctica ; Arctic ; Laboratory/physical models ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 8059-8079, doi:10.1175/JCLI-D-17-0769.1.
    Description: We use the method of least squares with Lagrange multipliers to fit an ocean general circulation model to the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 2°C lower and greater sea ice extent in all seasons in both the Northern and Southern Hemispheres. Increased brine rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set principally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean conditions include reducing effects from model biases and finding computationally efficient ways to incorporate abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–atmosphere–ice inverse models, by improving high-latitude model processes that connect the upper and abyssal oceans, and by the collection of additional paleoclimate observations.
    Description: DEA was supported by a NSF Graduate Research Fellowship and NSF Grant OCE-1060735. OM acknowledges support from the NSF. GF was supported by NASA Award 1553749 and Simons Foundation Award 549931.
    Keywords: Ocean ; Abyssal circulation ; Sea surface temperature ; Paleoclimate ; Inverse methods ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1969-1993, doi:10.1175/JPO-D-18-0031.1.
    Description: Upstream mean semidiurnal internal tidal energy flux has been found in the Gulf Stream in hydrodynamical model simulations of the Atlantic Ocean. A major source of the energy in the simulations is the south edge of Georges Bank, where strong and resonant Gulf of Maine tidal currents are found. An explanation of the flux pattern within the Gulf Stream is that internal wave modal rays can be strongly redirected by baroclinic currents and even trapped (ducted) by current jets that feature strong velocities above the thermocline that are directed counter to the modal wavenumber vector (i.e., when the waves travel upstream). This ducting behavior is analyzed and explained here with ray-based wave propagation studies for internal wave modes with anisotropic wavenumbers, as occur in mesoscale background flow fields. Two primary analysis tools are introduced and then used to analyze the strong refraction and ducting: the generalized Jones equation governing modal properties and ray equations that are suitable for studying waves with anisotropic wavenumbers.
    Description: The Woods Hole research was supported by National Science Foundation Grant OCE-1060430 and by the Office of Naval Research Grants N00014-11-1-0701 and N00014-17-1-2624. The USM research was supported by ONR Grant N00014-15-1-2288 and National Science Foundation Grant OCE-1537449.
    Description: 2019-02-28
    Keywords: Internal waves ; Wave properties ; Tides ; Differential equations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1375-1384, doi:10.1175/JPO-D-17-0266.1.
    Description: The relationship between net mixing and the estuarine exchange flow may be quantified using a salinity variance budget. Here “mixing” is defined as the rate of destruction of volume-integrated salinity variance, and the exchange flow is quantified using the total exchange flow. These concepts are explored using an idealized 3D model estuary. It is shown that in steady state (e.g., averaging over the spring–neap cycle) the volume-integrated mixing is approximately given by Mixing ≅ SinSoutQr, where Sin and Sout are the representative salinities of in- and outflowing layers at the mouth and Qr is the river volume flux. This relationship provides an extension of the familiar Knudsen relation, in which the exchange flow is diagnosed based on knowledge of these same three quantities, quantitatively linking mixing to the exchange flow.
    Description: The work was supported by the National Science Foundation through Grants OCE-1736242 to PM and OCE-1736539 to WRG and by the German Research Foundation through Grants TRR 181 and GRK 2000 to HB.
    Keywords: Coastal flows ; Diapycnal mixing ; Ocean dynamics ; Streamflow ; Diagnostics ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2703-2719, doi:10.1175/JPO-D-17-0245.1.
    Description: A new set of deep float trajectory data collected in the Gulf of Mexico from 2011 to 2015 at 1500- and 2500-m depths is analyzed to describe mesoscale processes, with particular attention paid to the western Gulf. Wavelet analysis is used to identify coherent eddies in the float trajectories, leading to a census of the basinwide coherent eddy population and statistics of the eddies’ kinematic properties. The eddy census reveals a new formation region for anticyclones off the Campeche Escarpment, located northwest of the Yucatan Peninsula. These eddies appear to form locally, with no apparent direct connection to the upper layer. Once formed, the eddies drift westward along the northern edge of the Sigsbee Abyssal Gyre, located in the southwestern Gulf of Mexico over the abyssal plain. The formation mechanism and upstream sources for the Campeche Escarpment eddies are explored: the observational data suggest that eddy formation may be linked to the collision of a Loop Current eddy with the western boundary of the Gulf. Specifically, the disintegration of a deep dipole traveling under the Loop Current eddy Kraken, caused by the interaction with the northwestern continental slope, may lead to the acceleration of the abyssal gyre and the boundary current in the Bay of Campeche region.
