ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (55)
  • Reproducibility of Results  (28)
  • Protein Structure, Tertiary  (25)
  • Analytical Chemistry and Spectroscopy
  • Cell & Developmental Biology
  • Inorganic Chemistry
  • 2015-2019  (55)
  • 1975-1979
  • 2016  (55)
  • Medicine  (55)
Collection
  • Articles  (55)
Keywords
Years
  • 2015-2019  (55)
  • 1975-1979
Year
  • 1
    Publication Date: 2016-04-16
    Description: RlmN is a dual-specificity RNA methylase that modifies C2 of adenosine 2503 (A2503) in 23S rRNA and C2 of adenosine 37 (A37) in several Escherichia coli transfer RNAs (tRNAs). A related methylase, Cfr, modifies C8 of A2503 via a similar mechanism, conferring resistance to multiple classes of antibiotics. Here, we report the x-ray structure of a key intermediate in the RlmN reaction, in which a Cys(118)--〉Ala variant of the protein is cross-linked to a tRNA(Glu)substrate through the terminal methylene carbon of a formerly methylcysteinyl residue and C2 of A37. RlmN contacts the entire length of tRNA(Glu), accessing A37 by using an induced-fit strategy that completely unfolds the tRNA anticodon stem-loop, which is likely critical for recognition of both tRNA and ribosomal RNA substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwalm, Erica L -- Grove, Tyler L -- Booker, Squire J -- Boal, Amie K -- GM100011/GM/NIGMS NIH HHS/ -- GM101957/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):309-12. doi: 10.1126/science.aad5367.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA 16802, USA. squire@psu.edu akb20@psu.edu. ; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA. squire@psu.edu akb20@psu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081063" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/chemistry ; Alanine/chemistry/genetics ; Amino Acid Substitution ; Anticodon/chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Cysteine/chemistry/genetics ; Escherichia coli Proteins/*chemistry/genetics/*ultrastructure ; Methylation ; Methyltransferases/*chemistry/genetics/*ultrastructure ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; RNA, Bacterial/*chemistry ; RNA, Transfer, Glu/*chemistry/*ultrastructure ; S-Adenosylmethionine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-02
    Description: The recent rapid spread of Zika virus and its unexpected linkage to birth defects and an autoimmune neurological syndrome have generated worldwide concern. Zika virus is a flavivirus like the dengue, yellow fever, and West Nile viruses. We present the 3.8 angstrom resolution structure of mature Zika virus, determined by cryo-electron microscopy (cryo-EM). The structure of Zika virus is similar to other known flavivirus structures, except for the ~10 amino acids that surround the Asn(154) glycosylation site in each of the 180 envelope glycoproteins that make up the icosahedral shell. The carbohydrate moiety associated with this residue, which is recognizable in the cryo-EM electron density, may function as an attachment site of the virus to host cells. This region varies not only among Zika virus strains but also in other flaviviruses, which suggests that differences in this region may influence virus transmission and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sirohi, Devika -- Chen, Zhenguo -- Sun, Lei -- Klose, Thomas -- Pierson, Theodore C -- Rossmann, Michael G -- Kuhn, Richard J -- R01 AI073755/AI/NIAID NIH HHS/ -- R01 AI076331/AI/NIAID NIH HHS/ -- R01AI073755/AI/NIAID NIH HHS/ -- R01AI076331/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):467-70. doi: 10.1126/science.aaf5316. Epub 2016 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Markey Center for Structural Biology and Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA. ; Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27033547" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cryoelectron Microscopy ; Glycosylation ; Humans ; Molecular Sequence Data ; Protein Structure, Tertiary ; Viral Envelope Proteins/chemistry/ultrastructure ; Viral Matrix Proteins/chemistry/ultrastructure ; Zika Virus/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-16
    Description: The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC's structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Daniel H -- Stuwe, Tobias -- Schilbach, Sandra -- Rundlet, Emily J -- Perriches, Thibaud -- Mobbs, George -- Fan, Yanbin -- Thierbach, Karsten -- Huber, Ferdinand M -- Collins, Leslie N -- Davenport, Andrew M -- Jeon, Young E -- Hoelz, Andre -- 5 T32 GM07616/GM/NIGMS NIH HHS/ -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- R01 GM111461/GM/NIGMS NIH HHS/ -- R01-GM111461/GM/NIGMS NIH HHS/ -- T32 GM007616/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):aaf1015. doi: 10.1126/science.aaf1015. Epub 2016 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. ; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. hoelz@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081075" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Electron Microscope Tomography ; Fungal Proteins/chemistry/genetics/metabolism ; Humans ; Molecular Sequence Data ; Nuclear Pore/chemistry/*metabolism/*ultrastructure ; Nuclear Pore Complex Proteins/chemistry/genetics/*metabolism ; *Protein Interaction Maps ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-26
    Description: In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Veshaguri, Salome -- Christensen, Sune M -- Kemmer, Gerdi C -- Ghale, Garima -- Moller, Mads P -- Lohr, Christina -- Christensen, Andreas L -- Justesen, Bo H -- Jorgensen, Ida L -- Schiller, Jurgen -- Hatzakis, Nikos S -- Grabe, Michael -- Pomorski, Thomas Gunther -- Stamou, Dimitrios -- R21-GM100224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1469-73. doi: 10.1126/science.aad6429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark. ; Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg Denmark. ; Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany. ; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013734" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Arabidopsis Proteins/antagonists & inhibitors/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Ion Transport ; Membrane Potentials/drug effects/physiology ; Molecular Imaging ; Protein Structure, Tertiary ; Proton-Translocating ATPases/antagonists & inhibitors/chemistry/*metabolism ; *Protons ; Valinomycin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-29
    Description: Transition paths, the fleeting trajectories through the transition states that dominate the dynamics of biomolecular folding reactions, encapsulate the critical information about how structure forms. Owing to their brief duration, however, they have not previously been observed directly. We measured transition paths for both nucleic acid and protein folding, using optical tweezers to observe the microscopic diffusive motion of single molecules traversing energy barriers. The average transit times and the shapes of the transit-time distributions agreed well with theoretical expectations for motion over the one-dimensional energy landscapes reconstructed for the same molecules, validating the physical theory of folding reactions. These measurements provide a first look at the critical microscopic events that occur during folding, opening exciting new avenues for investigating folding phenomena.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neupane, Krishna -- Foster, Daniel A N -- Dee, Derek R -- Yu, Hao -- Wang, Feng -- Woodside, Michael T -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):239-42. doi: 10.1126/science.aad0637.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada. ; National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, T6G 2M9, Canada. ; Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada. National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, T6G 2M9, Canada. michael.woodside@ualberta.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124461" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/*chemistry ; Motion ; *Nucleic Acid Conformation ; Optical Tweezers ; Phase Transition ; *Protein Folding ; Protein Structure, Tertiary ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-09
