ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (135,533)
  • Molecular Diversity Preservation International  (74,416)
  • Wiley-Blackwell  (49,084)
  • MDPI Publishing
  • Oxford University Press
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (104,112)
  • Natural Sciences in General  (31,421)
Collection
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2021-08-19
    Description: In the current era of a strongly competitive business environment, it is more difficult for companies to attract customers. Consumer neuroscience has growing potential here, as it reveals internal consumer preferences by using innovative methods and tools, which can effectively examine consumer behavior and attract new customers. In particular, smell has a great ability to subconsciously influence customers and, thus, support profitability. This paper examines the importance of consumer neuroscience and its modern technologies used for exploring human perceptions to influence customers and benefit from the aromatization of business spaces. We focused our analysis on various service sectors. Despite the potential of the examined issue, there are a limited number of studies in the field of service providers that use neuroscience tools to examine the effect of aromas on human emotions. Most studies took place in laboratory conditions, and the used methodological procedures varied widely. Our analysis showed that, in spite of the positive impact of aromatization in the majority of aromatized spaces, service companies still do not use the potential of consumer neuroscience and aroma marketing to a sufficient degree. Innovative methods and tools, in particular, are still very underused.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-20
    Description: The Kuroshio is the strongest warm current in the western North Pacific, which plays a crucial role in climate and human activities. In terms of this, the accurate acquisition of ocean surface current velocity and direction in the Kuroshio region is of great research value. Gaofen-3 synthetic aperture radar (SAR) provides data support for the study of ocean surface current measurements in the Kuroshio region, but no relevant experimental result has been published yet. In this paper, four available stripmap mode SARs’ data acquired by Gaofen-3 in the Kuroshio region are used for measuring the ocean surface current field. In general, the Doppler centroid anomaly (DCA) estimation is a common method to infer ocean surface currents from single-antenna stripmap data, but only the radial velocity component can be retrieved. In order to measure current vectors, a novel method combining the sub-aperture processing and the least squares (LS) technology is suggested and demonstrated by applying to the Gaofen-3 SAR data processing. The experiment’s results agree well with model-derived ocean current data, indicating that the Gaofen-3 SAR has the capability to accurately retrieve the ocean surface current field in the Kuroshio region and motivate further research by providing more data.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-19
    Description: Increasing the bearing capacity of reinforced concrete structures, reducing material consumption, and ensuring quality are critical in modern construction. The article presents an experimental study of the ultimate compressive strains of short fiber basalt reinforced concrete columns and provides recommendations for increasing the bearing capacity using steel reinforcement bars with greater strength. The columns were tested in an upright position using a hydraulic press. Strains were measured with dial indicators and a strain gauge station. It was shown that the addition of 10% coarse basalt fiber increased the ultimate compressibility of concrete on ordinary crushed stone by 19.8%, and expanded clay concrete by 26.1%, which led to the strain hardening of concrete under compression by 9.0% and 12%, respectively. Ultimate compressive strains in fiber-reinforced concrete short columns with combined reinforcement increased 1.42 times in columns on a lightweight aggregate and 1.19 times on heavy aggregate. An increase in the ultimate compressibility of concrete makes it possible to use steel reinforcement with greater strength in compressed elements as the concrete crushing during compression occurs primarily due to the reaching of critical values by tensile stresses in the transverse direction. This makes it possible to manufacture structures with a higher load-bearing capacity and less material consumption. A practical example of the application of the proposed approach is given.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-20
    Description: Power Factor Correction (PFC) single-phase AC/DC converters are used in several power electronics applications as full wave control rectifiers improving power quality and providing high standards of efficiency. Many papers dealing with the description or use of such topologies have been published in recent years; however, a review that describes and organizes their specific details has not been reported in the technical literature. Therefore, this paper presents an extensive review of PFC single-phase AC/DC converters operating with the Boost converter topology for low and medium voltage as well as and power appliances. A categorization of bridge, semi-bridgeless, and bridgeless, in accordance with the construction characteristics, was carried out in order to unify the technical terminology. Benefits and disadvantages are described and analyzed in detail. Furthermore, a comparison performance in terms of PFC, Total Harmonic Distortion (THD), power capacity, electromagnetic compatibility (EMC), number of elements, and efficiency is included.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-20