    Description: The authors were supported by the Department of the Interior, Bureau of Ocean Energy Management (BOEM), Contract M10PC00112 to Leidos, Inc., Raleigh, North Carolina.
    Description: 2019-05-07
    Keywords: Abyssal circulation ; Currents ; Eddies ; Mesoscale processes ; Trajectories ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 9881-9901, doi:10.1175/JCLI-D-17-0889.1.
    Description: The Atlantic meridional overturning circulation and associated poleward heat transport are balanced by northern heat loss to the atmosphere and corresponding water-mass transformation. The circulation of northward-flowing Atlantic Water at the surface and returning overflow water at depth is particularly manifested—and observed—at the Greenland–Scotland Ridge where the water masses are guided through narrow straits. There is, however, a rich variability in the exchange of water masses across the ridge on all time scales. Focusing on seasonal and interannual time scales, and particularly the gateways of the Denmark Strait and between the Faroe Islands and Shetland, we specifically assess to what extent the exchanges of water masses across the Greenland–Scotland Ridge relate to wind forcing. On seasonal time scales, the variance explained of the observed exchanges can largely be related to large-scale wind patterns, and a conceptual model shows how this wind forcing can manifest via a barotropic, cyclonic circulation. On interannual time scales, the wind stress impact is less direct as baroclinic mechanisms gain importance and observations indicate a shift in the overflows from being more barotropically to more baroclinically forced during the observation period. Overall, the observed Greenland–Scotland Ridge exchanges reflect a horizontal (cyclonic) circulation on seasonal time scales, while the interannual variability more represents an overturning circulation.
    Description: This research was supported by the Research Council of Norway project NORTH (Grant 229763). Additional support for M. A. Spall was provided by National Science Foundation Grant OCE- 1558742, for T. Eldevik and S. Østerhus by the European Union’s Horizon 2020 research and innovation program project Blue-Action (Grant 727852), and for S. Østerhus by the European Framework Programs under Grant Agreement 308299 (NACLIM).
    Keywords: Ocean circulation ; Thermocline circulation ; Atmosphere-ocean interaction ; North Atlantic Oscillation ; Statistical techniques ; Time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Flood Risk Management, Wiley, 12(S1), ISSN: 1753-318X
    Publication Date: 2019-10-07
    Description: The standard approach to flood frequency analysis (FFA) fits mathematical functions to sequences of historic flood data and extrapolates the tails of the distribution to estimate the magnitude and likelihood of extreme floods. Here, we identify the most exceptional floods in the United States as compared against other major floods at the same location, and evaluate how the flood-of-record (Qmax) influences FFA estimates. On average, floods-of-record are 20% larger by discharge than their second-place counterparts (Q2), and 212 gages (7.3%) have Qmax:Q2 ratios greater than two. There is no clear correspondence between the Qmax:Q2 ratio and median instantaneous discharge, and exceptional floods do not become less likely with time. Excluding Qmax from the FFA causes the median 100-year flood to decline by −10.5%, the 200-year flood by −11.8%, and the 500-year flood by −13.4%. Even when floods are modelled using a heavy tail distribution, the removal of Qmax yields significantly “lighter” tails and underestimates the risk of large floods. Despite the temporal extension of systematic hydrological observations in the United States, FFA is still sensitive to the presence of extreme events within the sample used to calculate the frequency curve.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 123(12), pp. 3190-3205, ISSN: 0148-0227
    Publication Date: 2022-06-16
    Description: Satellite‐derived surface soil moisture data are available for the Arctic, but detailed validation is still lacking. Previous studies have shown low correlations between in situ and modeled data. It is hypothesized that soil temperature variations after soil thaw impact MetOp ASCAT satellite‐derived surface soil moisture (SSM) measurements in wet tundra environments, as C band backscatter is sensitive to changes in dielectric properties. We compare in situ measurements of water content within the active layer at four sites across the Arctic in Alaska (Barrow, Sagwon, Toolik) and Siberia (Tiksi), taken in the spring after thawing and in autumn prior to freezing. In addition to the long‐term measurement fields, where sensors are installed deeper in the ground, we designed a monitoring setup for measuring moisture very close to the surface in the Lena River Delta, Siberia. The volumetric water content (VWC) and soil temperature sensors were placed in the moss organic layer in order to account for the limited penetration depth of the radar signal. ASCAT SSM variations are generally very small, in line with the low variability of in situ VWC. Short‐term changes after complete thawing of the upper organic layer, however, seem to be mostly influenced by soil temperature. Correlations between SSM and in situ VWC are generally very low, or even negative. Mean standard deviation matching results in a comparably high root‐mean‐square error (on average 11%) for predictions of VWC. Further investigations and measurement networks are needed to clarify factors causing temporal variation of C band backscatter in tundra regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 2673-2682, doi:10.1175/JTECH-D-17-0054.1.
