ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Rotary-wing computational fluid dynamics is reaching a point where many three-dimensional, unsteady, finite-difference codes are becoming available. This paper gives a brief review of five such codes, which treat the small disturbance, conservative and nonconservative full-potential, and Euler flow models. A discussion of the methods of applying these codes to the rotor environment (including wake and trim considerations) is followed by a comparison with various available data. These data include tests of advancing lifting and nonlifting, and hovering model rotors with significant supercritical flow regions. The codes are also compared for computational efficiency.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The transonic aspect of helicopter flow analysis is addressed. The equations of motion and their implementations are examined, and the computation of real rotor flows is considered. Nonlifting rotor flows, high-speed hover, high advance ratio lifting rotor flows, and strong blade/vortex interaction computations are discussed.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the need for independent computational and experimental studies is great. Three-dimensional unsteady, nonlinear potential methods are becoming fast enough to enable their use in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete trimmed rotor soltution can be performed in about an hour on a CRAY Y-MP (or ten minutes, with multiple processors). These computational speeds indicate that in the near future many of the large CFD problems will no longer require a supercomputer. The ability to convect circulation is routine for integral methods, but only recently was it discovered how to do the same with differential methods. It is clear that the differential CFD rotor analyses are poised to enter the engineering workplace. Integral methods already constitute a mainstay. Ultimately, it is the users who will integrate CFD into the entire engineering process and provide a new measure of confidence in design and analysis. It should be recognized that the above classes of analyses do not include several major limiting phenomena which will continue to require empirical treatment because of computational time constraints and limited physical understanding. Such empirical treatment should be included, however, into the developing CFD, engineering level analyses. It is likely that properly constructed flow models containing corrections from physical testing will be able to fill in unavoidable gaps in the experimental data base, both for basic studies and for specific configuration testing. For these kinds of applications, computational cost is not an issue. Finally, it should be recognized that although rotorcraft are probably the most complex of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and must be used wisely. Therefore the fixed-wing work must be gleaned for many of the basic methods.
    Keywords: AERODYNAMICS
    Type: AGARD, Aerodynamics of Rotorcraft; 38 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: This paper presents results from an experimental study of rotor blade-vortex interaction (BVI) aerodynamics and acoustics. The experiment utilized an externally generated vortex interacting with a two-bladed rotor operating at zero thrust to minimize the influence of the rotor's own wake. The rotor blades were instrumented with a total of 60 absolute pressure transducers at three spanwise and ten chordwise stations on both the upper and lower surfaces. Acoustic data were obtained with fixed near-field microphones as well as a movable array of far-field microphones. The test was carried out in the acoustically treated test section of the NASA Ames 80- by 120-foot Wind Tunnel. Several parameters which influences BVI, such as vortex-rotor separation distance, vortex strength, and vortex sense (swirl direction), as well as rotor tip Mach number and advance ratio, were varied. Simultaneous measurements were obtained of blade surface pressure distributions, near-field acoustics, and far-field acoustics during the vortex-blade encounters.
    Keywords: AERONAUTICS (GENERAL)
    Type: AGARD, Aerodynamics and Aeroacoustics of Rotorcraft; 19 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: The optimum design of the advancing helicopter rotor for high-speed forward flight always involves a tradeoff between transonic and stall limitations. However, the preoccupation of the rotor industry was primarily concerned with stall until well into the 1970s. This emphasis on stall resulted from the prevalent use of low-solidity rotors with rather outdated airfoil sections. The use of cambered airfoil sections and higher-solidity rotors substantially reduced stall and revealed the advancing transonic flow to be a more persistent limitation to high-speed rotor performance. Work in this area was spurred not only by operational necessity but also by the development of a tool for the prediction of these flows (the method of computational fluid dynamics). The development of computational fluid dynamics for these rotor problems was a major Army and NASA achievement. This work is now being extended to other rotor flow problems. The developments are outlined.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA, Washington, NASA(Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity; p 34-65
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 1105-111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-25
    Description: Fixed-wing code development is now aimed primarily at the solution of problems dominated by separation--based on the assumptions that the ability to solve such problems implies the ability to solve all other problems and that present inviscid method are already adequate for most other problems. Neither of the above assumptions are correct for rotary wing problems. This is because of the unique and overriding importance of wake modeling to rotor problems and also due to the well-known numerical diffusion problems which convectional Eulerian Computational fluid dynamics (CFD) method encounter when called on to convect strong vortical regions for long distances. The need for accurate wake analyses is probably the most fundamental difference between rotory and fixed-wing aerodynamics. In addition, rotary wing complexity requires a much more intimate relationship between test and analysis than is common in fixed-wing work. With these issues in mind, this paper will review some of our recent experience in using a unique-Eulerian-Lagrangian Computational fluid dynamics (CFC) method for the solution of a critical rotor-wake problem--the prediction of hover performance.
    Keywords: AERODYNAMICS
    Type: ; : Algorithmic trends
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.
    Keywords: AERONAUTICS (GENERAL)
    Type: NASA-TM-88355 , A-86395 , NAS 1.15:88355 , USAAVSCOM-TM-86-A-5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...