ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Khider, D; Stott, Lowell D; Emile-Geay, J; Thunell, Robert C; Hammond, Douglas E (2011): Assessing El Niño Southern Oscillation variability during the past millennium. Paleoceanography, 26(3), PA3222, https://doi.org/10.1029/2011PA002139
    Publication Date: 2023-06-27
    Description: We present a reconstruction of El Niño Southern Oscillation (ENSO) variability spanning the Medieval Climate Anomaly (MCA, A.D. 800-1300) and the Little Ice Age (LIA, A.D. 1500-1850). Changes in ENSO are estimated by comparing the spread and symmetry of d18O values of individual specimens of the thermocline-dwelling planktonic foraminifer Pulleniatina obliquiloculata extracted from discrete time horizons of a sediment core collected in the Sulawesi Sea, at the edge of the western tropical Pacific warm pool. The spread of individual d18O values is interpreted to be a measure of the strength of both phases of ENSO while the symmetry of the d18O distributions is used to evaluate the relative strength/frequency of El Niño and La Niña events. In contrast to previous studies, we use robust and resistant statistics to quantify the spread and symmetry of the d18O distributions; an approach motivated by the relatively small sample size and the presence of outliers. Furthermore, we use a pseudo-proxy approach to investigate the effects of the different paleo-environmental factors on the statistics of the d18O distributions, which could bias the paleo-ENSO reconstruction. We find no systematic difference in the magnitude/strength of ENSO during the Northern Hemisphere MCA or LIA. However, our results suggest that ENSO during the MCA was skewed toward stronger/more frequent La Niña than El Niño, an observation consistent with the medieval megadroughts documented from sites in western North America.
    Keywords: CALYPSO; Calypso Corer; IMAGES IV-IPHIS III; Marion Dufresne (1995); MD111; MD982177; MD98-2177
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-27
    Keywords: Age; Age, 14C AMS; Age, 14C calibrated; Age, comment; Age, dated; Age, dated standard deviation; Age, error; CALYPSO; Calypso Corer; DEPTH, sediment/rock; IMAGES IV-IPHIS III; Laboratory; Laboratory code/label; Marion Dufresne (1995); MD111; MD982177; MD98-2177
    Type: Dataset
    Format: text/tab-separated-values, 37 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-27
    Keywords: CALYPSO; Calypso Corer; DEPTH, sediment/rock; IMAGES IV-IPHIS III; Layer thickness; Lead-210; Lead-210, standard deviation; Lead-210 excess; Lead-210 excess, standard deviation; Lead-214; Lead-214, standard deviation; Marion Dufresne (1995); MD111; MD982177; MD98-2177
    Type: Dataset
    Format: text/tab-separated-values, 43 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-27
    Keywords: Age; AGE; CALYPSO; Calypso Corer; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; IMAGES IV-IPHIS III; Marion Dufresne (1995); Mass; MD111; MD982177; MD98-2177; Pulleniatina obliquiloculata, δ13C; Pulleniatina obliquiloculata, δ18O
    Type: Dataset
    Format: text/tab-separated-values, 8110 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-24
    Description: Pacific decadal variability (PDV) causes widespread, persistent fluctuations that affect climate, water resources, and fisheries throughout the Pacific basin, yet the magnitude, frequency, and causes of PDV remain poorly constrained. Here we present an absolutely dated, subannually resolved, 446 yr stable oxygen isotope ( 18 O) cave record of rainfall variability in Vanuatu (southern Pacific Ocean), a location that has a climate heavily influenced by the South Pacific Convergence Zone (SPCZ). The 18 O-based proxy rainfall record is dominated by changes in stalagmite 18 O that are large (~1), quasi-periodic (~50 yr period), and generally abrupt (within 5–10 yr). These isotopic changes imply abrupt rainfall changes of as much as ~1.8 m per wet season, changes that can be ~2.5 x larger than the 1976 C.E. shift in rainfall amount associated with a PDV phase switch. The Vanuatu record also shares little commonality with previously documented changes in the Intertropical Convergence Zone during the Little Ice Age or solar forcing. We conclude that multidecadal SPCZ variability is likely of an endogenous nature. Large, spontaneous, and low-frequency changes in SPCZ rainfall during the past 500 yr have important implications for the relative magnitude of natural PDV possible in the coming century.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-12
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-09-01
    Print ISSN: 2572-4517
    Electronic ISSN: 2572-4525
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-06-19