    Description: Expendable bathythermographs (XBT) to profile upper-ocean temperatures from vessels in motion have been in use for some 50 years now. Developed originally for navy use, they were soon adapted by oceanographers to map out upper-ocean thermal structure and its space–-time variability from both research vessels and merchant marine vessels in regular traffic. These activities continue today. This paper describes a new technology—the Autonomous Expendable Instrument System (AXIS)—that has been developed to provide the capability to deploy XBT probes on a predefined schedule, or adaptively in response to specific events without the presence of an observer on board. AXIS is a completely self-contained system that can hold up to 12 expendable probes [XBTs, XCTDs, expendable sound velocimeter (XSV)] in any combination. A single-board Linux computer keeps track of what probes are available, takes commands from ashore via Iridium satellite on what deployment schedule to follow, and records and forwards the probe data immediately with a time stamp and the GPS position. This paper provides a brief overview of its operation, capabilities, and some examples of how it is improving coverage along two lines in the Atlantic.
    Description: Initial development of AXIS mechanical design elements wasmade possible by awards from the Cecil H. and Ida M. Green Technology Innovation Fund and the Sealark Foundation to the team of Dave Fratantoni, Keith von der Heydt (WHOI), and Terry Hammar (WHOI). Construction of the first full AXIS prototype was supported by a technology grant from the National Science Foundation (OCE-0926853) and the second one through an NSF-funded (OCE-1061185) subcontract from the University of Rhode Island.
    Description: 2018-06-28
    Keywords: In situ oceanic observations ; Instrumentation/sensors ; Profilers, oceanic ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 879-894, doi:10.1175/JPO-D-16-0196.1.
    Description: Models show that surface cooling over a sloping continental shelf should give rise to baroclinic instability and thus tend toward gravitationally stable density stratification. Less is known about how alongshore winds affect this process, so the role of surface momentum input is treated here by means of a sequence of idealized, primitive equation numerical model calculations. The effects of cooling rate, wind amplitude and direction, bottom slope, bottom friction, and rotation rate are all considered. All model runs lead to instability and an eddy field. While instability is not strongly affected by upwelling-favorable alongshore winds, wind-driven downwelling substantially reduces eddy kinetic energy, largely because the downwelling circulation plays a similar role to baroclinic instability by flattening isotherms and so reducing available potential energy. Not surprisingly, cross-shelf winds appear to have little effect. Analysis of the model runs leads to quantitative relations for the wind effect on eddy kinetic energy for the equilibrium density stratification (which increases as the cooling rate increases) and for eddy length scale.
    Description: This research was supported by the National Science Foundation Physical Oceanography Program through Grant OCE-1433953.
    Keywords: Continental shelf/slope ; Baroclinic flows ; Eddies ; Instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99 (2018): 61-82, doi:10.1175/BAMS-D-16-0254.1.
