ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (45,580)
  • Frontiers Media  (14,161)
  • American Geophysical Union  (9,532)
  • American Association for the Advancement of Science  (9,137)
  • Periodicals Archive Online (PAO)
  • 2015-2019  (66,607)
  • 1990-1994
  • 1970-1974  (15,766)
  • 1950-1954
  • 1945-1949
  • 2019  (66,607)
  • 1972  (15,766)
Collection
Publisher
Years
  • 2015-2019  (66,607)
  • 1990-1994
  • 1970-1974  (15,766)
  • 1950-1954
  • 1945-1949
Year
  • 1
    Publication Date: 2021-03-09
    Description: Mixed‐mode fluid‐filled cracks represent a common means of fluid transport within the Earth's crust. They often show complex propagation paths which may be due to interaction with crustal heterogeneities or heterogeneous crustal stress. Previous experimental and numerical studies focus on the interplay between fluid over-pressure and external stress but neglect the effect of other crack parameters. In this study, we address the role of crack length on the propagation paths in the presence of an external heterogeneous stress field. We make use of numerical simulations of magmatic dike and hydrofracture propagation, carried out using a two‐dimensional boundary element model, and analogue experiments of air‐filled crack propagation into a transparent gelatin block. We use a 3‐D finite element model to compute the stress field acting within the gelatin block and perform a quantitative comparison between 2‐D numerical simulations and experiments. We show that, given the same ratio between external stress and fluid pressure, longer fluid‐filled cracks are less sensitive to the background stress, and we quantify this effect on fluid‐filled crack paths. Combining the magnitude of the external stress, the fluid pressure, and the crack length, we define a new parameter, which characterizes two end member scenarios for the propagation path of a fluid‐filled fracture. Our results have important implications for volcanological studies which aim to address the problem of complex trajectories of magmatic dikes (i.e., to forecast scenarios of new vents opening at volcanoes) but also have implications for studies that address the growth and propagation of natural and induced hydrofractures.
    Description: Published
    Description: 2064–2081
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Magmatic dykes ; hydrofractures ; Numerical symulations ; Analogue experiments ; 04.08. Volcanology ; 05.05. Mathematical geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-25
    Description: Tsunami deposits present an important archive for understanding tsunami histories and dynamics. Most research in this field has focused on onshore preserved remains, while the offshore deposits have received less attention. In 2009, during a coring campaign with theItalian Navy Magnaghi, four 1 m long gravity cores (MG cores) were sampled from the northern part of Augusta Bay, along a transect in 60 to 110 m water depth. These cores were taken in the same area where a core (MS06) was collected in 2007 about 2.3 km offshore Augusta at a water depth of 72 m below sea level. Core MS06 consisted of a 6.7 m long sequence that included 12 anomalous intervals interpreted as the primary effect of tsunami backwash waves in the last 4500 years. In this study, tsunami deposits were identified, based on sedimentology and displaced benthic foraminifera (as for core MS06) reinforced by X-ray fluorescence data. Two erosional surfaces (L1 and L2) were recognized coupled with grain size increase, abundant Posidonia oceanica seagrass remains and a significant amount of Nubecularia lucifuga, an epiphytic sessile benthic foraminifera considered to be transported from the inner shelf. The occurrence of Ti/Ca and Ti/Sr increments, coinciding with peaks in organic matter (Mo inc/coh) suggests terrestrial run-off coupled with an input of organic matter. The L1 and L2 horizons were attributed to two distinct historical tsunamis (AD 1542 and AD 1693) by indirect age-estimation methods using 210Pb profiles and the comparison of Volume Magnetic Susceptibility data between MG cores and MS06 cores. One most recent bioturbated horizon (Bh), despite not matching the above listed interpretative features, recorded an important palaeoenvironmental change that may correspond to the AD 1908 tsunami. These findings reinforce the value of offshore sediment records as an underutilized resource for the identification of past tsunamis.
    Description: Published
    Description: 1553-1576
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Eastern Sicily ; tsunami ; foraminifera ; sedimentology ; XRF core scanning ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46(8), pp. 4288-4298, ISSN: 0094-8276
    Publication Date: 2021-02-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-29
    Description: Sedimentary architecture and morphogenetic evolution of a polar bay-mouth gravel-spit system are revealed based on topographic mapping, sedimentological data, radiocarbon dating and ground-penetrating radar investigations. Data document variable rates of spit progradation in reaction to atmospheric warming synchronous to the termination of the last glacial re-advance (LGR, 0.45–0.25 ka BP), the southern hemisphere equivalent of the Little Ice Age cooling period. Results show an interruption of spit progradation that coincides with the proposed onset of accelerated isostatic rebound in reaction to glacier retreat. Spit growth resumed in the late 19th century after the rate of isostatic rebound decreased, and continues until today. The direction of modern spit progradation, however, is rotated northwards compared with the growth axis of the early post-LGR spit. This is interpreted to reflect the shift and strengthening in the regional wind field during the last century. A new concept for the interplay of polar gravel-spit progradation and glacio-isostatic adjustment is presented, allowing for the prediction of future coastal evolution in comparable polar settings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46, ISSN: 0094-8276
    Publication Date: 2019-07-10
    Description: Here we evaluate five atmospheric reanalyses in an Arctic gateway during late summer. The reanalyses include ERA5, ERA-Interim, JRA-55, CFSv2 and MERRA-2. We use observations from 50 radiosondes launched in the Fram Strait around 79-80˚N, between 25 August – 11 September 2017. Crucially, data from 27 radiosondes were not transmitted to the Global Telecommunications System (GTS), and therefore not assimilated into any reanalysis. In most reanalyses, the magnitude of wind speed and humidity errors are similar for profiles with and without data assimilation. In cases without data assimilation, correlation coefficients (R) exceed 0.88 for temperature, wind speed and specific humidity, in all reanalyses. Overall, the newly released ERA5 has higher correlation coefficients than any other reanalyses as well as smaller biases and root mean square errors, for all three variables. The largest improvements identified in ERA5 are in its representation of the wind field, and temperature profiles over warm water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The importance of macrobenthos in benthic‐pelagic coupling and early diagenesis of organic carbon (OC) has long been recognized but has not been quantified at a regional scale. By using the southern North Sea as an exemplary area we present a modelling attempt to quantify the budget of total organic carbon (TOC) reworked by macrobenthos in seafloor surface sediments. Vertical profiles in sediments collected in the field indicate a significant but nonlinear correlation between TOC and macrobenthic biomass. A mechanistic model is used to resolve the bi‐directional interaction between TOC and macrobenthos. A novelty of this model is that bioturbation is resolved dynamically depending on variations in local food resource and macrobenthic biomass. The model is coupled to 3D hydrodynamic‐biogeochemical simulations to hindcast the mutual dependence between sedimentary TOC and macrobenthos from 1948 to 2015. Agreement with field data reveals a satisfactory model performance. Our simulations show that the preservation of TOC in the North Sea sediments is not only determined by pelagic conditions (hydrodynamic regime and primary production) but also by the vertical distribution of TOC, bioturbation intensity, and the vertical positioning of macrobenthos. Macrobenthos annually ingest 20%–35% and in addition vertically diffuse 11%–22% of the total budget of TOC in the upper‐most 30 cm sediments in the southern North Sea. This result indicates a central role of benthic animals in modulating the OC cycling at the sediment‐water interface of continental margins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Paleoceanography and Paleoclimatology, Wiley, 34, pp. 432-435
    Publication Date: 2019-06-23
    Description: Age control and paleoceanographic evidence of marine sediment records might be challenged if authors solely build their stratigraphy on visual correlation to apparently well‐dated records from the same ocean basin, using, for example, highly resolved X‐ray fluorescence‐based element‐count records and correlation tools such as AnalySeries. While per se perfectly reasonable, this approach bears the risk of missing stratigraphic gaps in the sedimentary record and thus might result in imprecise and/or flawed interpretations. Here we present a unique series of 14 planktic 14C ages from a 7‐cm section of East Pacific Rise core PS75/059‐2. The ages suggest a 14‐ky‐long period of low‐to‐zero deposition during Last Glacial Maximum, mainly marked by continuous redistribution of winnowed foraminifers, probably the result of enhanced bottom currents, moreover, by some bioturbational mixing. On the basis of this data we demonstrate the impact of the hiatus on a South Pacific transect of apparent benthic ventilation ages (ΔΔ14C values) and their meaning for estimates of CO2 stored in Last Glacial Maximum Pacific deep waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, ISSN: 0094-8276
    Publication Date: 2019-06-16
    Description: Satellite‐derived data suggest an increase in annual primary production following the loss of summer sea ice in the Arctic Ocean. The scarcity of field data to corroborate this enhanced algal production incited a collaborative project combining six annual cycles of sequential sediment trap measurements obtained over a 17‐year period in the Eurasian Arctic Ocean. Here we present microalgal fluxes measured at ~200 m to reflect the bulk of algal carbon production. Ice algae contributed to a large proportion of the microalgal carbon export before complete ice melt and possible detection of their production by satellites. In the northern Laptev Sea, annual microalgal carbon fluxes were lower during the 2007 minimum ice extent than in 2006. In 2012, early snowmelt led to early microalgal carbon flux in the Nansen Basin. Hence, a change in the timing of snowmelt and ice algae release may affect productivity and export over the Arctic basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-27
    Description: Sea ice dynamics determine the drift and deformation of sea ice. Nonlinear physics, usually expressed in a viscous‐plastic rheology, makes the sea ice momentum equations notoriously difficult to solve. At increasing sea ice model resolution the nonlinearities become stronger as linear kinematic features (leads) appear in the solutions. Even the standard elastic‐viscous‐plastic (EVP) solver for sea ice dynamics, which was introduced for computational efficiency, becomes computationally very expensive, when accurate solutions are required, because the numerical stability requires very short, and hence more, subcycling time steps at high resolution. Simple modifications to the EVP solver have been shown to remove the influence of the number of subcycles on the numerical stability. At low resolution appropriate solutions can be obtained with only partial convergence based on a significantly reduced number of subcycles as long as the numerical procedure is kept stable. This previous result is extended to high resolution where linear kinematic features start to appear. The computational cost can be strongly reduced in Arctic Ocean simulations with a grid spacing of 4.5 km by using modified and adaptive EVP versions because fewer subcycles are required to simulate sea ice fields with the same characteristics as with the standard EVP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-15
    Description: Quaternary East Asian winter monsoon (EAWM) evolution has long been attributed to high‐latitude Northern Hemisphere climate change. However, it cannot explain the distinct relationships of the EAWM in the northern and southern East Asian marginal sea in paleoclimatic records. Here we present an EAWM record of the northern East China Sea over the past 300 ka and a transient climate simulation with the Kiel Climate Model through the Holocene. Both proxy record and simulation suggest anticorrelated long‐term EAWM evolution between the northern East China Sea and the South China Sea. We suggest that this spatial discrepancy of EAWM can be interpreted as El Niño–Southern Oscillation (ENSO)‐like controlling, which generates cyclonic/anticyclonic wind anomalies in the northern/southern East Asian marginal sea. This research explains much of the controversy in nonorbital scale variability of Quaternary EAWM records in the East Asian marginal sea and supports a potent role of tropical forcing in East Asian winter climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-01
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide and global modeling efforts – thereby enhancing predictions of the WG in global ocean circulation and climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-07-02
    Description: The East Antarctic Ice Sheet (EAIS) is underlain by a series of low‐lying subglacial sedimentary basins. The extent, geology, and basal topography of these sedimentary basins are important boundary conditions governing the dynamics of the overlying ice sheet. This is particularly pertinent for basins close to the grounding line wherein the EAIS is grounded below sea level and therefore potentially vulnerable to rapid retreat. Here we analyze newly acquired airborne geophysical data over the Pensacola‐Pole Basin (PPB), a previously unexplored sector of the EAIS. Using a combination of gravity and magnetic and ice‐penetrating radar data, we present the first detailed subglacial sedimentary basin model for the PPB. Radar data reveal that the PPB is defined by a topographic depression situated ~500 m below sea level. Gravity and magnetic depth‐to‐source modeling indicate that the southern part of the basin is underlain by a sedimentary succession 2–3 km thick. This is interpreted as an equivalent of the Beacon Supergroup and associated Ferrar dolerites that are exposed along the margin of East Antarctica. However, we find that similar rocks appear to be largely absent from the northern part of the basin, close to the present‐day grounding line. In addition, the eastern margin of the basin is characterized by a major geological boundary and a system of overdeepened subglacial troughs. We suggest that these characteristics of the basin may reflect the behavior of past ice sheets and/or exert an influence on the present‐day dynamics of the overlying EAIS.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-12
    Description: Dinoflagellates are microbial eukaryotes that have exceptionally large nuclear genomes; however, their organelle genomes are small and fragmented and contain fewer genes than those of other eukaryotes. The genus Amoebophrya (Syndiniales) comprises endoparasites with high genetic diversity that can infect other dinoflagellates, such as those forming harmful algal blooms (e.g., Alexandrium). We sequenced the genome (~100 Mb) of Amoebophrya ceratii to investigate the early evolution of genomic characters in dinoflagellates. The A. ceratii genome encodes almost all essential biosynthetic pathways for self-sustaining cellular metabolism, suggesting a limited dependency on its host. Although dinoflagellates are thought to have descended from a photosynthetic ancestor, A. ceratii appears to have completely lost its plastid and nearly all genes of plastid origin. Functional mitochondria persist in all life stages of A. ceratii, but we found no evidence for the presence of a mitochondrial genome. Instead, all mitochondrial proteins appear to be lost or encoded in the A. ceratii nucleus.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, ISSN: 0094-8276
    Publication Date: 2019-09-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46(8), pp. 4413-4420, ISSN: 0094-8276
    Publication Date: 2019-10-07
    Description: The Red Sea is a deep marine basin often considered as small‐scale version of the global ocean. Hydrographic observations and ocean‐atmosphere modeling indicate Red Sea deep water was episodically renewed by wintertime open‐ocean deep convections during 1982–2001, suggesting a renewal time on the order of a decade. However, the long‐term pacing of Red Sea deep water renewals is largely uncertain. We use an annually resolved coral oxygen isotope record of winter surface water conditions to show that the late twentieth century deep water renewals were probably unusual in the context of the preceding ~100 years. More frequent major events are detected during the late Little Ice Age, particularly during the early nineteenth century characterized by large tropical volcanic eruptions. We conclude that Red Sea deep water renewal time is on the order of a decade up to a century, depending on the mean climatic conditions and large‐scale interannual climate forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Earth's Future, American Geophysical Union, 7(12), pp. 1296-1306, ISSN: 2328-4277
    Publication Date: 2021-02-15
    Description: To counteract global warming, a geoengineering approach that aims at intervening in the Arctic ice‐albedo feedback has been proposed. A large number of wind‐driven pumps shall spread seawater on the surface in winter to enhance ice growth, allowing more ice to survive the summer melt. We test this idea with a coupled climate model by modifying the surface exchange processes such that the physical effect of the pumps is simulated. Based on experiments with RCP 8.5 scenario forcing, we find that it is possible to keep the late‐summer sea ice cover at the current extent for the next ∼60 years. The increased ice extent is accompanied by significant Arctic late‐summer cooling by ∼1.3 K on average north of the polar circle (2021–2060). However, this cooling is not conveyed to lower latitudes. Moreover, the Arctic experiences substantial winter warming in regions with active pumps. The global annual‐mean near‐surface air temperature is reduced by only 0.02 K (2021–2060). Our results cast doubt on the potential of sea ice targeted geoengineering to mitigate climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-01-07
    Description: Ocean heat transport through the Barents Sea Opening (BSO) has strong impacts on the Barents Sea ice extent and the climate. In this paper we quantified the contributions from different atmospheric forcing components to the trend and interannual variability of the BSO heat transport. Ocean‐ice model simulations were conducted in which the interannual variation of atmospheric forcing was maintained only in or outside the Arctic in two different simulations. The sum of their BSO heat transport anomalies reasonably replicated the trend and variability from a hindcast simulation. The upward trend of the BSO heat transport mainly stems from the increasing ocean temperature in the subpolar North Atlantic. For the interannual variability, the local wind and upstream forcing are similarly important. The location of the Atlantic Water boundary current in the Nordic Seas, influenced by the cyclonic atmospheric circulation, is crucial in determining part of the BSO inflow variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-12-28
    Description: Kelps are important providers and constituents of marine ecological niches, the coastal kelp forests. Kelp species have differing distribution ranges, but mainly thrive in temperate and arctic regions. Although the principal factors determining biogeographic distribution ranges are known, genomics could provide additional answers to this question. We sequenced DNA from two Laminaria species with contrasting distribution ranges, Laminaria digitata and Laminaria solidungula. Laminaria digitata is found in the Northern Atlantic with a southern boundary in Brittany (France) or Massachusetts (USA) and a northern boundary in the Arctic, whereas L. solidungula is endemic to the Arctic only. From the raw reads of DNA, we reconstructed both chloroplast genomes and annotated them. A concatenated data set of all available brown algae chloroplast sequences was used for the calculation of a robust phylogeny, and sequence variations were analyzed. The two Laminaria chloroplast genomes are collinear to previously analyzed kelp chloroplast genomes with important exceptions. Rearrangements at the inverted repeat regions led to the pseudogenization of ycf37 in L. solidungula, a gene possibly required under high light conditions. This defunct gene might be one of the reasons why the habitat range of L. solidungula is restricted to lowlight sublittoral sites in the Arctic. The inheritance pattern of single nucleotide polymorphisms suggests incomplete lineage sorting of chloroplast genomes in kelp species. Our analysis of kelp chloroplast genomes shows that not only evolutionary information could be gleaned from sequence data. Concomitantly, those sequences can also tell us something about the ecological conditions which are required for species well‐being.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Biologie in unserer Zeit, Wiley, 49(6), pp. 436-442, ISSN: 0045-205X
    Publication Date: 2019-12-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall meeting, San Francisco, CA, 2019-12-09-2019-12-13USA, American Geophysical Union
    Publication Date: 2019-12-17
    Description: During the last decade the Arctic has experienced increasing human development while many native communities continue to live a subsistence lifestyle. Off-road winter tundra travel for resource exploration is most cost effective and least environmentally damaging during winter when the tundra is frozen and snow covered. Climate warming, which is occurring at an amplified rate in the Arctic, likely changes the period when access to the off-road tundra travel is possible. There currently exists, however, large uncertainty as to how climate change will impact the low-cost winter travel access across the tundra. Here we defined safe tundra access when soil temperatures are below a soil type dependent freezing temperature and snow cover is at least 20 cm. Our analysis is based on the simulated soil temperatures and snow depths of Land Surface Models (LSMs) contributing to “The Inter-Sectoral Impact Model Intercomparison Project” (ISIMIP). ISIMIP simulations are based on a common protocol, the same input data, the same spatial (0.5°) and temporal resolution (daily modeling output), and span over the period 1861-2100. The LSMs are forced by four different bias-corrected global circulation models (IPSL-CM5A-LR, GFDL-ESM2M, MIROC5, HadGEM2-ES) and three different future conditions (represented via representative concentration pathways (RCP) 2.6, 6.0, 8.5). The simulation results of our model ensemble (60 model combinations) show consistent permafrost warming and changing snow cover patterns at 60°N. Annual off-road tundra travel is considerably reduced (〉50%) under future climate change scenarios, especially under the RCP8.5. The main reduction can be observed in the spring and autumn (〉30%). The results of the multi-model ensemble differ in magnitude, however, their overall trend is consistent. Our results suggest a high vulnerability and substantial changes to the (subsistence) livelihoods of native communities and increasing costs for off-road resource exploration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-02-16
