ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (1,241)
  • 2010-2014
  • 1995-1999  (1)
  • 1985-1989  (1,240)
  • 2011
  • 1999
  • 1997  (1)
  • 1989  (671)
  • 1985  (569)
Collection
Years
  • 2010-2014
  • 1995-1999  (1)
  • 1985-1989  (1,240)
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Nonequilibrium phenomena in hypersonic flows are examined on the basis of theoretical models and selected experimental data, in an introduction intended for second-year graduate students of aerospace engineering. Chapters are devoted to the physical nature of gas atoms and molecules, transitions of internal states, the formulation of the master equation of aerothermodynamics, the conservation equations, chemical reactions in CFD, the behavior of air flows in nonequilibrium, experimental aspects of nonequilibrium flow, a review of experimental results, and gas-solid interaction. Diagrams, graphs, and tables of numerical data are provided.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The flows around highly sweptback wings and bodies of revolution at high angle of attack are described, and inviscid model approximations and mathematical formulation of the problem are given to steady and unsteady incompressible flows. A general presentation of the methods of solution is given, with emphasis on current computational techniques. Detailed descriptions of the nonlinear vortex-lattice and vortex-panel techniques are presented to show how the boundary conditions are enforced using iteration. Typical numerical results are compared with the available experimental data.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The computational treatment of unsteady transonic flows is discussed, reviewing the historical development and current techniques. The fundamental physical principles are outlined; the governing equations are introduced; three-dimensional linearized and two-dimensional linear-perturbation theories in frequency domain are described in detail; and consideration is given to frequency-domain FEMs and time-domain finite-difference and integral-equation methods. Extensive graphs and diagrams are included.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: This lecture is introductory to the subject of unsteady subsonic and supersonic flows. The primary objective is to present fundamental concepts in order to promote an understanding of the relations between the basic physical problems and their mathematical formulation as well as to establish a common foundation for the more detailed presentations of subsequent lectures in this session. Linearized (small-perturbation) potential flow is emphasized, although needs beyond that limit are indicated. The basic equations, concepts, and procedures common to all the methods are reviewed first, followed by the development, discussion, and status of methods for creating two-dimensional incompressible flow, strip theory, subsonic lifting-surface theory, subsonic/supersonic surface-panel methods, and supersonic lifting-surface theory.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: An overview of helicopter aerodynamics technology is presented with emphasis on rotor wake and airloads methodology developed at the United Technologies Research Center (UTRC). The evolution over the past twenty years of various levels of computerized wake geometry models at UTRC, such as undistorted wake, prescribed empirical wake, predicted distorted wake, and generalized wake models for the hover and forward flight regimes, is reviewed. The requirement for accurate wake modeling for flow field and airload prediction is demonstrated by comparisons of theoretical and experimental results. These results include blade pressure distributions predicted from a recently developed procedure for including the rotor wake influence in a full potential flow analysis. Predictions of the interactional aerodynamics of various helicopter components (rotor, fuselage, and tail) are also presented. It is concluded that, with advanced computers and the rapidly progressing computational aerodynamics technology, significant progress toward reliable prediction of helicopter airloads is forseeable in the near future.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Interferometry methods were applied to the investigation of steady and unsteady flows in large scale transonic wind tunnels. Holographic interferometry was demonstrated to provide reliable flow visualization and quantitative results for a number of two-dimensional flows. These conclusions were based on extensive comparisons with results obtained by other means. Data obtained on a NACA 64A010 airfoil with an oscillating flap installed in the Ames 11-foot transonic tunnel are presented. Interferograms were recorded at a free stream Mach number of 0.8, flap frequency of 30 Hertz and chord Reynolds numbers of 6.6 x 10 to the 6th and 12.3 x 10 to the 6th. The interferometric results were reduced to dynamic surface pressures, Mach contours and wake flow profiles. A new interferometry method that is capable of providing real-time interferometry data is also discussed.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: Through a series of flights in artificial clouds, ice accretions on the main rotor of a UH-1H helicopter were documented in detail upon landing by silicone-rubber molds for both hover and level flights. Full scale reproductions of typical accretions in hover were fabricated by means of epoxy castings and used for a wind-tunnel test program. Surface static pressure distributions were recorded and used to evaluate lift and pitching moment increments while drag was determined by wake surveys. For comparison, accreted ice shapes are presented for two level flight cases as well as preliminary analytical predictions.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-19
    Description: The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 870-875
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 682-684
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 650-656
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 621-628
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 593-604
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The introduction of transverse velocity fluctuations into a separated shear layer on an airfoil at high angles of attack is presently demonstrated to be an effective separation-control technique. Airfoil aerodynamic characteristics, including poststall lift and drag as well as maximum lift coefficient and stall angle, all exhibited improvements controlled forcing at 20 deg angle of attack led to an increased spreading of the mean velocity profile, together with increased turbulence activity; separation moved from the leading edge to about 80 percent of chord.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 27; 820
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 27; 687-693
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 235-240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 27; 1536-154
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-19
    Description: Flow characteristics in the vicinity of the flap of a single-slotted airfoil are presented and analyzed. The flow remained attached over the model surfaces, except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The airfoil configuration was tested at a Mach number of 0.09 and a chord Reynolds number of 1.8 x 10 to the 6th in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The flow was complicated by the presence of a strong, initially inviscid, jet, emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer.