    Description: Accurate estimation of the climate sensitivity requires a better understanding of the nexus between polar marine ecosystem responses to warming, changes in sea ice extent, and emissions of marine biogenic aerosol (MBA). Sea ice brine channels contain very high concentrations of MBA precursors that, once ventilated, have the potential to alter cloud microphysical properties, such as cloud droplet number, and the regional radiative energy balance. In contrast to temperate latitudes, where the pelagic phytoplankton are major sources of MBAs, the seasonal sea ice dynamic plays a key role in determining MBA concentration in both the Arctic and Antarctic. We review the current knowledge of MBA sources and the link between ice melt and emissions of aerosol precursors in the polar oceans. We illustrate the processes by examining decadal-scale time series in various satellite-derived parameters such as aerosol optical depth (AOD), sea ice extent, and phytoplankton biomass in the sea ice zones of both hemispheres. The sharpest gradients in aerosol indicators occur during the spring period of ice melt. In sea ice–covered waters, the peak in AOD occurs well before the annual maximum in biomass in both hemispheres. The results provide strong evidence that suggests seasonal changes in sea ice and ocean biology are key drivers of the polar aerosol cycle. The positive trend in annual-mean Antarctic sea ice extent is now almost one-third of the magnitude of the annual-mean decrease in Arctic sea ice, suggesting the potential for different patterns of aerosol emissions in the future.
    Description: Matrai and Middleton were supported by the National Science Foundation (PLR-1417517). Jones was partially funded by a grant from the Australian Research Council (DP150101649).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 855-866, doi:10.1175/JPO-D-16-0194.1.
    Description: Mesoscale eddies shape the Beaufort Gyre response to Ekman pumping, but their transient dynamics are poorly understood. Climate models commonly use the Gent–McWilliams (GM) parameterization, taking the eddy streamfunction to be proportional to an isopycnal slope s and an eddy diffusivity K. This local-in-time parameterization leads to exponential equilibration of currents. Here, an idealized, eddy-resolving Beaufort Gyre model is used to demonstrate that carries a finite memory of past ocean states, violating a key GM assumption. As a consequence, an equilibrating gyre follows a spiral sink trajectory implying the existence of a damped mode of variability—the eddy memory (EM) mode. The EM mode manifests during the spinup as a 15% overshoot in isopycnal slope (2000 km3 freshwater content overshoot) and cannot be explained by the GM parameterization. An improved parameterization is developed, such that is proportional to an effective isopycnal slope , carrying a finite memory γ of past slopes. Introducing eddy memory explains the model results and brings to light an oscillation with a period ≈ 50 yr, where the eddy diffusion time scale TE ~ 10 yr and γ ≈ 6 yr are diagnosed from the eddy-resolving model. The EM mode increases the Ekman-driven gyre variance by γ/TE ≈ 50% ± 15%, a fraction that stays relatively constant despite both time scales decreasing with increased mean forcing. This study suggests that the EM mode is a general property of rotating turbulent flows and highlights the need for better observational constraints on transient eddy field characteristics.
    Description: GEM acknowledges the Stanback Postdoctoral Fellowship Fund at Caltech and the Howland Postdoctoral Program Fund at WHOI. MAS was supported by NSF Grants PLR-1415489 and OCE- 1232389. AFT acknowledges support from NSF OCE- 1235488.
    Keywords: Arctic ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Parameterization ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2209-2219, doi:10.1175/JPO-D-18-0070.1.
    Description: Published observations of subinertial ocean current variability show that the vertical structure is often well described by a vertical mode that has a node of horizontal velocity at the bottom rather than the traditional node of vertical velocity. The theory of forced and free linear Rossby waves in a continuously stratified ocean with a sloping bottom and bottom friction is treated here to see if frictional effects can plausibly contribute to this phenomenon. For parameter values representative of the mesoscale, bottom dissipation by itself appears to be too weak to be an explanation, although caution is required because the present approach uses a linear model to address a nonlinear phenomenon. One novel outcome is the emergence of a short-wave, bottom-trapped, strongly damped mode that is present even with a flat bottom.
    Description: Partial funding for this article is provided by the National Science Foundation Physical Oceanography section through Award OCE-1433953.
    Description: 2019-03-17
    Keywords: Baroclinic flows ; Ekman pumping/transport ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2018): 1297-1314, doi:10.1175/JCLI-D-17-0286.1.
    Description: The variance of a jet’s position in latitude is found to be related to its average speed: when a jet becomes stronger, its variability in latitude decreases. This relationship is shown to hold for observed midlatitude jets around the world and also across a hierarchy of numerical models. North Atlantic jet variability is shown to be modulated on decadal time scales, with decades of a strong, steady jet being interspersed with decades of a weak, variable jet. These modulations are also related to variations in the basinwide occurrence of high-impact blocking events. A picture emerges of complex multidecadal jet variability in which recent decades do not appear unusual. An underlying barotropic mechanism is proposed to explain this behavior, related to the change in refractive properties of a jet as it strengthens, and the subsequent effect on the distribution of Rossby wave breaking.