    Description: The dynamical role of geothermal heating in abyssal circulation is reconsidered using three independent arguments. First, we show that a uniform geothermal heat flux close to the observed average (86.4 mW m−2) supplies as much heat to near-bottom water as a diapycnal mixing rate of ~10−4 m2 s−1 – the canonical value thought to be responsible for the magnitude of the present-day abyssal circulation. This parity raises the possibility that geothermal heating could have a dynamical impact of the same order. Second, we estimate the magnitude of geothermally-induced circulation with the density-binning method (Walin, 1982), applied to the observed thermohaline structure of Levitus (1998). The method also allows to investigate the effect of realistic spatial variations of the flux obtained from heatflow measurements and classical theories of lithospheric cooling. It is found that a uniform heatflow forces a transformation of ~6 Sv at σ4=45.90, which is of the same order as current best estimates of AABW circulation. This transformation can be thought of as the geothermal circulation in the absence of mixing and is very similar for a realistic heatflow, albeit shifted towards slightly lighter density classes. Third, we use a general ocean circulation model in global configuration to perform three sets of experiments: (1) a thermally homogenous abyssal ocean with and without uniform geothermal heating; (2) a more stratified abyssal ocean subject to (i) no geothermal heating, (ii) a constant heat flux of 86.4 mW m−2, (iii) a realistic, spatially varying heat flux of identical global average; (3) experiments (i) and (iii) with enhanced vertical mixing at depth. Geothermal heating and diapycnal mixing are found to interact non-linearly through the density field, with geothermal heating eroding the deep stratification supporting a downward diffusive flux, while diapycnal mixing acts to map near-surface temperature gradients onto the bottom, thereby altering the density structure that supports a geothermal circulation. For strong vertical mixing rates, geothermal heating enhances the AABW cell by about 15% (2.5 Sv) and heats up the last 2000 m by ~0.15°C, reaching a maximum of by 0.3°C in the deep North Pacific. Prescribing a realistic spatial distribution of the heat flux acts to enhance this temperature rise at mid-depth and reduce it at great depth, producing a more modest increase in overturning than in the uniform case. In all cases, however, poleward heat transport increases by ~10% in the Southern Ocean. The three approaches converge to the conclusion that geothermal heating is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-07-07
    Description: The dynamical role of geothermal heating in abyssal circulation is reconsidered using three independent methods. First, we show that a uniform geothermal heat flux close to the observed average (86.4 mW m−2) supplies as much heat to the abyss as diapycnal mixing with a rate of ~1 cm2 s−1. A simple scaling law, based upon a purely advective balance, indicates that such a heat flux is able to generate a deep circulation of order 5 Sv (1 Sv ≡ 106 m3 s−1) associated with the Antarctic Bottom Water mass (AABW). Its intensity is inversely proportional to the strength of deep temperature gradients. Second, this order of magnitude is confirmed by the density-binning method (Walin, 1982) applied to the observed thermohaline structure of Levitus (1998). Additionally, the method allows to investigate the effect of realistic spatial variations of the flux obtained from heatflow measurements and classical theories of lithospheric cooling. It is found that a uniform heatflow forces a transformation of about 6 SV at σ4=45.90, consistent with the previous estimate. The result is very similar for a realistic heatflow, albeit shifted towards slightly lighter density classes. Third, we use a general ocean circulation model in global configuration to perform three sets of experiments: (1) a thermally homogenous abyssal ocean with and without uniform geothermal heating; (2) a more stratified abyssal ocean subject to (i) no geothermal heating, (ii) a constant heat flux of 86.4 mW m−2, (iii) a realistic, spatially varying heat flux of identical global average; (3) experiments (i) and (iii) with enhanced vertical mixing at depth. It is found, for strong vertical mixing rates, that geothermal heating enhances the AABW cell by about 15% (1.5 Sv) and heats up the last 2000 m by 0.3°, reaching a maximum of 0.5° in the deep North Pacific. Its impact is even stronger in a weakly diffusive deep ocean. The spatial distribution of the heat flux acts to enhance this temperature rise at mid-depth and reduce it at great depth, producing a more moderate increase in overturning than in the uniform case. The three approaches converge to the conclusion that geothermal heating is an important actor of abyssal dynamics, and should no longer be neglected.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-01
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...