    Description: beta-Barrel outer membrane proteins (OMPs) are found in the outer membranes of Gram-negative bacteria and are essential for nutrient import, signaling, and adhesion. A 200-kilodalton five-component complex called the beta-barrel assembly machinery (BAM) complex has been implicated in the biogenesis of OMPs. We report the structure of the BAM complex from Escherichia coli, revealing that binding of BamCDE modulates the conformation of BamA, the central component, which may serve to regulate the BAM complex. The periplasmic domain of BamA was in a closed state that prevents access to the barrel lumen, which indicates substrate OMPs may not be threaded through the barrel during biogenesis. Further, conformational shifts in the barrel domain lead to opening of the exit pore and rearrangement at the lateral gate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakelar, Jeremy -- Buchanan, Susan K -- Noinaj, Nicholas -- 1K22AI113078-01/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 8;351(6269):180-6. doi: 10.1126/science.aad3460.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. ; National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ; Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. nnoinaj@purdue.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26744406" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry ; Crystallography, X-Ray ; Escherichia coli/*metabolism ; Escherichia coli Proteins/*chemistry ; Multiprotein Complexes/*chemistry ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-12
    Description: AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis. This organization is confirmed by cysteine cross-linking in full-length receptors, and it permitted us to determine the structure of an intact GluA2/3 receptor by cryogenic electron microscopy. Two models in the ligand-free state, at resolutions of 8.25 and 10.3 angstroms, exhibit substantial vertical compression and close associations between domain layers, reminiscent of N-methyl-D-aspartate receptors. Model 1 resembles a resting state and model 2 a desensitized state, thus providing snapshots of gating transitions in the nominal absence of ligand. Our data reveal organizational features of heteromeric AMPARs and provide a framework to decipher AMPAR architecture and signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852135/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852135/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herguedas, Beatriz -- Garcia-Nafria, Javier -- Cais, Ondrej -- Fernandez-Leiro, Rafael -- Krieger, James -- Ho, Hinze -- Greger, Ingo H -- MC_U105174197/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):aad3873. doi: 10.1126/science.aad3873. Epub 2016 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK. ; Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26966189" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Models, Molecular ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, AMPA/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-30
    Description: p97 is a hexameric AAA+ adenosine triphosphatase (ATPase) that is an attractive target for cancer drug development. We report cryo-electron microscopy (cryo-EM) structures for adenosine diphosphate (ADP)-bound, full-length, hexameric wild-type p97 in the presence and absence of an allosteric inhibitor at resolutions of 2.3 and 2.4 angstroms, respectively. We also report cryo-EM structures (at resolutions of ~3.3, 3.2, and 3.3 angstroms, respectively) for three distinct, coexisting functional states of p97 with occupancies of zero, one, or two molecules of adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) per protomer. A large corkscrew-like change in molecular architecture, coupled with upward displacement of the N-terminal domain, is observed only when ATPgammaS is bound to both the D1 and D2 domains of the protomer. These cryo-EM structures establish the sequence of nucleotide-driven structural changes in p97 at atomic resolution. They also enable elucidation of the binding mode of an allosteric small-molecule inhibitor to p97 and illustrate how inhibitor binding at the interface between the D1 and D2 domains prevents propagation of the conformational changes necessary for p97 function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Soojay -- Bartesaghi, Alberto -- Merk, Alan -- Rao, Prashant -- Bulfer, Stacie L -- Yan, Yongzhao -- Green, Neal -- Mroczkowski, Barbara -- Neitz, R Jeffrey -- Wipf, Peter -- Falconieri, Veronica -- Deshaies, Raymond J -- Milne, Jacqueline L S -- Huryn, Donna -- Arkin, Michelle -- Subramaniam, Sriram -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):871-5. doi: 10.1126/science.aad7974. Epub 2016 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA. ; Small Molecule Discovery Center, Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143, USA. ; University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA. ; Leidos Biomedical Research Inc., Frederick, MD 21702, USA. ; Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA. ; Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91107, USA. ; Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA. ss1@nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26822609" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Adenosine Triphosphatases/*antagonists & inhibitors/*chemistry ; Adenosine Triphosphate/analogs & derivatives/chemistry ; Allosteric Regulation ; Binding Sites ; Cryoelectron Microscopy ; Enzyme Inhibitors ; Humans ; Models, Molecular ; Nuclear Proteins/*antagonists & inhibitors/*chemistry ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-29
    Description: The meaning of language is represented in regions of the cerebral cortex collectively known as the 'semantic system'. However, little of the semantic system has been mapped comprehensively, and the semantic selectivity of most regions is unknown. Here we systematically map semantic selectivity across the cortex using voxel-wise modelling of functional MRI (fMRI) data collected while subjects listened to hours of narrative stories. We show that the semantic system is organized into intricate patterns that seem to be consistent across individuals. We then use a novel generative model to create a detailed semantic atlas. Our results suggest that most areas within the semantic system represent information about specific semantic domains, or groups of related concepts, and our atlas shows which domains are represented in each area. This study demonstrates that data-driven methods--commonplace in studies of human neuroanatomy and functional connectivity--provide a powerful and efficient means for mapping functional representations in the brain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852309/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852309/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huth, Alexander G -- de Heer, Wendy A -- Griffiths, Thomas L -- Theunissen, Frederic E -- Gallant, Jack L -- EY019684/EY/NEI NIH HHS/ -- R01 EY019684/EY/NEI NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):453-8. doi: 10.1038/nature17637.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA. ; Department of Psychology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27121839" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Auditory Perception ; *Brain Mapping ; Cerebral Cortex/*anatomy & histology/*physiology ; Female ; Humans ; Magnetic Resonance Imaging ; Male ; Narration ; Principal Component Analysis ; Reproducibility of Results ; *Semantics ; *Speech
