ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Biological  (55)
  • American Association for the Advancement of Science (AAAS)  (55)
  • EMBO Press
  • Hindawi
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Springer
  • 2005-2009  (55)
  • 2007  (55)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (55)
  • EMBO Press
  • Hindawi
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Springer
Years
  • 2005-2009  (55)
Year
  • 1
    Publication Date: 2007-04-07
    Description: Pleckstrin homology (PH) domain-mediated protein recruitment to cellular membranes is of paramount importance for signal transduction. The recruitment of many PH domains is controlled through production and turnover of their membrane ligand, phosphatidylinositol 3,4,5-trisphosphate (PIP3). We show that phosphorylation of the second messenger inositol 1,4,5-trisphosphate (IP3) into inositol 1,3,4,5-tetrakisphosphate (IP4) establishes another mode of PH domain regulation through a soluble ligand. At physiological concentrations, IP4 promoted PH domain binding to PIP3. In primary mouse CD4+CD8+ thymocytes, this was required for full activation of the protein tyrosine kinase Itk after T cell receptor engagement. Our data suggest that IP4 establishes a feedback loop of phospholipase C-gamma1 activation through Itk that is essential for T cell development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Yina H -- Grasis, Juris A -- Miller, Andrew T -- Xu, Ruo -- Soonthornvacharin, Stephen -- Andreotti, Amy H -- Tsoukas, Constantine D -- Cooke, Michael P -- Sauer, Karsten -- AR048848/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2007 May 11;316(5826):886-9. Epub 2007 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412921" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; *Amino Acid Motifs ; Animals ; Diglycerides/metabolism ; Feedback, Physiological ; Inositol 1,4,5-Trisphosphate/metabolism ; Inositol Phosphates/*metabolism/pharmacology ; Lymphopoiesis ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Organ Culture Techniques ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C gamma/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Receptors, Antigen, T-Cell/immunology ; Second Messenger Systems ; Signal Transduction ; Solubility ; T-Lymphocytes/cytology/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCormick, Sheila -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):606-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Gene Expression Center, USDA Agricultural Research Service-UC Berkeley, 800 Buchanan Street, Albany, CA 94710, USA. sheilamc@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673644" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/*physiology ; Arabidopsis Proteins/genetics/*metabolism ; Cell Membrane/enzymology ; Crosses, Genetic ; Evolution, Molecular ; Flowers/cytology/enzymology/*physiology ; Genes, Plant ; Ligands ; Models, Biological ; Mutation ; Phosphotransferases/*genetics/*metabolism ; Pollen Tube/growth & development/*physiology ; Reproduction ; Signal Transduction ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-07-07
    Description: Understanding the relationship between diversity and stability requires a knowledge of how species interact with each other and how each is affected by the environment. The relationship is also complex, because the concept of stability is multifaceted; different types of stability describing different properties of ecosystems lead to multiple diversity-stability relationships. A growing number of empirical studies demonstrate positive diversity-stability relationships. These studies, however, have emphasized only a few types of stability, and they rarely uncover the mechanisms responsible for stability. Because anthropogenic changes often affect stability and diversity simultaneously, diversity-stability relationships cannot be understood outside the context of the environmental drivers affecting both. This shifts attention away from diversity-stability relationships toward the multiple factors, including diversity, that dictate the stability of ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ives, Anthony R -- Carpenter, Stephen R -- New York, N.Y. -- Science. 2007 Jul 6;317(5834):58-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Wisconsin, Madison, WI 53706, USA. arives@wisc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17615333" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Ecosystem ; Environment ; Extinction, Biological ; Models, Biological ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1352-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347420" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Biomechanical Phenomena ; Extremities/innervation/physiology ; Mesencephalon/physiology ; Models, Biological ; Models, Neurological ; Muscle Contraction ; Nerve Net/*physiology ; *Robotics ; Salamandra/anatomy & histology/*physiology ; Spinal Cord/*physiology ; Swimming ; *Walking
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-08-25
    Description: Most plasmalemmal proteins organize in submicrometer-sized clusters whose architecture and dynamics are still enigmatic. With syntaxin 1 as an example, we applied a combination of far-field optical nanoscopy, biochemistry, fluorescence recovery after photobleaching (FRAP) analysis, and simulations to show that clustering can be explained by self-organization based on simple physical principles. On average, the syntaxin clusters exhibit a diameter of 50 to 60 nanometers and contain 75 densely crowded syntaxins that dynamically exchange with freely diffusing molecules. Self-association depends on weak homophilic protein-protein interactions. Simulations suggest that clustering immobilizes and conformationally constrains the molecules. Moreover, a balance between self-association and crowding-induced steric repulsions is sufficient to explain both the size and dynamics of syntaxin clusters and likely of many oligomerizing membrane proteins that form supramolecular structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sieber, Jochen J -- Willig, Katrin I -- Kutzner, Carsten -- Gerding-Reimers, Claas -- Harke, Benjamin -- Donnert, Gerald -- Rammner, Burkhard -- Eggeling, Christian -- Hell, Stefan W -- Grubmuller, Helmut -- Lang, Thorsten -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1072-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717182" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Membrane/chemistry/*metabolism ; Chemistry, Physical ; Computer Simulation ; Diffusion ; Fluorescence Recovery After Photobleaching ; Green Fluorescent Proteins ; Immunoblotting ; Microscopy, Confocal ; Microscopy, Fluorescence ; Models, Biological ; Nanotechnology ; PC12 Cells ; Physicochemical Phenomena ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Syntaxin 1/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-03-31
    Description: Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast function and is essential for the photoautotrophic life-style of plants. Three retrograde signals have been described, but little is known of their signaling pathways. We show here that GUN1, a chloroplast-localized pentatricopeptide-repeat protein, and ABI4, an Apetala 2 (AP2)-type transcription factor, are common to all three pathways. ABI4 binds the promoter of a retrograde-regulated gene through a conserved motif found in close proximity to a light-regulatory element. We propose a model in which multiple indicators of aberrant plastid function in Arabidopsis are integrated upstream of GUN1 within plastids, which leads to ABI4-mediated repression of nuclear-encoded genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koussevitzky, Shai -- Nott, Ajit -- Mockler, Todd C -- Hong, Fangxin -- Sachetto-Martins, Gilberto -- Surpin, Marci -- Lim, Jason -- Mittler, Ron -- Chory, Joanne -- DRG-1865-05/PHS HHS/ -- F32 GM 18172/GM/NIGMS NIH HHS/ -- F32 GM 69090/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 May 4;316(5825):715-9. Epub 2007 Mar 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395793" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Cell Nucleus/*metabolism/*microbiology ; Chloroplasts/*metabolism ; DNA, Plant/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Electron Transport ; *Gene Expression Regulation, Plant ; Light-Harvesting Protein Complexes/genetics ; Lincomycin/pharmacology ; Models, Biological ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protoporphyrins/metabolism ; Pyridazines/pharmacology ; Signal Transduction ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-08-19
