ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (92)
  • Molecular Sequence Data  (92)
  • American Association for the Advancement of Science (AAAS)  (92)
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Institute of Physics
  • Springer
  • Springer Nature
  • Wiley
  • 2010-2014
  • 2000-2004  (92)
  • 1995-1999
  • 1985-1989
  • 1980-1984
  • 1960-1964
  • 1955-1959
  • 1935-1939
  • 1930-1934
  • 2004  (92)
  • 1983
  • Natural Sciences in General  (92)
  • Physics  (92)
  • Information Science and Librarianship
  • Geosciences
  • Technology
Collection
  • Articles  (92)
Publisher
  • American Association for the Advancement of Science (AAAS)  (92)
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Institute of Physics
  • +
Years
  • 2010-2014
  • 2000-2004  (92)
  • 1995-1999
  • 1985-1989
  • 1980-1984
  • +
Year
Topic
  • 1
    Publication Date: 2004-06-05
    Description: The mechanisms by which hydrophobic molecules, such as long-chain fatty acids, enter cells are poorly understood. In Gram-negative bacteria, the lipopolysaccharide layer in the outer membrane is an efficient barrier for fatty acids and aromatic hydrocarbons destined for biodegradation. We report crystal structures of the long-chain fatty acid transporter FadL from Escherichia coli at 2.6 and 2.8 angstrom resolution. FadL forms a 14-stranded beta barrel that is occluded by a central hatch domain. The structures suggest that hydrophobic compounds bind to multiple sites in FadL and use a transport mechanism that involves spontaneous conformational changes in the hatch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Berg, Bert -- Black, Paul N -- Clemons, William M Jr -- Rapoport, Tom A -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1506-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. lvandenberg@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178802" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Binding Sites ; Biological Transport ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Fatty Acid Transport Proteins ; Fatty Acids/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-05-08
    Description: There are 481 segments longer than 200 base pairs (bp) that are absolutely conserved (100% identity with no insertions or deletions) between orthologous regions of the human, rat, and mouse genomes. Nearly all of these segments are also conserved in the chicken and dog genomes, with an average of 95 and 99% identity, respectively. Many are also significantly conserved in fish. These ultraconserved elements of the human genome are most often located either overlapping exons in genes involved in RNA processing or in introns or nearby genes involved in the regulation of transcription and development. Along with more than 5000 sequences of over 100 bp that are absolutely conserved among the three sequenced mammals, these represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserved between these species than are proteins and appear to be essential for the ontogeny of mammals and other vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bejerano, Gill -- Pheasant, Michael -- Makunin, Igor -- Stephen, Stuart -- Kent, W James -- Mattick, John S -- Haussler, David -- 1P41HG02371/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 May 28;304(5675):1321-5. Epub 2004 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA. jill@soe.ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131266" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Base Sequence ; Chickens/genetics ; Computational Biology ; *Conserved Sequence ; DNA, Intergenic ; Dogs/genetics ; Evolution, Molecular ; Exons ; Gene Expression Regulation ; Genes ; Genome ; *Genome, Human ; Humans ; Introns ; Mice/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; RNA/chemistry/genetics/metabolism ; Rats/genetics ; Takifugu/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-06-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beja-Pereira, Albano -- England, Phillip R -- Ferrand, Nuno -- Jordan, Steve -- Bakhiet, Amel O -- Abdalla, Mohammed A -- Mashkour, Marjan -- Jordana, Jordi -- Taberlet, Pierre -- Luikart, Gordon -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1781.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lab. d'Ecologie Alpine, UMR CNRS-UJF 5553, 38041 Grenoble, France. albano.beja-pereira@ujf-grenoble.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15205528" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animal Husbandry ; Animals ; *Animals, Domestic/classification/genetics ; Animals, Wild/genetics ; Archaeology ; Asia ; Cytochromes b/genetics ; DNA, Mitochondrial/genetics ; Equidae/classification/*genetics ; Haplotypes ; Molecular Sequence Data ; *Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-01-06