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-05-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bender, Eric -- England -- Nature. 2016 May 11;533(7602):S62-4. doi: 10.1038/533S62a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27167394" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amyotrophic Lateral Sclerosis/diagnosis ; *Awards and Prizes ; Biomedical Research/economics/*manpower/*methods ; Breast Neoplasms/diagnosis/pathology ; *Competitive Behavior ; Cooperative Behavior ; Crowdsourcing/economics/*methods ; Datasets as Topic ; Drug Industry/economics/methods ; Humans ; Information Dissemination ; *Interdisciplinary Communication ; Internet/utilization ; Male ; Models, Biological ; Monitoring, Physiologic/instrumentation ; Prognosis ; Reproducibility of Results ; Smartphone/utilization ; Statistics as Topic ; Systems Biology/manpower/methods ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-01-21
    Description: RNA polymerase (Pol) II produces messenger RNA during transcription of protein-coding genes in all eukaryotic cells. The Pol II structure is known at high resolution from X-ray crystallography for two yeast species. Structural studies of mammalian Pol II, however, remain limited to low-resolution electron microscopy analysis of human Pol II and its complexes with various proteins. Here we report the 3.4 A resolution cryo-electron microscopy structure of mammalian Pol II in the form of a transcribing complex comprising DNA template and RNA transcript. We use bovine Pol II, which is identical to the human enzyme except for seven amino-acid residues. The obtained atomic model closely resembles its yeast counterpart, but also reveals unknown features. Binding of nucleic acids to the polymerase involves 'induced fit' of the mobile Pol II clamp and active centre region. DNA downstream of the transcription bubble contacts a conserved 'TPSA motif' in the jaw domain of the Pol II subunit RPB5, an interaction that is apparently already established during transcription initiation. Upstream DNA emanates from the active centre cleft at an angle of approximately 105 degrees with respect to downstream DNA. This position of upstream DNA allows for binding of the general transcription elongation factor DSIF (SPT4-SPT5) that we localize over the active centre cleft in a conserved position on the clamp domain of Pol II. Our results define the structure of mammalian Pol II in its functional state, indicate that previous crystallographic analysis of yeast Pol II is relevant for understanding gene transcription in all eukaryotes, and provide a starting point for a mechanistic analysis of human transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernecky, Carrie -- Herzog, Franz -- Baumeister, Wolfgang -- Plitzko, Jurgen M -- Cramer, Patrick -- England -- Nature. 2016 Jan 28;529(7587):551-4. doi: 10.1038/nature16482. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Gottingen, Germany. ; Gene Center Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. ; Max Planck Institute for Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789250" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Animals ; Catalytic Domain ; Cattle ; *Cryoelectron Microscopy ; DNA/genetics/metabolism/ultrastructure ; Humans ; Models, Molecular ; Nucleic Acids/chemistry/metabolism ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase II/chemistry/*metabolism/*ultrastructure ; RNA, Messenger/biosynthesis/genetics/ultrastructure ; Saccharomyces cerevisiae/enzymology ; Templates, Genetic ; *Transcription Elongation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldacre, Ben -- England -- Nature. 2016 Feb 4;530(7588):7. doi: 10.1038/530007a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26842021" target="_blank"〉PubMed〈/a〉
    Keywords: Bias (Epidemiology) ; Clinical Trials as Topic/*methods/*standards ; *Editorial Policies ; Evidence-Based Medicine/methods/standards ; Guidelines as Topic ; Humans ; Periodicals as Topic/*standards ; Reproducibility of Results ; Research Report/*standards ; Treatment Outcome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-02-24
    Description: All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the beta-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane beta-barrel of BamA to induce movement of the beta-strands of the barrel and promote insertion of the nascent OMP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Yinghong -- Li, Huanyu -- Dong, Haohao -- Zeng, Yi -- Zhang, Zhengyu -- Paterson, Neil G -- Stansfeld, Phillip J -- Wang, Zhongshan -- Zhang, Yizheng -- Wang, Wenjian -- Dong, Changjiang -- G1100110/1/Medical Research Council/United Kingdom -- WT106121MA/Wellcome Trust/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):64-9. doi: 10.1038/nature17199. Epub 2016 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. ; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, China. ; Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu 610064, China. ; Laboratory of Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26901871" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Lipoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Movement ; Multiprotein Complexes/*chemistry/*metabolism ; Periplasm/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-03-05
    Description: HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 A resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirchdoerfer, Robert N -- Cottrell, Christopher A -- Wang, Nianshuang -- Pallesen, Jesper -- Yassine, Hadi M -- Turner, Hannah L -- Corbett, Kizzmekia S -- Graham, Barney S -- McLellan, Jason S -- Ward, Andrew B -- R56 AI118016/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):118-21. doi: 10.1038/nature17200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA. ; Viral Pathogenesis Laboratory, National Institute of Allergy and Infectious Diseases, Building 40, Room 2502, 40 Convent Drive, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26935699" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Coronavirus/*chemistry/*ultrastructure ; Cryoelectron Microscopy ; Humans ; Membrane Fusion ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Proteolysis ; Receptors, Virus/metabolism ; Spike Glycoprotein, Coronavirus/*chemistry/metabolism/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-01-07