    Description: In Gram-negative bacteria and eukaryotic organelles, beta-barrel proteins of the outer membrane protein 85-two-partner secretion B (Omp85-TpsB) superfamily are essential components of protein transport machineries. The TpsB transporter FhaC mediates the secretion of Bordetella pertussis filamentous hemagglutinin (FHA). We report the 3.15 A crystal structure of FhaC. The transporter comprises a 16-stranded beta barrel that is occluded by an N-terminal alpha helix and an extracellular loop and a periplasmic module composed of two aligned polypeptide-transport-associated (POTRA) domains. Functional data reveal that FHA binds to the POTRA 1 domain via its N-terminal domain and likely translocates the adhesin-repeated motifs in an extended hairpin conformation, with folding occurring at the cell surface. General features of the mechanism obtained here are likely to apply throughout the superfamily.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clantin, Bernard -- Delattre, Anne-Sophie -- Rucktooa, Prakash -- Saint, Nathalie -- Meli, Albano C -- Locht, Camille -- Jacob-Dubuisson, Francoise -- Villeret, Vincent -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):957-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UMR8161 CNRS, Institut de Biologie de Lille, Universite de Lille 1, Universite de Lille 2, 1 rue du Prof. Calmette, F-59021 Lille cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702945" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/chemistry/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Bordetella pertussis/*chemistry/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/chemistry/metabolism ; Membrane Transport Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport ; Virulence Factors, Bordetella/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-03-31
    Description: A marine ecosystem model seeded with many phytoplankton types, whose physiological traits were randomly assigned from ranges defined by field and laboratory data, generated an emergent community structure and biogeography consistent with observed global phytoplankton distributions. The modeled organisms included types analogous to the marine cyanobacterium Prochlorococcus. Their emergent global distributions and physiological properties simultaneously correspond to observations. This flexible representation of community structure can be used to explore relations between ecosystems, biogeochemical cycles, and climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Follows, Michael J -- Dutkiewicz, Stephanie -- Grant, Scott -- Chisholm, Sallie W -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1843-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 54-1514 MIT, Cambridge, MA 02139, USA. mick@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395828" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; Computer Simulation ; *Ecosystem ; Geography ; Light ; Mathematics ; Models, Biological ; Oceans and Seas ; Phytoplankton/growth & development/*physiology ; Prochlorococcus/growth & development/*physiology ; Seawater/*microbiology ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-05-26
    Description: Telford et al. (Brevia, 19 May 2006, p. 1015) reported that freshwater diatoms exhibit regional-scale richness-pH relationships that depend substantially on regional habitat availability. On this basis, the authors argued that, despite their microscopic size, diatoms are not ubiquitously dispersed. Here, I describe my demonstration that their primary evidence against the ubiquitous dispersal hypothesis is spurious.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pither, Jason -- New York, N.Y. -- Science. 2007 May 25;316(5828):1124; author reply 1124.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Arizona, BSW 310, 1041 East Lowell Street, Tucson, AZ 85721, USA. pitherj@email.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525319" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; Diatoms/*physiology ; *Ecosystem ; *Environmental Microbiology ; Europe ; Fresh Water ; Hydrogen-Ion Concentration ; Models, Biological ; North America ; Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-02-10
    Description: A central issue in the regulation of apoptosis by the Bcl-2 family is whether its BH3-only members initiate apoptosis by directly binding to the essential cell-death mediators Bax and Bak, or whether they can act indirectly, by engaging their pro-survival Bcl-2-like relatives. Contrary to the direct-activation model, we show that Bax and Bak can mediate apoptosis without discernable association with the putative BH3-only activators (Bim, Bid, and Puma), even in cells with no Bim or Bid and reduced Puma. Our results indicate that BH3-only proteins induce apoptosis at least primarily by engaging the multiple pro-survival relatives guarding Bax and Bak.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willis, Simon N -- Fletcher, Jamie I -- Kaufmann, Thomas -- van Delft, Mark F -- Chen, Lin -- Czabotar, Peter E -- Ierino, Helen -- Lee, Erinna F -- Fairlie, W Douglas -- Bouillet, Philippe -- Strasser, Andreas -- Kluck, Ruth M -- Adams, Jerry M -- Huang, David C S -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):856-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Humans ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasm Proteins/metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism ; bcl-2 Homologous Antagonist-Killer Protein/metabolism ; bcl-2-Associated X Protein/chemistry/*metabolism ; bcl-Associated Death Protein/metabolism ; bcl-X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-26
    Description: Single-molecule force experiments in vitro enable the characterization of the mechanical response of biological matter at the nanometer scale. However, they do not reveal the molecular mechanisms underlying mechanical function. These can only be readily studied through molecular dynamics simulations of atomic structural models: "in silico" (by computer analysis) single-molecule experiments. Steered molecular dynamics simulations, in which external forces are used to explore the response and function of macromolecules, have become a powerful tool complementing and guiding in vitro single-molecule experiments. The insights provided by in silico experiments are illustrated here through a review of recent research in three areas of protein mechanics: elasticity of the muscle protein titin and the extracellular matrix protein fibronectin; linker-mediated elasticity of the cytoskeleton protein spectrin; and elasticity of ankyrin repeats, a protein module found ubiquitously in cells but with an as-yet unclear function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sotomayor, Marcos -- Schulten, Klaus -- 1 R01 GM073655/GM/NIGMS NIH HHS/ -- P41 RR05969/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1144-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Illinois at Urbana-Champaign, and Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525328" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrin Repeat/*physiology ; Computer Simulation ; Connectin ; Elasticity ; Fibronectins/*physiology ; Humans ; Models, Biological ; Muscle Proteins/*physiology ; Protein Kinases/*physiology ; Spectrin/*physiology ; Spectrum Analysis/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kahl, Barbara C -- Peters, Georg -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1082-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Medical Microbiology, University of Munster, Domagkstrasse 10, D-49149 Munster, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322047" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/genetics/metabolism ; Animals ; Bacterial Toxins/analysis ; Exotoxins/analysis/*physiology ; Gene Expression Regulation, Bacterial ; Hemorrhage ; Leukocidins/analysis/*physiology ; Lung/chemistry/microbiology/*pathology ; Methicillin Resistance ; Mice ; Models, Biological ; Necrosis ; Phagocytosis ; Pneumonia, Staphylococcal/*microbiology/*pathology ; Respiratory Mucosa/microbiology ; Staphylococcal Protein A/genetics/*metabolism ; Staphylococcus aureus/genetics/growth & development/metabolism/*pathogenicity ; Virulence Factors/analysis/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Proud, Christopher G -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):926-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991850" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Cells, Cultured ; Guanosine Triphosphate/metabolism ; Humans ; Insulin/metabolism ; Models, Biological ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes ; Neuropeptides/*metabolism ; Protein Binding ; Protein Kinases/*metabolism ; Proteins ; *Signal Transduction ; Sirolimus/metabolism/pharmacology ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Protein 1A/metabolism ; Tacrolimus Binding Proteins/antagonists & inhibitors/*metabolism ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-02-10