    Keywords: AERODYNAMICS
    Type: Experiments in Fluids (ISSN 0723-4864); 7; 8, Se
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 3; 361-367
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 986-993
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-19
    Description: The transonic aspect of helicopter flow analysis is addressed. The equations of motion and their implementations are examined, and the computation of real rotor flows is considered. Nonlifting rotor flows, high-speed hover, high advance ratio lifting rotor flows, and strong blade/vortex interaction computations are discussed.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Some of the basic finite-difference schemes that can be used to solve the nonlinear equations that describe unsteady inviscid and viscous transonic flow are reviewed. Numerical schemes for solving the unsteady Euler and Navier-Stokes, boundary-layer, and nonlinear potential equations are described. Emphasis is given to the elementary ideas used in constructing various numerical procedures, not specific details of any one procedure.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 27; 1752-176
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 27; 1673-167
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 536-540
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 490-497
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-19
    Description: A theoretical investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The primary objective of this was to determine the applicability of existing theoretical methods to predict wing leading-edge separated-flow characteristics at conditions conductive to high-lift supersonic flight. Predicted results from two modified linear-theory methods (LTSTAR and VORCAM) are compared with experimental data. Comparison of the two methods for uncambered wings revealed that the LTSTAR code is in much better agreement with experimentally measured vortex strength, vortex position, and total lifting characteristics than the VORCAM code. Selected analysis was also performed with an Euler code, SWINT. The results of this study indicated that the SWINT code was not well suited to the analysis of wings with separated flow at high lift and low supersonic speeds.
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 473-478
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 22; 297-303
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-19
    Description: In the present determination of the free molecule flow drag coefficient for a cylindrical spacecraft flying parallel to its principal axis, the lateral surface effects of thermal motion are explicitly included in terms of the average impact angle of the incident gas momentum vector. Kinetic theory is used to characterize self-shadowing, as well as to obtain an expression for the lateral surface coefficient in terms of the average impact angle of the incident momentum vector and the fractional momentum transfer along the line of impact. It is found that, for a length/diameter ratio of about 5, the lateral surface contribution to the drag coefficient is comparable to that of the front face.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 862-867
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-19
    Description: The effect of shoulder radiusing and grooving (longitudinally and circumferentially) the afterbodies of bluff bodies to reduce the base drag at low speeds is investigated experimentally. Shoulder radii as large as 2.75 body diameters are examined. Reynolds number (ReD) based on body diameter varied from 20,000 to 200,000. Results indicate that increasing the shoulder radius to 2.00 body diameters can reduce the drag levels to those of a streamline body having 67 percent greater fineness ratio. For the relatively sharp shoulder case, body drag reductions as large as 50 and 33 percent are obtained using circumferential or longitudinal grooves, respectively.
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 516-522
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 336-342
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 583-587
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-19
    Description: The novel implicit and unconditionally stable, high resolution Total Variation Diminishing (TVD) scheme whose application to steady state calculations is presently examined is a member of a one-parameter family of implicit, second-order accurate systems developed by Harten (1983) for the computation of weak solutions for one-dimensional hyperbolic conservation laws. The scheme will not generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments for a quasi-one-dimensional nozzle problem show that the experimentally determined stability limit correlates exactly with the theoretical stability limit for the nonlinear scalar hyberbolic conservation laws.
    Keywords: AERODYNAMICS
    Type: Journal of Computational Physics (ISSN 0021-9991); 57; 327-360
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The Stalled Airfoil Analysis Program (SAAP) is a computer code for predicting the aerodynamic characteristics of an airfoil up to, and beyond, stall. SAAP is presently evaluated through comparisons with experiments and with two other theoretical methods over an extensive range of airfoils and Reynolds number conditions. SAAP modeled drag more accurately than either of the other methods, and at angles of attack below stall yielded a smoother lift variation with angle of attack.
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 927
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 881-887
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 869-874
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 1556-156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 1461
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-19
    Description: The dynamics of unsteady transonic small disturbance flows about two-dimensional airfoils is examined, with emphasis on the behavior in the region where the steady state flow is nonunique. It is shown that nonuniqueness results from an extremely long time scale instability which occurs in a finite Mach number and angle of attack range. The similarity scaling rules for the instability are presented and the possibility of similar behvior in the Euler equations is discussed.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 1491-149
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 756-762
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 743-749
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 1348-135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 1301-130
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-19
    Description: An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 479-485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 22; 304-308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.