    Description: CRISPR-Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. Existing strategies for reducing genome-wide off-target effects of the widely used Streptococcus pyogenes Cas9 (SpCas9) are imperfect, possessing only partial or unproven efficacies and other limitations that constrain their use. Here we describe SpCas9-HF1, a high-fidelity variant harbouring alterations designed to reduce non-specific DNA contacts. SpCas9-HF1 retains on-target activities comparable to wild-type SpCas9 with 〉85% of single-guide RNAs (sgRNAs) tested in human cells. Notably, with sgRNAs targeted to standard non-repetitive sequences, SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide break capture and targeted sequencing methods. Even for atypical, repetitive target sites, the vast majority of off-target mutations induced by wild-type SpCas9 were not detected with SpCas9-HF1. With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type SpCas9 for research and therapeutic applications. More broadly, our results suggest a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleinstiver, Benjamin P -- Pattanayak, Vikram -- Prew, Michelle S -- Tsai, Shengdar Q -- Nguyen, Nhu T -- Zheng, Zongli -- Joung, J Keith -- DP1 GM105378/DP/NCCDPHP CDC HHS/ -- R01 GM088040/GM/NIGMS NIH HHS/ -- R01 GM107427/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26735016" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CRISPR-Associated Proteins/*genetics/*metabolism ; CRISPR-Cas Systems/*physiology ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; DNA/genetics/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Endonucleases/genetics/*metabolism ; *Genetic Engineering ; Genome, Human/*genetics ; Humans ; Mutation ; Protein Binding ; RNA/genetics ; Reproducibility of Results ; Sequence Analysis, DNA ; Streptococcus pyogenes/enzymology/genetics ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-01-15
    Description: Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reimer, Janice M -- Aloise, Martin N -- Harrison, Paul M -- Schmeing, T Martin -- 106615/Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Jan 14;529(7585):239-42. doi: 10.1038/nature16503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montreal, Quebec H3G 0B1, Canada. ; Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26762462" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/chemistry/metabolism ; Anti-Bacterial Agents/biosynthesis ; Binding Sites ; *Biocatalysis ; Brevibacillus/*enzymology ; Carbohydrate Metabolism ; Carrier Proteins/chemistry/metabolism ; Catalytic Domain ; Coenzymes/metabolism ; Crystallography, X-Ray ; Gramicidin/*biosynthesis ; Hydroxymethyl and Formyl Transferases/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/chemistry/metabolism ; Pantetheine/analogs & derivatives/metabolism ; Peptide Synthases/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Transfer/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cyranoski, David -- England -- Nature. 2016 Jan 7;529(7584):9-10. doi: 10.1038/529009a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26738574" target="_blank"〉PubMed〈/a〉
    Keywords: China ; *Federal Government ; Genome, Human/genetics ; Genomics/economics/manpower/trends ; Humans ; Physicians/supply & distribution ; Population Density ; Precision Medicine/economics/*trends ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-04-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nardone, Roland M -- MacLeod, Roderick A F -- Capes-Davis, Amanda -- England -- Nature. 2016 Apr 21;532(7599):313.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27127813" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; DNA Contamination ; Databases, Factual ; *Disease Models, Animal ; Guidelines as Topic ; Heterografts/*standards ; Humans ; National Cancer Institute (U.S.) ; Neoplasms/*pathology ; Quality Control ; Reproducibility of Results ; United States ; Xenograft Model Antitumor Assays/*standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-02-09
    Description: The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a mouse coronavirus S trimer ectodomain determined at 4.0 A resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walls, Alexandra C -- Tortorici, M Alejandra -- Bosch, Berend-Jan -- Frenz, Brandon -- Rottier, Peter J M -- DiMaio, Frank -- Rey, Felix A -- Veesler, David -- GM103310/GM/NIGMS NIH HHS/ -- T32GM008268/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):114-7. doi: 10.1038/nature16988. Epub 2016 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institut Pasteur, Unite de Virologie Structurale, 75015 Paris, France. ; CNRS UMR 3569 Virologie, 75015 Paris, France. ; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26855426" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Cell Line ; Coronavirus Infections/immunology/virology ; *Cryoelectron Microscopy ; Drosophila melanogaster ; Mice ; Models, Molecular ; Molecular Sequence Data ; Murine hepatitis virus/*chemistry/immunology/*ultrastructure ; Protein Multimerization ; Protein Structure, Tertiary ; Spike Glycoprotein, Coronavirus/*chemistry/immunology/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landry, Matt -- Gomes, Aldrin V -- England -- Nature. 2016 Jan 7;529(7584):25. doi: 10.1038/529025c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aviva Systems Biology, San Diego, California, USA. ; University of California, Davis, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26738583" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies/*immunology ; Biotechnology/*standards ; Blotting, Western/*methods/*standards ; Buffers ; Calibration ; Indicators and Reagents/standards ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-04-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, Angel -- Cheng, Yaping -- Weinfurter, Amy -- Xu, Kaiyang -- Yick, Cameron -- England -- Nature. 2016 Apr 21;532(7599):303-6. doi: 10.1038/532303a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yale-NUS College and Yale School of Forestry and Environmental Studies, Singapore. ; Yale Data-Driven Environmental Solutions Group, New Haven, Connecticut, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27111615" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Dioxide/analysis ; Cities/*legislation & jurisprudence ; Environmental Pollution/analysis/legislation & jurisprudence/prevention & control ; Global Warming/*legislation & jurisprudence/*prevention & control ; *Government Regulation ; Greenhouse Effect/legislation & jurisprudence/prevention & control ; Industry/*legislation & jurisprudence ; International Cooperation/legislation & jurisprudence ; Private Sector/*legislation & jurisprudence ; Renewable Energy/legislation & jurisprudence ; Reproducibility of Results ; *Research Report/legislation & jurisprudence/standards ; Temperature ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-01-15
    Description: Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs). During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drake, Eric J -- Miller, Bradley R -- Shi, Ce -- Tarrasch, Jeffrey T -- Sundlov, Jesse A -- Allen, C Leigh -- Skiniotis, Georgios -- Aldrich, Courtney C -- Gulick, Andrew M -- GM-068440/GM/NIGMS NIH HHS/ -- GM-115601/GM/NIGMS NIH HHS/ -- R01 GM068440/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Jan 14;529(7585):235-8. doi: 10.1038/nature16163.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA. ; Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, USA. ; Center for Drug Design and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26762461" target="_blank"〉PubMed〈/a〉
    Keywords: Acinetobacter baumannii/*enzymology ; Biocatalysis ; Carrier Proteins/metabolism ; Coenzymes/metabolism ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Holoenzymes/*chemistry/metabolism ; Models, Molecular ; Pantetheine/analogs & derivatives/metabolism ; Peptide Synthases/*chemistry/metabolism ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-04-21