    Description: The bacterium Myxococcus xanthus has two motility systems: S motility, which is powered by type IV pilus retraction, and A motility, which is powered by unknown mechanism(s). We found that A motility involved transient adhesion complexes that remained at fixed positions relative to the substratum as cells moved forward. Complexes assembled at leading cell poles and dispersed at the rear of the cells. When cells reversed direction, the A-motility clusters relocalized to the new leading poles together with S-motility proteins. The Frz chemosensory system coordinated the two motility systems. The dynamics of protein cluster localization suggest that intracellular motors and force transmission by dynamic focal adhesions can power bacterial motility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4095873/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4095873/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mignot, Tam -- Shaevitz, Joshua W -- Hartzell, Patricia L -- Zusman, David R -- GM20509/GM/NIGMS NIH HHS/ -- R01 GM020509/GM/NIGMS NIH HHS/ -- R01 GM075242-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):853-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. tmignot@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289998" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/pharmacology ; *Bacterial Adhesion ; Bacterial Proteins/analysis/genetics/metabolism/*physiology ; Cephalexin/pharmacology ; Fimbriae, Bacterial/physiology ; Focal Adhesions/*physiology ; Luminescent Proteins ; Models, Biological ; Molecular Motor Proteins/analysis/genetics/*physiology ; Movement ; Myxococcus xanthus/cytology/genetics/*physiology ; Recombinant Fusion Proteins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-10
    Description: Prions are lethal mammalian pathogens composed of aggregated conformational isomers of a host-encoded glycoprotein and which appear to lack nucleic acids. Their unique biology, allied with the public-health risks posed by prion zoonoses such as bovine spongiform encephalopathy, has focused much attention on the molecular basis of prion propagation and the "species barrier" that controls cross-species transmission. Both are intimately linked to understanding how multiple prion "strains" are encoded by a protein-only agent. The underlying mechanisms are clearly of much wider importance, and analogous protein-based inheritance mechanisms are recognized in yeast and fungi. Recent advances suggest that prions themselves are not directly neurotoxic, but rather their propagation involves production of toxic species, which may be uncoupled from infectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collinge, John -- Clarke, Anthony R -- MC_U123160656/Medical Research Council/United Kingdom -- MC_U123192748/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):930-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK. j.collinge@prion.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991853" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Chemistry ; Humans ; Models, Biological ; PrPC Proteins/chemistry/isolation & purification/metabolism ; PrPSc Proteins/*chemistry/isolation & purification/metabolism/*pathogenicity ; Prion Diseases/*metabolism/*transmission ; Prions/*chemistry/isolation & purification/*pathogenicity ; Protein Conformation ; Protein Folding ; Recombinant Proteins/chemistry ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2007-01-06
    Description: Endoplasmic reticulum-localized protein-tyrosine phosphatase PTP1B terminates growth factor signal transduction by dephosphorylation of receptor tyrosine kinases (RTKs). But how PTP1B allows for RTK signaling in the cytoplasm is unclear. In order to test whether PTP1B activity is spatially regulated, we developed a method based on Forster resonant energy transfer for imaging enzyme-substrate (ES) intermediates in live cells. We observed the establishment of a steady-state ES gradient across the cell. This gradient exhibited robustness to cell-to-cell variability, growth factor activation, and RTK localization, which demonstrated spatial regulation of PTP1B activity. Such regulation may be important for generating distinct cellular environments that permit RTK signal transduction and that mediate its eventual termination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yudushkin, Ivan A -- Schleifenbaum, Andreas -- Kinkhabwala, Ali -- Neel, Benjamin G -- Schultz, Carsten -- Bastiaens, Philippe I H -- R01 DK60838/DK/NIDDK NIH HHS/ -- R37 49152/PHS HHS/ -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):115-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Catalysis ; Cell Line, Tumor ; Cercopithecus aethiops ; Epidermal Growth Factor/metabolism/pharmacology ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Mathematics ; Microscopy, Fluorescence ; Models, Biological ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Protein Tyrosine Phosphatases/*metabolism ; Receptor Protein-Tyrosine Kinases/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kearns, Daniel B -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):773-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA. dbkearns@indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289965" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Adhesion ; Bacterial Proteins/genetics/*physiology ; Fimbriae, Bacterial/physiology ; Focal Adhesions/*physiology ; Models, Biological ; Molecular Motor Proteins/genetics/*physiology ; Movement ; Myxococcus xanthus/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2007-10-06
    Description: The simple circadian oscillator found in cyanobacteria can be reconstituted in vitro using three proteins-KaiA, KaiB, and KaiC. The total phosphorylation level of KaiC oscillates with a circadian period, but the mechanism underlying its sustained oscillation remains unclear. We have shown that four forms of KaiC differing in their phosphorylation state appear in an ordered pattern arising from the intrinsic autokinase and autophosphatase rates of KaiC and their modulation by KaiA. Kinetic and biochemical data indicate that one of these phosphoforms inhibits the activity of KaiA through interaction with KaiB, providing the crucial feedback that sustains oscillation. A mathematical model constrained by experimental data quantitatively reproduces the circadian period and the distinctive dynamics of the four phosphoforms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rust, Michael J -- Markson, Joseph S -- Lane, William S -- Fisher, Daniel S -- O'Shea, Erin K -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):809-12. Epub 2007 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Departments of Molecular and Cellular Biology and of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916691" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*physiology ; Biological Clocks/*physiology ; Circadian Rhythm/*physiology ; Circadian Rhythm Signaling Peptides and Proteins ; Models, Biological ; Phosphorylation ; Synechococcus/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hajnoczky, Gyorgy -- Hoek, Jan B -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):607-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA. gyorgy.hajnoczky@jefferson.