    Description: We would like to acknowledge funding from NERC and the Research Council of Norway project jetSTREAM under Grants NE/ L01047X/1 (IMPETUS) and 231716, respectively, for a contribution to the work presented here. EAB is supported in part by the NSF Climate and Large-Scale Dynamics Program under Grant 1545675. Y-OK was supported by the NSF Climate and Large-Scale Dynamics Program under Grant 1355339. KW was supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101). RL was supported by the Met Office and the National Centre for Atmospheric Science.
    Description: 2018-07-29
    Keywords: Atmospheric circulation ; Jets ; North Atlantic Oscillation ; Baroclinic models ; Decadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4309-4327, doi:10.1175/JCLI-D-17-0407.1.
    Description: Multidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.
    Description: This work is supported by NSF EaSM Grants AGS-1243125 and NCAR-1243107 to The University of Arizona.
    Description: 2018-11-03
    Keywords: Drought ; Climate variability ; ENSO ; Paleoclimate ; Climate models ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 8627-8643, doi:10.1175/JCLI-D-18-0010.1.
    Description: Drought has severe consequences for humans and their environment, yet we have a limited understanding of the drivers of drought across the full range of time scales on which it occurs. Here, the atmosphere and ocean conditions that drive this continuum of drought variability in southwestern North America (SWNA) are studied using the latest observationally based products, paleoclimate reconstructions, and state-of-the-art Earth system model simulations of the last millennium. A novel application of the self-organizing maps (SOM) methodology allows for a visualization of the continuum of climate states coinciding with thousands of droughts of varying lengths in last millennium simulations from the Community Earth System Model (CESM), the Goddard Institute for Space Studies Model E2-R (GISS E2-R), and eight other members from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is found that most droughts are associated with a cool Pacific decadal oscillation (PDO) pattern, but persistent droughts can coincide with a variety of ocean–atmosphere states, including time periods showing a warm PDO or weak ocean–atmosphere anomalies. Many CMIP5 models simulate similar SWNA teleconnection patterns, but the SOM analysis demonstrates that models simulate different continuums of ocean–atmosphere states coinciding with droughts of different lengths, suggesting fundamental differences in their drought dynamics. These findings have important implications for our understanding and simulation of the drivers of persistent drought, and for their potential predictability.
    Description: The National Science Foundation EaSM2 Grant (AGS1243125) supported this work.
    Keywords: Atmosphere-ocean interaction ; Drought ; Paleoclimate ; Ensembles ; General circulation models ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2999-3013, doi:10.1175/JPO-D-17-0129.1.
    Description: Initial results are presented from a yearlong, high-resolution (~2 km) numerical simulation covering the east Greenland shelf and the Iceland and Irminger Seas. The model hydrography and circulation in the vicinity of Denmark Strait show good agreement with available observational datasets. This study focuses on the variability of the Denmark Strait overflow (DSO) by detecting and characterizing boluses and pulses, which are the two dominant mesoscale features in the strait. The authors estimate that the yearly mean southward volume flux of the DSO is about 30% greater in the presence of boluses and pulses. On average, boluses (pulses) are 57.1 (27.5) h long, occur every 3.2 (5.5) days, and are more frequent during the summer (winter). Boluses (pulses) increase (decrease) the overflow cross-sectional area, and temperatures around the overflow interface are colder (warmer) by about 2.6°C (1.8°C). The lateral extent of the boluses is much greater than that of the pulses. In both cases the along-strait equatorward flow of dense water is enhanced but more so for pulses. The sea surface height (SSH) rises by 4–10 cm during boluses and by up to 5 cm during pulses. The SSH anomaly contours form a bowl (dome) during boluses (pulses), and the two features cross the strait with a slightly different orientation. The cross streamflow changes direction; boluses (pulses) are associated with veering (backing) of the horizontal current. The model indicates that boluses and pulses play a major role in controlling the variability of the DSO transport into the Irminger Sea.
    Description: This work was supported by the NSF Grants OCE-1433448, OCE-1633124, and OCE- 1259618 and the Institute for Data Intensive Engineering and Science (IDIES) seed grant funding.