    Description: A new global climate model setup using FESOM2.0 for the sea ice‐ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long‐term climate integrations using a locally eddy‐resolving ocean. Here it is evaluated in terms of (1) the mean state and long‐term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy‐resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin‐up. However, it is argued that the strategy of “de‐drifting” climate runs after the short spin‐up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy‐permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-01-27
    Description: The Central Asian Pamir Mountains (Pamirs) are a high‐altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial‐interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31‐kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. δD values of terrestrial biomarkers showed insolation‐driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive δD shifts driven by changes in precipitation seasonality were observed at ca. 31–30, 28–26, and 17–14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation‐evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-02-12
    Description: Climate change and sustainable use of natural capital demand increased collaboration across the sciences. The first steps for effective collaboration often focus on improving interoperability between observation and analyses methodologies. This is traditionally done through a combination of standards and best practices. The ocean observation community and observing infrastructures - with regionally diverse members working in physics, chemistry, biology and engineering - is looking toward a dynamic consensus-building approach to match the rapid pace of technological evolution. This is an essential part of the long-term cooperation among ocean observing infrastructures. In the last 12 months, the ocean observing community has implemented an Ocean Best Practices System (OBPS). This System was recently adopted by the Intergovernmental Ocean Commission as an international project under GOOS and IODE. The System consists of a permanent OBPS repository hosted by IODE with state-of-the-art semantic discovery and metadata indexing for improved access to best practices and, eventually, to the data associated with them. There have been discussions to understand how to deal with differing best practices and standards on the same observation or analyses objective and other issues that arise from a comprehensive ocean best practices system. A recent survey, to be described, offers options on alternative approaches. Further, we have created a forum, in “Frontiers in Marine Science” for discussion of best practices and their applications. This presentation will cover options for evolving and sustaining ocean best practices across infrastructures. The recommendations build upon the community survey, the OGC experience, the outcomes of the OceanObs’19 conference as well as inputs from the Decade for Ocean Sciences community meetings. The extension of this work to other communities will also be examined.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-05-14
    Description: IODP Exp. 383 recovered two Pleistocene sedimentary sequences from the upper continental slope along the southernmost Chilean margin that are well positioned to monitor changes in the Antarctic Circumpolar Current (ACC) upstream of the Drake Passage and the history of Patagonian glaciation. These sites are characterized by high sedimentation rates and a complex distribution of siliciclastic sediments with infrequent decimeter-scale beds of calcareous biogenic sediments. Unravelling ocean circulation and climate history from these sites requires a primary understanding of sedimentary provenance and transport mechanisms derived from a complete lithological characterization of the sequence. Here, we integrate downcore shipboard physical properties with sedimentological observations to fully characterize the sequences, evaluate potential for correlation and constrain regional depositional processes. Site U1542 (52°S; 1101 m water depth) consists of a 249 m spliced sedimentary sequence containing Middle Pleistocene to Holocene sediments. It mainly consists of clayey silt that is often interbedded with thin (~75 cm) beds of calcareous sand-bearing clayey to sandy silt with foraminifera and nannofossils or foraminifera-rich nannofossil ooze. Site U1544 (55°S; 2090 m water depth) consists of a 98 m sedimentary sequence obtained from a single hole. Sediments are also dominated by silty clay, but exhibit slightly thicker beds of calcareous ooze and a significantly higher proportion of cm- to dm-scale sand beds that are interpreted as turbidites. Based on the lithology of the recovered sediments and proximity to a glaciated continental margin, terrigenous sediment is likely delivered to these locations by a combination of ice rafting, glacial meltwater plumes, episodic downslope transport from the outer continental shelf and fine-grained sediments transported by the Cape Horn Current entering the Drake Passage as the northern branch of the ACC.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-06-03
    Description: - We provide the first isotopic geochronological constraints on brittle deformation in the NA by illite K-Ar dating of brittle fault rocks - A combined structural-geochronological approach constrains a Late Miocene-Early Pliocene regional compressive stress state
    Description: The Northern Apennines (NA) orogenic wedge formed during Oligocene-Miocene convergence and westward subduction of Adria beneath the European Plate. Extension ensued in the Mid-Late Miocene in response to Adria roll-back, causing opening of the back-arc Northern Tyrrhenian Sea. Whether extension continues uninterrupted since the Mid-Late Miocene or it was punctuated by short-lived compressional events, remains, however, uncertain. We used the K-Ar method to date a set of brittle-ductile and brittle deformation zones from the Island of Elba to contribute to this debate. We dated the low-angle Zuccale Fault (ZF), the Capo Norsi-Monte Arco Thrust (CN-MAT), and the Calanchiole Shear Zone (CSZ). The CN-MAT and CSZ are moderately west dipping, top-to-the-east thrusts in the immediate footwall of the ZF. The CSZ slipped 6.14 ± 0.64 Ma (〈0.1 μm fraction) and the CN-MAT 4.90 ± 0.27 Ma ago (〈0.4 μm fraction). The ZF, although cutting the two other faults, yielded an older age of 7.58 ± 0.11 Ma (〈0.1 μm fraction). The ZF gouge, however, contains an illitic detrital contaminant from the Paleozoic age flysch deformed in its hanging wall and the age thus is a maximum faulting age. Removal of ~1% of a 300-Ma-old contaminant brings the ZF faulting age to 〈4.90 Ma. Our results provide the first direct dating of brittle deformation in the Apennines, constraining Late Miocene-Early Pliocene regional compression. They call for a refinement of current NA geodynamic models in the framework of the Northern Tyrrhenian Sea extension.
    Description: Published
    Description: 3229–3243
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: K-Ar dating fault gouge ; Northern Apennines ; Elba Island ; Neogene geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-03-06
    Description: On behalf of the authors and readers of Reviews of Geophysics, the American Geophysical Union, and the broader scientific community, the Editors wish to wholeheartedly thank those who reviewed the manuscripts for Reviews of Geophysics in 2017. The journal could not exist without your investment of time and effort, lending your expertise to ensure that the papers published in this journal meet the standards that the research community expects for it. We sincerely appreciate all that you do, and we are very grateful for your willingness and readiness to serve in this role.
    Description: Published
    Description: 566
    Description: 1VV. Altro
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-03-29
    Description: Pore Pressure Pulse Drove the 2012 Emilia (Italy)Series of EarthquakesGiuseppe Pezzo1, Pasquale De Gori1, Francesco Pio Lucente1, and Claudio Chiarabba11Istituto Nazionale di Geofisica e Vulcanologia, Rome, ItalyAbstractThe 2012 Emilia earthquakes sequence is thefirst debated case in Italy of destructive eventpossibly induced by anthropic activity. During this sequence, two main earthquakes occurred separated by9 days on contiguous thrust faults. Scientific commissions engaged by the Italian government reportedcomplementary scenarios on the potential trigger mechanism ascribable to exploitation of a nearby oilfield.In this study, we combine a refined geodetic source model constrained by precise aftershock locationsand an improved tomographic model of the area to define the geometrical relation between the activatedfaults and investigate possible triggering mechanisms. An aftershock decay rate that deviates from theclassical Omori-like pattern andVp/Vschanges along the fault system suggests that natural pore pressurepulse drove the space-time evolution of seismicity and the activation of the second main shock
    Description: Published
    Description: 682-690
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-03-29
    Description: Near-fault ground motion records often present impulsive signals, characterized by a largeamplitude in the velocity wavefield and by the energy concentrated in a short time window as comparedto the total earthquake duration. Thispulse-likebehavior is ascribed to the directivity of the seismic rupture,and it requires a stronger demand to the buildings not predicted by the classical design spectra. In this workwe investigate the pulse occurrence and duration in near-fault synthetic seismograms generated from anensemble ofk 2source models. We exploited the fault geometry of theMw= 6.3, 2009 L’Aquila earthquake,which represents a typical example of normal-fault earthquake for which several records in the fault vicinityare available for comparison with synthetics. We show that impulsive records are sensitive to the rupturevelocity, to the hypocenter depth, and to the station location, whether it is on the hanging wall or on thefootwall. The pulse duration was also shown to be proportional to the risetime, and it scales with thesource-receiver distance and inversely with the rupture velocity. We model these results as an effectof the coupled along-strike and updip directivity
    Description: Published
    Description: 7707-7721
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-09-12
    Description: Changes in water level are commonly reported in regions struck by a seismic event. The sign and amplitude of such changes depend on the relative position of measuring points with respect to the hypocenter, and on the poroelastic properties of the rock. We apply a porous media flow model (TOUGH2) to describe groundwater flow and water‐level changes associated with the first ML5.9 mainshock of the 2012 seismic sequence in Emilia (Italy). We represent the earthquake as an instantaneous pressure step, whose amplitude was inferred from the properties of the seismic source inverted from geodetic data. The results are consistent with the evolution recorded in both deep and shallow water wells in the area and suggest that our description of the seismic event is suitable to capture both timing and magnitude of water‐level changes. We draw some conclusions about the influence of material heterogeneity on the pore pressure evolution, and we show that to reproduce the observed maximum amplitude it is necessary to take into account compaction in the shallow layer.
    Description: Published
    Description: 452–463
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: 2012 Emilia earthquake ; groundwaters ; isotropic stress ; permeability ; porosity ; water wells ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-10-28
    Description: On behalf of the authors and readers of Reviews of Geophysics, the American Geophysical Union (AGU), and the broader scientific community, the Editors wish to wholeheartedly thank those who reviewed the manuscripts for Reviews of Geophysics in 2018. Reviews of Geophysics is the top rated journal in Geophysics and Geochemistry and it could not exist without your investment of time and effort, lending your expertise to ensure that the papers published in this journal meet the standards that the research community expects for it. We sincerely appreciate the time spent reading and commenting on manuscripts, and we are very grateful for your willingness and readiness to serve in this role. Reviews of Geophysics published 20 review papers and an editorial in 2018, covering most of the AGU Section topics, and for this we were able to rely on the efforts of 85 dedicated reviewers from 20 countries. Many reviewers answered the call multiple times. Thank you again. We look forward to a 2019 of exciting advances in the field and communicating those advances to our community and to the broader public.
    Description: Published
    Description: 4
    Description: 5TM. Informazione ed editoria
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, ISSN: 0148-0227
    Publication Date: 2019-04-03
    Description: Peat plateaus and palsas are characteristic morphologies of sporadic permafrost, and the transition from permafrost to permafrost‐free ground typically occurs on spatial scales of meters. They are particularly vulnerable to climate change and are currently degrading in Fennoscandia. Here we present a spatially distributed data set of ground surface temperatures for two peat plateau sites in northern Norway for the year 2015–2016. Based on these data and thermal modeling, we investigate how the snow depth and water balance modulate the climate signal in the ground. We find that mean annual ground surface temperatures are centered around 2 to 2.5 °C for stable permafrost locations and 3.5 to 4.5 °C for permafrost‐free locations. The surface freezing degree days are characterized by a noticeable threshold around 200 °C.day, with most permafrost‐free locations ranging below this value and most stable permafrost ones above it. Freezing degree day values are well correlated to the March snow cover, although some variability is observed and attributed to the ground moisture level. Indeed, a zero curtain effect is observed on temperature time series for saturated soils during winter, while drained peat plateaus show early freezing surface temperatures. Complementarily, modeling experiments allow identifying a drainage effect that can modify 1‐m ground temperatures by up to 2 °C between drained and water accumulating simulations for the same snow cover. This effect can set favorable or unfavorable conditions for permafrost stability under the same climate forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-05-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Atmospheres, Wiley, 124(2), pp. 858-869, ISSN: 0148-0227
    Publication Date: 2019-02-25
    Description: We characterize the differences in the upward planetary‐scale wave propagation during observed weak polar vortex (WPV) events between heavy‐ and light‐sea‐ice years in the Barents‐Kara Sea based on a composite analysis for the period of 1979–2015. Upward wave propagation during WPV events in heavy‐ice years is dominated by the wavenumber 1 component. In contrast, WPV events occurring in light‐ice years are characterized by stronger wavenumber 2 propagation, which is caused by the tropospheric wavenumber 2 response to sea‐ice reduction in the Barents‐Kara Sea. The above observed features are supported by an Atmospheric General Circulation Model experiment. Thus, under present climate conditions, Arctic sea‐ice loss is a possible factor modulating the wave propagation during the WPV events. We also find that the WPV events in light‐ice years have stronger stratosphere‐troposphere coupling, followed by colder midlatitude surface conditions particularly over Eurasia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 124, pp. 216-228, ISSN: 0148-0227
    Publication Date: 2019-08-14
    Description: This study assesses the response on ice dynamics of Petermann Glacier, a major outlet glacier in northern Greenland, to the 2012 and a possible future calving event. So far Petermann Glacier has been believed to be dynamically stable as another large calving event in 2010 had no significant impact on flow velocity or grounding line retreat. By analyzing a time series of remotely sensed surface velocities, we find an average acceleration of 10% between winter 2011/2012 and winter 2016/2017. This increase in surface velocity is not linear but can be separated into two parts, starting in 2012 and 2016 respectively. By conducting modeling experiments, we show that the first speedup can be directly connected to the 2012 calving event, while the second speedup is not captured. However, on recent remote sensing imagery newly developing fractures are clearly visible ∼12 km upstream from the terminus, propagating from the eastern fjord wall to the center of the ice tongue, indicating a possible future calving event. By including these fracture zones as a new terminus position in the modeling domain, we are able to reproduce the second speedup, suggesting that surface velocities remain on the 2016/2017 level after the anticipated calving event. This indicates that, from a dynamical point of view, the terminus region has already detached from the main ice tongue.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-11-25
    Description: The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community‐sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Data advances in the field. Building upon recent efforts to standardize the format and terminology of paleoclimate data, this article describes the Paleoclimate Community reporTing Standard (PaCTS), a crowdsourced reporting standard for such data. PaCTS captures which information should be included when reporting paleoclimate data, with the goal of maximizing the reuse value of paleoclimate data sets, particularly for synthesis work and comparison to climate model simulations. Initiated by the LinkedEarth project, the process to elicit a reporting standard involved an international workshop in 2016, various forms of digital community engagement over the next few years, and grassroots working groups. Participants in this process identified important properties across paleoclimate archives, in addition to the reporting of uncertainties and chronologies; they also identified archive‐specific properties and distinguished reporting standards for new versus legacy data sets. This work shows that at least 135 respondents overwhelmingly support a drastic increase in the amount of metadata accompanying paleoclimate data sets. Since such goals are at odds with present practices, we discuss a transparent path toward implementing or revising these recommendations in the near future, using both bottom‐up and top‐down approaches.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-09-10
    Description: Microalgae are capable of acclimating to dynamic light environments, as they have developed mechanisms to optimize light harvesting and photosynthetic electron transport. When absorption of light exceeds photosynthetic capacity, various physiological protective mechanisms prevent damage of the photosynthetic apparatus. Xanthophyll pigments provide one of the most important photoprotective mechanisms to dissipate the excess light energy and prevent photoinhibition. In this study, we coupled a mechanistic model for phytoplankton photoinhibition with the global biogeochemical model Regulated Ecosystem Model version 2. The assumption that photoinhibition is small in phytoplankton communities acclimated to ambient light allowed us to predict the photoprotective needs of phytoplankton. When comparing the predicted photoprotective needs to observations of pigment content determined by high‐performance liquid chromatography, our results showed that photoprotective response seems to be mediated in most parts of the ocean by a variable ratio of xanthophyll pigments to chlorophyll. The variability in the ratio appeared to be mainly driven by changes in phytoplankton community composition. Exceptions appeared at high latitudes where other energy dissipating mechanisms seem to play a role in photoprotection and both taxonomic changes and physiological acclimation determine community pigment signature. Understanding the variability of community pigment signature is crucial for modeling the coupling of light absorption to carbon fixation in the ocean. Insights about how much of this variability is attributable to changes in community composition may allow us to improve the match between remotely sensed optical data and the underlying phytoplankton community.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall meeting 2019, San Francisco, CA, 2019-12-09-2019-12-13USA, American Geophysical Union
    Publication Date: 2021-08-16
    Description: Deciduous larch is a weak competitor when growing in mixed stands with evergreen taxa but is dominant in many boreal forest areas of Eastern Siberia. However, it is hypothesized that certain factors such as a shallow active layer thickness and high fire frequency favor larch dominance. Our aim is to understand how thermohydrological interactions between vegetation, permafrost, and atmosphere stabilize the larch forests and the underlying permafrost in Eastern Siberia. A tailored version of a one-dimensional land surface model (CryoGrid) is adapted for the application in vegetated areas and used to reproduce the energy transfer and thermal regime of permafrost ground in typical boreal larch stands. In order to simulate the responds of Arctic trees to local climate and permafrost conditions we have implemented a multilayer canopy parameterization originally developed for the Community Land Model (CLM-ml_v0). The coupled model is capable of calculating the full energy balance above, within and below the canopy including the radiation budget, the turbulent fluxes and the heat budget of the permafrost ground under several forcing scenarios. We will present first results of simulations performed for different study sites in larch-dominated forests of Eastern Siberia and Mongolia under current and future climate conditions. Model performance is thoroughly evaluated based on comprehensive in-situ soil temperature and radiation measurements at our study sites.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-01-07
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Noble gases in deepwater oils of the U.S. Gulf of Mexico. Geochemistry, Geophysics, Geosystems , 19, 4218 – 4235.(2018): doi:10.1029/2018GC007654.
    Description: Hydrocarbon migration and emplacement processes remain underconstrained despite the vast potential economic value associated with oil and gas. Noble gases provide information about hydrocarbon generation, fluid migration pathways, reservoir conditions, and the relative volumes of oil versus water in the subsurface. Produced gas He-Ne-Ar-Kr-Xe data from two distinct oil fields in the Gulf of Mexico (Genesis and Hoover-Diana) are used to calibrate a model that takes into account both water-oil solubility exchange and subsequent gas cap formation. Reconstructed noble gas signatures in oils reflect simple (two-phase) oil-water exchange imparted during migration from the source rock to the trap, which are subsequently modified by gas cap formation at current reservoir conditions. Calculated, oil to water volume ratios (Vo/Vw) in Tertiary-sourced oils from the Hoover-Diana system are 2–3 times greater on average than those in the Jurassic sourced oils from the Genesis reservoirs. Higher Vo/Vw in Hoover-Diana versus Genesis can be interpreted in two ways: either (1) the Hoover reservoir interval has 2–3 times more oil than any of the individual Genesis reservoirs, which is consistent with independent estimates of oil in place for the respective reservoirs, or (2) Genesis oils have experienced longer migration pathways than Hoover-Diana oils and thus have interacted with more water. The ability to determine a robust Vo/Vw , despite gas cap formation and possible gas cap loss, is extremely powerful. For example, when volumetric hydrocarbon ratios are combined with independent estimates of hydrocarbon migration distance and/or formation fluid volumes, this technique has the potential to differentiate between large and small oil accumulations.