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272709" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; *Apoptosis ; Autophagy ; Calcium Signaling ; *Cell Aging ; Cytoplasm/metabolism ; Hydrogen Peroxide/metabolism/pharmacology ; Intracellular Membranes/metabolism ; Mice ; Mitochondria/*metabolism ; Models, Biological ; Peptidylprolyl Isomerase/metabolism ; Permeability ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Kinase C beta ; Protein Transport ; Reactive Oxygen Species/metabolism ; Shc Signaling Adaptor Proteins ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolan, Liam -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):377-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK. liam.dolan@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446377" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Biological Evolution ; Cell Nucleus/metabolism ; Feedback, Physiological ; Genetic Engineering ; Models, Biological ; Plant Cells ; Plant Development ; Plant Roots/cytology/growth & development/*metabolism ; Plants/genetics/metabolism ; Protein Transport ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldroyd, Giles E D -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):52-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK. giles.oldroyd@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204633" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cytokinins/*metabolism ; Lipopolysaccharides/metabolism ; Lotus/cytology/metabolism/*microbiology/*physiology ; Models, Biological ; Mutation ; Nitrogen Fixation ; Plant Epidermis/cytology/metabolism ; Plant Roots/cytology/microbiology ; Protein Kinases/genetics/*metabolism ; Receptors, Cell Surface/genetics/metabolism ; Rhizobiaceae/physiology ; Root Nodules, Plant/cytology/*growth & development/microbiology ; *Signal Transduction ; Symbiosis ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2007-04-07
    Description: Kinesin-1 is a two-headed molecular motor that walks along microtubules, with each step gated by adenosine triphosphate (ATP) binding. Existing models for the gating mechanism propose a role for the microtubule lattice. We show that unpolymerized tubulin binds to kinesin-1, causing tubulin-activated release of adenosine diphosphate (ADP). With no added nucleotide, each kinesin-1 dimer binds one tubulin heterodimer. In adenylyl-imidodiphosphate (AMP-PNP), a nonhydrolyzable ATP analog, each kinesin-1 dimer binds two tubulin heterodimers. The data reveal an ATP gate that operates independently of the microtubule lattice, by ATP-dependent release of a steric or allosteric block on the tubulin binding site of the tethered kinesin-ADP head.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504013/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504013/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, Maria C -- Drummond, Douglas R -- Kain, Susan -- Hoeng, Julia -- Amos, Linda -- Cross, Robert A -- G0200542/Medical Research Council/United Kingdom -- G0200542(63814)/Medical Research Council/United Kingdom -- MC_U105184313/Medical Research Council/United Kingdom -- U.1051.04.002(78842)/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):120-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Motors Group, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412962" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*metabolism ; Adenylyl Imidodiphosphate/metabolism ; Animals ; Binding Sites ; Dimerization ; Kinesin/chemistry/*metabolism ; Microtubules/*metabolism ; Models, Biological ; Molecular Motor Proteins/*metabolism ; Neurospora ; Protein Conformation ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Schizosaccharomyces ; Tubulin/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-05-15
    Description: Hematopoietic stem cells in the bone marrow give rise to lymphoid progenitors, which subsequently differentiate into B and T lymphocytes. Here we show that the proto-oncogene LRF plays an essential role in the B versus T lymphoid cell-fate decision. We demonstrate that LRF is key for instructing early lymphoid progenitors in mice to develop into B lineage cells by repressing T cell-instructive signals produced by the cell-fate signal protein, Notch. We propose a new model for lymphoid lineage commitment, in which LRF acts as a master regulator of the cell's determination of B versus T lineage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978506/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978506/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, Takahiro -- Merghoub, Taha -- Hobbs, Robin M -- Dong, Lin -- Maeda, Manami -- Zakrzewski, Johannes -- van den Brink, Marcel R M -- Zelent, Arthur -- Shigematsu, Hirokazu -- Akashi, Koichi -- Teruya-Feldstein, Julie -- Cattoretti, Giorgio -- Pandolfi, Pier Paolo -- CA-102142/CA/NCI NIH HHS/ -- R01 CA102142/CA/NCI NIH HHS/ -- R01 CA102142-06A1/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 11;316(5826):860-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17495164" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*cytology/physiology ; Bone Marrow Cells/cytology ; Cell Lineage ; Cells, Cultured ; DNA-Binding Proteins/*genetics/physiology ; Gene Deletion ; Hematopoietic Stem Cells/*cytology/physiology ; *Lymphopoiesis ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Biological ; *Proto-Oncogenes ; Receptors, Notch/*metabolism ; Signal Transduction ; T-Lymphocytes/*cytology/physiology ; Thymus Gland/cytology ; Transcription Factors/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2007-09-01
    Description: MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non-protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinson's disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongpil -- Inoue, Keiichi -- Ishii, Jennifer -- Vanti, William B -- Voronov, Sergey V -- Murchison, Elizabeth -- Hannon, Gregory -- Abeliovich, Asa -- R01 NS064433/NS/NINDS NIH HHS/ -- R01 NS064433-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1220-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology and Neurology, Center for Neurobiology and Behavior, and Taub Institute, Columbia University, College of Physicians and Surgeons 15-403, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761882" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Aged ; Aged, 80 and over ; Animals ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Dopamine/*metabolism ; Embryonic Stem Cells ; *Feedback, Physiological ; Female ; Gene Expression Regulation ; Homeodomain Proteins/*metabolism ; Humans ; Locomotion ; Male ; Mesencephalon/cytology/*metabolism ; Mice ; MicroRNAs/*metabolism ; Middle Aged ; Models, Biological ; Neurons/cytology/*metabolism ; Parkinson Disease/metabolism ; Rats ; Ribonuclease III/genetics/metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-08-19
    Description: Integral beta-barrel proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. The machine that assembles these proteins contains an integral membrane protein, called YaeT in Escherichia coli, which has one or more polypeptide transport-associated (POTRA) domains. The crystal structure of a periplasmic fragment of YaeT reveals the POTRA domain fold and suggests a model for how POTRA domains can bind different peptide sequences, as required for a machine that handles numerous beta-barrel protein precursors. Analysis of POTRA domain deletions shows which are essential and provides a view of the spatial organization of this assembly machine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Seokhee -- Malinverni, Juliana C -- Sliz, Piotr -- Silhavy, Thomas J -- Harrison, Stephen C -- Kahne, Daniel -- GM34821/GM/NIGMS NIH HHS/ -- GM66174/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702946" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipoproteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: Animal germ cells differentiate as sperm or eggs, depending on their sex. Somatic signals tell germ cells whether they reside in a male or female body, but how do germ cells interpret those external cues to acquire their own sexual identity? A critical aspect of a germ cell's sexual puzzle is that the sperm/egg decision is closely linked to the cell-cycle decision between mitosis and meiosis. Molecular studies have begun to tease apart the regulators of both decisions, an essential step toward understanding the regulatory logic of this fundamental question of germ cell biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimble, Judith -- Page, David C -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):400-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA. jekimble@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446389" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Female ; Germ Cells/*cytology/physiology ; Male ; *Meiosis ; *Mitosis ; Models, Biological ; Oogenesis ; Ovum/cytology ; Spermatogenesis ; Spermatozoa/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2007-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrews, Katherine T -- Gatton, Michelle L -- Skinner-Adams, Tina S -- McCarthy, James S -- Gardiner, Donald L -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1791; author reply 1791.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395812" target="_blank"〉PubMed〈/a〉