    Description: Evaluation and monitoring of wireless sensor networks (WSN) and the parameters defining their operations and design, such as energy consumption, latency, and stability, is a complex task due to interaction with real devices. For greater control of these variables, the use of simulators arises as an alternative. Cooja is a WSN simulator/emulator which handles the devices’ controllers and multiple communication protocol implementations, such as RPL (RPL is one of the most used protocol in IoT). However, Cooja does not consider either the implementation of an energy model (it has infinite energy consumption) nor the visual behavior of the topology construction, although these aspects are crucial for effective network analysis and decision taking. This paper presents the design and the implementation of ViTool-BC, a software built on top of Cooja, which allows the creation of different energy estimation models and also to visualize in real time the behavior of WSN topology construction. In addition, ViTool-BC offers a heat map of energy consumption traces. Therefore, this tool helps researchers to monitor in real time the topology construction, node disconnection, and battery depletion, aspects to be considered in the analysis of the available routing protocols in Cooja.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-20
    Description: This paper discusses the performance of the short pitch-based carbon fiber reinforced mortar (CFRM) composite considering its key properties and cost-effectiveness. Five different types of mortar composite were produced using 0–4% volume contents of short pitch-based carbon fibers. The mortar composites were tested for inverted slump cone flow (flow time and volume flow), unit weight, air content, compressive strength, flexural strength, impact resistance, and water absorption. The cost-effectiveness of CFRM was assessed based on the performance to cost ratio (PCR), which was calculated for each mortar composite, considering its workability, mechanical properties, and durability. The inverted slump cone volume flow was counted as a measure of workability, whereas the compressive strength, flexural strength, and impact resistance were considered as the major attributes of the mechanical behavior. In addition, the water absorption was used as a measure of durability. The test results revealed that the mortar composite made with 3% carbon fibers provided adequate workability, a relatively high unit weight and low air content, the highest compressive strength, excellent flexural strength, good impact resistance, and the lowest water absorption. It was also found that the PCR increased up to 3% carbon fibers. Beyond a 3% fiber content, the PCR significantly decreased. The overall research findings revealed that the mortar with 3% carbon fibers was the optimum and most cost-effective mortar composite.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-20
    Description: In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-20
    Description: The present study aims to compare the levels of micro-RNA-146a and micro-RNA-126 in oral subgingival plaque and coronary plaque from artery walls in patients with coronary artery disease who suffer from generalized periodontitis. A total of 75 participants were selected and grouped into three categories of 25 patients each: GP+CAD, GP, and HP groups. GP+CAD consisted of patients diagnosed with generalized periodontitis (GP) and coronary artery disease (CAD). The GP+CAD group was further divided into two groups—GP+CADa: where subgingival plaque samples were collected; GP+CADb group: where coronary plaque samples were collected while the patient underwent a coronary artery bypass grafting surgery. The GP group consisted of 25 patients diagnosed with only generalized periodontitis. The HP group consisted of 25 systemically and periodontally healthy controls. miRNA-146a and miRNA126 levels were assessed in subgingival plaque (SP) samples from all groups. Results revealed that miRNA-146a was expressed at higher levels and miRNA-126 was downregulated in the GP+CAD group. microRNAs in subgingival plaque samples showed a significant correlation with the coronary plaque samples in the GP+CAD group. miRNA-146a and miRNA-126 were present in coronary artery disease patients with periodontitis. These micro-RNAs may serve as risk biomarkers for coronary artery disease and generalized periodontitis.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-19
    Description: Electronic e-waste (e-waste) is a growing problem worldwide. In 2019, total global production reached 53.6 million tons, and is estimated to increase to 74.7 million tons by 2030. This rapid increase is largely fuelled by higher consumption rates of electrical and electronic goods, shorter life cycles and fewer repair options. E-waste is classed as a hazardous substance, and if not collected and recycled properly, can have adverse environmental impacts. The recoverable material in e-waste represents significant economic value, with the total value of e-waste generated in 2019 estimated to be US $57 billion. Despite the inherent value of this waste, only 17.4% of e-waste was recycled globally in 2019, which highlights the need to establish proper recycling processes at a regional level. This review provides an overview of global e-waste production and current technologies for recycling e-waste and recovery of valuable material such as glass, plastic and metals. The paper also discusses the barriers and enablers influencing e-waste recycling with a specific focus on Oceania.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-20