    Description: We thank ExxonMobil for funding and providing the samples. In addition, we thank James Scott and two anonymous reviewers for their comprehensive and constructive reviews, as well as Janne Blichert-Toft for editorial handling.
    Description: 2019-04-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 123(12), (2018): 8674-8687, doi:10.1002/2018JC013766.
    Description: A large collaborative program has studied the coupled air‐ice‐ocean‐wave processes occurring in the Arctic during the autumn ice advance. The program included a field campaign in the western Arctic during the autumn of 2015, with in situ data collection and both aerial and satellite remote sensing. Many of the analyses have focused on using and improving forecast models. Summarizing and synthesizing the results from a series of separate papers, the overall view is of an Arctic shifting to a more seasonal system. The dramatic increase in open water extent and duration in the autumn means that large surface waves and significant surface heat fluxes are now common. When refreezing finally does occur, it is a highly variable process in space and time. Wind and wave events drive episodic advances and retreats of the ice edge, with associated variations in sea ice formation types (e.g., pancakes, nilas). This variability becomes imprinted on the winter ice cover, which in turn affects the melt season the following year.
    Description: This program was supported by the Office of Naval Research, Code 32, under Program Managers Scott Harper and Martin Jeffries. The crew of R/V Sikuliaq provide outstanding support in collecting the field data, and the US National Ice Center, German Aerospace Center (DLR), and European Space Agency facilitated the remote sensing collections and daily analysis products. RADARSAT‐2 Data and Products are from MacDonald, Dettwiler, and Associates Ltd., courtesy of the U.S. National Ice Center. Data, supporting information, and a cruise report can be found at http://www.apl.uw.edu/arcticseastate
    Keywords: Arctic ; waves ; autumn ; sea ice ; Beaufort ; flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 10 (2019): 115, doi:10.3389/fmicb.2019.00115.
    Description: This Research Topic was supported by the National Key Research and Development Program of China grant 2016YFA0601303, China Ocean Mineral Resources R&D Association grant DY135-E2-1-04, China SOA grant GASI-03-01-02-05, NSFC grants 41676122, 91328209, and 91428308, and CNOOC grant CNOOC-KJ125FZDXM00TJ001-2014.
    Keywords: marine microbiology ; microbial ecology ; biogeochemical cycles ; environmental gradients ; global change ; ocean acidification ; greenhouse gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wurch, L. L., Alexander, H., Frischkorn, K. R., Haley, S. T., Gobler, C. J., & Dyhrman, S. T. Transcriptional shifts highlight the role of nutrients in harmful brown tide dynamics. Frontiers in Microbiology, 10, (2019):136, doi:10.3389/fmicb.2019.00136.
    Description: Harmful algal blooms (HABs) threaten ecosystems and human health worldwide. Controlling nitrogen inputs to coastal waters is a common HAB management strategy, as nutrient concentrations often suggest coastal blooms are nitrogen-limited. However, defining best nutrient management practices is a long-standing challenge: in part, because of difficulties in directly tracking the nutritional physiology of harmful species in mixed communities. Using metatranscriptome sequencing and incubation experiments, we addressed this challenge by assaying the in situ physiological ecology of the ecosystem destructive alga, Aureococcus anophagefferens. Here we show that gene markers of phosphorus deficiency were expressed in situ, and modulated by the enrichment of phosphorus, which was consistent with the observed growth rate responses. These data demonstrate the importance of phosphorus in controlling brown-tide dynamics, suggesting that phosphorus, in addition to nitrogen, should be evaluated in the management and mitigation of these blooms. Given that nutrient concentrations alone were suggestive of a nitrogen-limited ecosystem, this study underscores the value of directly assaying harmful algae in situ for the development of management strategies.
    Description: This research was funded by NOAA Grant NA15NOS4780199 (SD), NA09NOA4780206 (SD and CG), and NA15NOS4780183 (CG) through the ECOHAB Program, publication number ECO929. Partial support was also provided by the World Surf League through the Columbia Center for Climate and Life, the Woods Hole Oceanographic Institution Coastal Ocean Institute, and the Link Foundation. Kyle Frischkorn was funded under a National Science Foundation Graduate Research Fellowship.
    Keywords: harmful algal bloom ; Aureococcus anophagefferens ; brown tide ; nutrient physiology ; metatranscriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published invan der Hoop, J. M., Fahlman, A., Shorter, K. A., Gabaldon, J., Rocho-Levine, J., Petrov, V., & Moore, M. J. Swimming energy economy in bottlenose dolphins under variable drag loading. Frontiers in Marine Science, 5, (2018):465, doi:10.3389/fmars.2018.00465.
    Description: Instrumenting animals with tags contributes additional resistive forces (weight, buoyancy, lift, and drag) that may result in increased energetic costs; however, additional metabolic expense can be moderated by adjusting behavior to maintain power output. We sought to increase hydrodynamic drag for near-surface swimming bottlenose dolphins, to investigate the metabolic effect of instrumentation. In this experiment, we investigate whether (1) metabolic rate increases systematically with hydrodynamic drag loading from tags of different sizes or (2) whether tagged individuals modulate speed, swimming distance, and/or fluking motions under increased drag loading. We detected no significant difference in oxygen consumption rates when four male dolphins performed a repeated swimming task, but measured swimming speeds that were 34% (〉1 m s-1) slower in the highest drag condition. To further investigate this observed response, we incrementally decreased and then increased drag in six loading conditions. When drag was reduced, dolphins increased swimming speed (+1.4 m s-1; +45%) and fluking frequency (+0.28 Hz; +16%). As drag was increased, swimming speed (-0.96 m s-1; -23%) and fluking frequency (-14 Hz; 7%) decreased again. Results from computational fluid dynamics simulations indicate that the experimentally observed changes in swimming speed would have maintained the level of external drag forces experienced by the animals. Together, these results indicate that dolphins may adjust swimming speed to modulate the drag force opposing their motion during swimming, adapting their behavior to maintain a level of energy economy during locomotion.
    Description: Funding for this project was provided by the National Oceanographic Partnership Program (National Science Foundation via the Office of Naval Research N00014-11-1-0113 to MM) and the Office of Naval Research (ONR YIP Award N000141410563 to AF). Dolphin Quest provided in-kind support of animals, crew, and access to resources. JvdH was supported by a Postgraduate Scholarship from the Natural Sciences and Engineering Research Council of Canada.
    Keywords: drag ; swimming efficiency ; adaptive behavior ; tag effect ; biomechanics ; metabolism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 123(12), (2018): 8887-8901, doi:10.1029/2018JC013797.
    Description: Sea ice is one of the determining parameters of the climate system. The presence of melt ponds on the surface of Arctic sea ice plays a critical role in the mass balance of sea ice. A total of nine cores was collected from multiyear ice refrozen melt ponds and adjacent hummocks during the 2015 Arctic Sea State research cruise. The depth profiles of water isotopes, salinity, and ice texture for these sea ice cores were examined to provide information about the development of refrozen melt ponds and water balance generation processes, which are otherwise difficult to acquire. The presence of meteoric water with low oxygen isotope values as relatively thin layers indicates melt pond water stability and little mixing during formation and refreezing. The hydrochemical characteristics of refrozen melt pond and seawater depth profiles indicate little snowmelt enters the upper ocean during melt pond refreezing. Due to the seasonal characters of deuterium excess for Arctic precipitation, water balance calculations utilizing two isotopic tracers (oxygen isotope and deuterium excess) suggest that besides the melt of snow cover, the precipitation input in the melt season may also play a role in the evolution of melt ponds. The dual‐isotope mixing model developed here may become more valuable in a future scenario of increasing Arctic precipitation. The layers of meteoric origin were found at different depths in the refrozen melt pond ice cores. Surface topography information collected at several core sites was examined for possible explanations of different structures of refrozen melt ponds.
    Description: The coauthors (S. F. A., S. S., T. M., and B. W.) wish to thank the other DRI participants and the Captain and crew of the Sikuliaq's October 2015 cruise for their assistance in the sample collections analyzed in the paper. Jim Thomson (Chief Scientist), Scott Harper (ONR Program Manager), and Martin Jeffries (ONR Program Manager) are particularly acknowledged for their unwavering assistance and leadership during the 5 years of the SeaState DRI. We thank Guy Williams for production of the aerial photo mosaic. Funding from the Office of Naval Research N00014‐13‐1‐0435 (S. F. A. and B. W.), N00014‐13‐1‐0434 (S. S.), and N00014‐13‐1‐0446 (T. M.) supported this research through grants to UTSA, UColorado, and WHOI, respectively. This project was also funded (in part) by the University of Texas at San Antonio, Office of the Vice President for Research (Y. G. and S. F. A.). Data for the stable isotope mixing models used in this study are shown in supporting information Tables S1–S3.
    Description: 2019-05-15
    Keywords: Arctic ; sea ice ; isotope tracer ; melt pond ; oxygen isotope ; deuterium excess
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Battefeld, A., Popovic, M. A., van der Werf, D., & Kole, M. H. P. (2019). A versatile and open-source rapid LED switching system for one-photon imaging and photo-activation. Frontiers in Cellular Neuroscience, 12, (2019): 530. doi:10.3389/fncel.2018.00530.
    Description: Combining fluorescence and transmitted light sources for microscopy is an invaluable method in cellular neuroscience to probe the molecular and cellular mechanisms of cells. This approach enables the targeted recording from fluorescent reporter protein expressing neurons or glial cells in brain slices and fluorescence-assisted electrophysiological recordings from subcellular structures. However, the existing tools to mix multiple light sources in one-photon microscopy are limited. Here, we present the development of several microcontroller devices that provide temporal and intensity control of light emitting diodes (LEDs) for computer controlled microscopy illumination. We interfaced one microcontroller with μManager for rapid and dynamic overlay of transmitted and fluorescent images. Moreover, on the basis of this illumination system we implemented an electronic circuit to combine two pulsed LED light sources for fast (up to 1 kHz) ratiometric calcium (Ca2+) imaging. This microcontroller enabled the calibration of intracellular Ca2+ concentration and furthermore the combination of Ca2+ imaging with optogenetic activation. The devices are based on affordable components and open-source hardware and software. Integration into existing bright-field microscope systems will take ∼1 day. The microcontroller based LED imaging substantially advances conventional illumination methods by limiting light exposure and adding versatility and speed.
    Description: This work was supported by grants to MK: European Research Council (FP7/2007-2013)/ERC grant agreement P261114, National Multiple Sclerosis Society grant (RG 4924A1/1) and a NWO-Vici grant 865.17.003. AB received a Grass Fellowship from the Grass Foundation.
    Keywords: Arduino ; µ Manager ; microscopy ; LED ; high-speed imaging ; Propeller ; calcium imaging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Freymond, C. V., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip, F., et al. (2018). Constraining instantaneous fluxes and integrated compositions of fluvially discharged organic matter. Geochemistry, Geophysics, Geosystems, 19, 2453 2462. doi: 10.1029/2018GC007539.
    Description: Fluvial export of organic carbon (OC) and burial in ocean sediments comprises an important carbon sink, but fluxes remain poorly constrained, particularly for specific organic components. Here OC and lipid biomarker contents and isotopic characteristics of suspended matter determined in depth profiles across an active channel close to the terminus of the Danube River are used to constrain instantaneous OC and biomarker fluxes and integrated compositions during high to moderate discharges. During high (moderate) discharge, the total Danube exports 8 (7) kg/s OC, 7 (3) g/s higher plant‐derived long‐chain fatty acids (LCFA), 34 (21) g/s short‐chain fatty acids (SCFA), and 0.5 (0.2) g/s soil bacterial membrane lipids (brGDGTs). Integrated stable carbon isotopic compositions were TOC: −28.0 (−27.6)‰, LCFA: −33.5 (−32.8)‰ and Δ14C TOC: −129 (−38)‰, LCFA: −134 (−143)‰, respectively. Such estimates will aid in establishing quantitative links between production, export, and burial of OC from the terrestrial biosphere.
    Description: This project was funded by the Swiss National Science Foundation SNF. Grant Number: 200021_140850. F.P. acknowledges funding from NWO‐VENI grant 863.13.016. We thank the sampling crews from both field campaigns (Björn Buggle, James Saenz, Alissa Zuijdgeest, Marilu Tavagna, Stefan Eugen Filip, Silvia Lavinia Filip, Mihai, Clayton Magill, Thomas Blattmann, and Michael Albani), Daniel Montluçon for lab support and Hannah Gies for PCGC work. Figures, tables, and equations can be found in supporting information.
    Keywords: Danube River ; organic carbon ; biomarker ; radiocarbon ; ADCP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Torres-Beltran, M., Mueller, A., Scofield, M., Pachiadaki, M. G., Taylor, C., Tyshchenko, K., Michiels, C., Lam, P., Ulloa, O., Jurgens, K., Hyun, J., Edgcomb, V. P., Crowe, S. A., & Hallam, S. J. Sampling and processing methods impact microbial community structure and potential activity in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Frontiers in Marine Science, 6,(2019):132, doi:10.3389/fmars.2019.00132.
    Description: The Scientific Committee on Oceanographic Research (SCOR) Working Group 144 Microbial Community Responses to Ocean Deoxygenation workshop held in Vancouver, B.C on July 2014 had the primary objective of initiating a process to standardize operating procedures for compatible process rate and multi-omic (DNA, RNA, protein, and metabolite) data collection in marine oxygen minimum zones and other oxygen depleted waters. Workshop attendees participated in practical sampling and experimental activities in Saanich Inlet, British Columbia, a seasonally anoxic fjord. Experiments were designed to compare and cross-calibrate in situ versus bottle sampling methods to determine effects on microbial community structure and potential activity when using different filter combinations, filtration methods, and sample volumes. Resulting biomass was preserved for small subunit ribosomal RNA (SSU or 16S rRNA) and SSU rRNA gene (rDNA) amplicon sequencing followed by downstream statistical and visual analyses. Results from these analyses showed that significant community shifts occurred between in situ versus on ship processed samples. For example, Bacteroidetes, Alphaproteobacteria, and Opisthokonta associated with on-ship filtration onto 0.4 μm filters increased fivefold compared to on-ship in-line 0.22 μm filters or 0.4 μm filters processed and preserved in situ. In contrast, Planctomycetes associated with 0.4 μm in situ filters increased fivefold compared to on-ship filtration onto 0.4 μm filters and on-ship in-line 0.22 μm filters. In addition, candidate divisions and Chloroflexi were primarily recovered when filtered onto 0.4 μm filters in situ. Results based on rRNA:rDNA ratios for microbial indicator groups revealed previously unrecognized roles of candidate divisions, Desulfarculales, and Desulfuromandales in sulfur cycling, carbon fixation and fermentation within anoxic basin waters. Taken together, filter size and in situ versus on-ship filtration had the largest impact on recovery of microbial groups with the potential to influence downstream metabolic reconstruction and process rate measurements. These observations highlight the need for establishing standardized and reproducible techniques that facilitate cross-scale comparisons and more accurately assess in situ activities of microbial communities.
    Description: This work was performed under the auspices of the Scientific Committee on Oceanographic Research (SCOR), the United States Department of Energy (DOE) Joint Genome Institute, an Office of Science User Facility, supported by the Office of Science of the United States Department of Energy under Contract DE-AC02- 05CH11231, the G. Unger Vetlesen and Ambrose Monell Foundations, the Tula Foundation-funded Centre for Microbial Diversity and Evolution, the Natural Sciences and Engineering Research Council of Canada, Genome British Columbia, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research through grants awarded to SH. McLane Research Laboratories and Connie Lovejoy contributed access to instrumentation for field work. Ship time support was provided by NSERC between 2007 and 2014 through grants awarded to SC, SH and Philippe Tortell MT-B was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT) and the Tula Foundation.
    Keywords: microbial ecology ; oxygen minimum zone ; standards of practice ; filtration methods ; amplicon sequencing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7877-7895. doi: 10.1029/2018JC014290.
    Description: A three‐dimensional, primitive‐equation, ocean circulation model coupled with a Lagrangian particle‐tracking algorithm is used to investigate the dispersal and settlement of planktonic larvae released from discrete hydrothermal habitats on the East Pacific Rise segment at 9–10°N. Model outputs show that mean circulation is anticyclonic around the ridge segment, which consists of a northward flow along the western flank and a southward flow along the eastern flank. Those flank jets are dispersal expressways for the along‐ridge larval transport and strongly affect its overall direction and spatial‐temporal variations. It is evident from model results that the transform faults bounding the ridge segment and off axis topography (the Lamont Seamount Chain) act as topographic barriers to larval dispersal in the along‐ridge direction. Furthermore, the presence of an overlapping spreading center and an adjacent local topographic high impedes the southward along‐ridge larval transport. The model results suggest that larval recolonization within ridge‐crest habitats is enhanced by the anticyclonic circulation around the ridge segment, and the overall recolonization rate is higher for larvae having a short precompetency period and an altitude above the bottom sufficient to avoid influence by the near‐bottom currents Surprisingly, for larvae having a long precompetency period (〉10 days), the prolonged travel time allowed some of those larvae to return to their natal vent clusters, which results in an unexpected increase in connectivity among natal and neighboring sites. Overall, model‐based predictions of connectivity are highly sensitive to the larval precompetency period and vertical position in the water column.
    Description: The sediment‐trap data presented in this paper are included in Table S1. The bathymetric data used in the model can be downloaded from the Global Multi‐Resolution Topography (GMRT) Synthesis of Marine Geoscience Data System (MGDS) (https://www.gmrt.org/GMRTMapTool). The ocean current time series data used in this work were acquired in 2006‐2007 by Andreas Thurnherr at the Earth Institute of Columbia University. Those data can be accessed in the supporting information. D.J. McGillicuddy gratefully acknowledges support from the National Science Foundation and the Holger W. Jannasch and Columbus O'Donnell Iselin Shared Chairs for Excellence in Oceanography. L.S. Mullineaux acknowledges with gratitude support from the National Science Foundation and the Woods Hole Oceanographic Institution (WHOI) Ocean life fellowship. We appreciate the operation support from the Captain and crew of R/V Atlantis and the Alvin submersible group. We are thankful to V.K. Kosnyrev for developing the coupling interface between the ocean‐circulation and particle‐tracking models. We are grateful to J.W. Lavelle for his intellectual support for the modeling work presented in this paper. We thank Houshuo Jiang for sponsoring our use of the cluster computer at WHOI.
    Description: 2019-05-06
    Keywords: larva ; dispersal ; hydrothermal vent ; EPR ; connectivity ; supply
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7983-8003. doi:10.1029/2018JC014298.