    Keywords: Africa South of the Sahara/epidemiology ; Animals ; Antimalarials/*pharmacology/therapeutic use ; HIV/*drug effects ; HIV Infections/*complications/drug therapy/epidemiology ; HIV Protease Inhibitors/*pharmacology/therapeutic use ; Humans ; Malaria, Falciparum/*complications/drug therapy/epidemiology ; Models, Biological ; Plasmodium falciparum/*drug effects ; Prevalence ; Viral Load ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007
    Description: Animals and fungi assemble a contractile ring of actin filaments and the motor protein myosin to separate into individual daughter cells during cytokinesis. We used fluorescence microscopy of live fission yeast cells to observe that membrane-bound nodes containing myosin were broadly distributed around the cell equator and assembled into a contractile ring through stochastic motions, after a meshwork of dynamic actin filaments appeared. Analysis of node motions and numerical simulations supported a mechanism whereby transient connections are established when myosins in one node capture and exert force on actin filaments growing from other nodes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vavylonis, Dimitrios -- Wu, Jian-Qiu -- Hao, Steven -- O'Shaughnessy, Ben -- Pollard, Thomas D -- GM-26132/GM/NIGMS NIH HHS/ -- GM-26338/GM/NIGMS NIH HHS/ -- R01 GM026132/GM/NIGMS NIH HHS/ -- R01 GM026338/GM/NIGMS NIH HHS/ -- R01 GM086546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 4;319(5859):97-100. Epub 2007 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079366" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism/ultrastructure ; *Cytokinesis ; Microscopy, Confocal ; Microscopy, Fluorescence ; Models, Biological ; Monte Carlo Method ; Movement ; Myosin Type II/*metabolism ; Schizosaccharomyces/*cytology/*metabolism/ultrastructure ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1055.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006717" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cockroaches/*physiology ; Decision Making ; Models, Biological ; *Robotics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barber, Richard T -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):777-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomass ; Carbon/*metabolism ; *Ecosystem ; *Food Chain ; Models, Biological ; Oceans and Seas ; Pacific Ocean ; Phytoplankton/growth & development/*physiology ; *Seawater ; Urochordata/physiology ; Zooplankton/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2007-03-10
    Description: The transition from aquatic to terrestrial locomotion was a key development in vertebrate evolution. We present a spinal cord model and its implementation in an amphibious salamander robot that demonstrates how a primitive neural circuit for swimming can be extended by phylogenetically more recent limb oscillatory centers to explain the ability of salamanders to switch between swimming and walking. The model suggests neural mechanisms for modulation of velocity, direction, and type of gait that are relevant for all tetrapods. It predicts that limb oscillatory centers have lower intrinsic frequencies than body oscillatory centers, and we present biological data supporting this.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ijspeert, Auke Jan -- Crespi, Alessandro -- Ryczko, Dimitri -- Cabelguen, Jean-Marie -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1416-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Computer and Communication Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 14, CH-1015 Lausanne, Switzerland. auke.ijspeert@epfl.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347441" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Biomechanical Phenomena ; Brain Stem/physiology ; Electric Stimulation ; Extremities/innervation/physiology ; Gait ; Locomotion ; Mathematics ; Models, Biological ; Models, Neurological ; Motor Neurons/physiology ; Nerve Net/*physiology ; Pleurodeles/anatomy & histology/*physiology ; *Robotics ; Spinal Cord/*physiology ; *Swimming ; *Walking
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2007-01-20
    Description: A hallmark of epithelial invagination is the constriction of cells on their apical sides. During Drosophila gastrulation, apical constrictions under the control of the transcription factor Twist lead to the invagination of the mesoderm. Twist-controlled G protein signaling is involved in mediating the invagination but is not sufficient to account for the full activity of Twist. We identified a Twist target, the transmembrane protein T48, which acts in conjunction with G protein signaling to orchestrate shape changes. Together with G protein signaling, T48 recruits adherens junctions and the cytoskeletal regulator RhoGEF2 to the sites of apical constriction, ensuring rapid and intense changes in cell shape.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolsch, Verena -- Seher, Thomas -- Fernandez-Ballester, Gregorio J -- Serrano, Luis -- Leptin, Maria -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):384-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Genetics, University of Cologne, Zulpicher Strasse 47, 50674 Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234948" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/*physiology/ultrastructure ; Amino Acid Motifs ; Animals ; Armadillo Domain Proteins/metabolism ; Cell Membrane/metabolism ; Cell Shape ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/*embryology/metabolism ; Embryo, Nonmammalian/cytology/*physiology/ultrastructure ; Embryonic Development ; Gastrula/physiology ; Heterotrimeric GTP-Binding Proteins/metabolism ; Membrane Proteins/*metabolism ; Models, Biological ; Signal Transduction ; Transcription Factors/metabolism ; Twist Transcription Factor/metabolism ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2007-01-16
    Description: As compared with extensive contiguous areas, small isolated habitat patches lack many species. Some species disappear after isolation; others are rarely found in any small patch, regardless of isolation. We used a 13-year data set of bird captures from a large landscape-manipulation experiment in a Brazilian Amazon forest to model the extinction-colonization dynamics of 55 species and tested basic predictions of island biogeography and metapopulation theory. From our models, we derived two metrics of species vulnerability to changes in isolation and patch area. We found a strong effect of area and a variable effect of isolation on the predicted patch occupancy by birds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferraz, Goncalo -- Nichols, James D -- Hines, James E -- Stouffer, Philip C -- Bierregaard, Richard O Jr -- Lovejoy, Thomas E -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):238-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazonia, 69011 Manaus AM, Brazil. gferraz@inpa.gov.br〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Birds ; Brazil ; *Conservation of Natural Resources ; *Ecosystem ; Extinction, Biological ; Likelihood Functions ; Models, Biological ; Models, Statistical ; Population Dynamics ; *Trees/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2007-01-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):456.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255492" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Computer Simulation ; Humans ; Models, Biological ; *Muscle Contraction ; Muscle Fibers, Skeletal/*physiology/ultrastructure ; Muscle, Skeletal/*physiology/ultrastructure ; Turkeys
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, Stephen H -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1045-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA 92697, USA. stephen.white@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717175" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Membrane/chemistry/*metabolism ; Computer Simulation ; Diffusion ; Exocytosis ; Fluorescence Recovery After Photobleaching ; Immunoblotting ; Microscopy, Confocal ; Microscopy, Fluorescence ; Models, Biological ; PC12 Cells ; Protein Structure, Tertiary ; Rats ; Secretory Vesicles/metabolism ; Syntaxin 1/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-10-06