    Description: Heavy metal is released from many industries into water. Before the industrial wastewater is discharged, the contamination level should be reduced to meet the recommended level as prescribed by the local laws of a country. They may be poisonous or cancerous in origin. Their presence does not only damage people, but also animals and vegetation because of their mobility, toxicity, and non-biodegradability into aquatic ecosystems. The review comprehensively discusses the progress made by various adsorbents such as natural materials, synthetic, agricultural, biopolymers, and commercial for extraction of the metal ions such as Ni2+, Cu2+, Pb2+, Cd2+, As2+ and Zn2+ along with their adsorption mechanisms. The adsorption isotherm indicates the relation between the amount adsorbed by the adsorbent and the concentration. The Freundlich isotherm explains the effective physical adsorption of the solute particle from the solution on the adsorbent and Langmuir isotherm gives an idea about the effect of various factors on the adsorption process. The adsorption kinetics data provide valuable insights into the reaction pathways, the mechanism of the sorption reaction, and solute uptake. The pseudo-first-order and pseudo-second-order models were applied to describe the sorption kinetics. The presented information can be used for the development of bio-based water treatment strategies.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-08-20
    Description: In order to enhance the corrosion resistance of concrete to chloride salt, 5% NaCl solution was used to corrode ordinary concrete (OC) and rubber concrete (RC) with 5%, 10%, and 15% rubber content, respectively. By testing the compressive strength, mass, chloride ion concentration at different depths and relative dynamic elastic modulus, the erosion mechanism was analyzed by means of SEM scanning and EDS patterns, and the mechanical properties and deterioration degree of ordinary concrete (OC) and rubber concrete (RC) under the corrosion environment of chloride salt were studied. The results show that: the quality of rubber mixed into concrete increases first and then decreases, and rubber can increase the compressive strength of concrete, improve its internal structure. At the same time, the mechanical properties of concrete in the corrosion environment of chloride salt are improved to a certain extent, and the deterioration degree is reduced. Considering the comprehensive performance of OC and RC in the dry–wet alternation mechanism under chloride salt corrosion, the best content of rubber is 10%.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-08-20
    Description: Cervical laminoplasty is a valuable procedure for myelopathy but it is associated with complications such as increased kyphosis. The effect of ligament damage during cervical laminoplasty on biomechanics is not well understood. We developed the C2–C7 cervical spine finite element model and simulated C3–C6 double-door laminoplasty. Three models were created (a) intact, (b) laminoplasty-pre (model assuming that the ligamentum flavum (LF) between C3–C6 was preserved during surgery), and (c) laminoplasty-res (model assuming that the LF between C3–C6 was resected during surgery). The models were subjected to physiological loading, and the range of motion (ROM), intervertebral nucleus stress, and facet contact forces were analyzed under flexion/extension, lateral bending, and axial rotation. The maximum change in ROM was observed under flexion motion. Under flexion, ROM in the laminoplasty-pre model increased by 100.2%, 111.8%, and 98.6% compared to the intact model at C3–C4, C4–C5, and C5–C6, respectively. The ROM in laminoplasty-res further increased by 105.2%, 116.8%, and 101.8% compared to the intact model at C3–C4, C4–C5, and C5–C6, respectively. The maximum stress in the annulus/nucleus was observed under left bending at the C4–C5 segment where an increase of 139.5% and 229.6% compared to the intact model was observed for laminoplasty-pre and laminoplasty-res model, respectively. The highest facet contact forces were observed at C4–C5 under axial rotation, where an increase of 500.7% and 500.7% was observed compared to the intact model for laminoplasty-pre and laminoplasty-res, respectively. The posterior ligaments of the cervical spine play a vital role in restoring/stabilizing the cervical spine. When laminoplasty is performed, the surgeon needs to be careful not to injure the posterior soft tissue, including ligaments such as LF.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-08-19
    Description: This work presents a two-dimensional numerical analysis of a wave channel and a oscillating water column (OWC) device. The main goal is to validate a methodology which uses transient velocity data as a means to impose velocity boundary condition for the generation of numerical waves. To achieve this, a numerical wave channel was simulated using regular waves with the same parameters as those used in a laboratory experiment. First, these waves were imposed as prescribed velocity boundary condition and compared with the analytical solution; then, the OWC device was inserted into the computational domain, aiming to validate this methodology. For the numerical analysis, computational fluid dynamics ANSYS Fluent software was employed, and to tackle with water–air interaction, the nonlinear multiphase model volume of fluid (VOF) was applied. Although the results obtained through the use of discrete data as velocity boundary condition presented a little disparity; in general, they showed a good agreement with laboratory experiment results. Since many studies use regular waves, there is a lack of analysis with ocean waves realistic data; thus, the proposed methodology stands out for its capacity of using realistic sea state data in numerical simulations regarding wave energy converters (WECs).