    Description: A melt pond (MP) distribution equation has been developed and incorporated into the Marginal Ice‐Zone Modeling and Assimilation System to simulate Arctic MPs and sea ice over 1979–2016. The equation differs from previous MP models and yet benefits from previous studies for MP parameterizations as well as a range of observations for model calibration. Model results show higher magnitude of MP volume per unit ice area and area fraction in most of the Canada Basin and the East Siberian Sea and lower magnitude in the central Arctic. This is consistent with Moderate Resolution Imaging Spectroradiometer observations, evaluated with Measurements of Earth Data for Environmental Analysis (MEDEA) data, and closely related to top ice melt per unit ice area. The model simulates a decrease in the total Arctic sea ice volume and area, owing to a strong increase in bottom and lateral ice melt. The sea ice decline leads to a strong decrease in the total MP volume and area. However, the Arctic‐averaged MP volume per unit ice area and area fraction show weak, statistically insignificant downward trends, which is linked to the fact that MP water drainage per unit ice area is increasing. It is also linked to the fact that MP volume and area decrease relatively faster than ice area. This suggests that overall the actual MP conditions on ice have changed little in the past decades as the ice cover is retreating in response to Arctic warming, thus consistent with the Moderate Resolution Imaging Spectroradiometer observations that show no clear trend in MP area fraction over 2000–2011.
    Description: We gratefully acknowledge the support of the NASA Cryosphere Program (grants NNX15AG68G, NNX17AD27G, and NNX14AH61G), the Office of Naval Research (N00014‐12‐1‐0112), the NSF Office of Polar Programs (PLR‐1416920, PLR‐1603259, PLR‐1602521, and ARC‐1203425), and the Department of Homeland Security (DHS, 2014‐ST‐061‐ML‐0002). The DHS grant is coordinated through the Arctic Domain Awareness Center (ADAC), a DHS Center of Excellence, which conducts maritime research and development for the Arctic region. The views and conclusions in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the DHS. MODIS‐derived MP area data are available at https://icdc.cen.uni‐hamburg.de/1/daten/cryosphere/arctic‐meltponds.html. MP area fraction statistics derived from MEDEA images are available from http://psc.apl.uw.edu/melt‐pond‐data/. Sea ice thickness and snow observations are available at http://psc.apl.washington.edu/sea_ice_cdr. CFS forcing data used to drive MIZMAS are available at https://www.ncdc.noaa.gov/data‐access/model‐data/model‐datasets/climate‐forecast‐system‐version2‐cfsv2.
    Description: 2019-04-18
    Keywords: Arctic Ocean ; sea ice ; melt ponds ; numerical modeling ; climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benson, A., Brooks, C. M., Canonico, G., Duffy, E., Muller-Karger, F., Sosik, H. M., Miloslavich, P., & Klein, E.. Integrated observations and informatics improve understanding of changing marine ecosystems. Frontiers in Marine Science, 5, (2018):428, doi:10.3389/fmars.2018.00428.
    Description: Marine ecosystems have numerous benefits for human societies around the world and many policy initiatives now seek to maintain the health of these ecosystems. To enable wise decisions, up to date and accurate information on marine species and the state of the environment they live in is required. Moreover, this information needs to be openly accessible to build indicators and conduct timely assessments that decision makers can use. The questions and problems being addressed demand global-scale investigations, transdisciplinary science, and mechanisms to integrate and distribute data that otherwise would appear to be disparate. Essential Ocean Variables (EOVs) and marine Essential Biodiversity Variables (EBVs), conceptualized by the Global Ocean Observing System (GOOS) and the Marine Biodiversity Observation Network (MBON), respectively, guide observation of the ocean. Additionally, significant progress has been made to coordinate efforts between existing programs, such as the GOOS, MBON, and Ocean Biogeographic Information System collaboration agreement. Globally and nationally relevant indicators and assessments require increased sharing of data and analytical methods, sustained long-term and large-scale observations, and resources to dedicated to these tasks. We propose a vision and key tenets as a guiding framework for building a global integrated system for understanding marine biological diversity and processes to address policy and resource management needs. This framework includes: using EOVs and EBVs and implementing the guiding principles of Findable, Accessible, Interoperable, Reusable (FAIR) data and action ecology. In doing so, we can encourage relevant, rapid, and integrative scientific advancement that can be implemented by decision makers to maintain marine ecosystem health.
    Description: We thank T.Malone and A. Knap for the invitation to contribute our ideas to this topic. We also thank the two reviewers and editor for their comments, which strengthened our manuscript.
    Keywords: ocean observing ; integrated assessments ; marine ecosystems ; data sharing ; essential ocean variables ; essential biodiversity variables ; FAIR data ; action ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, M. D., Beaudoin, D. J., Frada, M. J., Brownlee, E. F., & Stoecker, D. K. High grazing rates on cryptophyte algae in Chesapeake Bay. Frontiers in Marine Science, 5, (2018): 241. doi:10.3389/fmars.2018.00241.
    Description: Cryptophyte algae are globally distributed photosynthetic flagellates found in freshwater, estuarine, and neritic ecosystems. While cryptophytes can be highly abundant and are consumed by a wide variety of protistan predators, few studies have sought to quantify in situ grazing rates on their populations. Here we show that autumnal grazing rates on in situ communities of cryptophyte algae in Chesapeake Bay are high throughout the system, while growth rates, particularly in the lower bay, were low. Analysis of the genetic diversity of cryptophyte populations within dilution experiments suggests that microzooplankton may be selectively grazing the fastest-growing members of the population, which were generally Teleaulax spp. We also demonstrate that potential grazing rates of ciliates and dinoflagellates on fluorescently labeled (FL) Rhodomonas salina, Storeatula major, and Teleaulax amphioxeia can be high (up to 149 prey predator−1 d−1), and that a Gyrodinium sp. and Mesodinium rubrum could be selective grazers. Potential grazing was highest for heterotrophic dinoflagellates, but due to its abundance, M. rubrum also had a high overall impact. This study reveals that cryptophyte algae in Chesapeake Bay can experience extremely high grazing pressure from phagotrophic protists, and that this grazing likely shapes their community diversity.
    Description: The authors thank the National Science Foundation (OCE 1031718 and 1436169) for providing support for this research.
    Keywords: cryptophytes ; mixotrophy ; grazing ; Chesapeake Bay ; dinoflagellates ; Mesodinium rubrum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-10-10
    Description: Understanding the patterns and characteristics of sedimentary deposits on the conjugate Australian‐Antarctic margins is critical to reveal the Cretaceous‐Cenozoic tectonic, oceanographic, and climatic conditions in the basin. However, unraveling its evolution has remained difficult due to the different seismic stratigraphic interpretations on each margin and sparse drill sites. Here, for the first time, we collate all available seismic reflection profiles on both margins and use newly available offshore drilling data to develop a consistent seismic stratigraphic framework across the Australian‐Antarctic basins. We find sedimentation patterns similar in structure and thickness, prior to the onset of Antarctic glaciation, enabling the basinwide correlation of four major sedimentary units and their depositional history. We interpret that during the warm and humid Late Cretaceous (~83–65 Ma), large onshore river systems on both Australia and Antarctica resulted in deltaic sediment deposition offshore. We interpret that the onset of clockwise bottom currents during the early Paleogene (~58–48 Ma) formed prominent sediment drift deposits along both continental rises. We suggest that these currents strengthened and progressed farther east through the Eocene. Coevally, global cooling (〈48 Ma) and progressive aridification led to a large‐scale decrease in sediment input from both continents. Two major Eocene hiatuses recovered by the Integrated Ocean Discovery Program site U1356A at the Antarctic continental slope likely formed during this preglacial phase of low sedimentation and strong bottom currents. Our results can be used to constrain future paleo‐oceanographic modeling of this region and aid the understanding of the oceanographic changes accompanying the transition from a greenhouse to icehouse world.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-09-18
    Description: Increasing sea surface temperatures (SST) and blooms of lipid‐poor, filamentous cyanobacteria can change mesozooplankton metabolism and foraging strategies in marine systems. Lipid shortage and imbalanced diet may challenge the build‐up of energy pools of lipids and proteins, and access to essential fatty acids (FAs) and amino acids (AAs) by copepods. The impact of cyanobacterial blooms on individual energy pools was assessed for key species temperate Temora longicornis and boreal Pseudo‐/Paracalanus spp. that dominated field mesozooplankton communities isolated by sea‐sonal stratification in the central Baltic Sea during the hot and the cold summer. We looked at (a) total lipid and protein levels, (b) FA trophic markers and AA composition, and (c) compound‐specific stable carbon isotopes (δ13C) in bulk mesozooplankton and in a subset of parameters in particulate organic matter. Despite lipid‐poor cyanobacterial blooms, the key species were largely able to cover both energy pools, yet a tendency of lipid reduction was observed in surface animals. Omni‐ and car‐nivory feeding modes, FA trophic makers, and δ13C patterns in essential compounds emphasized that cyanobacterial FAs and AAs have been incorporated into meso‐zooplankton mainly via feeding on mixo‐ and heterotrophic (dino‐) flagellates and detrital complexes during summer. Foraging for essential highly unsaturated FAs from (dino‐) flagellates may have caused night migration of Pseudo‐/Paracalanus spp. from the deep subhalocline waters into the upper waters. Only in the hot summer (SST〉19.0°C) was T. longicornis submerged in the colder subthermocline water (~4°C). Thus, the continuous warming trend and simultaneous feeding can eventually lead to competition on the preferred diet by key copepod species below the thermocline in stratified systems. A comparison of δ13C patterns of essential AAs in surface meso‐zooplankton across sub‐basins of low and high cyanobacterial biomasses revealed the potential of δ13C‐AA isoscapes for studies of commercial fish feeding trails across the Baltic Sea food webs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-10-25
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-09-01
    Description: In the Northern Patagonian gulfs of Argentina (Golfo Nuevo and Golfo San José), blooms of toxigenic microalgae and the detection of their associated phycotoxins are recurrent phenomena. The present study evaluated the transfer of phycotoxins from toxigenic microalgae to mesozooplankton in Golfo Nuevo and Golfo San José throughout an annual cycle (December 2014–2015 and January 2015–2016, respectively). In addition, solid-phase adsorption toxin tracking (SPATT) samplers were deployed for the first time in these gulfs, to estimate the occurrence of phycotoxins in the seawater between the phytoplankton samplings. Domoic acid was present throughout the annual cycle in SPATT samplers, whereas no paralytic shellfish poisoning toxins were detected. Ten toxigenic species were identified: Alexandrium catenella, Dinophysis acuminata, Dinophysis acuta, Dinophysis tripos, Dinophysis caudata, Prorocentrum lima, Pseudo-nitzschia australis, Pseudo-nitzschia calliantha, Pseudo-nitzschia fraudulenta, and Pseudo-nitzschia pungens. Lipophilic and hydrophilic toxins were detected in phytoplankton and mesozooplankton from both gulfs. Pseudo-nitzschia spp. were the toxigenic species most frequent in these gulfs. Consequently, domoic acid was the phycotoxin most abundantly detected and transferred to upper trophic levels. Spirolides were detected in phytoplankton and mesozooplankton for the first time in the study area. Likewise, dinophysistoxins were found in mesozooplankton from both gulfs, and this is the first report of the presence of these phycotoxins in zooplankton from the Argentine Sea. The dominance of calanoid copepods indicates that they were the primary vector of phycotoxins in the pelagic trophic web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-10-25
    Description: Climate warming in regions of ice‐rich permafrost can result in widespread thermokarst development, which reconfigures the landscape and damages infrastructure. We present multisite time series observations which couple ground temperature measurements with thermokarst development in a region of very cold permafrost. In the Canadian High Arctic between 2003 and 2016, a series of anomalously warm summers caused mean thawing indices to be 150–240% above the 1979–2000 normal resulting in up to 90 cm of subsidence over the 12‐year observation period. Our data illustrate that despite low mean annual ground temperatures, very cold permafrost (〈−10 °C) with massive ground ice close to the surface is highly vulnerable to rapid permafrost degradation and thermokarst development. We suggest that this is due to little thermal buffering from soil organic layers and near‐surface vegetation, and the presence of near‐surface ground ice. Observed maximum thaw depths at our sites are already exceeding those projected to occur by 2090 under representative concentration pathway version 4.5.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, (46), pp. 9474-9482, ISSN: 0094-8276
    Publication Date: 2019-10-02
    Description: In the South Atlantic, a reorganization of the Mid‐Atlantic Ridge began before anomaly C34n (83.6 Ma) and ended before anomaly C30n (66.4 Ma), complicating tectonics of Rio Grande Rise and older Walvis Ridge (WR), which formed together at the Mid‐Atlantic Ridge. This reorganization is poorly understood because magnetic anomalies C30n‐C34n are poorly defined near WR. We interpreted these anomalies along westernWRto improve knowledge of Rio Grande Rise‐WRtectonic development. Anomaly trends indicate that Valdivia Bank has an E‐W age progression, perpendicular to that predicted by hot spot models. Anomaly spacing and width is irregular and anomalous near WR, implying a series of ridge jumps and possibly a microplate between anomalies C34n and C32n. Eastward ridge jumps transferred microplate lithosphere to the South American plate. This study shows that Late Cretaceous tectonic evolution of the Rio Grande Rise‐WRlarge igneous provinces was more complex than previously understood.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46(14), pp. 8289-8299, ISSN: 0094-8276
    Publication Date: 2019-10-07
    Description: The last interglacial (LIG; Marine Isotope Substage 5e, ~127–117 ka) experienced globally warmer than modern temperatures; however, profound differences in regional climate occurred that are relevant to the assessment of future climate change scenarios. Tropical Atlantic sea surface temperature (SST) and hydrology are intrinsic to the spatiotemporal evolution of past and future climate. We present eight monthly resolved coral Sr/Ca and δ18O records (130–118 ka) to reconstruct mean western tropical Atlantic SST and seawater δ18O changes during the LIG. Cooler and fresher than modern surface waters are indicated for the middle of the LIG at ~126 ka. This was followed by a rapid transition to modern‐like SSTs and salinities that characterized the remaining part of the LIG. Our results, which account for differences found among corals, proxies, and SST calibration uncertainties, agree with western tropical Atlantic sediment records. Together, they suggest that an oceanic regime existed that differed from today.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geochemistry Geophysics Geosystems, Wiley, 20, ISSN: 1525-2027
    Publication Date: 2019-12-12
    Description: Ultraslow spreading ridges are poorly understood plate boundaries consisting of magmatic and amagmatic segments that expose mostly mantle peridotite and only traces of basalt and gabbro. The slowest part of the global spreading system is represented by the eastern Gakkel Ridge in the Central Arctic Ocean, where crustal accretion is characterized by extreme focusing of melt to discrete magmatic centers. Close to its eastern tip lies the unusual 5,310 m deep Gakkel Rift Deep (GRD) with limited sediment infill, which is in strong contrast to the broader sediment-filled rift valleys to the east and west. Here, we report an 40Ar/39Ar age of 3.65±0.01 Ma for a pillow basalt from a seamount located on the rim the GRD confirming ultraslow spreading rates of ~7 mm/yr close to the Laptev Sea as suggested from aeromagnetic data. Its geochemistry points to an alkaline lava, attributed to partial melting of a source that underwent prior geochemical enrichment. We note that the GRD extracts compositionally similar melts as the sparsely magmatic zone further west but at much slower spreading velocities of only ~6-7 mm/yr, indicating the widespread occurrence of similarly fertile mantle in the High Arctic. This enriched source differs from sub-continental lithospheric mantle that influences magmatism along the Western Volcanic Zone (Goldstein et al. 2008) and is similar to metasomatized mantle - shown to influence melt genesis along the Eastern Volcanic Zone.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-11-12
    Description: The Protocol on Environmental Protection of the Antarctic Treaty stipulates that the protection of the Antarctic environment and associated ecosystems be fundamentally considered in the planning and conducting of all activities in the Antarctic Treaty area. One of the key pollutants created by human activities in the Antarctic is noise, which is primarily caused by ship traffic (from tourism, fisheries, and research), but also by geophysical research (e.g., seismic surveys) and by research station support activities (including construction). Arguably, amongst the species most vulnerable to noise are marine mammals since they specialize in using sound for communication, navigation and foraging, and therefore have evolved the highest auditory sensitivity among marine organisms. Reported effects of noise on marine mammals in lower-latitude oceans include stress, behavioral changes such as avoidance, auditory masking, hearing threshold shifts, and—in extreme cases—death. Eight mysticete species, 10 odontocete species, and six pinniped species occur south of 60�S (i.e., in the Southern or Antarctic Ocean). For many of these, the Southern Ocean is a key area for foraging and reproduction. Yet, little is known about how these species are affected by noise. We review the current prevalence of anthropogenic noise and the distribution of marine mammals in the Southern Ocean, and the current research gaps that prevent us from accurately assessing noise impacts on Antarctic marine mammals. A questionnaire given to 29 international experts on marine mammals revealed a variety of research needs. Those that received the highest rankings were (1) improved data on abundance and distribution of Antarctic marine mammals, (2) hearing data for Antarctic marine mammals, in particular a mysticete audiogram, and (3) an assessment of the effectiveness of various noise mitigation options. The management need with the highest score was a refinement of noise exposure criteria. Environmental evaluations are a requirement before conducting activities in the Antarctic. Because of a lack of scientific data on impacts, requirements and noise thresholds often vary between countries that conduct these evaluations, leading to different standards across countries. Addressing the identified research needs will help to implement informed and reasonable thresholds for noise production in the Antarctic and help to protect the Antarctic environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-11-25
    Description: The last extended time period when climate may have been warmer than today was during the Last Interglacial (LIG; ca. 129 to 120 thousand years ago). However, a global view of LIG precipitation is lacking. Here, seven new LIG climate models are compared to the first global database of proxies for LIG precipitation. In this way, models are assessed in their ability to capture important hydroclimatic processes during a different climate. The models can reproduce the proxy-based positive precipitation anomalies from the preindustrial period over much of the boreal continents. Over the Southern Hemisphere, proxy-model agreement is partial. In models, LIG boreal monsoons have 42% wider area than in the preindustrial and produce 55% more precipitation and 50% more extreme precipitation. Austral monsoons are weaker. The mechanisms behind these changes are consistent with stronger summer radiative forcing over boreal high latitudes and with the associated higher temperatures during the LIG.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union
    Publication Date: 2020-05-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-11-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46, ISSN: 0094-8276
    Publication Date: 2019-09-16
    Description: Coupled subseasonal forecast systems with dynamical sea ice have the potential of providing important predictive information in polar regions. Here, we evaluate the ability of operational ensemble prediction systems to predict the location of the sea ice edge in Antarctica. Compared to the Arctic, Antarctica shows on average a 30% lower skill, with only one system remaining more skillful than aclimatological benchmark up to ∼30 days ahead. Skill tends to be highest in the west Antarctic sectorduring the early freezing season. Most of the systems tend to overestimate the sea ice edge extent and fail to capture the onset of the melting season. All the forecast systems exhibit large initial errors. We conclude that subseasonal sea ice redictions could provide marginal support for decision-making only in selected seasons and regions of the Southern Ocean. However, major progress is possible through investments in model development, forecast initialization and calibration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-02-19
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Braun, C. D., Skomal, G. B., & Thorrold, S. R. (2018). Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (Cetorhinus maximus) movements in the western Atlantic. Frontiers in Marine Science, 5, (2018):25, doi:10.3389/fmars.2018.00025.