    Keywords: AERODYNAMICS
    Type: Vertica (ISSN 0360-5450); 9; 1, 19; 65-81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-19
    Description: The aerodynamic characteristics of airfoils with several flap configurations were studied theoretically and experimentally in environments that simulate a wing immersed in the downwash of a hovering rotor. Special techniques were developed for correcting and validating the wind tunnel data for large blockage effects, and the test results were used to evaluate two modern blockage effects, and the test results were used to evaluate two modern computational aerodynamics codes. The combined computed and measured results show that improved flap and leading-edge configurations can be designed which will achieve large reductions in the downloads of tilt-rotor aircraft, and thereby improve their hover efficiency.
    Keywords: AERODYNAMICS
    Type: Vertica (ISSN 0360-5450); 9; 1, 19; 1-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 723-732
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 650-656
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 423-428
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 22; 104-111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 22; 193-199
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 374-380
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: A computational method for designing shock-free, quasi-three-dimensional, transonic, turbomachinery blades is described. Shock-free designs are found by implementing Sobieczky's fictitious gas principle in the analysis of a baseline shape, resulting in an elliptic solution that is incorrect in the supersonic domain. Shock-free designs are obtained by combining the subsonic portion of this solution with a characteristic calculation of the correct supersonic flow using the sonic line data from the fictitious elliptic solution. This provides a new, shock-free blade design. Examples presented include the removal of shocks from two blades in quasi-three-dimensional flow and the development of a series of shock-free two-dimensional stators. The new designs all include modifications to the upper surface of an experimental stator blade developed at NASA Lewis Research Center. While the designs presented here are for inviscid flow, the same concepts have been successfully applied to the shock-free design of airfoils and three-dimensional wings with viscous effects. The extension of the present method to viscous flows is straightforward given a suitable analysis algorithm for the flow.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 249-253
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 22; 54-59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 22; 19-26
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 23; 23-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-31
    Description: The flight testing conducted over the past 10 years in the NASA laminar-flow control (LFC) will be reviewed. The LFC program was directed towards the most challenging technology application, the high supersonic speed transport. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.
    Keywords: AERODYNAMICS
    Type: Transonic Symposium: Theory, Application and Experiment, Volume 2; p 59-104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-31
    Description: Although most of the laminar flow airfoils recently developed at the NASA Langley Research Center were intended for general aviation applications, low-drag airfoils were designed for transonic speeds and wind tunnel performance tested. The objective was to extend the technology of laminar flow to higher Mach and Reynolds numbers and to swept leading edge wings representative of transport aircraft to achieve lower drag and significantly improved operation costs. This research involves stabilizing the laminar boundary layer through geometric shaping (Natural Laminar Flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (Laminar-Flow Control, LFC), either through discrete slots or perforated surface. Results show that extensive regions of laminar flow with large reductions in skin friction drag can be maintained through the application of passive NLF boundary-layer control technologies to unswept transonic wings. At even greater extent of laminar flow and reduction in the total drag level can be obtained on a swept supercritical airfoil with active boundary layer-control.
    Keywords: AERODYNAMICS
    Type: Transonic Symposium: Theory, Application and Experiment, Volume 2; p 105-145
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-31
    Description: Aerodynamic forces and moments for a slender wing-body configuration are summarized from an investigation in the Langley National Transonic Facility (NTF). The results include both longitudinal and lateral-directional aerodynamic properties as well as slideslip derivatives. Results were selected to emphasize Reynolds number effects at a transonic speed although some lower speed results are also presented for context. The data indicate nominal Reynolds number effects on the longitudinal aerodynamic coefficients and more pronounced effects for the lateral-directional aerodynamic coefficients. The Reynolds number sensitivities for the lateral-directional coefficients were limited to high angles of attack.
    Keywords: AERODYNAMICS
    Type: Transonic Symposium: Theory, Application and Experiment, Volume 2; p 41-58
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-31
    Description: The objective is to provide useful engineering formulations and to instill a modest degree of physical understanding of the phenomena governing convective aerodynamic heating at high flight speeds. Some physical insight is not only essential to the application of the information presented here, but also to the effective use of computer codes which may be available to the reader. Given first is a discussion of cold-wall, laminar boundary layer heating. A brief presentation of the complex boundary layer transition phenomenon follows. Next, cold-wall turbulent boundary layer heating is discussed. This topic is followed by a brief coverage of separated flow-region and shock-interaction heating. A review of heat protection methods follows, including the influence of mass addition on laminar and turbulent boundary layers. Next is a discussion of finite-difference computer codes and a comparison of some results from these codes. An extensive list of references is also provided from sources such as the various AIAA journals and NASA reports which are available in the open literature.