    Description: The Hedgehog (Hh) family of secreted signaling proteins is a master regulator of cell fate determination in metazoans, contributing to both pattern formation during embryonic development and postembryonic tissue homeostasis. In a universally used mode of action, graded distribution of Hh protein induces differential cell fate in a dose-dependent manner in cells that receive Hh. Though much of this pathway has been elucidated from genetically based studies in model organisms, such as Drosophila and mice, the importance of Hh-mediated signaling in humans is clearly evident from malformations and a broad range of cancers that arise when the pathway is corrupted.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791603/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791603/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacob, Leni -- Lum, Lawrence -- R01 GM076398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 5;318(5847):66-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916724" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Central Nervous System/embryology ; Cilia/physiology ; Drosophila Proteins/metabolism ; Hedgehog Proteins/*metabolism ; Humans ; Models, Biological ; Neoplasms/metabolism ; Receptors, Cell Surface/metabolism ; Receptors, G-Protein-Coupled/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Da-Peng -- New York, N.Y. -- Science. 2007 May 4;316(5825):700-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100094 Beijing, China. zhangdp@souhu.net〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17478709" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/metabolism ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/*metabolism ; Cell Nucleus/genetics/*metabolism ; Chloroplasts/*metabolism ; DNA, Plant/metabolism ; DNA-Binding Proteins/*metabolism ; Electron Transport ; *Gene Expression Regulation, Plant ; Models, Biological ; Protoporphyrins/metabolism ; *Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Youle, Richard J -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):776-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. youler@ninds.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289967" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/*metabolism ; BH3 Interacting Domain Death Agonist Protein/*metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/*metabolism ; Mice ; Mitochondria/metabolism ; Models, Biological ; Permeability ; Protein Conformation ; Protein Structure, Secondary ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-bcl-2/chemistry/*metabolism ; bcl-2-Associated X Protein/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2007-04-21
    Description: In plants, seasonal changes in day length are perceived in leaves, which initiate long-distance signaling that induces flowering at the shoot apex. The identity of the long-distance signal has yet to be determined. In Arabidopsis, activation of FLOWERING LOCUS T (FT) transcription in leaf vascular tissue (phloem) induces flowering. We found that FT messenger RNA is required only transiently in the leaf. In addition, FT fusion proteins expressed specifically in phloem cells move to the apex and move long distances between grafted plants. Finally, we provide evidence that FT does not activate an intermediate messenger in leaves. We conclude that FT protein acts as a long-distance signal that induces Arabidopsis flowering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corbesier, Laurent -- Vincent, Coral -- Jang, Seonghoe -- Fornara, Fabio -- Fan, Qingzhi -- Searle, Iain -- Giakountis, Antonis -- Farrona, Sara -- Gissot, Lionel -- Turnbull, Colin -- Coupland, George -- New York, N.Y. -- Science. 2007 May 18;316(5827):1030-3. Epub 2007 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446353" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/metabolism/*physiology ; Arabidopsis Proteins/genetics/*metabolism ; DNA-Binding Proteins/genetics/metabolism ; Dexamethasone/pharmacology ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; Green Fluorescent Proteins/genetics ; Membrane Transport Proteins/genetics ; Meristem/metabolism ; Models, Biological ; Phloem/metabolism ; Photoperiod ; Plant Leaves/metabolism ; Plant Proteins/genetics ; Plant Shoots/metabolism ; Plants, Genetically Modified ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2007-06-16
    Description: Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor-related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane-associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and beta-catenin stabilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bilic, Josipa -- Huang, Ya-Lin -- Davidson, Gary -- Zimmermann, Timo -- Cruciat, Cristina-Maria -- Bienz, Mariann -- Niehrs, Christof -- MC_U105192713/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1619-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569865" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Axin Protein ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism ; Centrifugation, Density Gradient ; Cytoplasm/metabolism ; Drosophila ; Glycogen Synthase Kinase 3/analysis/metabolism ; HeLa Cells ; Humans ; LDL-Receptor Related Proteins/analysis/genetics/*metabolism ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mice ; Models, Biological ; Phosphoproteins/*metabolism ; Phosphorylation ; Repressor Proteins/analysis/metabolism ; *Signal Transduction ; Transfection ; Wnt Proteins/*metabolism ; Wnt3 Protein ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2007-02-10
    Description: Autotrophic picoplankton dominate primary production over large oceanic regions but are believed to contribute relatively little to carbon export from surface layers. Using analyses of data from the equatorial Pacific Ocean and Arabian Sea, we show that the relative direct and indirect contribution of picoplankton to export is proportional to their total net primary production, despite their small size. We suggest that all primary producers, not just the large cells, can contribute to export from the surface layer of the ocean at rates proportional to their production rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richardson, Tammi L -- Jackson, George A -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):838-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Sciences Program and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA. richardson@biol.sc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomass ; Carbon/*metabolism ; *Ecosystem ; Food Chain ; Models, Biological ; Oceans and Seas ; Pacific Ocean ; Phytoplankton/cytology/growth & development/*physiology ; *Seawater ; Urochordata/physiology ; Zooplankton/growth & development/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2007-04-21
    Description: Intercellular protein movement plays a critical role in animal and plant development. SHORTROOT (SHR) is a moving transcription factor essential for endodermis specification in the Arabidopsis root. Unlike diffusible animal morphogens, which form a gradient across multiple cell layers, SHR movement is limited to essentially one cell layer. However, the molecular mechanism is unknown. We show that SCARECROW (SCR) blocks SHR movement by sequestering it into the nucleus through protein-protein interaction and a safeguard mechanism that relies on a SHR/SCR-dependent positive feedback loop for SCR transcription. Our studies with SHR and SCR homologs from rice suggest that this mechanism is evolutionarily conserved, providing a plausible explanation why nearly all plants have a single layer of endodermis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cui, Hongchang -- Levesque, Mitchell P -- Vernoux, Teva -- Jung, Jee W -- Paquette, Alice J -- Gallagher, Kimberly L -- Wang, Jean Y -- Blilou, Ikram -- Scheres, Ben -- Benfey, Philip N -- R01-GM043778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):421-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446396" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Biological Evolution ; Cell Nucleus/metabolism ; Feedback, Physiological ; Gene Expression ; Genes, Plant ; Models, Biological ; Oligonucleotide Array Sequence Analysis ; Oryza/genetics/metabolism ; Plant Proteins/genetics/metabolism ; Plant Roots/*cytology/genetics/growth & development/*metabolism ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protein Binding ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grill, Erwin -- Christmann, Alexander -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1676-7. Epub 2007 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Science, Technical University Munich, Am Hochanger 4, 85350 Freising-Weihenstephan, Germany. erwin.grill@wzw.tum.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347413" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Arabidopsis/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; GTP-Binding Protein alpha Subunits/metabolism ; Guanosine Triphosphate/metabolism ; Models, Biological ; Phospholipase D/metabolism ; Plant Growth Regulators/*metabolism ; Plant Leaves/metabolism ; Protein Binding ; Receptors, G-Protein-Coupled/chemistry/genetics/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2007-01-16