    Description: 2018-06-13
    Keywords: North Atlantic Ocean ; Mesoscale processes ; Ocean models ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2927-2947, doi:10.1175/JPO-D-17-0083.1.
    Description: Motivated by observations in Hudson shelf valley showing stronger onshore than offshore flows, this study investigates wind-driven flows in idealized shallow shelf valleys. This first part of a two-part sequence focuses on the mechanism of the asymmetrical flow response in a valley to along-shelf winds of opposite directions. Model simulations show that (i) when the wind is in the opposite direction to coastal-trapped wave (CTW) phase propagation, the shelf flow turns onshore in the valley and generates strong up-valley transport and a standing meander on the upstream side (in the sense of CTW phase propagation) of the valley, and (ii) when the wind is in the same direction as CTW phase propagation, the flow forms a symmetric onshore detour pattern over the valley with negligible down-valley transport. Comparison of the modeled upstream meanders in the first scenario with CTW characteristics confirms that the up-valley flow results from CTWs being arrested by the wind-driven shelf flow establishing lee waves. The valley bathymetry generates an initial excessive onshore pressure gradient force that drives the up-valley flow and induces CTW lee waves that sustain the up-valley flow. When the wind-driven shelf flow aligns with CTW phase propagation, the initial disturbance generated in the valley propagates away, allowing the valley flow to adjust to roughly follow isobaths. Because of the similarity in the physical setup, this mechanism of arrested CTWs generating stronger onshore than offshore flow is expected to be applicable to the flow response in slope canyons to along-isobath background flows of opposite directions.
    Description: WGZ and SJL were supported by the National Science Foundation through GrantOCE1154575.WGZ is also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-06-08
    Keywords: Ocean circulation ; Topographic effects ; Transport ; Vertical motion ; Waves, oceanic ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 29-44, doi:10.1175/JPO-D-17-0016.1.
    Description: The cospectrum of the horizontal and vertical turbulent velocity fluctuations, an essential tool for understanding measurements of the turbulent Reynolds shear stress, often departs in the ocean from the shape that has been established in the atmospheric surface layer. Here, we test the hypothesis that this departure is caused by advection of standard boundary layer turbulence by the random oscillatory velocities produced by surface gravity waves. The test is based on a model with two elements. The first is a representation of the spatial structure of the turbulence, guided by rapid distortion theory, and consistent with the one-dimensional cospectra that have been measured in the atmosphere. The second model element is a map of the spatial structure of the turbulence to the temporal fluctuations measured at fixed sensors, assuming advection of frozen turbulence by the velocities associated with surface waves. The model is adapted to removal of the wave velocities from the turbulent fluctuations using spatial filtering. The model is tested against previously published laboratory measurements under wave-free conditions and two new sets of measurements near the seafloor in the coastal ocean in the presence of waves. Although quantitative discrepancies exist, the model captures the dominant features of the laboratory and field measurements, suggesting that the underlying model physics are sound.
    Description: This research was supported by National Science Foundation Ocean Sciences Division Award 1356060 and the U.S. Geological Survey Coastal and Marine Geology Program.
    Keywords: Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 9871-9895, doi:10.1175/JCLI-D-17-0009.1.
    Description: Two large ensembles (LEs) of historical climate simulations are used to compare how various statistical methods estimate the sea surface temperature (SST) changes due to anthropogenic and other external forcing, and how their removal affects the internally generated Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the SST footprint of the Atlantic meridional overturning circulation (AMOC). Removing the forced SST signal by subtracting the global mean SST (GM) or a linear regression on it (REGR) leads to large errors in the Pacific. Multidimensional ensemble empirical mode decomposition (MEEMD) and quadratic detrending only efficiently remove the forced SST signal in one LE, and cannot separate the short-term response to volcanic eruptions from natural SST variations. Removing a linear trend works poorly. Two methods based on linear inverse modeling (LIM), one where the leading LIM mode represents the forced signal and another using an optimal perturbation filter (LIMopt), perform consistently well. However, the first two LIM modes are sometimes needed to represent the forced signal, so the more robust LIMopt is recommended. In both LEs, the natural AMO variability seems largely driven by the AMOC in the subpolar North Atlantic, but not in the subtropics and tropics, and the scatter in the AMOC–AMO correlation is large between individual ensemble members. In three observational SST reconstructions for 1900–2015, linear and quadratic detrending, MEEMD, and GM yield somewhat different AMO behavior, and REGR yields smaller PDO amplitudes. Based on LIMopt, only about 30% of the AMO variability is internally generated, as opposed to more than 90% for the PDO. The natural SST variability contribution to global warming hiatus is discussed.