    Keywords: AERODYNAMICS
    Type: Nielsen Engineering and Research, Inc., Missile Aerodynamics: NEAR Conference on Missile Aerodynamics; 64 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-31
    Description: A co-operative testing program is in progress between the Langley Research Center (NASA) and the National Aeronautical Establishment (NAE, Canada) to validate two different techniques of airfoil testing at transonic speeds. The procedure employed is to test the same airfoil model in the NAE two-dimensional tunnel and the Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT). The airfoil model used in testing was CAST-10-2/DOA-2 super-critical airfoil. The Langley 0.3-m TCT has a relatively small cross section of 13 in x 13 in, giving a (h/c) ratio of 1.44 for the same 9 in chord model. The approach employed in the 0.3-m TCT aims towards eliminating the wall effects by using active walls. The top and bottom walls are flexible. By changing the wall shapes during a test in an iterative manner, the wall interference effects are reduced. The method employed to change the wall shapes is the adaptive wall technique. The current test program provided an opportunity to validate the adaptive wall technique in the 0.3-m TCT. The relatively long chord airfoil represents a severe test case to test the efficacy of the adaptive wall technique under cryogenic conditions. The program also involved removal of side wall boundary-layer thus increasing the complexity of the wall adaptation technique. This paper deals with some salient results obtained regarding repeatability of test data and possible residual interference effects.
    Keywords: AERODYNAMICS
    Type: CAST-10-2(DOA 2 Airfoil Studies Workshop Results; p 213-231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-31
    Description: The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.
    Keywords: AERODYNAMICS
    Type: CAST-10-2(DOA 2 Airfoil Studies Workshop Results; p 233-258
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: An experimental Adaptive Wall Test Section (AWTS) process is described. Comparisons of the ONERA T2 and the 0.3-m TCT (transonic cryogenic tunnel) AWTS data for the ONERA CAST-10 airfoil are presented. Most of the 0.3-m TCT data is new and preliminary and no sidewall boundary layer control is involved. No conclusions are given.
    Keywords: AERODYNAMICS
    Type: CAST-10-2(DOA 2 Airfoil Studies Workshop Results; p 137-153
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-31
    Description: The transonic airfoil CAST 10-2/DOA 2 was investigated in several major transonic wind tunnels at Reynolds numbers ranging from Re=1.3 x 10(exp 6) to 45 x 10(exp 6) at ambient and cryogenic temperature conditions. The main objective was to study the degree and extent of the effects of Reynolds number on both the airfoil aerodynamic characteristics and the interference effects of various model-wind-tunnel systems. The initial analysis of the CAST 10-2 airfoil results revealed appreciable real Reynolds number effects on this airfoil and showed that wall interference can be significantly affected by changes in Reynolds number thus appearing as true Reynolds number effects.
    Keywords: AERODYNAMICS
    Type: CAST-10-2(DOA 2 Airfoil Studies Workshop Results; p 47-60
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-31
    Description: Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. A long term goal of the Aerothermal Loads Branch at the NASA Langley Research Center is to develop a computational capability for integrated fluid, thermal and structural analysis of aerodynamically heated structures. The integrated analysis capability includes the coupling between the fluid and the structure which occurs primarily through the thermal response of the structure, because: (1) the surface temperature affects the external flow by changing the amount of energy absorbed by the structure, and (2) the temperature gradients in the structure result in structural deformations which alter the flow field and attendant surface pressures and heating rates. In the integrated analysis, a finite element method is used to solve: (1) the Navier-Stokes equations for the flow solution, (2) the energy equation of the structure for the temperature response, and (3) the equilibrium equations of the structure for the structural deformation and stresses.
    Keywords: AERODYNAMICS
    Type: Recent Advances in Multidisciplinary Analysis and Optimization, Part 2; p 971-990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-08-31
    Description: Wind tunnel wall interference assessment and correction (WIAC) concepts, applications, and typical results are discussed in terms of several nonlinear transonic codes and one panel method code developed for and being implemented at NASA-Langley. Contrasts between 2-D and 3-D transonic testing factors which affect WIAC procedures are illustrated using airfoil data from the 0.3 m Transonic Cryogenic Tunnel and Pathfinder 1 data from the National Transonic Facility. Initial results from the 3-D WIAC codes are encouraging; research on and implementation of WIAC concepts continue.