    Description: Ubiquitination is a reversible posttranslational modification of cellular proteins, in which a 76-amino acid polypeptide, ubiquitin, is primarily attached to the epsilon-amino group of lysines in target proteins. Ubiquitination is a major player in regulating a broad host of cellular processes, including cell division, differentiation, signal transduction, protein trafficking, and quality control. Aberrations in the ubiquitination system are implicated in pathogenesis of some diseases, certain malignancies, neurodegenerative disorders, and pathologies of the inflammatory immune response. Here, we discuss the proteasome-independent roles of ubiquitination in signaling and endocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukhopadhyay, Debdyuti -- Riezman, Howard -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):201-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218518" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Replication ; Disease ; *Endocytosis ; Endosomes/metabolism ; Humans ; Models, Biological ; Neoplasms/metabolism ; Neurodegenerative Diseases/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Sorting Signals ; Protein Transport ; Proteins/*metabolism ; *Signal Transduction ; Transcription, Genetic ; Ubiquitin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-10-06
    Description: Cytokinins are essential plant hormones that control various processes in plants' development and response to external stimuli. The Arabidopsis cytokinin signal transduction pathway involves hybrid histidine protein kinase sensors, phosphotransfer proteins, and regulators as transcription activators and repressors in a phosphorelay system. Each step is executed by components encoded by multigene families. Recent findings have revealed new functions, new feedback loops, and connections to other signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Bruno -- Sheen, Jen -- New York, N.Y. -- Science. 2007 Oct 5;318(5847):68-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916725" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/genetics/growth & development/*metabolism ; Arabidopsis Proteins/metabolism ; Cell Differentiation ; Cell Proliferation ; Cytokinins/*metabolism ; Feedback, Physiological ; Genes, Plant ; Models, Biological ; Multigene Family ; Plant Leaves/cytology/metabolism ; Plant Roots/growth & development/metabolism ; Plant Shoots/growth & development ; Protein Kinases/genetics/metabolism ; *Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2007-06-16
    Description: Anthropogenic global changes threaten species and the ecosystem services upon which society depends. Effective solutions to this multifaceted crisis need scientific responses spanning disciplines and spatial scales. Macroecology develops broad-scale predictions of species' distributions and abundances, complementing the frequently local focus of global change biology. Macroecological discoveries rely particularly on correlative methods but have still proven effective in predicting global change impacts on species. However, global changes create pseudo-experimental opportunities to build stronger, mechanistic theories in macroecology that successfully predict multiple phenomena across spatial scales. Such macroecological perspectives will help address the biotic consequences of global change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kerr, Jeremy T -- Kharouba, Heather M -- Currie, David J -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1581-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Canadian Facility for Ecoinformatics Research (CFER), University of Ottawa, Ottawa, ON K1N 6N5 Canada. jkerr@uottawa.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Climate ; Ecology/*methods ; *Ecosystem ; Forecasting ; Geography ; Human Activities ; Humans ; Models, Biological ; Plants ; Population Dynamics ; Statistics as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2007-12-22
    Description: DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase, are connected through a histone H3-H4 bridge. Depletion of Asf1 by RNA interference impedes DNA unwinding at replication sites, and similar defects arise from overproduction of new histone H3-H4 that compromises Asf1 function. These data link Asf1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork progression and histone supply and demand.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groth, Anja -- Corpet, Armelle -- Cook, Adam J L -- Roche, Daniele -- Bartek, Jiri -- Lukas, Jiri -- Almouzni, Genevieve -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1928-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Nuclear Dynamics and Genome Plasticity, UMR218 CNRS/Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18096807" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/genetics/*metabolism ; Chromatin/metabolism ; DNA/*metabolism ; *DNA Replication ; DNA, Single-Stranded/metabolism ; HeLa Cells ; Histones/*metabolism ; Humans ; Minichromosome Maintenance Complex Component 2 ; Models, Biological ; Molecular Chaperones/genetics/metabolism ; Nuclear Proteins/metabolism ; Nucleosomes/metabolism ; RNA Interference ; S Phase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2007-07-28
    Description: NS3, an essential helicase for replication of hepatitis C virus, is a model enzyme for investigating helicase function. Using single-molecule fluorescence analysis, we showed that NS3 unwinds DNA in discrete steps of about three base pairs (bp). Dwell time analysis indicated that about three hidden steps are required before a 3-bp step is taken. Taking into account the available structural data, we propose a spring-loaded mechanism in which several steps of one nucleotide per adenosine triphosphate molecule accumulate tension on the protein-DNA complex, which is relieved periodically via a burst of 3-bp unwinding. NS3 appears to shelter the displaced strand during unwinding, and, upon encountering a barrier or after unwinding 〉18 bp, it snaps or slips backward rapidly and repeats unwinding many times in succession. Such repetitive unwinding behavior over a short stretch of duplex may help to keep secondary structures resolved during viral genome replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myong, Sua -- Bruno, Michael M -- Pyle, Anna M -- Ha, Taekjip -- R01 GM060620/GM/NIGMS NIH HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- R01-GM060620/GM/NIGMS NIH HHS/ -- R01-GM065367/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 Jul 27;317(5837):513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physics Department, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA. smyong@uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17656723" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Base Pairing ; DNA/chemistry/*metabolism ; DNA Helicases/*metabolism ; Fluorescence Resonance Energy Transfer ; Hepacivirus/*enzymology ; Models, Biological ; Models, Molecular ; Nucleic Acid Conformation ; Temperature ; Viral Nonstructural Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hackney, David D -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):58-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. ddh@andrew.cmu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412943" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*metabolism ; Dimerization ; Kinesin/chemistry/*metabolism ; Microtubules/*metabolism ; Models, Biological ; Molecular Motor Proteins/chemistry/*metabolism ; Protein Conformation ; Tubulin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2007-03-10