    Description: Basking shark (Cetorhinus maximus) populations are considered “vulnerable” globally and “endangered” in the northeast Atlantic by the International Union for the Conservation of Nature (IUCN). Much of our knowledge of this species comes from surface observations in coastal waters, yet recent evidence suggests the majority of their lives may be spent in the deep ocean. Depth preferences of basking sharks have significantly limited movement studies that used pop-up satellite archival transmitting (PSAT) tags as conventional light-based geolocation is impossible for tagged animals that spend significant time below the photic zone. We tagged 57 basking sharks with PSAT tags in the NW Atlantic from 2004 to 2011. Many individuals spent several months at meso- and bathy-pelagic depths where accurate light-level geolocation was impossible during fall, winter and spring. We applied a newly-developed geolocation approach for the PSAT data by comparing three-dimensional depth-temperature profile data recorded by the tags to modeled in situ oceanographic data from the high-resolution HYbrid Coordinate Ocean Model (HYCOM). Observation-based likelihoods were leveraged within a state-space hidden Markov model (HMM). The combined tracks revealed that basking sharks moved from waters around Cape Cod, MA to as far as the SE coast of Brazil (20°S), a total distance of over 17,000 km. Moreover, 59% of tagged individuals with sufficient deployment durations (〉250 days) demonstrated seasonal fidelity to Cape Cod and the Gulf of Maine, with one individual returning to within 60 km of its tagging location 1 year later. Tagged sharks spent most of their time at epipelagic depths during summer months around Cape Cod and in the Gulf of Maine. During winter months, sharks spent extended periods at depths of at least 600 m while moving south to the Sargasso Sea, the Caribbean Sea, or the western tropical Atlantic. Our work demonstrates the utility of applying advances in oceanographic modeling to understanding habitat use of highly migratory, often meso- and bathy-pelagic, ocean megafauna. The large-scale movement patterns of tagged sharks highlight the need for international cooperation when designing and implementing conservation strategies to ensure that the species recovers from the historical effects of over-fishing throughout the North Atlantic Ocean.
    Description: We thank B. Galuardi and C. H. Lam for contributing analysis code, and H. Dewar, U. Thygesen and I. Jonsen for valuable feedback on the manuscript. We gratefully acknowledge funding from the US National Science Foundation (OCE 0825148), the National Aeronautics and Space Administration (NNS06AA96G), the Massachusetts Environmental Trust, and the Federal Aid in Sport Fish Restoration Program. Computational support was provided by the AWS Cloud Credits for Research program. CB was funded by the Martin Family Society of Fellows for Sustainability Fellowship at the Massachusetts Institute of Technology, the Grassle Fellowship and Ocean Venture Fund at the Woods Hole Oceanographic Institution, and the NASA Earth and Space Science Fellowship. Funding for the development of HYCOM has been provided by the National Ocean Partnership Program and the Office of Naval Research. Data assimilative products using HYCOM are funded by the U.S. Navy. Computer time for HYCOM was made available by the DoD High Performance Computing Modernization Program.
    Keywords: movement ecology ; satellite archival telemetry ; migration ; mesopelagic ; oceanographic modeling ; site fidelity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-02-19
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeCarlo, T. M., Hen, H., & Farfan, G. A. (2018). The origin and role of organic matrix in coral calcification: Insights from comparing coral skeleton and abiogenic aragonite. Frontiers in Marine Science, 5, (2018): 170. doi:10.3389/fmars.2018.00170.
    Description: Understanding the mechanisms of coral calcification is critical for accurately projecting coral reef futures under ocean acidification and warming. Recent suggestions that calcification is primarily controlled by organic molecules and the biological activity of the coral polyp imply that ocean acidification may not affect skeletal accretion. The basis for these suggestions relies heavily on correlating the presence of organic matter with the orientation and disorder of aragonite crystals in the skeleton, carrying the assumption that organic matter observed in the skeleton was produced by the polyp to control calcification. Here we use Raman spectroscopy to test whether there are differences in organic matter content between coral skeleton and abiogenic aragonites precipitated from seawater, both before and after thermal annealing (heating). We measured the background fluxorescence and intensity of C-H bonding signals in the Raman spectra, which are commonly attributed to coral polyp-derived skeletal organic matrix (SOM) and have been used to map its distribution. Surprisingly, we found no differences in either fluorescence or C-H bonding between abiogenic aragonite and coral skeleton. Annealing reduced the molecular disorder in coral skeleton, potentially due to removal of organic matter, but the same effect was also observed in the abiogenic aragonites. The presence of organic molecules in the abiogenic aragonites is further supported by measurements of N content and δ15N. Together, our data suggest that some of what has been interpreted in previous studies as polyp-derived SOM may actually be seawater-sourced organic matter or some other signal not unique to biogenic aragonite. Finally, we create a high-resolution Raman map of a Pocillopora skeleton to demonstrate how patterns of fluorescence and elevated calcifying fluid aragonite saturation state (ΩAr) along centers of calcification are consistent with both biological and physico-chemical controls. Our aim is to advance discussion on biological mediation of calcification and the implications for coral resilience in a high-CO2 world.
    Description: This study was supported by an ARC Laureate Fellowship (FL120100049) awarded to Professor Malcolm McCulloch and the ARC Centre of Excellence for Coral Reef Studies (CE140100020).
    Keywords: coral ; calcification ; organics ; Raman spectroscopy ; ocean acidification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-02-19
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bundy, R. M., Boiteau, R. M., McLean, C., Turk-Kubo, K. A., Mcllvin, M. R., Saito, M. A., Van Mooy, B. A. S., & Repeta, D. J.. Distinct siderophores contribute to iron cycling in the mesopelagic at station ALOHA. Frontiers in Marine Science, 5, (2018): 61. doi:10.3389/fmars.2018.00061.
    Description: The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores were measured between the surface and 400 m at Station ALOHA, a long term ecological study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low throughout the water column and strong organic Fe-binding ligands exceeded dissolved Fe at all depths; varying from 0.9 nmol L−1 in the surface to 1.6 nmol L−1 below 150 m. Although Fe does not appear to limit microbial production, we nevertheless found siderophores at nearly all depths, indicating some populations of microbes were responding to Fe stress. Ferrioxamine siderophores were most abundant in the upper water column, with concentrations between 0.1 and 2 pmol L−1, while a suite of amphibactins were found below 200 m with concentrations between 0.8 and 11 pmol L−1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate disparate strategies for acquiring Fe from dust in the upper water column and recycled organic matter in the lower water column. Amphibactins were found to have conditional stability constants (log KcondFeL1,Fe′) ranging from 12.0 to 12.5, while ferrioxamines had much stronger conditional stability constants ranging from 14.0 to 14.4, within the range of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe speciation at Station ALOHA to compare the relative concentration of inorganic and siderophore complexed Fe. The results indicate that the concentration of Fe bound to siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe acquisition by microbes at our study site. Finally, we observed rapid production of ferrioxamine E by particle-associated bacteria during incubation of freshly collected sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon metabolism and nutrient regeneration in the mesopelagic.
    Description: We thank Chief Scientists Tara Clemente and Sam Wilson for leading the SCOPE Diel cruises. We also thank the Captain and crew of the R/V Ka'imikai-O-Kanaloa, as well as Paul Henderson in the Woods Hole Oceanographic Nutrient Analytical Facility for nutrient analyses. This work was funded by the Woods Hole Oceanographic Postdoctoral Fellowship for RaB, the Simons Foundation (Award 329108), and the National Science Foundation (OCE-1356747). We also thank two reviewers for helpful comments on the manuscript.
    Keywords: iron ; siderophores ; Station ALOHA ; organic ligands ; iron limitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-11-09
    Description: The Neotethyan oceanic Diamante-Terranova unit (DIATU; southern Apennines–Calabria–Peloritani Terrane system) includes basic rocks that during the Cenozoicwere subducted and metamorphosed to lawsonite-blueschist facies conditions.Petrological and structural observations (both at the meso- and micro-scale) showthat lawsonite growth was continuous during three distinctive ductile deformationstages (D1–D3).....
    Description: Published
    Description: 691-714
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-08-31
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19(11), (2018): 4218-4235. doi: 10.1029/2018GC007654
    Description: Hydrocarbon migration and emplacement processes remain underconstrained despite the vast potential economic value associated with oil and gas. Noble gases provide information about hydrocarbon generation, fluid migration pathways, reservoir conditions, and the relative volumes of oil versus water in the subsurface. Produced gas He‐Ne‐Ar‐Kr‐Xe data from two distinct oil fields in the Gulf of Mexico (Genesis and Hoover‐Diana) are used to calibrate a model that takes into account both water‐oil solubility exchange and subsequent gas cap formation. Reconstructed noble gas signatures in oils reflect simple (two‐phase) oil‐water exchange imparted during migration from the source rock to the trap, which are subsequently modified by gas cap formation at current reservoir conditions. Calculated, oil to water volume ratios (Vo/Vw) in Tertiary‐sourced oils from the Hoover‐Diana system are 2–3 times greater on average than those in the Jurassic sourced oils from the Genesis reservoirs. Higher Vo/Vw in Hoover‐Diana versus Genesis can be interpreted in two ways: either (1) the Hoover reservoir interval has 2–3 times more oil than any of the individual Genesis reservoirs, which is consistent with independent estimates of oil in place for the respective reservoirs, or (2) Genesis oils have experienced longer migration pathways than Hoover‐Diana oils and thus have interacted with more water. The ability to determine a robust Vo/Vw, despite gas cap formation and possible gas cap loss, is extremely powerful. For example, when volumetric hydrocarbon ratios are combined with independent estimates of hydrocarbon migration distance and/or formation fluid volumes, this technique has the potential to differentiate between large and small oil accumulations.
    Description: We thank ExxonMobil for funding and providing the samples. In addition, we thank James Scott and two anonymous reviewers for their comprehensive and constructive reviews, as well as Janne Blichert‐Toft for editorial handling.
    Description: 2019-04-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(5), (2019):2462-2472, doi:10.1029/2019GC008250.
    Description: Methane hydrate occurs naturally under pressure and temperature conditions that are not straightforward to replicate experimentally. Xenon has emerged as an attractive laboratory alternative to methane for studying hydrate formation and dissociation in multiphase systems, given that it forms hydrates under milder conditions. However, building reliable analogies between the two hydrates requires systematic comparisons, which are currently lacking. We address this gap by developing a theoretical and computational model of gas hydrates under equilibrium and nonequilibrium conditions. We first compare equilibrium phase behaviors of the Xe·H2O and CH4·H2O systems by calculating their isobaric phase diagram, and then study the nonequilibrium kinetics of interfacial hydrate growth using a phase field model. Our results show that Xe·H2O is a good experimental analog to CH4·H2O, but there are key differences to consider. In particular, the aqueous solubility of xenon is altered by the presence of hydrate, similar to what is observed for methane; but xenon is consistently less soluble than methane. Xenon hydrate has a wider nonstoichiometry region, which could lead to a thicker hydrate layer at the gas‐liquid interface when grown under similar kinetic forcing conditions. For both systems, our numerical calculations reveal that hydrate nonstoichiometry coupled with hydrate formation dynamics leads to a compositional gradient across the hydrate layer, where the stoichiometric ratio increases from the gas‐facing side to the liquid‐facing side. Our analysis suggests that accurate composition measurements could be used to infer the kinetic history of hydrate formation in natural settings where gas is abundant.
    Description: This work was funded in part by the U.S. Department of Energy, DOE [awards DE‐FE0013999 and DE‐SC0018357 (to R. J.) and DOE Interagency Agreement DE‐FE0023495 (to W. F. W.)]. X. F. acknowledges support by the Miller Research Fellowship at the University of California Berkeley. W. F. W. acknowledges support from the U.S. Geological Survey's Gas Hydrate Project and the Survey's Coastal, Marine Hazards and Resources Program. L. C. F. acknowledges funding from the Spanish Ministry of Economy and Competitiveness (grants RYC‐2012‐11704 and CTM2014‐54312‐P). L. C. F. and R. J. acknowledge funding from the MIT International Science and Technology Initiatives, through a Seed Fund grant. The simulation data are available on the UC Berkeley Dash repository at https://doi.org/10.6078/D1G67B.
    Description: 2019-11-06
    Keywords: Methane hydrates ; Xenon hydrates ; Phase behavior ; Growth kinetics ; Nonstoichiometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vance, T. C., Wengren, M., Burger, E., Hernandez, D., Kearns, T., Medina-Lopez, E., Merati, N., O'Brien, K., O'Neil, J., Potemrag, J. T., Signell, R. P., & Wilcox, K. From the oceans to the cloud: Opportunities and challenges for data, models, computation and workflows. Frontiers in Marine Science, 6(211), (2019), doi:10.3389/fmars.2019.00211.
    Description: Advances in ocean observations and models mean increasing flows of data. Integrating observations between disciplines over spatial scales from regional to global presents challenges. Running ocean models and managing the results is computationally demanding. The rise of cloud computing presents an opportunity to rethink traditional approaches. This includes developing shared data processing workflows utilizing common, adaptable software to handle data ingest and storage, and an associated framework to manage and execute downstream modeling. Working in the cloud presents challenges: migration of legacy technologies and processes, cloud-to-cloud interoperability, and the translation of legislative and bureaucratic requirements for “on-premises” systems to the cloud. To respond to the scientific and societal needs of a fit-for-purpose ocean observing system, and to maximize the benefits of more integrated observing, research on utilizing cloud infrastructures for sharing data and models is underway. Cloud platforms and the services/APIs they provide offer new ways for scientists to observe and predict the ocean’s state. High-performance mass storage of observational data, coupled with on-demand computing to run model simulations in close proximity to the data, tools to manage workflows, and a framework to share and collaborate, enables a more flexible and adaptable observation and prediction computing architecture. Model outputs are stored in the cloud and researchers either download subsets for their interest/area or feed them into their own simulations without leaving the cloud. Expanded storage and computing capabilities make it easier to create, analyze, and distribute products derived from long-term datasets. In this paper, we provide an introduction to cloud computing, describe current uses of the cloud for management and analysis of observational data and model results, and describe workflows for running models and streaming observational data. We discuss topics that must be considered when moving to the cloud: costs, security, and organizational limitations on cloud use. Future uses of the cloud via computational sandboxes and the practicalities and considerations of using the cloud to archive data are explored. We also consider the ways in which the human elements of ocean observations are changing – the rise of a generation of researchers whose observations are likely to be made remotely rather than hands on – and how their expectations and needs drive research towards the cloud. In conclusion, visions of a future where cloud computing is ubiquitous are discussed.
    Description: This is PMEL contribution 4873.
    Keywords: Ocean observation ; Ocean modeling and prediction ; Cloud ; Data management ; Archiving ; Technology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Biogeosciences, 124(6), (2019): 1591-1603, doi:10.1029/2018JG004803.
    Description: Tropical dry forests in eastern and southern Africa cover 2.5 × 106 km2, support wildlife habitat and livelihoods of more than 150 million people, and face threats from land use and climate change. To inform conservation, we need better understanding of ecosystem processes like nutrient cycling that regulate forest productivity and biomass accumulation. Here we report on patterns in nitrogen (N) cycling across a 100‐year forest regrowth chronosequence in the Tanzanian Miombo woodlands. Soil and vegetation indicators showed that low ecosystem N availability for trees persisted across young to mature forests. Ammonium dominated soil mineral N pools from 0‐ to 15‐cm depth. Laboratory‐measured soil N mineralization rates across 3‐ to 40‐year regrowth sites showed no significant trends and were lower than mature forest rates. Aboveground tree N pools increased at 6 to 7 kg N·ha−1·yr−1, accounting for the majority of ecosystem N accumulation. Foliar δ15N 〈0‰ in an N‐fixing canopy tree across all sites suggested that N fixation may contribute to ecosystem N cycle recovery. These results contrast N cycling in wetter tropical and Neotropical dry forests, where indicators of N scarcity diminish after several decades of regrowth. Our findings suggest that minimizing woody biomass removal, litter layer, and topsoil disturbance may be important to promote N cycle recovery and natural regeneration in Miombo woodlands. Higher rates of N mineralization in the wet season indicated a potential that climate change‐altered rainfall leading to extended dry periods may lower N availability through soil moisture‐dependent N mineralization pathways, particularly for mature forests.
    Description: This study depended on the knowledge, insights, and cooperation of many people and institutions. We thank the Millennium Villages Project‐Mbola site for providing introductions to the landscape and village headmen in many regions. We thank the ARI‐Tumbi staff (now TARI‐Tumbi) in Tabora, Tanzania for providing invaluable logistical support in identifying forest regrowth sites and help with labwork in Tabora, Tanzania. We thank other key local organizations, including Tabora Development Foundation Trust (Dick Mlimuka, Oscar Kisanji) and Tanzania Forest Service (Bw. Relingo), for logistical support and transportation. We thank many village headmen and farmers for access to forest sites within their lands for sampling. Finally, we would like to thank the MBL Stable Isotope laboratory and Dr. Marshall Otter for his expertise with producing and interpreting soil and leaf C, N and stable isotope data. This study was funded in part by NSF PIRE Grant OISE 0968211, a Dissertation Support Grant to Marc Mayes from Brown University (2015–2016), and completed with permission and cooperation from the Tanzania Commission on Science and Technology (COSTECH permits 2013‐261‐NA‐2014‐199 and 2015‐183‐ER‐2014‐199). Data and code for analyses can be accessed at a Github repository: https://github.com/mtm17/MiomboN.git.
    Description: 2019-11-08
    Keywords: Nitrogen ; Africa ; Miombo ; Tropical dry forest ; Carbon ; Secondary forest regrowth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gewirtzman, J., Tang, J., Melillo, J. M., Werner, W. J., Kurtz, A. C., Fulweiler, R. W., & Carey, J. C. Soil warming accelerates biogeochemical silica cycling in a temperate forest. Frontiers in Plant Science, 10, (2019): 1097, doi:10.3389/fpls.2019.01097.
    Description: Biological cycling of silica plays an important role in terrestrial primary production. Soil warming stemming from climate change can alter the cycling of elements, such as carbon and nitrogen, in forested ecosystems. However, the effects of soil warming on the biogeochemical cycle of silica in forested ecosystems remain unexplored. Here we examine long-term forest silica cycling under ambient and warmed conditions over a 15-year period of experimental soil warming at Harvard Forest (Petersham, MA). Specifically, we measured silica concentrations in organic and mineral soils, and in the foliage and litter of two dominant species (Acer rubrum and Quercus rubra), in a large (30 × 30 m) heated plot and an adjacent control plot (30 × 30 m). In 2016, we also examined effects of heating on dissolved silica in the soil solution, and conducted a litter decomposition experiment using four tree species (Acer rubrum, Quercus rubra, Betula lenta, Tsuga canadensis) to examine effects of warming on the release of biogenic silica (BSi) from plants to soils. We find that tree foliage maintained constant silica concentrations in the control and warmed plots, which, coupled with productivity enhancements under warming, led to an increase in total plant silica uptake. We also find that warming drove an acceleration in the release of silica from decaying litter in three of the four species we examined, and a substantial increase in the silica dissolved in soil solution. However, we observe no changes in soil BSi stocks with warming. Together, our data indicate that warming increases the magnitude of silica uptake by vegetation and accelerates the internal cycling of silica in in temperate forests, with possible, and yet unresolved, effects on the delivery of silica from terrestrial to marine systems.