    Keywords: AERODYNAMICS
    Type: Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 817-851
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The stability of compressible 2-D and 3-D boundary layers is reviewed. The stability of 2-D compressible flows differs from that of incompressible flows in two important features: There is more than one mode of instability contributing to the growth of disturbances in supersonic laminar boundary layers and the most unstable first mode wave is 3-D. Whereas viscosity has a destabilizing effect on incompressible flows, it is stabilizing for high supersonic Mach numbers. Whereas cooling stabilizes first mode waves, it destabilizes second mode waves. However, second order waves can be stabilized by suction and favorable pressure gradients. The influence of the nonparallelism on the spatial growth rate of disturbances is evaluated. The growth rate depends on the flow variable as well as the distance from the body. Floquet theory is used to investigate the subharmonic secondary instability.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 629-689
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-08-31
    Description: The treatment of turbulence effects on transonic shock/turbulent boundary layer interaction is addressed within the context of a triple deck approach valid for arbitrary practical Reynolds numbers between 1000 and 10 billion. The modeling of the eddy viscosity and basic turbulent boundary profile effects in each deck is examined in detail using Law-of-the-Wall/Law-of-the-Wake concepts as the foundation. Results of parametric studies showing how each of these turbulence model aspects influences typical interaction zone property distributions (wall pressure, displacement thickness and local skin friction) are presented and discussed.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 611-627
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-31
    Description: The aerodynamic characteristics for both single and twin-engine high-performance aircraft are significantly affected by shock induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but also cause unusual aerodynamic loadings and/or severe stability and control problems. Many programs are under way to not only develop method for reducing the adverse effects, but also to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increase aircraft maneuverability through the application of thrust vectoring. Some of the primary integration problems for twin-engine aircraft at transonic speeds are identified, and several methods are demonstrated for reducing or eliminating the undersirable characteristics, while enhancing configuration effectiveness.
    Keywords: AERODYNAMICS
    Type: Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 1-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-31
    Description: Algorithms are described for the generation and adaptation of unstructured grids in two and three dimensions, as well as Euler solvers for unstructured grids. The main purpose is to demonstrate how unstructured grids may be employed advantageously for the economic simulation of both geometrically as well as physically complex flow fields.
    Keywords: AERODYNAMICS
    Type: Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 377-408
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-08-31
    Description: For many internal transonic flows of practical interest, some of the relevant nondimensional parameters typically are small enough that a perturbation scheme can be expected to give a useful level of numerical accuracy. A variety of steady and unsteady transonic channel and cascade flows is studied with the help of systematic perturbation methods which take advantage of this fact. Asymptotic representations are constructed for small changes in channel cross-section area, small flow deflection angles, small differences between the flow velocity and the sound speed, small amplitudes of imposed oscillations, and small reduced frequencies. Inside a channel the flow is nearly one-dimensional except in thin regions immediately downstream of a shock wave, at the channel entrance and exit, and near the channel throat. A study of two-dimensional cascade flow is extended to include a description of three-dimensional compressor-rotor flow which leads to analytical results except in thin edge regions which require numerical solution. For unsteady flow the qualitative nature of the shock-wave motion in a channel depends strongly on the orders of magnitude of the frequency and amplitude of impressed wall oscillations or fluctuations in back pressure. One example of supersonic flow is considered, for a channel with length large compared to its width, including the effect of separation bubbles and the possibility of self-sustained oscillations. The effect of viscosity on a weak shock wave in a channel is discussed.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 261-291
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The 1980s may well be called the Euler era of applied aerodynamics. Computer codes based on discrete approximations of the Euler equations are now routinely used to obtain solutions of transonic flow problems in which the effects of entropy and vorticity production are significant. Such codes can even predict separation from a sharp edge, owing to the inclusion of artificial dissipation, intended to lend numerical stability to the calculation but at the same time enforcing the Kutta condition. One effect not correctly predictable by Euler codes is the separation from a smooth surface, and neither is viscous drag; for these some form of the Navier-Stokes equation is needed. It, therefore, comes as no surprise to observe that the Navier-Stokes has already begun before Euler solutions were fully exploited. Moreover, most numerical developments for the Euler equations are now constrained by the requirement that the techniques introduced, notably artificial dissipation, must not interfere with the new physics added when going from an Euler to a full Navier-Stokes approximation. In order to appreciate the contributions of Euler solvers to the understanding of transonic aerodynamics, it is useful to review the components of these computational tools. Space discretization, time- or pseudo-time marching and boundary procedures, the essential constituents are discussed. The subject of grid generation and grid adaptation to the solution are touched upon only where relevant. A list of unanswered questions and an outlook for the future are covered.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 217-230
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-31
    Description: The application of computational fluid dynamics (CFD) to fighter aircraft design and development is discussed. Methodology requirements for the aerodynamic design of fighter aircraft are briefly reviewed. The state-of-the-art of computational methods for transonic flows in the light of these requirements is assessed and the techniques found most adequate for the subject application are identified. Highlights from some proof-of-feasibility Euler and Navier-Stokes computations about a complete fighter aircraft configuration are presented. Finally, critical issues and opportunities for design application of CFD are discussed.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 153-173
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A brief survey is given on the study of transonic shock/boundary layer effects in flight. Then the possibility of alleviating the adverse shock effects through passive shock control is discussed. A Swedish flight experiment on a swept wing attack aircraft is used to demonstrate how it is possible to reduce the extent of separated flow and increase the drag-rise Mach number significantly using a moderate amount of perforation of the surface.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 61-77
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2016-06-07
    Description: Numerical and experimental simulation of unsteady airflow through the control valve and slotted air duct of a circulation control rotor is described. The numerical analysis involves the solution of the quasi-one-dimensional compressible fluid-dynamic equations in the blade air duct together with the coupled isentropic flow equations for flow into the blade through the valve and out of the blade through the Coanda slot. Numerical solutions are compared with basic experimental results obtained for a mockup of a circulation control rotor and its pneumatic valving system. The pneumodynamic phenomena that were observed are discussed with particular emphasis on the characteristic system time lags associated with the response of the flow variables to transient and periodic control valve inputs.