    Description: The CRISPR-Cas systems, as exemplified by CRISPR-Cas9, are RNA-guided adaptive immune systems used by bacteria and archaea to defend against viral infection. The CRISPR-Cpf1 system, a new class 2 CRISPR-Cas system, mediates robust DNA interference in human cells. Although functionally conserved, Cpf1 and Cas9 differ in many aspects including their guide RNAs and substrate specificity. Here we report the 2.38 A crystal structure of the CRISPR RNA (crRNA)-bound Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1). LbCpf1 has a triangle-shaped architecture with a large positively charged channel at the centre. Recognized by the oligonucleotide-binding domain of LbCpf1, the crRNA adopts a highly distorted conformation stabilized by extensive intramolecular interactions and the (Mg(H2O)6)(2+) ion. The oligonucleotide-binding domain also harbours a looped-out helical domain that is important for LbCpf1 substrate binding. Binding of crRNA or crRNA lacking the guide sequence induces marked conformational changes but no oligomerization of LbCpf1. Our study reveals the crRNA recognition mechanism and provides insight into crRNA-guided substrate binding of LbCpf1, establishing a framework for engineering LbCpf1 to improve its efficiency and specificity for genome editing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, De -- Ren, Kuan -- Qiu, Xiaolin -- Zheng, Jianlin -- Guo, Minghui -- Guan, Xiaoyu -- Liu, Hongnan -- Li, Ningning -- Zhang, Bailing -- Yang, Daijun -- Ma, Chuang -- Wang, Shuo -- Wu, Dan -- Ma, Yunfeng -- Fan, Shilong -- Wang, Jiawei -- Gao, Ning -- Huang, Zhiwei -- England -- Nature. 2016 Apr 28;532(7600):522-6. doi: 10.1038/nature17944. Epub 2016 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27096363" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; CRISPR-Associated Proteins/*chemistry/*metabolism ; CRISPR-Cas Systems ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; Crystallography, X-Ray ; Firmicutes/*enzymology ; Genetic Engineering ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Structure, Tertiary ; RNA Stability ; RNA, Bacterial/*chemistry/genetics/*metabolism ; RNA, Guide/chemistry/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edwards, Aled -- England -- Nature. 2016 Mar 17;531(7594):299-301. doi: 10.1038/531299a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26983524" target="_blank"〉PubMed〈/a〉
    Keywords: *Cooperative Behavior ; Drug Industry/economics/manpower/*organization & administration/*standards ; Efficiency, Organizational ; Goals ; Humans ; Information Dissemination ; Reproducibility of Results ; Research/economics/manpower/*organization & administration/*standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-04-05
    Description: The human sigma1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the sigma1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the sigma1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human sigma1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like beta-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Hayden R -- Zheng, Sanduo -- Gurpinar, Esin -- Koehl, Antoine -- Manglik, Aashish -- Kruse, Andrew C -- T32GM007226/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):527-30. doi: 10.1038/nature17391. Epub 2016 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27042935" target="_blank"〉PubMed〈/a〉
    Keywords: Benzamides/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endoplasmic Reticulum/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/metabolism ; Isoxazoles/chemistry/metabolism ; Ligands ; Models, Molecular ; Piperidines/chemistry/metabolism ; Protein Structure, Tertiary ; Pyridines/chemistry/metabolism ; Receptors, sigma/*chemistry/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewandowsky, Stephan -- Bishop, Dorothy -- England -- Nature. 2016 Jan 28;529(7587):459-61. doi: 10.1038/529459a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Bristol, UK, who focuses on the public understanding of science. ; University of Oxford, UK; she chaired a symposium at the Wellcome Trust in London in April 2015 on improving scientific reliability.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26819029" target="_blank"〉PubMed〈/a〉
    Keywords: Access to Information ; Censorship, Research ; Confidentiality ; Conflict of Interest ; Dual Use Research/legislation & jurisprudence ; Humans ; *Information Dissemination ; Peer Review, Research ; Reproducibility of Results ; Research/*standards ; Research Personnel/psychology/standards ; Retraction of Publication as Topic ; Social Behavior ; Social Media ; Violence
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-05-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Andrew R -- England -- Nature. 2016 May 11;533(7602):S60-1. doi: 10.1038/533S60a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27167393" target="_blank"〉PubMed〈/a〉
    Keywords: *Access to Information ; Animals ; *Azepines/classification/economics/pharmacology/therapeutic use ; Clinical Trials as Topic ; Drug Discovery/economics/*methods ; Histones/metabolism ; Humans ; *Information Dissemination ; Male ; Mice ; Neoplasms/drug therapy ; Patents as Topic/statistics & numerical data ; Protein Binding ; Protein Structure, Tertiary ; *Triazoles/classification/economics/pharmacology/therapeutic use ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-03-08
    Description: Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61alpha, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 A) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855518/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855518/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Park, Eunyong -- Ling, JingJing -- Ingram, Jessica -- Ploegh, Hidde -- Rapoport, Tom A -- GM052586/GM/NIGMS NIH HHS/ -- R01 GM052586/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 17;531(7594):395-9. doi: 10.1038/nature17163. Epub 2016 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26950603" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Protein Sorting Signals ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allison, David B -- Brown, Andrew W -- George, Brandon J -- Kaiser, Kathryn A -- England -- Nature. 2016 Feb 4;530(7588):27-9. doi: 10.1038/530027a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Alabama, USA. ; Office of Energetics and the Nutrition Obesity Research Center, University of Alabama at Birmingham, Alabama, USA. ; Office of Energetics, University of Alabama at Birmingham, Alabama, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26842041" target="_blank"〉PubMed〈/a〉
    Keywords: Access to Information ; *Editorial Policies ; Humans ; Peer Review, Research/*methods/*standards ; Periodicals as Topic/economics/*standards ; Reproducibility of Results ; Research Design/*statistics & numerical data ; *Retraction of Publication as Topic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-03-31
    Description: Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, Mark A -- Burda, Joshua E -- Ren, Yilong -- Ao, Yan -- O'Shea, Timothy M -- Kawaguchi, Riki -- Coppola, Giovanni -- Khakh, Baljit S -- Deming, Timothy J -- Sofroniew, Michael V -- MH099559A/MH/NIMH NIH HHS/ -- MH104069/MH/NIMH NIH HHS/ -- NS057624/NS/NINDS NIH HHS/ -- NS060677/NS/NINDS NIH HHS/ -- NS084030/NS/NINDS NIH HHS/ -- P30 NS062691/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Apr 14;532(7598):195-200. doi: 10.1038/nature17623. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1763, USA. ; Departments of Psychiatry and Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1761, USA. ; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1751, USA. ; Departments of Bioengineering, Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1600, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*pathology ; Axons/*physiology ; Central Nervous System/cytology/*pathology/*physiology ; Chondroitin Sulfate Proteoglycans/biosynthesis ; Cicatrix/*pathology/prevention & control ; Female ; Genomics ; Mice ; *Models, Biological ; *Nerve Regeneration ; Reproducibility of Results ; Spinal Cord Injuries/genetics/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-01-29