    Description: This research was supported by the National Science Foundation (NSF PLR-1417763 to JT), the Geological Society of America (Stephen G. Pollock Undergraduate Research Grant to JG), the Institute at Brown for Environment and Society, and the Marine Biological Laboratory. Sample analysis and Fulweiler’s involvement were supported by Boston University and a Bullard Fellowship from Harvard University. The soil warming experiment was supported by the National Science Foundation (DEB-0620443) and Department of Energy (DE-FC02-06-ER641577 and DE-SC0005421).
    Keywords: Silica ; Climate change ; Soil ; Warming ; Phytoliths ; Plants ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Johnson, W. M., Longnecker, K., Soule, M. C. K., Arnold, W. A., Bhatia, M. P., Hallam, S. J., Van Mooy, B. A. S., & Kujawinski, E. B. Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. Limnology and Oceanography, (2019), doi:10.1002/lno.11255.
    Description: Marine sinking particles transport carbon from the surface and bury it in deep‐sea sediments, where it can be sequestered on geologic time scales. The combination of the surface ocean food web that produces these particles and the particle‐associated microbial community that degrades them creates a complex set of variables that control organic matter cycling. We use targeted metabolomics to characterize a suite of small biomolecules, or metabolites, in sinking particles and compare their metabolite composition to that of the suspended particles in the euphotic zone from which they are likely derived. These samples were collected in the South Atlantic subtropical gyre, as well as in the equatorial Atlantic region and the Amazon River plume. The composition of targeted metabolites in the sinking particles was relatively similar throughout the transect, despite the distinct oceanic regions in which they were generated. Metabolites possibly derived from the degradation of nucleic acids and lipids, such as xanthine and glycine betaine, were an increased mole fraction of the targeted metabolites in the sinking particles relative to surface suspended particles, while algal‐derived metabolites like the osmolyte dimethylsulfoniopropionate were a smaller fraction of the observed metabolites on the sinking particles. These compositional changes are shaped both by the removal of metabolites associated with detritus delivered from the surface ocean and by production of metabolites by the sinking particle‐associated microbial communities. Furthermore, they provide a basis for examining the types and quantities of metabolites that may be delivered to the deep sea by sinking particles.
    Description: The authors would like to thank the captain and crew of the R/V Knorr and R/V Atlantic Explorer, as well as Justin Ossolinski, Catherine Carmichael, and Sean Sylva for helping to make this data set possible. Special thanks to Colleen Durkin for sharing her data and providing feedback on the manuscript. Funding for this work came from the National Science Foundation (NSF Grant OCE‐1154320 to EBK and KL) and a WHOI Ocean Ventures Fund award to WMJ. The instruments in the WHOI FT‐MS Facility were purchased with support from the Gordon & Betty Moore Foundation and NSF. Support for WMJ was provided by a National Defense Science and Engineering Fellowship. Sequencing was performed under the auspices of the US Department of Energy (DOE) JGI Community Science Program (CSP) project (CSP 1685) supported by the Office of Science of US DOE Contract DE‐AC02‐ 05CH11231. Additional work related to sample collection and processing was supported by the G. Unger Vetlesen and Ambrose Monell Foundations, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institute for Advanced Study (CIFAR), and the Canada Foundation for Innovation through grants awarded to SJH. MPB was supported by a CIFAR Global Scholarship and NSERC postdoctoral fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Sutherland, K., Wankel, S. D., Burdige, D. J., & Zimmerman, R. C. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnology and Oceanography, (2019), doi:10.1002/lno.11299.
    Description: Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m−2 h−1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m−2 d−1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem‐scale estimates. Oxygen content comprised 20–40% of the captured bubble gas volume and correlated negatively with its δ18O values, consistent with a predominance of mixing between the higher δ18O of atmospheric oxygen in equilibrium with seawater and the lower δ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here.
    Description: Two anonymous reviewers provided thoughtful contributions that improved this manuscript. We thank Miraflor Santos, Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1633951 (to MHL) and 1635403 (to RCZ and DJB), NASA Fellowship NESSF NNX15AR62H (to KS), and a fellowship from the Hansewissenschaftskolleg (Institute for Advanced Studies; to SDW).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Newman, L., Heil, P., Trebilco, R., Katsumata, K., Constable, A., van Wijk, E., Assmann, K., Beja, J., Bricher, P., Colemans, R., Costa, D., Diggs, S., Farneti, R., Fawcett, S., Gille, S. T., Hendry, K. R., Henley, S., Hofmann, E., Maksym, T., MazIoff, M., Meijers, A., Meredith, M. M., Moreau, S., Ozsor, B., Robertson, R., Schloss, I., Schofield, O., Shi, J., Sikes, E., Smith, I. J., Swart, S., Wahlin, A., Williams, G., Williams, M. J. M., Herraiz-Borreguero, L., Kern, S., Liesers, J., Massom, R. A., Melbourne-Thomas, J., Miloslavich, P., & Spreen, G. Delivering sustained, coordinated, and integrated observations of the Southern Ocean for global impact. Frontiers in Marine Science, 6, (2019): 433, doi:10.3389/fmars.2019.00433.
    Description: The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths 〉2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.
    Description: PH was supported by the Australian Government’s Cooperative Research Centers Program through the Antarctica Climate and Ecosystems Cooperative Research Centre, and the International Space Science Institute’s team grant #406. This work contributes to the Australian Antarctica Science projects 4301 and 4390.
    Keywords: Southern Ocean ; observations ; modeling ; ocean–climate interactions ; ecosystem-based management ; long-term monitoring ; international coordination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-26
    Description: The cumulative Greenland freshwater flux anomaly has exceeded 5,000 km3 since the 1990s. The volume of this surplus freshwater is expected to cause substantial freshening in the North Atlantic. Analysis of hydrographic observations in the subpolar seas reveals freshening signals in the 2010s. The sources of this freshening are yet to be determined. In this study, the relationship between the surplus Greenland freshwater flux and this freshening is tested by analyzing the propagation of the Greenland freshwater anomaly and its impact on salinity in the subpolar North Atlantic based on observational data and numerical experiments with and without the Greenland runoff. A passive tracer is continuously released during the simulations at freshwater sources along the coast of Greenland to track the Greenland freshwater anomaly. Tracer budget analysis shows that 44% of the volume of the Greenland freshwater anomaly is retained in the subpolar North Atlantic by the end of the simulation. This volume is sufficient to cause strong freshening in the subpolar seas if it stays in the upper 50–100 m. However, in the model the anomaly is mixed down to several hundred meters of the water column resulting in smaller magnitudes of freshening compared to the observations. Therefore, the simulations suggest that the accelerated Greenland melting would not be sufficient to cause the observed freshening in the subpolar seas and other sources of freshwater have contributed to the freshening. Impacts on salinity in the subpolar seas of the freshwater transport through Fram Strait and precipitation are discussed.
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L., Bashmachnikov, I. L., Chassignet, E. P., Lee, C. M., & Tedstone, A. J. Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic. Journal of Geophysical Research-Oceans, 124(5), (2019): 3333-3360, doi:10.1029/2018JC014686.
    Keywords: Greenland ice sheet melting ; freshwater anomaly ; subpolar North Atlantic ; subpolar gyre ; passive tracer numerical experiment ; freshwater budget
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4416-4432, doi: 10.1029/2019JC015185.
    Description: Synoptic and historical shipboard data, spanning the period 1981–2017, are used to investigate the seasonal evolution of water masses on the northeastern Chukchi shelf and quantify the circulation patterns and their impact on nutrient distributions. We find that Alaskan coastal water extends to Barrow Canyon along the coastal pathway, with peak presence in September, while the Pacific Winter Water (WW) continually drains off the shelf through the summer. The depth‐averaged circulation under light winds is characterized by a strong Alaskan Coastal Current (ACC) and northward flow through Central Channel. A portion of the Central Channel flow recirculates anticyclonically to join the ACC, while the remainder progresses northeastward to Hanna Shoal where it bifurcates around both sides of the shoal. All of the branches converge southeast of the shoal and eventually join the ACC. The wind‐forced response has two regimes: In the coastal region the circulation depends on wind direction, while on the interior shelf the circulation is sensitive to wind stress curl. In the most common wind‐forced state—northeasterly winds and anticyclonic wind stress curl—the ACC reverses, the Central Channel flow penetrates farther north, and there is mass exchange between the interior and coastal regions. In September and October, the region southeast of Hanna Shoal is characterized by elevated amounts of WW, a shallower pycnocline, and higher concentrations of nitrate. Sustained late‐season phytoplankton growth spurred by this pooling of nutrients could result in enhanced vertical export of carbon to the seafloor, contributing to the maintenance of benthic hotspots in this region.
    Description: The authors acknowledge the hard work and dedication of the many crew members who sailed on the different cruises of the USCGC Healy and the R/V Palmer. This study would not have been possible without their ongoing efforts to carry out successful science operations. Seth Danielson performed the quality control of the Barrow wind data. Funding was provided by the following sources: National Oceanic and Atmospheric Administration (NOAA) Grant NA14‐OAR4320158 (P. L., R. P., and L. M.), National Science Foundation (NSF) Grants OPP‐1702371 and OPP‐1733564 (R. P. and F. B.) and PLR‐1303617 (R. P., K. A., and K. L.), NSF Graduate Research Fellowship Program DGE‐0645962 (K. L.), National Aeronautics and Space Administration award NNX10AF42G (R. P., K. A., and K. L.), and NOAA's Ocean Observing and Monitoring Division, Climate Program Office Fund 100007298 (C. M.). This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and is contribution EcoFOCI‐0924 to the Ecosystems and Fisheries‐Oceanography Coordinated Investigations, 4944 to PMEL. The CTD and shipboard ADCP data of the eight cruises are available from http://www.rvdata.us/, and the nutrients data can be accessed from https://arcticdata.io/.
    Description: 2019-12-07
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3490-3507, doi:10.1029/2018JC014675.
    Description: Offshore permafrost plays a role in the global climate system, but observations of permafrost thickness, state, and composition are limited to specific regions. The current global permafrost map shows potential offshore permafrost distribution based on bathymetry and global sea level rise. As a first‐order estimate, we employ a heat transfer model to calculate the subsurface temperature field. Our model uses dynamic upper boundary conditions that synthesize Earth System Model air temperature, ice mass distribution and thickness, and global sea level reconstruction and applies globally distributed geothermal heat flux as a lower boundary condition. Sea level reconstruction accounts for differences between marine and terrestrial sedimentation history. Sediment composition and pore water salinity are integrated in the model. Model runs for 450 ka for cross‐shelf transects were used to initialize the model for circumarctic modeling for the past 50 ka. Preindustrial submarine permafrost (i.e., cryotic sediment), modeled at 12.5‐km spatial resolution, lies beneath almost 2.5 ×106km2 of the Arctic shelf. Our simple modeling approach results in estimates of distribution of cryotic sediment that are similar to the current global map and recent seismically delineated permafrost distributions for the Beaufort and Kara seas, suggesting that sea level is a first‐order determinant for submarine permafrost distribution. Ice content and sediment thermal conductivity are also important for determining rates of permafrost thickness change. The model provides a consistent circumarctic approach to map submarine permafrost and to estimate the dynamics of permafrost in the past.
    Description: Boundary condition data are available online via the sources referenced in the manuscript. This work was partially funded by a Helmholtz Association of Research Centres (HGF) Joint Russian‐German Research Group (HGF JRG 100). This study is part of a project that has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement 773421. Submarine permafrost studies in the Kara and Laptev Seas were supported by Russian Foundation for Basic Research (RFBR/RFFI) grants 18‐05‐60004 and 18‐05‐70091, respectively. The International Permafrost Association (IPA) and the Association for Polar Early Career Scientists (APECS) supported research coordination that led to this study. We acknowledge coordination support of the World Climate Research Programme (WCRP) through their core project on Climate and Cryosphere (CliC). Thanks to Martin Jakobsson for providing a digitized version of the preliminary IHO delineation of the Arctic seas and to Guy Masters for access to the observational geothermal database. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Description: 2019-10-17
    Keywords: Submarine permafrost ; Arctic ; Cryosphere ; Sea level
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fiore-Donno, A. M., Richter-Heitmann, T., Degrune, F., Dumack, K., Regan, K. M., Marhan, S., Boeddinghaus, R. S., Rillig, M. C., Friedrich, M. W., Kandeler, E., & Bonkowski, M. Functional traits and spatio-temporal structure of a major group of soil protists (Rhizaria: Cercozoa) in a temperate grassland. Frontiers in Microbiology, 10, (2019): 1332, doi:10.3389/fmicb.2019.01332.
    Description: Soil protists are increasingly appreciated as essential components of soil foodwebs; however, there is a dearth of information on the factors structuring their communities. Here we investigate the importance of different biotic and abiotic factors as key drivers of spatial and seasonal distribution of protistan communities. We conducted an intensive survey of a 10 m2 grassland plot in Germany, focusing on a major group of protists, the Cercozoa. From 177 soil samples, collected from April to November, we obtained 694 Operational Taxonomy Units representing 〉6 million Illumina reads. All major cercozoan taxonomic and functional groups were present, dominated by the small flagellates of the Glissomonadida. We found evidence of environmental selection structuring the cercozoan communities both spatially and seasonally. Spatial analyses indicated that communities were correlated within a range of 3.5 m. Seasonal variations in the abundance of bacterivores and bacteria, followed by that of omnivores suggested a dynamic prey-predator succession. The most influential edaphic properties were moisture and clay content, which differentially affected each functional group. Our study is based on an intense sampling of protists at a small scale, thus providing a detailed description of the biodiversity of different taxa/functional groups and the ecological processes involved in shaping their distribution.
    Description: This work was partly supported by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories.” Funding to AMF-D and MB was provided by BO 1907/18-1; funding to EK, SM, KMR, and RSB was provided by KA 1590/8-2 and KA 1590/8-3; funding to FD and MCR was provided by the BiodivERsA grant “Digging Deeper.” We are grateful to the Swiss National Science Foundation Grant 316030 150817 for funding the MiSeq instrument at the University of Geneva (CH).
    Keywords: Biogeography ; Functional traits ; Soil ecology ; Protozoa ; Microbial assembly ; Environmental selection ; Dispersal limitation ; Soil protists
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46 (2019): 10484–10494, doi:10.1029/2019GL083719.
    Description: Tropical cyclones (hurricanes) generate intense surface ocean cooling and vertical mixing resulting in nutrient upwelling into the photic zone and episodic phytoplankton blooms. However, their influence on the deep ocean remains unknown. Here we present evidence that hurricanes also impact the ocean's biological pump by enhancing export of labile organic material to the deep ocean. In October 2016, Category 3 Hurricane Nicole passed over the Bermuda Time Series site in the oligotrophic NW Atlantic Ocean. Following Nicole's passage, particulate fluxes of lipids diagnostic of fresh phytodetritus, zooplankton, and microbial biomass increased by 30–300% at 1,500 m depth and 30–800% at 3,200 m depth. Mesopelagic suspended particles following Nicole were also enriched in phytodetrital material and in zooplankton and bacteria lipids, indicating particle disaggregation and a deepwater ecosystem response. Predicted climate‐induced increases in hurricane frequency and/or intensity may significantly alter ocean biogeochemical cycles by increasing the strength of the biological pump.
    Description: This work and the Oceanic Flux Program time series were supported by the National Science Foundation Chemical Oceanography Program Grant OCE 1536644. The Bermuda Atlantic Time Series and Hydrostation S time series were supported by NSF Grants OCE 1756105 and OCE 1633125, respectively. We acknowledge the contributions of BATS technicians with CTD and pigment analyses. We sincerely thank the officers and crew of R/V Atlantic Explorer (Bermuda Institute of Ocean Sciences) for their expert assistance on the cruises. The data used in this study are listed in the figures, tables, and references, and are also available in the NSF's Biological and Chemical Oceanography Data Management Office (BCO‐DMO, https://doi.org/10.1575/1912/bco‐dmo.775902.1).
    Description: 2020-02-16
    Keywords: Hurricanes ; Carbon cycle ; North Atlantic Ocean ; Deep ocean ; Particle fluxes ; Lipid biomarkers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(5), (2019): 2943-2968, doi:10.1029/2019JC015071.
    Description: In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354 mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6 mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122 mg Chl a/m2 and 1.8 mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of iron‐rich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas.
    Description: This work was cofunded by the Australian Antarctic Division research projects AAS 4131 and 4291. This project was also supported by the Australian Government Cooperative Research Centres Programme through the Antarctic Climate & Ecosystems (ACE CRC). S. Moreau and C. Genovese were supported by the Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership (project ID SR140300001). V. Puigcorbé and M. Roca‐Martí are grateful for the support from Pere Masque and Edith Cowan University. M.C. Arroyo was supported by the Dickhut Fellowship, administered by the Virginia Institute of Marine Science. The authors would like to thank the officers and crew of the R/V Aurora Australis for their logistic support, the CSIRO hydrochemists for their analyses of nutrient concentrations, and E. J. Yang for her microscope analysis of phytoplankton species. We also want to thank two anonymous reviewers for their very good comments on this study. The data presented in this paper are available on the Australian Antarctic Division (AAD) Data Centre at https://data.aad.gov.au/aadc/metadata/metadata_by_parameter.cfm.
    Description: 2019-09-28
    Keywords: Polynyas ; Primary productivity ; Phytoplankton biomass ; Ice shelves ; Sea ice ; Iron
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goni, G. J., Sprintall, J., Bringas, F., Cheng, L., Cirano, M., Dong, S., Domingues, R., Goes, M., Lopez, H., Morrow, R., Rivero, U., Rossby, T., Todd, R. E., Trinanes, J., Zilberman, N., Baringer, M., Boyer, T., Cowley, R., Domingues, C. M., Hutchinson, K., Kramp, M., Mata, M. M., Reseghetti, F., Sun, C., Bhaskar, U., & Volko, D. More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future. Frontiers in Marine Science, 6, (2019): 452, doi:10.3389/fmars.2019.00452.