    Keywords: AERODYNAMICS
    Type: NASA. Ames Research Center Rotorcraft Dynamics 1984; p 273-285
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-06-07
    Description: A review is given of the relationship between experimental data and the development of modern dynamic-inflow theory. Some of the most interesting data, first presented 10 years ago at the Dynamic Specialist's Meeting, is now reviewed in light of the newer theories. These pure blade-flapping data correlate very well with analyses that include the new dynamic inflow theory, thus verifying the theory. Experimental data are also presented for damping with coupled inplane and body motions. Although inclusion of dynamic inflow is often required to correlate this coupled data, the data cannot be used to verify any particular dynamic inflow theory due to the uncertainties in modeling the inplane degree of freedom. For verification, pure flapping is required. However, the coupled data do show that inflow is often important in such computations.
    Keywords: AERODYNAMICS
    Type: NASA. Ames Research Center Rotorcraft Dynamics 1984; p 187-205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-06-07
    Description: A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades.
    Keywords: AERODYNAMICS
    Type: NASA. Ames Research Center Rotorcraft Dynamics 1984; p 117-136
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-06-07
    Description: A reliable rotor aeroelastic analysis operational that correctly predicts the vibration levels for a helicopter is utilized to test various unsteady aerodynamics models with the objective of improving the correlation between test and theory. This analysis called Rotor Aeroelastic Vibration (RAVIB) computer program is based on a frequency domain forced response analysis which utilizes the transfer matrix techniques to model helicopter/rotor dynamic systems of varying degrees of complexity. The results for the AH-1G helicopter rotor were compared with the flight test data during high speed operation and they indicated a reasonably good correlation for the beamwise and chordwise blade bending moments, but for torsional moments the correlation was poor. As a result, a new aerodynamics model based on unstalled synthesized data derived from the large amplitude oscillating airfoil experiments was developed and tested.
    Keywords: AERODYNAMICS
    Type: NASA. Ames Research Center Rotorcraft Dynamics 11984; p 103-116
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-06-07
    Description: A lifting surface theory was developed for a helicopter rotor in forward flight for compressible and incompressible flow. The method utilizes the concept of the linearized acceleration potential and makes use of the vortex lattice procedure. Calculations demonstrating the application of the method are given in terms of the lift distribution on a single rotor, a two-bladed rotor, and a rotor with swept-forward and swept-back tips. In addition, the lift on a rotor which is vibrating in a pitching mode at 4/rev is given. Compressibility effects and interference effects for a two-bladed rotor are discussed.
    Keywords: AERODYNAMICS
    Type: NASA. Ames Research Center Rotorcraft Dynamics 1984; p 89-101
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The challenge in the definition of the entry aerothermodynamic environment arising from the challenge of a reliable and reusable Orbiter is reviewed in light of the existing technology. Select problems pertinent to the orbiter development are discussed with reference to comprehensive treatments. These problems include boundary layer transition, leeward-side heating, shock/shock interaction scaling, tile gap heating, and nonequilibrium effects such as surface catalysis. Sample measurements obtained from test flights of the Orbiter are presented with comparison to preflight expectations. Numerical and wind tunnel simulations gave efficient information for defining the entry environment and an adequate level of preflight confidence. The high quality flight data provide an opportunity to refine the operational capability of the orbiter and serve as a benchmark both for the development of aerothermodynamic technology and for use in meeting future entry heating challenges.