    Description: The plant hormone abscisic acid (ABA) regulates many physiological and developmental processes in plants. The mechanism of ABA perception at the cell surface is not understood. Here, we report that a G protein-coupled receptor genetically and physically interacts with the G protein alpha subunit GPA1 to mediate all known ABA responses in Arabidopsis. Overexpressing this receptor results in an ABA-hypersensitive phenotype. This receptor binds ABA with high affinity at physiological concentration with expected kinetics and stereospecificity. The binding of ABA to the receptor leads to the dissociation of the receptor-GPA1 complex in yeast. Our results demonstrate that this G protein-coupled receptor is a plasma membrane ABA receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xigang -- Yue, Yanling -- Li, Bin -- Nie, Yanli -- Li, Wei -- Wu, Wei-Hua -- Ma, Ligeng -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1712-6. Epub 2007 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347412" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism/pharmacology ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; GTP-Binding Protein alpha Subunits/metabolism ; Gene Expression Profiling ; Genes, Reporter ; Germination ; Models, Biological ; Mutation ; Plant Growth Regulators/*metabolism ; Plant Leaves/cytology/physiology ; Plants, Genetically Modified ; Potassium Channels/metabolism ; Protein Binding ; Receptors, G-Protein-Coupled/chemistry/genetics/*metabolism ; Recombinant Proteins/metabolism ; Seeds/growth & development ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2007-12-18
    Description: Transcriptional feedback loops are a feature of circadian clocks in both animals and plants. We show that the plant circadian clock also incorporates the cytosolic signaling molecule cyclic adenosine diphosphate ribose (cADPR). cADPR modulates the circadian oscillator's transcriptional feedback loops and drives circadian oscillations of Ca2+ release. The effects of antagonists of cADPR signaling, manipulation of cADPR synthesis, and mathematical simulation of the interaction of cADPR with the circadian clock indicate that cADPR forms a feedback loop within the plant circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dodd, Antony N -- Gardner, Michael J -- Hotta, Carlos T -- Hubbard, Katharine E -- Dalchau, Neil -- Love, John -- Assie, Jean-Maurice -- Robertson, Fiona C -- Jakobsen, Mia Kyed -- Goncalves, Jorge -- Sanders, Dale -- Webb, Alex A R -- BB/E002692/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- P19207/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1789-92. Epub 2007 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18084825" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Calcium/metabolism ; Calcium Signaling/drug effects ; *Circadian Rhythm/genetics ; Cyclic ADP-Ribose/*metabolism ; *Feedback, Physiological ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Models, Biological ; Niacinamide/pharmacology ; Plant Leaves/metabolism ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2007-06-09
    Description: Shipley et al. (Reports, 3 November 2006, p. 812) developed a quantitative method for predicting the relative abundance of species from measured traits. We show that the method can have high explanatory power even when all trait and abundance data are randomly and independently generated, because of a mathematical dependence between the observations and predictions. We also suggest a potential solution to this problem.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roxburgh, Stephen H -- Mokany, Karel -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1425; author reply 1425.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia, and Bushfire Co-operative Research Centre, Ensis, Post Office Box E4008, Kingston, ACT 2604, Australia. stephen.roxburgh@ensisjv.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556569" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Ecology/*methods ; Mathematics ; Models, Biological ; Models, Statistical ; Monte Carlo Method ; Plant Physiological Phenomena ; *Plants ; Population Density ; Statistics as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2007-11-17
    Description: Collective behavior based on self-organization has been shown in group-living animals from insects to vertebrates. These findings have stimulated engineers to investigate approaches for the coordination of autonomous multirobot systems based on self-organization. In this experimental study, we show collective decision-making by mixed groups of cockroaches and socially integrated autonomous robots, leading to shared shelter selection. Individuals, natural or artificial, are perceived as equivalent, and the collective decision emerges from nonlinear feedbacks based on local interactions. Even when in the minority, robots can modulate the collective decision-making process and produce a global pattern not observed in their absence. These results demonstrate the possibility of using intelligent autonomous devices to study and control self-organized behavioral patterns in group-living animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halloy, J -- Sempo, G -- Caprari, G -- Rivault, C -- Asadpour, M -- Tache, F -- Said, I -- Durier, V -- Canonge, S -- Ame, J M -- Detrain, C -- Correll, N -- Martinoli, A -- Mondada, F -- Siegwart, R -- Deneubourg, J L -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1155-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite Libre de Bruxelles, Service d'Ecologie Sociale CP231, Avenue F. D. Roosevelt, 50, B-1050 Brussels, Belgium. jhalloy@ulb.ac.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006751" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Choice Behavior ; Male ; Models, Biological ; Periplaneta/*physiology ; *Robotics ; *Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2007-06-09
    Description: Shipley et al. (Reports, 3 November 2006, p. 812) predicted plant community composition and relative abundances with a high level of accuracy by maximizing Shannon's index of information entropy (species diversity), subject to constraints on plant trait averages. We show that the entropy maximization assumption is relatively unimportant and that the high accuracy is due largely to a statistical effect.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marks, Christian O -- Muller-Landau, Helene C -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1425; author reply 1425.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA. marks071@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556570" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Ecology/*methods ; Models, Biological ; Models, Statistical ; Plant Physiological Phenomena ; *Plants ; Population Density
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-05
    Description: Synaptic vesicles loaded with neurotransmitters are exocytosed in a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent manner after presynaptic depolarization induces calcium ion (Ca2+) influx. The Ca2+ sensor required for fast fusion is synaptotagmin-1. The activation energy of bilayer-bilayer fusion is very high (approximately 40 k(B)T). We found that, in response to Ca2+ binding, synaptotagmin-1 could promote SNARE-mediated fusion by lowering this activation barrier by inducing high positive curvature in target membranes on C2-domain membrane insertion. Thus, synaptotagmin-1 triggers the fusion of docked vesicles by local Ca2+-dependent buckling of the plasma membrane together with the zippering of SNAREs. This mechanism may be widely used in membrane fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martens, Sascha -- Kozlov, Michael M -- McMahon, Harvey T -- MC_U105178795/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 May 25;316(5828):1205-8. Epub 2007 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council-Laboratory of Molecular Biology, Hills Road, CB2 0QH Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17478680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*physiology ; Cell Membrane/*physiology/ultrastructure ; Exocytosis/physiology ; Humans ; Liposomes ; Membrane Fusion ; Models, Biological ; Rats ; SNARE Proteins/*physiology ; Synaptic Vesicles/*physiology/ultrastructure ; Synaptotagmin I/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...