    Description: The first eXpendable BathyThermographs (XBTs) were deployed in the 1960s in the North Atlantic Ocean. In 1967 XBTs were deployed in operational mode to provide a continuous record of temperature profile data along repeated transects, now known as the Global XBT Network. The current network is designed to monitor ocean circulation and boundary current variability, basin-wide and trans-basin ocean heat transport, and global and regional heat content. The ability of the XBT Network to systematically map the upper ocean thermal field in multiple basins with repeated trans-basin sections at eddy-resolving scales remains unmatched today and cannot be reproduced at present by any other observing platform. Some repeated XBT transects have now been continuously occupied for more than 30 years, providing an unprecedented long-term climate record of temperature, and geostrophic velocity profiles that are used to understand variability in ocean heat content (OHC), sea level change, and meridional ocean heat transport. Here, we present key scientific advances in understanding the changing ocean and climate system supported by XBT observations. Improvement in XBT data quality and its impact on computations, particularly of OHC, are presented. Technology development for probes, launchers, and transmission techniques are also discussed. Finally, we offer new perspectives for the future of the Global XBT Network.
    Description: GG, FB, SD, UR, MB, RD, and DV were supported by a grant from the NOAA/Ocean Observing and Monitoring Division (OOMD) and by NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML). The participation of JS and NZ in this study was supported by NOAA's Global Ocean Monitoring and Observing Program through Award NA15OAR4320071 and NSF Award 1542902. CD was funded by the Australian Research Council (FT130101532 and DP160103130); the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580); and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. LC was supported by 2016YFC1401800.
    Keywords: Expendable bathythermographs ; Surface currents ; Subsurface currents ; Meridional heat transport ; Ocean heat content ; Sea level ; Extreme weather
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Turk, D., Wang, H., Hu, X., Gledhill, D. K., Wang, Z. A., Jiang, L., & Cai, W. Time of Emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design. Frontiers in Marine Science, 6, (2019):91, doi:10.3389/fmars.2019.00091.
    Description: Time of Emergence (ToE) is the time when a signal emerges from the noise of natural variability. Commonly used in climate science for the detection of anthropogenic forcing, this concept has recently been applied to geochemical variables, to assess the emerging times of anthropogenic ocean acidification (OA), mostly in the open ocean using global climate and Earth System Models. Yet studies of OA variables are scarce within costal margins, due to limited multidecadal time-series observations of carbon parameters. ToE provides important information for decision making regarding the strategic configuration of observing assets, to ensure they are optimally positioned either for signal detection and/or process elicitation and to identify the most suitable variables in discerning OA-related changes. Herein, we present a short overview of ToE estimates on an OA variable, CO2 fugacity f(CO2,sw), in the North American ocean margins, using coastal data from the Surface Ocean CO2 Atlas (SOCAT) V5. ToE suggests an average theoretical timeframe for an OA signal to emerge, of 23(±13) years, but with considerable spatial variability. Most coastal areas are experiencing additional secular and/or multi-decadal forcing(s) that modifies the OA signal, and such forcing may not be sufficiently resolved by current observations. We provide recommendations, which will help scientists and decision makers design and implement OA monitoring systems in the next decade, to address the objectives of OceanObs19 (http://www.oceanobs19.net) in support of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) (https://en.unesco.org/ocean-decade) and the Sustainable Development Goal (SDG) 14.3 (https://sustainabledevelopment.un.org/sdg14) target to “Minimize and address the impacts of OA.”
    Description: HW was partially supported by an NSF grant (OCE#1654232) while being a research associate at TAMUCC.
    Keywords: Ocean acidification ; CO2 fugacity ; Time of emergence ; Climate change ; Novel statistical approaches ; Observing system optimization ; Decision making tool
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Heimbach, P., Fukumori, I., Hills, C. N., Ponte, R. M., Stammer, D., Wunsch, C., Campin, J., Cornuelle, B., Fenty, I., Forget, G., Koehl, A., Mazloff, M., Menemenlis, D., Nguyen, A. T., Piecuch, C., Trossman, D., Verdy, A., Wang, O., & Zhang, H. Putting it all together: Adding value to the global ocean and climate observing systems with complete self-consistent ocean state and parameter estimates. Frontiers in Marine Science, 6 (2019):55, doi:10.3389/fmars.2019.00055.
    Description: In 1999, the consortium on Estimating the Circulation and Climate of the Ocean (ECCO) set out to synthesize the hydrographic data collected by the World Ocean Circulation Experiment (WOCE) and the satellite sea surface height measurements into a complete and coherent description of the ocean, afforded by an ocean general circulation model. Twenty years later, the versatility of ECCO's estimation framework enables the production of global and regional ocean and sea-ice state estimates, that incorporate not only the initial suite of data and its successors, but nearly all data streams available today. New observations include measurements from Argo floats, marine mammal-based hydrography, satellite retrievals of ocean bottom pressure and sea surface salinity, as well as ice-tethered profiled data in polar regions. The framework also produces improved estimates of uncertain inputs, including initial conditions, surface atmospheric state variables, and mixing parameters. The freely available state estimates and related efforts are property-conserving, allowing closed budget calculations that are a requisite to detect, quantify, and understand the evolution of climate-relevant signals, as mandated by the Coupled Model Intercomparison Project Phase 6 (CMIP6) protocol. The solutions can be reproduced by users through provision of the underlying modeling and assimilation machinery. Regional efforts have spun off that offer increased spatial resolution to better resolve relevant processes. Emerging foci of ECCO are on a global sea level changes, in particular contributions from polar ice sheets, and the increased use of biogeochemical and ecosystem data to constrain global cycles of carbon, nitrogen and oxygen. Challenges in the coming decade include provision of uncertainties, informing observing system design, globally increased resolution, and moving toward a coupled Earth system estimation with consistent momentum, heat and freshwater fluxes between the ocean, atmosphere, cryosphere and land.
    Description: Major support for ECCO is provided by NASA's Physical Oceanography program via a contract to JPL/Caltech, with additional support through NASA's Modeling, Analysis and Prediction program, the Cryosphere Science program, and the Computational Modeling and Cyberinfrastructure program. Supplemental funding was obtained throughout the years via standard grants to individual team members from NSF, NOAA, and ONR.
    Keywords: ECCO ; Global ocean inverse modeling ; Optimal state and parameter estimation ; Adjoint method ; Ocean observations ; Coupled Earth system data assimilation ; Ocean reanalysis ; Global ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, N., Kessler, W. S., Cravatte, S., Sprintall, J., Wijffels, S., Cronin, M. F., Sutton, A., Serra, Y. L., Dewitte, B., Strutton, P. G., Hill, K., Sen Gupta, A., Lin, X., Takahashi, K., Chen, D., & Brunner, S. Tropical pacific observing system. Frontiers in Marine Science, 6, (2019):31, doi:10.3389/fmars.2019.00031.
    Description: This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs.
    Description: BD thanks LEFE-GMMC for financial support. JS participation in this study was supported by NOAA’s Global Ocean Monitoring and Observing Program through Award NA15OAR4320071. NOAA’s Ocean Observing and Monitoring Division has supported NS and WK and the TPOS 2020 Distributed Project Office.
    Keywords: Ocean observing ; Tropical Pacific ; TPOS 2020 ; User requirements ; Variable requirements ; Design ; Tropical moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1778-1794, doi:10.1029/2018JC014775.
    Description: Abyssal ocean warming contributed substantially to anthropogenic ocean heat uptake and global sea level rise between 1990 and 2010. In the 2010s, several hydrographic sections crossing the South Pacific Ocean were occupied for a third or fourth time since the 1990s, allowing for an assessment of the decadal variability in the local abyssal ocean properties among the 1990s, 2000s, and 2010s. These observations from three decades reveal steady to accelerated bottom water warming since the 1990s. Strong abyssal (z 〉 4,000 m) warming of 3.5 (±1.4) m°C/year (m°C = 10−3 °C) is observed in the Ross Sea, directly downstream from bottom water formation sites, with warming rates of 2.5 (±0.4) m°C/year to the east in the Amundsen‐Bellingshausen Basin and 1.3 (±0.2) m°C/year to the north in the Southwest Pacific Basin, all associated with a bottom‐intensified descent of the deepest isotherms. Warming is consistently found across all sections and their occupations within each basin, demonstrating that the abyssal warming is monotonic, basin‐wide, and multidecadal. In addition, bottom water freshening was strongest in the Ross Sea, with smaller amplitude in the Amundsen‐Bellingshausen Basin in the 2000s, but is discernible in portions of the Southwest Pacific Basin by the 2010s. These results indicate that bottom water freshening, stemming from strong freshening of Ross Shelf Waters, is being advected along deep isopycnals and mixed into deep basins, albeit on longer timescales than the dynamically driven, wave‐propagated warming signal. We quantify the contribution of the warming to local sea level and heat budgets.
    Description: S. G. P. was supported by a U.S. GO‐SHIP postdoctoral fellowship through NSF grant OCE‐1437015, which also supported L. D. T. and S. M. and collection of U.S. GO‐SHIP data since 2014 on P06, S4P, P16, and P18. G. C. J. is supported by the Global Ocean Monitoring and Observation Program, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research. B. M. S and S. E. W. were supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. We are grateful for the hard work of the science parties, officers, and crew of all the research cruises on which these CTD data were collected. We also thank the two anonymous reviewers for their helpful comments that improve the manuscript. This is PMEL contribution 4870. All CTD data sets used in this analysis are publicly available at the website (https://cchdo.ucsd.edu).
    Description: 2019-08-20
    Keywords: Abyssal warming ; Pacific deep circulation ; Deep steric sea level ; Deep warming variability ; Antarctic Bottom Water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 2088-2109, doi:10.1029/2018JC014583.
    Description: As observations and models improve their resolution of oceanic motions at ever finer horizontal scales, interest has grown in characterizing the transition from the geostrophically balanced flows that dominate at large‐scale to submesoscale turbulence and waves that dominate at small scales. In this study we examine the mesoscale‐to‐submesoscale (100 to 10 km) transition in an eastern boundary current, the southern California Current System (CCS), using repeated acoustic Doppler current profiler transects, sea surface height from high‐resolution nadir altimetry and output from a (1/48)° global model simulation. In the CCS, the submesoscale is as energetic as in western boundary current regions, but the mesoscale is much weaker, and as a result the transition lacks the change in kinetic energy (KE) spectral slope observed for western boundary currents. Helmholtz and vortex‐wave decompositions of the KE spectra are used to identify balanced and unbalanced contributions. At horizontal scales greater than 70 km, we find that observed KE is dominated by balanced geostrophic motions. At scales from 40 to 10 km, unbalanced contributions such as inertia‐gravity waves contribute as much as balanced motions. The model KE transition occurs at longer scales, around 125 km. The altimeter spectra are consistent with acoustic Doppler current profiler/model spectra at scales longer than 70/125 km, respectively. Observed seasonality is weak. Taken together, our results suggest that geostrophic velocities can be diagnosed from sea surface height on scales larger than about 70 km in the southern CCS.
    Description: This research was funded by NASA (NNX13AE44G, NNX13AE85G, NNX16AH67G, NNX16AO5OH, and NNX17AH53G). We thank Sung Yong Kim for providing the high‐frequency radar spectral estimates and the two anonymous reviewers for providing useful comments and suggestions that greatly improved the manuscript. High‐frequency ALES data for Jason‐1 and Jason‐2 altimeters are available upon request (https://openadb.dgfi.tum.de/en/contact/ALES). Both AltiKa and Sentinel‐3 altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS; http://www.marine.copernicus.eu). D. M. worked on the modeling component of this study at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). High‐end computing resources were provided by the NASA Advanced Supercomputing (NAS) Division of the Ames Research Center. The LLC output can be obtained from the ECCO project (ftp://ecco.jpl.nasa.gov/ECCO2/LLC4320/). The ADCP data are available at the Joint Archive for Shipboard ADCP data (JASADCP; http://ilikai.soest.hawaii.edu/sadcp).
    Description: 2019-08-21
    Keywords: Mesoscale ; Submesoscale ; Internal gravity waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(3), (2019): 1485-1507, doi:10.1029/2018GC007985.
    Description: In 2015 a geothermal exploration well was drilled on the island of Tutuila, American Samoa. The sample suite from the drill core provides 645 m of volcanic stratigraphy from a Samoan volcano, spanning 1.45 million years of volcanic history. In the Tutuila drill core, shield lavas with an EM2 (enriched mantle 2) signature are observed at depth, spanning 1.46 to 1.44 Ma. These are overlain by younger (1.35 to 1.17 Ma) shield lavas with a primordial “common” (focus zone) component interlayered with lavas that sample a depleted mantle component. Following ~1.15 Myr of volcanic quiescence, rejuvenated volcanism initiated at 24.3 ka and samples an EM1 (enriched mantle 1) component. The timing of the initiation of rejuvenated volcanism on Tutuila suggests that rejuvenated volcanism may be tectonically driven, as Samoan hotspot volcanoes approach the northern terminus of the Tonga Trench. This is consistent with a model where the timing of rejuvenated volcanism at Tutuila and at other Samoan volcanoes relates to their distance from the Tonga Trench. Notably, the Samoan rejuvenated lavas have EM1 isotopic compositions distinct from shield lavas that are geochemically similar to “petit spot” lavas erupted outboard of the Japan Trench and late stage lavas erupted at Christmas Island located outboard of the Sunda Trench. Therefore, like the Samoan rejuvenated lavas, petit spot volcanism in general appears to be related to tectonic uplift outboard of subduction zones, and existing geochemical data suggest that petit spots share similar EM1 isotopic signatures.
    Description: Reviews from Kaj Hoernle and three anonymous reviewers are gratefully acknowledged. M. G. J. acknowledges support from the American Samoa Power Authority and National Science Foundation grants OCE‐1736984 and EAR‐1624840. The Tutuila drill core was the brainchild of Tim Bodell, without whom we would still have no stratigraphic record of Tutuila volcanism. The support of Utu Abe Malae and Matamua Katrina Mariner was instrumental to the project's success. We dedicate this paper to the memory of Abe Malae and his efforts to support science and education in American Samoa. Images of the entire drill core are available online (escholarship.org/uc/item/6gg6p61w). All data presented are either part of this study or previously published and are referenced in text.
    Description: 2019-08-13
    Keywords: Samoa ; Mantle geochemistry ; Petit spot ; EM1 ; Rejuvenated volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4618-4630, doi: 10.1029/2019JC014940.
    Description: The Arctic Ocean mixed layer interacts with the ice cover above and warmer, nutrient‐rich waters below. Ice‐Tethered Profiler observations in the Canada Basin of the Arctic Ocean over 2006–2017 are used to investigate changes in mixed layer properties. In contrast to decades of shoaling since at least the 1980s, the mixed layer deepened by 9 m from 2006–2012 to 2013–2017. Deepening resulted from an increase in mixed layer salinity that also weakened stratification at the base of the mixed layer. Vertical mixing alone can explain less than half of the observed change in mixed layer salinity, and so the observed increase in salinity is inferred to result from changes in freshwater accumulation via changes to ice‐ocean circulation or ice melt/growth and river runoff. Even though salinity increased, the shallowest density surfaces deepened by 5 m on average suggesting that Ekman pumping over this time period remained downward. A deeper mixed layer with weaker stratification has implications for the accessibility of heat and nutrients stored in the upper halocline. The extent to which the mixed layer will continue to deepen appears to depend primarily on the complex set of processes influencing freshwater accumulation.
    Description: We gratefully acknowledge J. Toole for helpful conversations. S. Cole was supported by the National Science Foundation under grant PLR‐1602926 and J. Stadler by the Woods Hole Oceanographic Institution Summer Student Fellowship program. Profile data are available via the Ice‐Tethered Profiler program website: http://whoi.edu/itp. SSM/I ice concentration data were downloaded from the National Snow and Ice Data Center.
    Description: 2019-12-22
    Keywords: Arctic Ocean ; Mixed layer ; Freshwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Speich, S., Lee, T., Muller-Karger, F., Lorenzoni, L., Pascual, A., Jin, D., Delory, E., Reverdin, G., Siddorn, J., Lewis, M. R., Marba, N., Buttigieg, P. L., Chiba, S., Manley, J., Kabo-Bah, A. T., Desai, K., & Ackerman, A. Editorial: Oceanobs19: An ocean of opportunity. Frontiers in Marine Science, 6, (2019): 570, doi:10.3389/fmars.2019.00570.
    Description: The OceanObs conferences are held once every 10 years for the scientific, technical, and operational communities involved in the planning, implementation, and use of ocean observing systems. They serve to communicate progress, promote plans, and to define advances in ocean observing in response to societies' needs. Each conference provides a forum for the community to review the state of the ocean observing science and operations, and to define goals and plans to achieve over the next decade.
    Description: The organizers of the OceanObs'19 conference thank the authors that conceived and jointly crafted the Community White Papers for their tremendous efforts, extensive international collaborations, and community wisdom. The organizers also thank the hundreds of reviewers of the CWPs for their dedication, and the time invested in reviewing the papers. The organizers of the OceanObs'19 conference wish to thank the chief editor of the journal, Dr. Carlos Duarte, and the Frontiers Marine Science staff, for their professionalism and support in this process.
    Keywords: OceanObs'19 ; Ocean observing ; Innovation ; Information ; Integration ; Interoperability ; Governance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Description: RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here.
    Keywords: Western boundary current systems ; Eastern boundary current systems ; Ocean observing systems ; Time series ; Autonomous underwater gliders ; Drifters ; Remote sensing ; Moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Oehler, T., Tamborski, J., Rahman, S., Moosdorf, N., Ahrens, J., Mori, C., Neuholz, R., Schnetger, B., & Beck, M. DSi as a tracer for submarine groundwater discharge. Frontiers in Marine Science, 6, (2019): 563, doi:10.3389/fmars.2019.00563.
    Description: Submarine groundwater discharge (SGD) is an important source of nutrients and metals to the coastal ocean, affects coastal ecosystems, and is gaining recognition as a relevant water resource. SGD is usually quantified using geochemical tracers such as radon or radium. However, a few studies have also used dissolved silicon (DSi) as a tracer for SGD, as DSi is usually enriched in groundwater when compared to surface waters. In this study, we discuss the potential of DSi as a tracer in SGD studies based on a literature review and two case studies from contrasting environments. In the first case study, DSi is used to calculate SGD fluxes in a tropical volcanic-carbonate karstic region (southern Java, Indonesia), where SGD is dominated by terrestrial groundwater discharge. The second case study discusses DSi as a tracer for marine SGD (i.e., recirculated seawater) in the tidal flat area of Spiekeroog (southern North Sea), where SGD is dominantly driven by tidal pumping through beach sands. Our results indicate that DSi is a useful tracer for SGD in various lithologies (e.g., karstic, volcanic, complex) to quantify terrestrial and marine SGD fluxes. DSi can also be used to trace groundwater transport processes in the sediment and the coastal aquifer. Care has to be taken that all sources and sinks of DSi are known and can be quantified or neglected. One major limitation is that DSi is used by siliceous phytoplankton and therefore limits its applicability to times of the year when primary production of siliceous phytoplankton is low. In general, DSi is a powerful tracer for SGD in many environments. We recommend that DSi should be used to complement other conventionally used tracers, such as radon or radium, to help account for their own shortcomings.