    Description: Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Wei -- Emaminejad, Sam -- Nyein, Hnin Yin Yin -- Challa, Samyuktha -- Chen, Kevin -- Peck, Austin -- Fahad, Hossain M -- Ota, Hiroki -- Shiraki, Hiroshi -- Kiriya, Daisuke -- Lien, Der-Hsien -- Brooks, George A -- Davis, Ronald W -- Javey, Ali -- P01 HG000205/HG/NHGRI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):509-14. doi: 10.1038/nature16521.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA. ; Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720, USA. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Stanford Genome Technology Center, Stanford School of Medicine, Palo Alto, California 94304, USA. ; Integrative Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26819044" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bicycling/physiology ; Body Water ; Calibration ; Electrolytes/analysis ; Female ; Glucose/analysis ; Healthy Volunteers ; Humans ; Lactic Acid/analysis ; Male ; Monitoring, Physiologic/*instrumentation/*methods ; Precision Medicine/instrumentation/methods ; Reproducibility of Results ; Running/physiology ; Skin ; Skin Temperature ; Sweat/*chemistry ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-04-28
    Description: Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gautam, Rajeev -- Nishimura, Yoshiaki -- Pegu, Amarendra -- Nason, Martha C -- Klein, Florian -- Gazumyan, Anna -- Golijanin, Jovana -- Buckler-White, Alicia -- Sadjadpour, Reza -- Wang, Keyun -- Mankoff, Zachary -- Schmidt, Stephen D -- Lifson, Jeffrey D -- Mascola, John R -- Nussenzweig, Michel C -- Martin, Malcolm A -- AI-100148/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- UM1 AI100663-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):105-9. doi: 10.1038/nature17677. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. ; Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120156" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/administration & dosage/immunology ; Animals ; Antibodies, Monoclonal/administration & dosage/blood/genetics/immunology ; Antibodies, Neutralizing/administration & dosage/blood/genetics/immunology ; Female ; HIV Antibodies/*administration & dosage/blood/genetics/*immunology ; HIV Infections/immunology/prevention & control/transmission ; Half-Life ; Immunoglobulin Fc Fragments/chemistry/genetics/immunology ; Macaca mulatta/immunology/virology ; Male ; Mutation/genetics ; Protein Structure, Tertiary ; SAIDS Vaccines/administration & dosage/immunology ; Simian Acquired Immunodeficiency Syndrome/blood/*immunology/*prevention & control ; Simian Immunodeficiency Virus/*immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- England -- Nature. 2016 Jan 28;529(7587):456-8. doi: 10.1038/529456a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26819028" target="_blank"〉PubMed〈/a〉
    Keywords: Accreditation ; Animals ; Calibration ; Financing, Organized/organization & administration ; Laboratories/standards ; Quality Control ; Reproducibility of Results ; Research/*standards ; *Research Design ; Scientific Misconduct
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-01-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gewin, Virginia -- England -- Nature. 2016 Jan 7;529(7584):117-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26744755" target="_blank"〉PubMed〈/a〉
    Keywords: *Access to Information ; Competitive Behavior ; *Information Dissemination ; Journal Impact Factor ; Publishing ; Reproducibility of Results ; *Research/standards ; *Research Personnel/psychology/standards ; Research Support as Topic ; Software
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-03-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makin, Simon -- England -- Nature. 2016 Mar 3;531(7592):S10-1. doi: 10.1038/531S10a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934518" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Enhancement/*methods ; Brain/*physiology ; Child ; Cognition/physiology ; Controlled Clinical Trials as Topic ; Games, Experimental ; Humans ; Intelligence/physiology ; Memory, Short-Term/*physiology ; Meta-Analysis as Topic ; Reproducibility of Results ; *Uncertainty ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- England -- Nature. 2016 Mar 10;531(7593):151. doi: 10.1038/nature.2016.19503.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961635" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research/*methods/*standards ; Models, Biological ; *Probability ; Reproducibility of Results ; *Research Design ; Research Personnel/*education ; Statistics as Topic/*methods/*standards ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-03-11
    Description: Directional control of tip-growing cells is essential for proper tissue organization and cell-to-cell communication in animals and plants. In the sexual reproduction of flowering plants, the tip growth of the male gametophyte, the pollen tube, is precisely guided by female cues to achieve fertilization. Several female-secreted peptides have recently been identified as species-specific attractants that directly control the direction of pollen tube growth. However, the method by which pollen tubes precisely and promptly respond to the guidance signal from their own species is unknown. Here we show that tip-localized pollen-specific receptor-like kinase 6 (PRK6) with an extracellular leucine-rich repeat domain is an essential receptor for sensing of the LURE1 attractant peptide in Arabidopsis thaliana under semi-in-vivo conditions, and is important for ovule targeting in the pistil. PRK6 interacted with pollen-expressed ROPGEFs (Rho of plant guanine nucleotide-exchange factors), which are important for pollen tube growth through activation of the signalling switch Rho GTPase ROP1 (refs 7, 8). PRK6 conferred responsiveness to AtLURE1 in pollen tubes of the related species Capsella rubella. Furthermore, our genetic and physiological data suggest that PRK6 signalling through ROPGEFs and sensing of AtLURE1 are achieved in cooperation with the other PRK family receptors, PRK1, PRK3 and PRK8. Notably, the tip-focused PRK6 accumulated asymmetrically towards an external AtLURE1 source before reorientation of pollen tube tip growth. These results demonstrate that PRK6 acts as a key membrane receptor for external AtLURE1 attractants, and recruits the core tip-growth machinery, including ROP signalling proteins. This work provides insights into the orchestration of efficient pollen tube growth and species-specific pollen tube attraction by multiple receptors during male-female communication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeuchi, Hidenori -- Higashiyama, Tetsuya -- England -- Nature. 2016 Mar 10;531(7593):245-8. doi: 10.1038/nature17413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. ; JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. ; 3Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26961657" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Capsella/genetics/metabolism/physiology ; GTP-Binding Proteins/metabolism ; Mutation ; Ovule/metabolism ; Phenotype ; Phosphotransferases/chemistry/genetics/*metabolism ; Pollen Tube/genetics/*growth & development/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Reproduction ; *Signal Transduction ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karve, Shraddha Madhav -- Mangalam, Madhur -- England -- Nature. 2016 Mar 17;531(7594):305. doi: 10.1038/531305d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Indian Institute of Science Education and Research, Pune, India. ; University of Georgia, Athens, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26983529" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Motivation ; *Publishing ; Reproducibility of Results ; Research/*standards ; Research Personnel/psychology/*standards ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-01-21