    Description: Pairing, synapsis, and recombination are prerequisites for accurate chromosome segregation in meiosis. The phs1 gene in maize is required for pairing to occur between homologous chromosomes. In the phs1 mutant, homologous chromosome synapsis is completely replaced by synapsis between nonhomologous partners. The phs1 gene is also required for installation of the meiotic recombination machinery on chromosomes, as the mutant almost completely lacks chromosomal foci of the recombination protein RAD51. Thus, in the phs1 mutant, synapsis is uncoupled from recombination and pairing. The protein encoded by the phs1 gene likely acts in a multistep process to coordinate pairing, recombination, and synapsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pawlowski, Wojciech P -- Golubovskaya, Inna N -- Timofejeva, Ljudmilla -- Meeley, Robert B -- Sheridan, William F -- Cande, W Zacheus -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. wpawlows@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704428" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Nucleus/metabolism ; *Chromosome Pairing ; Chromosomes, Plant/*physiology ; Cloning, Molecular ; Conserved Sequence ; DNA, Plant/metabolism ; DNA-Binding Proteins ; Genes, Plant ; In Situ Hybridization, Fluorescence ; In Situ Nick-End Labeling/methods ; *Meiosis ; Molecular Sequence Data ; Mutation ; Phenotype ; Plant Proteins/chemistry/genetics/*physiology ; RNA, Ribosomal, 5S/genetics ; Rad51 Recombinase ; *Recombination, Genetic ; Sequence Alignment ; Synaptonemal Complex/metabolism/ultrastructure ; Telomere/physiology ; Zea mays/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-04-07
    Description: We have applied "whole-genome shotgun sequencing" to microbial populations collected en masse on tangential flow and impact filters from seawater samples collected from the Sargasso Sea near Bermuda. A total of 1.045 billion base pairs of nonredundant sequence was generated, annotated, and analyzed to elucidate the gene content, diversity, and relative abundance of the organisms within these environmental samples. These data are estimated to derive from at least 1800 genomic species based on sequence relatedness, including 148 previously unknown bacterial phylotypes. We have identified over 1.2 million previously unknown genes represented in these samples, including more than 782 new rhodopsin-like photoreceptors. Variation in species present and stoichiometry suggests substantial oceanic microbial diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venter, J Craig -- Remington, Karin -- Heidelberg, John F -- Halpern, Aaron L -- Rusch, Doug -- Eisen, Jonathan A -- Wu, Dongying -- Paulsen, Ian -- Nelson, Karen E -- Nelson, William -- Fouts, Derrick E -- Levy, Samuel -- Knap, Anthony H -- Lomas, Michael W -- Nealson, Ken -- White, Owen -- Peterson, Jeremy -- Hoffman, Jeff -- Parsons, Rachel -- Baden-Tillson, Holly -- Pfannkoch, Cynthia -- Rogers, Yu-Hui -- Smith, Hamilton O -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):66-74. Epub 2004 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biological Energy Alternatives, 1901 Research Boulevard, Rockville, MD 20850, USA. jcventer@tcag.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001713" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/*genetics ; Atlantic Ocean ; Bacteria/*genetics ; Bacteriophages/genetics ; Biodiversity ; Computational Biology ; Cyanobacteria/genetics/growth & development/metabolism ; *Ecosystem ; Eukaryotic Cells ; Genes, Archaeal ; Genes, Bacterial ; Genes, rRNA ; Genome, Archaeal ; *Genome, Bacterial ; *Genomics ; Molecular Sequence Data ; Photosynthesis ; Phylogeny ; Plasmids ; Rhodopsin/genetics ; Rhodopsins, Microbial ; Seawater/*microbiology ; *Sequence Analysis, DNA ; Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-01-06