    Keywords: AERODYNAMICS
    Type: Space Shuttle Tech. Conf., Pt. 2; p 1051-1061
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-31
    Description: An iterative method for wall interference assessment and/or correction is presented for transonic flow conditions in wind tunnels equipped with two component velocity measurements on a single interface. The iterative method does not require modeling of the test article and tunnel wall boundary conditions. Analytical proof for the convergence and stability of the iterative method is shown in the subsonic flow regime. The numerical solutions are given for both 2-D and axisymmetrical cases at transonic speeds with the application of global Mach number correction.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 853-866
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-31
    Description: An intense research effort over the last few years has produced several competing and apparently diverse methods for generating meshes. Recent progress is reviewed and the central themes are emphasized which form a solid foundation for future developments in mesh generation.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 341-376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-31
    Description: A cell-vertex scheme is outlined for solving the flow about a delta wing with M (sub infinity) is greater than 1. Embedded regions of mesh refinement allow solutions to be obtained which have much higher resolution than those achieved to date. Effects of mesh refinement and artificial viscosity on the solutions are studied, to determine at what point leading-edge vortex solutions are grid-converged. A macroscale and a microscale for the size of the vortex are defined, and it is shown that the macroscale (which includes the wing surface properties) is converged on a moderately refined grid, while the microscale is very sensitive to grid spacing. The level of numerical diffusion in the core of the vortex is found to be substantial. Comparisons with the experiment are made for two cases which have transonic cross-flow velocities.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 231-259
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-31
    Description: A computer analysis was developed for calculating steady (or unsteady) three-dimensional aircraft component flow fields. This algorithm, called ENS3D, can compute the flow field for the following configurations: diffuser duct/thrust nozzle, isolated wing, isolated fuselage, wing/fuselage with or without integrated inlet and exhaust, nacelle/inlet, nacelle (fuselage) afterbody/exhaust jet, complete transport engine installation, and multicomponent configurations using zonal grid generation technique. Solutions can be obtained for subsonic, transonic, or hypersonic freestream speeds. The algorithm can solve either the Euler equations for inviscid flow, the thin shear layer Navier-Stokes equations for viscous flow, or the full Navier-Stokes equations for viscous flow. The flow field solution is determined on a body-fitted computational grid. A fully-implicit alternating direction implicit method is employed for the solution of the finite difference equations. For viscous computations, either a two layer eddy-viscosity turbulence model or the k-epsilon two equation transport model can be used to achieve mathematical closure.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 175-194
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The use of computational methods for three dimensional transonic flow design and analysis at the Boeing Company is presented. A range of computational tools consisting of production tools for every day use by project engineers, expert user tools for special applications by computational researchers, and an emerging tool which may see considerable use in the near future are described. These methods include full potential and Euler solvers, some coupled to three dimensional boundary layer analysis methods, for transonic flow analysis about nacelle, wing-body, wing-body-strut-nacelle, and complete aircraft configurations. As the examples presented show, such a toolbox of codes is necessary for the variety of applications typical of an industrial environment. Such a toolbox of codes makes possible aerodynamic advances not previously achievable in a timely manner, if at all.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 1; p 79-107
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-31
    Description: Progress in a recently started project aimed at the prediction of transition to turbulence in hypersonic flow is briefly discussed. The prediction of transition to turbulence is a very important issue in the design of space vessels. Two space vehicles currently under investigation, namely the aeroassisted transfer vehicle (AOTV) and the trans-atmospheric vehicle (TAV), suffer from strong aerodynamic heating. This heating is strongly influenced by the boundary layer structure. These aerospace vehicles fly in the upper atmospheric layer at a Mach number between 10 and 30 at very low atmospheric pressures. At very high altitudes the flow is laminar, but when the space vessel returns to a lower orbit, the flow becomes turbulent and the heating is dramatically increased. The prediction of this transition process is commonly done by means of experiments. The experimental facilities available nowadays cannot model the hypersonic flow field accurately enough by limitations in Mach and Reynolds number. These facilities also have a large free stream disturbance level which makes it very difficult to investigate transition accurately. An alternative approach is to study transition by theoretical means. Up to now numerical studies of hypersonic flow only discussed steady laminar or turbulent flow. This theoretical approach is extended to the study of transition in hypersonic flow by means of direct numerical simulations and additional theoretical investigations to explain the mechanisms leading to transition. A brief outline of how this research is to be performed is given.
    Keywords: AERODYNAMICS
    Type: Annual Research Briefs, 1988; p 115-119
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-31
    Description: In the past decade, there has been much activity in the development of computational methods for the analysis of unsteady transonic aerodynamics about airfoils and wings. Significant features are illustrated which must be addressed in the treatment of computational transonic unsteady aerodynamics. The flow regimes for an aircraft on a plot of lift coefficient vs. Mach number are indicated. The sequence of events occurring in air combat maneuvers are illustrated. And further features of transonic flutter are illustrated. Also illustrated are several types of aeroelastic response which were encountered and which offer challenges for computational methods. The four cases illustrate problem areas encountered near the boundaries of aircraft envelopes, as operating condition change from high speed, low angle conditions to lower speed, higher angle conditions.