    Description: The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by 'high-risk' mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Zapien, Denise -- Ruiz, Francesc Xavier -- Poirson, Juline -- Mitschler, Andre -- Ramirez, Juan -- Forster, Anne -- Cousido-Siah, Alexandra -- Masson, Murielle -- Vande Pol, Scott -- Podjarny, Alberto -- Trave, Gilles -- Zanier, Katia -- R01CA134737/CA/NCI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):541-5. doi: 10.1038/nature16481. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Equipe labellisee Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch, France. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France. ; Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Human papillomavirus 16/chemistry/*metabolism/pathogenicity ; Humans ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Oncogene Proteins, Viral/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; *Proteolysis ; Repressor Proteins/*chemistry/genetics/*metabolism ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitin-Protein Ligases/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chi, Kelly Rae -- England -- Nature. 2016 Apr 14;532(7598):269-71. doi: 10.1038/532269a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27075102" target="_blank"〉PubMed〈/a〉
    Keywords: Aged, 80 and over ; Biopsy/economics/*methods ; Blood Platelets/cytology ; DNA Mutational Analysis/economics/methods ; DNA, Neoplasm/*blood/genetics ; Drug Resistance, Neoplasm/genetics ; Exosomes/genetics ; Female ; Humans ; Neoplasm Metastasis/diagnosis/genetics ; Neoplasm Recurrence, Local/blood/diagnosis/genetics ; Neoplasms/*blood/*diagnosis/drug therapy/genetics ; Neoplastic Cells, Circulating/metabolism ; Phagocytosis ; Polymerase Chain Reaction ; Reproducibility of Results ; Sensitivity and Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-03-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bourzac, Katherine -- England -- Nature. 2016 Mar 3;531(7592):S6-8. doi: 10.1038/531S6a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934525" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Biomedical Enhancement/*methods ; Brain/*physiology ; Female ; Humans ; Intelligence Tests ; Male ; Memory/physiology ; Patient Safety ; Reproducibility of Results ; Self Care/adverse effects ; *Transcranial Direct Current Stimulation/adverse effects ; *Transcranial Magnetic Stimulation ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boulton, Geoffrey -- England -- Nature. 2016 Feb 18;530(7590):281. doi: 10.1038/530281c.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ICSU CODATA; and University of Edinburgh, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26887481" target="_blank"〉PubMed〈/a〉
    Keywords: Datasets as Topic ; Information Dissemination/*legislation & jurisprudence ; International Cooperation/*legislation & jurisprudence ; Knowledge ; Open Access Publishing/*legislation & jurisprudence ; Reproducibility of Results ; *Research/legislation & jurisprudence
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reardon, Sara -- England -- Nature. 2016 Feb 18;530(7590):264. doi: 10.1038/nature.2016.19335.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26887470" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Feed/*analysis/standards ; Animal Nutritional Physiological Phenomena ; Animals ; *Animals, Laboratory/genetics/microbiology ; Confounding Factors (Epidemiology) ; Diet/standards/veterinary ; *Environment ; Female ; Gastrointestinal Microbiome ; *Housing, Animal ; Humans ; Lighting ; Male ; Mice ; Mice, Inbred Strains ; Models, Animal ; Reproducibility of Results ; *Research Design/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-02-26
    Description: Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoued, Abdelrahim -- Durand, Eric -- Brunet, Yannick R -- Spinelli, Silvia -- Douzi, Badreddine -- Guzzo, Mathilde -- Flaugnatti, Nicolas -- Legrand, Pierre -- Journet, Laure -- Fronzes, Remi -- Mignot, Tam -- Cambillau, Christian -- Cascales, Eric -- England -- Nature. 2016 Mar 3;531(7592):59-63. doi: 10.1038/nature17182. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Ingenierie des Systemes Macromoleculaires, Institut de Microbiologie de la Mediterranee, CNRS UMR7255, Aix-Marseille Universite, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; Architecture et Fonction des Macromolecules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Universite, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France. ; G5 Biologie structurale de la secretion bacterienne, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France. ; Laboratoire de Chimie Bacterienne, Institut de Microbiologie de la Mediterranee, CNRS UMR7283, Aix-Marseille Universite, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. ; Synchrotron Soleil, L'Orme des merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909579" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry/ultrastructure ; Escherichia coli Proteins/*chemistry/*metabolism/ultrastructure ; Microscopy, Electron ; Microscopy, Fluorescence ; Models, Molecular ; *Polymerization ; Protein Structure, Tertiary ; Type VI Secretion Systems/chemistry/metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cressey, Daniel -- England -- Nature. 2016 Mar 3;531(7592):128.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26949773" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Experimentation/*standards ; Animals ; Animals, Laboratory ; Bias (Epidemiology) ; Confidentiality ; Confounding Factors (Epidemiology) ; Feedback ; Guidelines as Topic ; *Internet ; Quality Control ; Random Allocation ; Reproducibility of Results ; *Research Design ; Sample Size ; *Software
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2016 Feb 18;530(7590):254. doi: 10.1038/530254a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26887455" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Feed/*analysis ; *Animal Nutritional Physiological Phenomena ; Animals ; Animals, Laboratory/*physiology ; Diet/*veterinary ; Environment ; Japan ; Longevity/*physiology ; Mice ; Models, Animal ; Reproducibility of Results ; Research Design
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-05-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buenz, Eric -- England -- Nature. 2016 May 5;533(7601):36. doi: 10.1038/533036d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nelson Marlborough Institute of Technology, Nelson, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27147021" target="_blank"〉PubMed〈/a〉
    Keywords: *Efficiency, Organizational/ethics ; *Goals ; Humans ; Industry/*ethics/organization & administration/*standards ; Reproducibility of Results ; Research/manpower/organization & administration/*standards ; Research Personnel/*ethics/organization & administration/psychology/*standards ; Scientific Misconduct/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-03-16