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-08-20
    Description: Belt grinding of flat surfaces of typical parts made of steel and alloys, such as grooves, shoulders, ends, and long workpieces, is a good alternative to milling. Several factors can influence the belt grinding process of flat surfaces of metals, such as cutting speed and pressure. In this work, the importance of pressure in the belt grinding was investigated in terms of technological and experimental aspects. The grinding experiments were performed on structural alloy steel 30KhGSN2/30KhGSNA, structural carbon steel AISI 1045, corrosion-resistant and heat-resistant stainless steel AISI 321, and heat-resistant nickel alloy KHN77TYuR. The performance of the grinding belt was investigated in terms of surface roughness, material removal rate (MRR), grinding belt wear, performance index. Estimated indicators of the belt grinding process were developed: cutting ability; reduced cutting ability for belt grinding of steels and heat-resistant alloy. It was found that with an increase in pressure p, the surface roughness of the processed surface Ra decreased while the tool wear VB and MRR increased. With a decrease in plasticity and difficulty of machinability, the roughness, material removal rate, reduced cutting capacity (Performance index) qper, material removal Q decreased, and the tool wear VB increased. The obtained research results can be used by technologists when creating belt grinding operations for steels and alloys to ensure the required performance is met.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-08-19
    Description: Understanding the natural resources of native flora in a particular area is essential to be able to identify, record, and update existing records concerning the flora of that area, especially medicinal plants. Until recently, there has been very little scientific documentation on the biological diversity of Aljumum flora. The current study aimed to document medicinal plants among the flora of this region and determine the traditional usages that are documented in the literature. In the flowering season from November 2019 to May 2020, we conducted more than 80 field trips to the study area. The results reported 90 species belonging to 79 genera and 34 families in the Aljumum region, which constitute 82 species of medicinal plants from a total of 2253 known species in Saudi Arabia. The most distributed species were Calotropis procera, Panicum turgidum, and Aerva javanica (5.31%); within four endemic families, we found Fabaceae (32.35%), Poaceae (20.58%), and Asteraceae and Brassicaceae (17.64%). The present study reviews a collection of medicinal plants in Aljumum used in ethnomedicine. Additionally, these natural resources should be preserved, and therefore, conservation programs should be established to protect the natural diversity of the plant species in this region with sustainable environmental management.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-08-20
    Description: Ionic liquids represent a class of highly tunable organic compounds responsible for many applications in the domain of wood-based materials. It has often been emphasized that the use of ionic liquids derives from their high affinity for lignocellulose and their good penetration ability into wood structures. This paper discusses the sorption ability of different types of 1-alkyl-3-methylimidazolium ionic liquids with lateral alkyl chains, ranging from ethyl to hexyl into spruce and beech wood, as a function of their cation molecular mass, anion type (chloride, tetrafluoroborate, acetate), and intrinsic properties (surface tension and kinematic viscosity) at room temperature. All the studied ionic liquids present high relative uptake values at the equilibrium, ranging from 11.2% to 69.7%. The bulk diffusion coefficients of the ionic liquids into the wood range from 2 × 10−3 to 28 × 10−3 mm2/min, being higher in the longitudinal direction for both types of wood. The value of the diffusion coefficients for 1-ethyl-3-methylimidazolium chloride is only 25% lower than that for water, despite the obvious differences in viscosity and surface tension, demonstrating a good penetration ability and the potential for wood industry-related applications (as impregnation compound carriers and preservatives).