    Keywords: AERODYNAMICS
    Type: Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 2; p 631-637
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-31
    Description: A unified formulation is presented based on the full potential framework coupled with an appropriate structural model to compute steady and unsteady flows over rigid and flexible configurations across the Mach number range. The unsteady form of the full potential equation in conservation form is solved using an implicit scheme maintaining time accuracy through internal Newton iterations. A flux biasing procedure based on the unsteady sonic reference conditions is implemented to compute hyperbolic regions with moving sonic and shock surfaces. The wake behind a trailing edge is modeled using a mathematical cut across which the pressure is satisfied to be continuous by solving an appropriate vorticity convection equation. An aeroelastic model based on the generalized modal deflection approach interacts with the nonlinear aerodynamics and includes both static as well as dynamic structural analyses capability. Results are presented for rigid and flexible configurations at different Mach numbers ranging from subsonic to supersonic conditions. The dynamic response of a flexible wing below and above its flutter point is demonstrated.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 1; p 175-191
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-31
    Description: One of the most important uses of method that calculate unsteady aerodynamic loads is to predict and analyze the aeroelastic responses of flight vehicles. Currently, methods based on transonic small disturbance potential aerodynamics are the primary tools for aeroelastic analysis. Flow solutions obtained using isentropic potential theory can be highly inaccurate and even multivalued, because they do not model the effects of entropy that is produced when shock waves are in the flow field. From the results that are presented, it is concluded that nonisentropic potential methods more accurately model Euler solutions than do isentropic methods. The primary effects of modeling shock generated entropy are: (1) to eliminate mulitple flow solutions when strong shock waves are in the flow field; and (2) to bring the strengths and locations of computed shock waves into better agreement with those calculated using Euler method and those measured during experiments.
    Keywords: AERODYNAMICS
    Type: Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 1; p 157-174
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-31
    Description: A finite difference technique is used to solve the transonic small disturbance flow equation making use of shock capturing to treat wave discontinuities. Thus the nonlinear effects of thickness and angle of attack are considered. Such an approach is made feasible by the development of a new code called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance), and is based on a fully implicit approximate factorization (AF) finite difference method to solve the time dependent transonic small disturbance equation. The application of the CAP-TSD code to the calculation of low to moderate supersonic steady and unsteady flows is presented. In particular, comparisons with exact linear theory solutions are made for steady and unsteady cases to evaluate shock capturing and other features of the current method. In addition, steady solutions obtained from an Euler code are used to evaluate the small disturbance aspects of the code. Steady and unsteady pressure comparisons are made with measurements for an F-15 wing model and for the RAE tailplane model.
    Keywords: AERODYNAMICS
    Type: Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 1; p 117-137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-31
    Description: Two wind tunnel investigations were conducted to assess two different wall interference alleviation/correction techniques: adaptive test section walls and classical analytical corrections. The same airfoil model has been tested in the adaptive wall test section of the NASA-Langley 0.3 m Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment (NAE) High Reynolds Number 2-D facility. The model has a 9 in. chord and a CAST 10-2/DOA 2 airfoil section. The 0.3 m TCT adaptive wall test section has four solid walls with flexible top and bottom walls. The NAE test section has porous top and bottom walls and solid side walls. The aerodynamic results corrected for top and bottom wall interference at Mach numbers from 0.3 to 0.8 at a Reynolds number of 10 by 1,000,000. Movement of the adaptive walls was used to alleviate the top and bottom wall interference in the test results from the NASA tunnel.
    Keywords: AERODYNAMICS
    Type: Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 867-890
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-31
    Description: Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 741-764
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-31
    Description: Three dimensional linear secondary instability theory is extended for compressible boundary layers on a flat plate in the presence of finite amplitude Tollmien-Schlichting waves. The focus is on principal parametric resonance responsible for strong growth of subharmonics in low disturbance environment.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 691-704
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-31
    Description: A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 581-610
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-31
    Description: Computational fluid dynamics has an increasingly important role in the design and analysis of aircraft as computer hardware becomes faster and algorithms become more efficient. Progress is being made in two directions: more complex and realistic configurations are being treated and algorithms based on higher approximations to the complete Navier-Stokes equations are being developed. The literature indicates that linear panel methods can model detailed, realistic aircraft geometries in flow regimes where this approximation is valid. As algorithms including higher approximations to the Navier-Stokes equations are developed, computer resource requirements increase rapidly. Generation of suitable grids become more difficult and the number of grid points required to resolve flow features of interest increases. Recently, the development of large vector computers has enabled researchers to attempt more complex geometries with Euler and Navier-Stokes algorithms. The results of calculations for transonic flow about a typical transport and fighter wing-body configuration using thin layer Navier-Stokes equations are described along with flow about helicopter rotor blades using both Euler/Navier-Stokes equations.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 521-545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-31
    Description: Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 437-452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...