    Description: Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herbst, Dominik A -- Jakob, Roman P -- Zahringer, Franziska -- Maier, Timm -- England -- Nature. 2016 Mar 24;531(7595):533-7. doi: 10.1038/nature16993. Epub 2016 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26976449" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*chemistry/*metabolism ; Crystallography, X-Ray ; Fatty Acid Synthases/metabolism ; Models, Molecular ; Mycobacterium smegmatis/enzymology ; Oxidation-Reduction ; Polyketide Synthases/*chemistry/*metabolism ; Protein Structure, Tertiary ; Virulence Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-02-11
    Description: Sexual reproduction requires recognition between the male and female gametes. In flowering plants, the immobile sperms are delivered to the ovule-enclosed female gametophyte by guided pollen tube growth. Although the female gametophyte-secreted peptides have been identified to be the chemotactic attractant to the pollen tube, the male receptor(s) is still unknown. Here we identify a cell-surface receptor heteromer, MDIS1-MIK, on the pollen tube that perceives female attractant LURE1 in Arabidopsis thaliana. MDIS1, MIK1 and MIK2 are plasma-membrane-localized receptor-like kinases with extracellular leucine-rich repeats and an intracellular kinase domain. LURE1 specifically binds the extracellular domains of MDIS1, MIK1 and MIK2, whereas mdis1 and mik1 mik2 mutant pollen tubes respond less sensitively to LURE1. Furthermore, LURE1 triggers dimerization of the receptors and activates the kinase activity of MIK1. Importantly, transformation of AtMDIS1 to the sister species Capsella rubella can partially break down the reproductive isolation barrier. Our findings reveal a new mechanism of the male perception of the female attracting signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tong -- Liang, Liang -- Xue, Yong -- Jia, Peng-Fei -- Chen, Wei -- Zhang, Meng-Xia -- Wang, Ying-Chun -- Li, Hong-Ju -- Yang, Wei-Cai -- England -- Nature. 2016 Mar 10;531(7593):241-4. doi: 10.1038/nature16975. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; University of Chinese Academy of Sciences, Beijing 100049, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863186" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Capsella/genetics/metabolism/physiology ; Cell Membrane/metabolism ; Mutation ; Ovule/metabolism ; Phenotype ; Phosphotransferases/chemistry/genetics/*metabolism ; Pollen Tube/genetics/growth & development/metabolism ; Protein Kinases/genetics/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Reproduction ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ward, Alyssa -- Baldwin, Thomas O -- Antin, Parker B -- England -- Nature. 2016 Apr 14;532(7598):177. doi: 10.1038/532177d.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ; University of California, Riverside, USA. ; University of Arizona, Tucson, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27075087" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Confounding Factors (Epidemiology) ; *Learning ; Mice ; Mice, Transgenic/genetics ; National Institutes of Health (U.S.)/economics ; Reproducibility of Results ; Research/*standards ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-01-28
    Description: Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Charles Y -- Erkek, Serap -- Tong, Yiai -- Yin, Linlin -- Federation, Alexander J -- Zapatka, Marc -- Haldipur, Parthiv -- Kawauchi, Daisuke -- Risch, Thomas -- Warnatz, Hans-Jorg -- Worst, Barbara C -- Ju, Bensheng -- Orr, Brent A -- Zeid, Rhamy -- Polaski, Donald R -- Segura-Wang, Maia -- Waszak, Sebastian M -- Jones, David T W -- Kool, Marcel -- Hovestadt, Volker -- Buchhalter, Ivo -- Sieber, Laura -- Johann, Pascal -- Chavez, Lukas -- Groschel, Stefan -- Ryzhova, Marina -- Korshunov, Andrey -- Chen, Wenbiao -- Chizhikov, Victor V -- Millen, Kathleen J -- Amstislavskiy, Vyacheslav -- Lehrach, Hans -- Yaspo, Marie-Laure -- Eils, Roland -- Lichter, Peter -- Korbel, Jan O -- Pfister, Stefan M -- Bradner, James E -- Northcott, Paul A -- England -- Nature. 2016 Feb 4;530(7588):57-62. doi: 10.1038/nature16546. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Oncology, Dana Farber Cancer Institute (DFCI), Boston, Massachusetts 02215, USA. ; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany. ; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Molecular Physiology &Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA. ; Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98105, USA. ; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. ; Department of Bone Marrow Transplantation &Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany. ; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Translational Oncology, NCT Heidelberg, 69120 Heidelberg, Germany. ; Department of Neuropathology, NN Burdenko Neurosurgical Institute, 125047 Moscow, Russia. ; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and Department of Neuropathology University Hospital, 69120 Heidelberg, Germany. ; Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA. ; Department of Pediatrics, Genetics Division, University of Washington, Seattle, Washington 98195, USA. ; Institute of Pharmacy and Molecular Biotechnology and BioQuant, University of Heidelberg, 69117 Heidelberg, Germany. ; Department of Pediatrics, University of Heidelberg, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814967" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebellar Neoplasms/classification/*genetics/*pathology ; Enhancer Elements, Genetic/*genetics ; Female ; Gene Expression Regulation, Neoplastic/*genetics ; Gene Regulatory Networks/genetics ; Genes, Neoplasm/genetics ; Genes, Reporter/genetics ; Humans ; Male ; Medulloblastoma/*classification/genetics/*pathology ; Mice ; Reproducibility of Results ; Transcription Factors/*metabolism ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-03-31
    Description: Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847710/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847710/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Zhonghui -- Luo, Xuelian -- Yu, Hongtao -- GM107415/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Apr 7;532(7597):131-4. doi: 10.1038/nature17402. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA. ; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA. ; Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding, Competitive/drug effects ; Cell Cycle Proteins/chemistry/*metabolism ; Chaetomium/*enzymology ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; Chromosome Segregation ; Crystallography, X-Ray ; Models, Molecular ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Proteolysis ; Proto-Oncogene Proteins/metabolism ; Securin/chemistry/genetics/metabolism/pharmacology ; Separase/antagonists & inhibitors/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- England -- Nature. 2016 Feb 11;530(7589):141. doi: 10.1038/nature.2016.19269.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863961" target="_blank"〉PubMed〈/a〉
    Keywords: Biomedical Research/*standards ; *Biotechnology ; Drug Industry ; *Open Access Publishing ; Reproducibility of Results ; *Uncertainty ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-09
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-11-11
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...