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-08-20
    Description: Increasingly advanced applications of polymer fibers are driving the demand for new, high-performance fiber types. One way to produce polymer fibers is by electrospinning from polymer solutions and melts. Polymer melt electrospinning produces fibers with small diameters through solvent-free processing and has applications within different fields, ranging from textile and construction, to the biotech and pharmaceutical industries. Modeling of the electrospinning process has been mainly limited to simulations of geometry-dependent electric field distributions. The associated large change in viscosity upon fiber formation and elongation is a key issue governing the electrospinning process, apart from other environmental factors. This paper investigates the melt electrospinning of aerogel-containing fibers and proposes a logistic viscosity model approach with parametric ramping in a finite element method (FEM) simulation. The formation of melt electrospun fibers is studied with regard to the spinning temperature and the distance to the collector. The formation of PET-Aerogel composite fibers by pneumatic transport is demonstrated, and the critical parameter is found to be the temperature of the gas phase. The experimental results form the basis for the electrospinning model, which is shown to reproduce the trend for the fiber diameter, both for polymer as well as polymer-aerogel composites.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-08-20
    Description: In this paper, we present a novel technique to design fixed structure controllers, for both continuous-time and discrete-time systems, through an H∞ mixed sensitivity approach. We first define the feasible controller parameter set, which is the set of the controller parameters that guarantee robust stability of the closed-loop system and the achievement of the nominal performance requirements. Then, thanks to Putinar positivstellensatz, we compute a convex relaxation of the original feasible controller parameter set and we formulate the original H∞ controller design problem as the non-emptiness test of a set defined by sum-of-squares polynomials. Two numerical simulations and one experimental example show the effectiveness of the proposed approach.
    Electronic ISSN: 2075-1702
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-08-20
    Description: The comprehensive intelligent development of the manufacturing industry puts forward new requirements for the quality inspection of industrial products. This paper summarizes the current research status of machine learning methods in surface defect detection, a key part in the quality inspection of industrial products. First, according to the use of surface features, the application of traditional machine vision surface defect detection methods in industrial product surface defect detection is summarized from three aspects: texture features, color features, and shape features. Secondly, the research status of industrial product surface defect detection based on deep learning technology in recent years is discussed from three aspects: supervised method, unsupervised method, and weak supervised method. Then, the common key problems and their solutions in industrial surface defect detection are systematically summarized; the key problems include real-time problem, small sample problem, small target problem, unbalanced sample problem. Lastly, the commonly used datasets of industrial surface defects in recent years are more comprehensively summarized, and the latest research methods on the MVTec AD dataset are compared, so as to provide some reference for the further research and development of industrial surface defect detection technology.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-08-20
    Description: This paper investigated the influence of recycled ceramics and grazed hollow beads on the mechanical, thermal conductivity and material properties of concrete. The results showed that the concentration of recycled ceramics and grazed hollow beads has significant optimization on the workability and thermal properties of the concrete. However, the superabundant concentration can reduce the hydration degree of the concrete, which results in the suppressed production of C-S-H gel and the increase of material defects. In summary, considering the coordinated development of key factors such as thermal insulation properties, mechanical properties and microstructure, 10% RCE and 60% GHB are the optimal material system design methods.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-08-18
    Description: An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO) mechanisms, but also more integrated treatment of the whole system, i.e., the buoy dynamics, the PTO system, and the control strategy. It results in an optimization formulation that has a nonquadratic and nonstandard cost functional. This article presents the application of real-time nonlinear model predictive controller (NMPC) to two degrees of freedom point absorber type WEC with highly nonlinear PTO characteristics. The nonlinear effects, such as the fluid viscous drag, are also included in the plant dynamics. The controller is implemented on a real-time target machine, and the WEC device is emulated in real-time using the WECSIM toolbox. The results for the successful performance of the design are presented for irregular waves under linear and nonlinear hydrodynamic conditions.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-08-19