    Description: TO, NM, and the presented case study 1 were funded through the BMBF junior research group SGD-NUT (grant #01LN1307A). Open access publication fees are paid by Leibniz-Centre for Tropical Marine Research internal funds. The presented case study 2 was financially supported by the DFG Research Group “BioGeoChemsitry of Tidal Flats”, the Ph.D. Research Training Group “The ecology of molecules” funded by the Ministry for Science and Culture of Lower Saxony, and the Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg.
    Keywords: Submarine groundwater discharge ; DSi ; Silica ; Tracer ; Radon ; Radium
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., Koehl, A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J. P., Blazquez, A., Cazenave, A., Church, J. A., Cowley, R., Cheng, L., Domingues, C. M., Giglio, D., Gouretski, V., Ishii, M., Johnson, G. C., Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer, M. D., Piotrowicz, S., Purkey, S. G., Roemmich, D., Roca, R., Savita, A., von Schuckmann, K., Speich, S., Stephens, G., Wang, G., Wijffels, S. E., & Zilberman, N. Measuring global ocean heat content to estimate the Earth energy Imbalance. Frontiers in Marine Science, 6, (2019): 432, doi: 10.3389/fmars.2019.00432.
    Description: The energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4–1 Wm–2). This imbalance is coined Earth’s Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
    Description: GJ was supported by the NOAA Research. MP and RK were supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. JC was partially supported by the Centre for Southern Hemisphere Oceans Research, a joint research centre between QNLM and CSIRO. CD and AS were funded by the Australian Research Council (FT130101532 and DP160103130) and its Centre of Excellence for Climate Extremes (CLEX). IQuOD team members (TB, RC, LC, CD, VG, MI, MP, and SW) were supported by the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by the National SCOR Committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), as well as the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. ZZ was supported by the National Aeronautics and Space Administration (NNX17AH14G). LC was supported by the National Key Research and Development Program of China (2017YFA0603200 and 2016YFC1401800).
    Keywords: Ocean heat content ; Sea level ; Ocean mass ; Ocean surface fluxes ; ARGO ; Altimetry ; GRACE ; Earth Energy Imbalance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hoarfrost, A., Balmonte, J. P., Ghobrial, S., Ziervogel, K., Bane, J., Gawarkiewicz, G., & Arnosti, C. Gulf Stream ring water intrusion on the Mid-Atlantic Bight continental shelf break affects microbially driven carbon cycling. Frontiers in Marine Science, 6, (2019): 394, doi:10.3389/fmars.2019.00394.
    Description: Warm core, anticyclonic rings that spin off from the Gulf Stream circulate through the region directly offshore of the Mid-Atlantic Bight. If a warm core ring reaches the continental shelf break, its warm, highly saline water may subduct under cooler, fresher continental shelf surface water, resulting in subsurface waters at the shelf break and over the upper continental slope with high temperatures and salinities and distinct physical and chemical properties characteristic of Gulf Stream water. Such intruding water may also have microbial communities with distinct functional capacities, which may in turn affect the rate and nature of carbon cycling in this coastal/shelf environment. However, the functional capabilities of microbial communities within ring intrusion waters relative to surrounding continental shelf waters are largely unexplored. We investigated microbial community capacity to initiate organic matter remineralization by measuring hydrolysis of a suite of polysaccharide, peptide, and glucose substrates along a transect oriented across the Mid-Atlantic Bight shelf, shelf break, and upper slope. At the outermost sampling site, warm and salty water derived from a Gulf Stream warm core ring was present in the lower portion of the water column. This water exhibited hydrolytic capacities distinct from other sampling sites, and exhibited lower heterotrophic bacterial productivity overall. Warm core rings adjacent to the Mid-Atlantic Bight shelf have increased in frequency and duration in recent years. As the influence of warm core rings on the continental shelf and slope increases in the future, the rate and nature of organic matter remineralization on the continental shelf may also shift.
    Description: This study was funded by the NSF (OCE-1332881 and OCE-1736772 to CA; OCE-1657853 to GG), with additional funding provided by the DOE (DE-SC0013887).
    Keywords: Warm core ring ; Ring intrusion ; Mid-Atlantic Bight ; Heterotrophy ; Carbon cycling ; Enzymatic activity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foltz, G. R., Brandt, P., Richter, I., Rodriguez-Fonsecao, B., Hernandez, F., Dengler, M., Rodrigues, R. R., Schmidt, J. O., Yu, L., Lefevre, N., Da Cunha, L. C., Mcphaden, M. J., Araujo, M., Karstensen, J., Hahn, J., Martin-Rey, M., Patricola, C. M., Poli, P., Zuidema, P., Hummels, R., Perez, R. C., Hatje, V., Luebbecke, J. F., Palo, I., Lumpkin, R., Bourles, B., Asuquo, F. E., Lehodey, P., Conchon, A., Chang, P., Dandin, P., Schmid, C., Sutton, A., Giordani, H., Xue, Y., Illig, S., Losada, T., Grodsky, S. A., Gasparinss, F., Lees, T., Mohino, E., Nobre, P., Wanninkhof, R., Keenlyside, N., Garcon, V., Sanchez-Gomez, E., Nnamchi, H. C., Drevillon, M., Storto, A., Remy, E., Lazar, A., Speich, S., Goes, M., Dorrington, T., Johns, W. E., Moum, J. N., Robinson, C., Perruches, C., de Souza, R. B., Gaye, A. T., Lopez-Paragess, J., Monerie, P., Castellanos, P., Benson, N. U., Hounkonnou, M. N., Trotte Duha, J., Laxenairess, R., & Reul, N. The tropical Atlantic observing system. Frontiers in Marine Science, 6(206), (2019), doi:10.3389/fmars.2019.00206.
    Description: he tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Description: MM-R received funding from the MORDICUS grant under contract ANR-13-SENV-0002-01 and the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236). GF, MG, RLu, RP, RW, and CS were supported by NOAA/OAR through base funds to AOML and the Ocean Observing and Monitoring Division (OOMD; fund reference 100007298). This is NOAA/PMEL contribution #4918. PB, MDe, JH, RH, and JL are grateful for continuing support from the GEOMAR Helmholtz Centre for Ocean Research Kiel. German participation is further supported by different programs funded by the Deutsche Forschungsgemeinschaft, the Deutsche Bundesministerium für Bildung und Forschung (BMBF), and the European Union. The EU-PREFACE project funded by the EU FP7/2007–2013 programme (Grant No. 603521) contributed to results synthesized here. LCC was supported by the UERJ/Prociencia-2018 research grant. JOS received funding from the Cluster of Excellence Future Ocean (EXC80-DFG), the EU-PREFACE project (Grant No. 603521) and the BMBF-AWA project (Grant No. 01DG12073C).
    Keywords: Tropical Atlantic Ocean ; Observing system ; Weather ; Climate ; Hurricanes ; Biogeochemistry ; Ecosystems ; Coupled model bias
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Druffel, E. R. M., Griffin, S., Wang, N., Garcia, N. G., McNichol, A. P., Key, R. M., & Walker, B. D. Dissolved organic radiocarbon in the central Pacific Ocean. Geophysical Research Letters, 46(10), (2019):5396-5403, doi:10.1029/2019GL083149.
    Description: We report marine dissolved organic carbon (DOC) concentrations, and DOC ∆14C and δ13C values in seawater collected from the central Pacific. Surface ∆14C values are low in equatorial and polar regions where upwelling occurs and high in subtropical regions dominated by downwelling. A core feature of these data is that 14C aging of DOC (682 ± 86 14C years) and dissolved inorganic carbon (643 ± 40 14C years) in Antarctic Bottom Water between 54.0°S and 53.5°N are similar. These estimates of aging are minimum values due to mixing with deep waters. We also observe minimum ∆14C values (−550‰ to −570‰) between the depths of 2,000 and 3,500 m in the North Pacific, though the source of the low values cannot be determined at this time.
    Description: We thank Jennifer Walker, Xiaomei Xu, and Dachun Zhang for their help with the stable carbon isotope measurements; John Southon and staff of the Keck Carbon Cycle AMS Laboratory for their assistance and advice; the support of chief scientists Samantha Siedlecki, Molly Baringer, Alison Macdonald, and Sabine Mecking; the guidance of Jim Swift and Dennis Hansell for shared ship time; and Sarah Bercovici for collecting water on the GoA cruise. We appreciate the comments of Christian Lewis and Niels Hauksson on this manuscript. This work was supported by NSF (OCE‐141458941 to E. R. M. D. and OCE‐0824864, OCE‐1558654, and Cooperative Agreement OCE1239667 to R. M. K. and A. P. M.), the Fred Kavli Foundation, the Keck Carbon Cycle AMS Laboratory, and the NSF/NOAA‐funded GO‐SHIP Program. This research was undertaken, in part, thanks to funding from the Canada Research Chairs program (to B. D. W.) and an American Chemical Society Petroleum Research Fund New Directions grant (55430‐ND2 to E. R. M. D. and B. D. W.). Data from the P16N cruises are available in Table S2 in the Supporting Information and at the Repeat Hydrography Data Center at the CCHDO website (http://cdiac.esd.ornl.gov/oceans/index.html) using the expo codes 3RO20150329, 3RO20150410, and 3RO20150525. There are no real or perceived financial conflicts of interests for any author.
    Description: 2019-11-02
    Keywords: Dissolved organic carbon ; Radiocarbon ; Pacific Ocean ; Dissolved inorganic carbon ; Deep ocean circulation ; AABW
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Plummeer, S., Taylor, A. E., Harvey, E. L., Hansel, C. M., & Diaz, J. M. Dynamic regulation of extracellular superoxide production by the coccolithophore Emiliania huxleyi (CCMP 374). Frontiers in Microbiology, 10, (2019): 1546, doi: 10.3389/fmicb.2019.01546.
    Description: In marine waters, ubiquitous reactive oxygen species (ROS) drive biogeochemical cycling of metals and carbon. Marine phytoplankton produce the ROS superoxide (O2−) extracellularly and can be a dominant source of O2− in natural aquatic systems. However, the cellular regulation, biological functioning, and broader ecological impacts of extracellular O2− production by marine phytoplankton remain mysterious. Here, we explored the regulation and potential roles of extracellular O2− production by a noncalcifying strain of the cosmopolitan coccolithophorid Emiliania huxleyi, a key species of marine phytoplankton that has not been examined for extracellular O2− production previously. Cell-normalized extracellular O2− production was the highest under presumably low-stress conditions during active proliferation and inversely related to cell density during exponential growth phase. Removal of extracellular O2− through addition of the O2− scavenger superoxide dismutase (SOD), however, increased growth rates, growth yields, cell biovolume, and photosynthetic efficiency (Fv/Fm) indicating an overall physiological improvement. Thus, the presence of extracellular O2− does not directly stimulate E. huxleyi proliferation, as previously suggested for other phytoplankton, bacteria, fungi, and protists. Extracellular O2− production decreased in the dark, suggesting a connection with photosynthetic processes. Taken together, the tight regulation of this stress independent production of extracellular O2− by E. huxleyi suggests that it could be involved in fundamental photophysiological processes.
    Description: This research was supported by a Junior Faculty Seed Grant from the University of Georgia Research Foundation (JD), a National Science Foundation (NSF) Graduate Research Fellowship (SP), and NSF grant OCE-1355720 (CH). The FlowCam® and FIRe were purchased through a NSF Equipment Improvement Grant (1624593).
    Keywords: Reactive oxygen species ; Superoxide ; Emiliania huxleyi ; Photophysiology ; Oxidative stress ; Redox homeostasis ; Biogeochemical cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7795-7818. doi: 10.1029/2018JC013794.
    Description: This work studies the subduction of the shelf water along the onshore edge of a warm‐core ring that impinges on the edge of the Mid‐Atlantic Bight continental shelf. The dynamical analysis is based on observations by satellites and from the Ocean Observatories Initiative Pioneer Array observatory as well as idealized numerical model simulations. They together show that frontogenesis‐induced submesoscale frontal subduction with order‐one Rossby and Froude numbers occurs on the onshore edge of the ring. The subduction flow results from the onshore migration of the warm‐core ring that intensifies the density front on the interface of the ring and shelf waters. The subduction is a part of the cross‐front secondary circulation trying to relax the intensifying density front. The dramatically different physical and biogeochemical properties of the ring and shelf waters provide a great opportunity to visualize the subduction phenomenon. Entrained by the ring‐edge current, the subducted shelf water is subsequently transported offshore below a surface layer of ring water and alongside of the surface‐visible shelf‐water streamer. It explains the historical observations of isolated subsurface packets of shelf water along the ring periphery in the slope sea. Model‐based estimate suggests that this type of subduction‐associated subsurface cross‐shelfbreak transport of the shelf water could be substantial relative to other major forms of shelfbreak water exchange. This study also proposes that outward spreading of the ring‐edge front by the frontal subduction may facilitate entrainment of the shelf water by the ring‐edge current and enhances the shelf‐water streamer transport at the shelf edge.
    Description: W. G. Z. was supported by the National Science Foundation under grants OCE‐1657853, OCE‐1657803, and OCE 1634965. JP is grateful for the support of the Woods Hole Oceanographic Institution Summer Student Fellow Program in 2016 and 2017. W. G. Z. thanks Kenneth Brink, Glen Gawarkiewicz, Rocky Geyer, Steven Lentz, Dennis McGillicuddy, Robert Todd, and John Trowbridge for helpful discussions during the course of the study or useful comments on earlier versions of the manuscript. The satellite sea surface temperature data were obtained from the University of Delaware Ocean Exploration, Remote Sensing, Biogeography Lab (led by Matthew Oliver), through the Mid‐Atlantic Coastal Ocean Observing System (MARACOOS) data server (http://tds.maracoos.org/thredds/catalog.html). The OOI Pioneer Array mooring and glider data presented in this paper were downloaded from the National Science Foundation OOI data portal (http://ooinet.oceanobservatories.org) in July–August 2016.
    Description: 2019-04-15
    Keywords: Frontal subduction ; Warm‐core ring ; Mid‐Atlantic Bight ; Shelf‐water streamer ; Cross‐shelf exchange ; OOI Pioneer Array
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 1123(11), (2018): 8568-8580. doi: 10.1029/2018JC014352.
    Description: In the past decades, in the context of a changing ocean submitted to an increasing human activity, a progressive decrease in the frequencies (pitch) of blue whale vocalizations has been observed worldwide. Its causes, of natural or anthropogenic nature, are still unclear. Based on 7 years of continuous acoustic recordings at widespread sites in the southern Indian Ocean, we show that this observation stands for five populations of large whales. The frequency of selected units of vocalizations of fin, Antarctic, and pygmy blue whales has steadily decreased at a rate of a few tenths of hertz per year since 2002. In addition to this interannual frequency decrease, blue whale vocalizations display seasonal frequency shifts. We show that these intra‐annual shifts correlate with seasonal changes in the ambient noise near their call frequency. This ambient noise level, in turn, shows a strong correlation with the seasonal presence of icebergs, which are one of the main sources of oceanic noise in the Southern Hemisphere. Although cause‐and‐effect relationships are difficult to ascertain, wide‐ranging changes in the acoustic environment seem to have a strong impact on the vocal behavior of large baleen whales. Seasonal frequency shifts may be due to short‐term changes in the ambient noise, and the interannual frequency decline to long‐term changes in the acoustic properties of the ocean and/or in postwhaling changes in whale abundances.
    Description: The authors wish to thank the Captains and crews of RV Marion Dufresne for the successful deployments and recoveries of the hydrophones of the DEFLOHYDRO (Royer, 2008) and OHASISBIO (Royer, 2009) experiments. French cruises were funded by the French Polar Institute (IPEV) with additional support from INSU‐CNRS. NOAA/PMEL also contributed to the DEFLOHYDRO project. E. C. L. was supported by a PhD fellowship from the University of Brest and from the Regional Council of Brittany (Conseil Régional de Bretagne). The contribution of Mickael Beauverger at LGO to the logistics and deployment of the OHASISBIO cruises is greatly appreciated. The data underlying this analysis (weekly averaged frequencies of Antarctic blue whales, pygmy blue whales, and fin whales and daily averaged noise levels at each site) are accessible at http://doi.org/10.17882/51007.
    Description: 2019-05-27
    Keywords: Large baleen whales ; Blue whale calls ; Frequency decrease ; Bioacoustics ; Frequency shifts ; Ambient noise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-10-20
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dodge, K. L., Kukulya, A. L., Burke, E., & Baumgartner, M. F. (2018). TurtleCam: A "smart" autonomous underwater vehicle for investigating behaviors and habitats of sea turtles. Frontiers in Marine Science, 5, (2018): 90. doi:10.3389/fmars.2018.00090.
    Description: Sea turtles inhabiting coastal environments routinely encounter anthropogenic hazards, including fisheries, vessel traffic, pollution, dredging, and drilling. To support mitigation of potential threats, it is important to understand fine-scale sea turtle behaviors in a variety of habitats. Recent advancements in autonomous underwater vehicles (AUVs) now make it possible to directly observe and study the subsurface behaviors and habitats of marine megafauna, including sea turtles. Here, we describe a “smart” AUV capability developed to study free-swimming marine animals, and demonstrate the utility of this technology in a pilot study investigating the behaviors and habitat of leatherback turtles (Dermochelys coriacea). We used a Remote Environmental Monitoring UnitS (REMUS-100) AUV, designated “TurtleCam,” that was modified to locate, follow and film tagged turtles for up to 8 h while simultaneously collecting environmental data. The TurtleCam system consists of a 100-m depth rated vehicle outfitted with a circular Ultra-Short BaseLine receiver array for omni-directional tracking of a tagged animal via a custom transponder tag that we attached to the turtle with two suction cups. The AUV collects video with six high-definition cameras (five mounted in the vehicle nose and one mounted aft) and we added a camera to the animal-borne transponder tag to record behavior from the turtle's perspective. Since behavior is likely a response to habitat factors, we collected concurrent in situ oceanographic data (bathymetry, temperature, salinity, chlorophyll-a, turbidity, currents) along the turtle's track. We tested the TurtleCam system during 2016 and 2017 in a densely populated coastal region off Cape Cod, Massachusetts, USA, where foraging leatherbacks overlap with fixed fishing gear and concentrated commercial and recreational vessel traffic. Here we present example data from one leatherback turtle to demonstrate the utility of TurtleCam. The concurrent video, localization, depth and environmental data allowed us to characterize leatherback diving behavior, foraging ecology, and habitat use, and to assess how turtle behavior mediates risk to impacts from anthropogenic activities. Our study demonstrates that an AUV can successfully track and image leatherback turtles feeding in a coastal environment, resulting in novel observations of three-dimensional subsurface behaviors and habitat use, with implications for sea turtle management and conservation.
    Description: This research was funded by National Oceanic and Atmospheric Administration Grant #NA16NMF4720074 to the Massachusetts Division of Marine Fisheries under the Species Recovery Grants to States program. Additional funding was provided by Jean Tempel, Hydroid Inc., and over 100 Project WHOI donors.
    Keywords: Autonomous underwater vehicle AUV ; CTD ; Entanglement ; Habitat ; Foraging behavior ; Jellyfish ; Leatherback sea turtle ; Video camera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...