    Description: RNA interference (RNAi) is a widespread silencing mechanism that acts at both the posttranscriptional and transcriptional levels. Here, we describe the purification of an RNAi effector complex termed RITS (RNA-induced initiation of transcriptional gene silencing) that is required for heterochromatin assembly in fission yeast. The RITS complex contains Ago1 (the fission yeast Argonaute homolog), Chp1 (a heterochromatin-associated chromodomain protein), and Tas3 (a novel protein). In addition, the complex contains small RNAs that require the Dicer ribonuclease for their production. These small RNAs are homologous to centromeric repeats and are required for the localization of RITS to heterochromatic domains. The results suggest a mechanism for the role of the RNAi machinery and small RNAs in targeting of heterochromatin complexes and epigenetic gene silencing at specific chromosomal loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244756/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244756/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verdel, Andre -- Jia, Songtao -- Gerber, Scott -- Sugiyama, Tomoyasu -- Gygi, Steven -- Grewal, Shiv I S -- Moazed, Danesh -- R01 GM072805/GM/NIGMS NIH HHS/ -- R01 GM072805-01/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):672-6. Epub 2004 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Argonaute Proteins ; Cell Cycle Proteins/chemistry/genetics/isolation & purification/*metabolism ; Centromere/metabolism ; Chromosomes, Fungal/metabolism ; Endoribonucleases/chemistry/genetics/isolation & purification/metabolism ; Genes, Reporter ; Heterochromatin/*metabolism ; Mass Spectrometry ; Models, Genetic ; Molecular Sequence Data ; Mutation ; Precipitin Tests ; Protein Binding ; *RNA Interference ; RNA, Fungal/metabolism ; RNA, Small Interfering/metabolism ; RNA-Binding Proteins ; Ribonuclease III/metabolism ; Schizosaccharomyces/*genetics/metabolism ; Schizosaccharomyces pombe Proteins/chemistry/genetics/isolation & ; purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-02-07
    Description: The 1918 influenza pandemic resulted in about 20 million deaths. This enormous impact, coupled with renewed interest in emerging infections, makes characterization of the virus involved a priority. Receptor binding, the initial event in virus infection, is a major determinant of virus transmissibility that, for influenza viruses, is mediated by the hemagglutinin (HA) membrane glycoprotein. We have determined the crystal structures of the HA from the 1918 virus and two closely related HAs in complex with receptor analogs. They explain how the 1918 HA, while retaining receptor binding site amino acids characteristic of an avian precursor HA, is able to bind human receptors and how, as a consequence, the virus was able to spread in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gamblin, S J -- Haire, L F -- Russell, R J -- Stevens, D J -- Xiao, B -- Ha, Y -- Vasisht, N -- Steinhauer, D A -- Daniels, R S -- Elliot, A -- Wiley, D C -- Skehel, J J -- AI-13654/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1838-42. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764886" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; History, 20th Century ; Humans ; Hydrogen Bonding ; Influenza A virus/*immunology/metabolism/pathogenicity ; Influenza, Human/epidemiology/history/*virology ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Virus/*metabolism ; Sequence Alignment ; Sialic Acids/metabolism ; Species Specificity ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-04-24
    Description: The mechanisms controlling axon guidance are of fundamental importance in understanding brain development. Growing corticospinal and somatosensory axons cross the midline in the medulla to reach their targets and thus form the basis of contralateral motor control and sensory input. The motor and sensory projections appeared uncrossed in patients with horizontal gaze palsy with progressive scoliosis (HGPPS). In patients affected with HGPPS, we identified mutations in the ROBO3 gene, which shares homology with roundabout genes important in axon guidance in developing Drosophila, zebrafish, and mouse. Like its murine homolog Rig1/Robo3, but unlike other Robo proteins, ROBO3 is required for hindbrain axon midline crossing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618874/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618874/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jen, Joanna C -- Chan, Wai-Man -- Bosley, Thomas M -- Wan, Jijun -- Carr, Janai R -- Rub, Udo -- Shattuck, David -- Salamon, Georges -- Kudo, Lili C -- Ou, Jing -- Lin, Doris D M -- Salih, Mustafa A M -- Kansu, Tulay -- Al Dhalaan, Hesham -- Al Zayed, Zayed -- MacDonald, David B -- Stigsby, Bent -- Plaitakis, Andreas -- Dretakis, Emmanuel K -- Gottlob, Irene -- Pieh, Christina -- Traboulsi, Elias I -- Wang, Qing -- Wang, Lejin -- Andrews, Caroline -- Yamada, Koki -- Demer, Joseph L -- Karim, Shaheen -- Alger, Jeffry R -- Geschwind, Daniel H -- Deller, Thomas -- Sicotte, Nancy L -- Nelson, Stanley F -- Baloh, Robert W -- Engle, Elizabeth C -- DC00162/DC/NIDCD NIH HHS/ -- DC05524/DC/NIDCD NIH HHS/ -- EY12498/EY/NEI NIH HHS/ -- EY13583/EY/NEI NIH HHS/ -- EY15298/EY/NEI