    Description: Support from the NOAA Climate Program Office Climate Variability and Predictability program (NA13OAR4310139), NSF EaSM2 (OCE-84298900), the European Community Horizon 2020 Framework under Grant Agreement 727852 (Blue-Action), and the ANR MORDICUS project (ANR-13-SENV-0002-02) is gratefully acknowledged.
    Description: 2018-05-16
    Keywords: Pattern detection ; Decadal variability ; Multidecadal variability ; Pacific decadal oscillation ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Transactions of the Institute of British Geographers, Wiley, 43(1), pp. 61-78, ISSN: 0020-2754
    Publication Date: 2024-02-07
    Description: The Pacific region of Colombia, like many sparsely populated places in developing countries, has been imagined as empty in social terms, and yet full in terms of natural resources and biodiversity. These imaginaries have enabled the creation of frontiers of land and sea control, where the state as well as private and illegal actors have historically dispossessed Afro-descendant and indigenous peoples. This paper contributes to the understanding of territorialisation in the oceans, where political and legal framings of the sea as an open-access public good have neglected the existence of marine social processes. It shows how Afro-descendant communities and non-state actors are required to use the language of resources, rather than socio-cultural attachment, to negotiate state marine territorialisation processes. Drawing on a case study on the Pacific coast of Colombia, we demonstrate that Afro-descendant communities hold local aquatic epistemologies, in which knowledge and the production of space are entangled in fluid and volumetric spatio-temporal dynamics. However, despite the social importance of aquatic environments, they were excluded from Afro-descendants' collective territorial rights in the 1990s. Driven by their local aquatic epistemologies, coastal communities are reclaiming authority over the seascape through the creation of a marine protected area. We argue that they have transformed relations of authority at sea to ensure local access and control, using state institutional instruments to subvert and challenge the legal framing of the sea as an open access public good. As such, this marine protected area represents a place of resistance that ironically subjects coastal communities to disciplinary technologies of conservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Limnology and Oceanography, Wiley, 63(3), pp. 1444-1444, ISSN: 0024-3590
    Publication Date: 2024-05-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Forschung, Wiley, 43(1), pp. 16-21, ISSN: 0172-1518
    Publication Date: 2024-01-22
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Plattentektonik, vulkanische Aktivität und Spreizung des Ozeanbodens in der Arktis: Die Emmy Noether‐Gruppe MOVE gewinnt nach aufwendigen Forschungs‐expeditionen und Erdbebenmessungen überraschende Erkenntnisse zur Entstehung und Struktur der Ozeanlithosphäre. Ein Werkstattbericht〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-01-01
    Description: When cumulonimbus clouds aggregate, developing into a single entity with precipitation covering a horizontal scale of hundreds of kilometers, they are called mesoscale convective systems (MCSs). They account for much of Earth’s precipitation, generate severe weather events and flooding, produce prodigious cirriform anvil clouds, and affect the evolution of the larger-scale circulation. Understanding the inner workings of MCSs has resulted from developments in observational technology and modeling. Time–space conversion of ordinary surface and upper-air observations provided early insight into MCSs, but deeper understanding has followed field campaigns using increasingly sophisticated radars, better aircraft instrumentation, and an ever-widening range of satellite instruments, especially satellite-borne radars. High-resolution modeling and theoretical insights have shown that aggregated cumulonimbus clouds induce a mesoscale circulation consisting of air overturning on a scale larger than the scale of individual convective up- and downdrafts. These layers can be kilometers deep and decoupled from the boundary layer in elevated MCSs. Cooling in the lower troposphere and heating aloft characterize the stratiform regions of MCSs. As a result, long-lived MCSs with large stratiform regions have a top-heavy heating profile that generates potential vorticity in midlevels, thus influencing the larger-scale circulation within which the MCSs occur. Global satellite data show MCSs varying in structure, depending on the prevailing large-scale circulation and topography. These patterns are likely to change with global warming. In addition, environmental pollution affects MCS structure and dynamics subtly. Feedbacks of MCSs therefore need to be included or parameterized in climate models.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...