NIH HHS/ -- EY15311/EY/NEI NIH HHS/ -- MH60233/MH/NIMH NIH HHS/ -- P30 HD 18655/HD/NICHD NIH HHS/ -- R01 EY008313/EY/NEI NIH HHS/ -- R01 EY008313-14/EY/NEI NIH HHS/ -- R01 HL066251/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1509-13. Epub 2004 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles, CA 90095, USA. jjen@ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105459" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Alternative Splicing ; Amino Acid Motifs ; Amino Acid Sequence ; Axons/*physiology ; Evoked Potentials, Motor ; Evoked Potentials, Somatosensory ; Female ; Functional Laterality ; Genetic Linkage ; Humans ; In Situ Hybridization ; Magnetic Resonance Imaging ; Male ; Medulla Oblongata/growth & development/pathology ; Microsatellite Repeats ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Neural Pathways ; Ophthalmoplegia/*genetics/pathology/physiopathology ; Pedigree ; Protein Structure, Tertiary ; Receptors, Immunologic/chemistry/*genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Rhombencephalon/*growth & development/pathology ; Scoliosis/*genetics/pathology/physiopathology ; Sequence Analysis, DNA ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-02-21
    Description: Feline immunodeficiency virus (FIV) induces a disease similar to acquired immunodeficiency syndrome (AIDS) in cats, yet in contrast to human immunodeficiency virus (HIV), CD4 is not the viral receptor. We identified a primary receptor for FIV as CD134 (OX40), a T cell activation antigen and costimulatory molecule. CD134 expression promotes viral binding and renders cells permissive for viral entry, productive infection, and syncytium formation. Infection is CXCR4-dependent, analogous to infection with X4 strains of HIV. Thus, despite the evolutionary divergence of the feline and human lentiviruses, both viruses use receptors that target the virus to a subset of cells that are pivotal to the acquired immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimojima, Masayuki -- Miyazawa, Takayuki -- Ikeda, Yasuhiro -- McMonagle, Elizabeth L -- Haining, Hayley -- Akashi, Hiroomi -- Takeuchi, Yasuhiro -- Hosie, Margaret J -- Willett, Brian J -- R01 AI49765-01A1/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1192-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976315" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CD4-Positive T-Lymphocytes/immunology/metabolism/virology ; Cats ; Cell Line ; Cell Line, Tumor ; DNA, Complementary ; Gene Library ; HIV/metabolism ; HeLa Cells ; Heterocyclic Compounds/pharmacology ; Humans ; Immunodeficiency Virus, Feline/*metabolism/pathogenicity ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Receptors, CXCR4/antagonists & inhibitors/metabolism ; Receptors, OX40 ; Receptors, Tumor Necrosis Factor/chemistry/genetics/immunology/*metabolism ; Receptors, Virus/chemistry/genetics/immunology/*metabolism ; Species Specificity ; Transduction, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-01-13
    Description: A family of unusual proteins is deposited in flat, structural platelets in reflective tissues of the squid Euprymna scolopes. These proteins, which we have named reflectins, are encoded by at least six genes in three subfamilies and have no reported homologs outside of squids. Reflectins possess five repeating domains, which are highly conserved among members of the family. The proteins have a very unusual composition, with four relatively rare residues (tyrosine, methionine, arginine, and tryptophan) comprising approximately 57% of a reflectin, and several common residues (alanine, isoleucine, leucine, and lysine) occurring in none of the family members. These protein-based reflectors in squids provide a marked example of nanofabrication in animal systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crookes, Wendy J -- Ding, Lin-Lin -- Huang, Qing Ling -- Kimbell, Jennifer R -- Horwitz, Joseph -- McFall-Ngai, Margaret J -- NEI R01 EY3897/EY/NEI NIH HHS/ -- R01 A150661/PHS HHS/ -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):235-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii-Manoa, 41 Ahui Street, Honolulu, HI 96813, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Animals ; DNA, Complementary ; Decapodiformes/anatomy & histology/*chemistry/genetics ; Electrophoresis, Polyacrylamide Gel ; Immunoblotting ; Immunohistochemistry ; *Light ; Microscopy, Immunoelectron ; Molecular Sequence Data ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Proteins/*analysis/*chemistry/genetics/isolation & purification ; Sequence Alignment ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...