    Description: To secure full benefits without jeopardizing project feasibility, sustainability standards in high-rise building design should be included at all phases of the decision-making process. However, there are limited empirical studies on the influence of building information modeling (BIM) implementation in high-rise buildings. Implementing BIM is a viable technique to improve high-rise building sustainability performance. Therefore, the aim of this research is to explore the influence of BIM implementation in high-rise buildings by integrating the exploratory factor analysis (EFA) and structural equation modeling (SEM) approaches. Following a detailed review of the literature to identify critical success factors (CSFs) for BIM implementation, empirical evidence was gathered through a questionnaire survey with 205 stakeholders in construction projects. The EFA revealed five components, namely, productivity, visualization, coordination, sustainability, and safety improvement, all of which have a significant impact on the long-term construction of high-rise buildings. Moreover, SEM was conducted to develop the model for high-rise buildings. However, it has been revealed that awareness and usage level of BIM technology in high-rise buildings still appears to be limited. This scenario paves the way for future researchers to develop more models in the domain of high-rise buildings in order to improve sustainable development.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-08-19
    Description: “Spot the Difference” is a well-known game where players must find subtle differences between two almost identical pictures. If “Spot the Difference” is designed for videos, what is the difference between videos and pictures? If the performance of videos is measured by an eye tracker, what scan paths will be conducted? In this study, we explored this game using a video to conduct a visual performance evaluation. Twenty-five subjects were recruited in a full-factorial experiment to investigate the effect of background (with background, without background), video type (animation, text), and arrangement (left-to-right, top-to-bottom) on searching, eye tracking performance, and visual fatigue. The results showed that the video type had a significant effect on the accuracy and subjective visual fatigue, with the accuracy and subjective visual fatigue for animation being better than for text. The results also indicated that the arrangement had a significant effect on the number of fixations, where top-to-bottom arrangement brought a higher number of fixations. The background had a significant effect on accuracy and subjective visual fatigue, where the accuracy and subjective visual fatigue without a background was better than with a background. For the analysis of the scan path, a denser scan path was found in text than in animation, in top-to-bottom arrangement than in left-to-right arrangement, and without a background than with a background. In the future, game manufacturers should use the results of this research to design different “Spot the Difference” videos. When designing a simple game, an animation without a background and involving a left-to-right arrangement was recommended. When designing a difficult game, the opposite settings should be used.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-08-17
    Description: For refractory application, amongst others, inorganic chemical binders are used to shape and process loose, unpacked materials. The binder influences the chemical composition within the ceramic body during setting, aging and firing and thus the finally reached properties of the refractory material. For an effective design of tailored materials with required properties, the mode of action of the binder systems should carefully be investigated. A combination of both structure analysis techniques and macroscopic property investigations proved to be a powerful tool for a detailed description of structure–property correlations. This is shown on the basis of X-ray powder diffraction and nuclear magnetic resonance spectroscopy analyses combined with observation of (thermo)mechanical and chemical investigations.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-08-17
    Description: High-pressure hydrogen tanks which are composed of an aluminum alloy liner and a carbon fiber wound layer are currently the most popular means to store hydrogen on vehicles. Nevertheless, the aluminum alloy is easily affected by high-pressure hydrogen, which leads to the appearance of hydrogen embrittlement (HE). Serious HE of hydrogen tank represents a huge dangers to the safety of vehicles and passengers. It is critical and timely to outline the mainstream approach and point out potential avenues for further investigation of HE. An analysis, including the mechanism (including hydrogen-enhanced local plasticity model, hydrogen-enhanced decohesion mechanism and hydrogen pressure theory), the detection (including slow strain rate test, linearly increasing stress test and so on) and methods for the prevention of HE on aluminum alloys of hydrogen vehicles (such as coating) are systematically presented in this work. Moreover, the entire experimental detection procedures for HE are expounded. Ultimately, the prevention measures are discussed in detail. It is believed that further prevention measures will rely on the integration of multiple prevention methods. Successfully solving this problem is of great significance to reduce the risk of failure of hydrogen storage tanks and improve the reliability of aluminum alloys for engineering applications in various industries including automotive and aerospace.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-08-18
    Description: With the rapid development of electronics, thermal management has become one of the most crucial issues. Intense research has focused on surface modifications used to enhance heat transfer. In this study, multilayer copper micromeshes (MCMs) are developed for commercial compact electronic cooling. Boiling heat transfer performance, including critical heat flux (CHF), heat transfer coefficients (HTCs), and the onset of nucleate boiling (ONB), are investigated. The effect of micromesh layers on the boiling performance is studied, and the bubbling characteristics are analyzed. In the study, MCM-5 shows the highest critical heat flux (CHF) of 207.5 W/cm2 and an HTC of 16.5 W(cm2·K) because of its abundant micropores serving as nucleate sites, and outstanding capillary wicking capability. In addition, MCMs are compared with other surface structures in the literature and perform with high competitiveness and potential in commercial applications for high-power cooling.
    Electronic ISSN: 2072-666X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-08-16
    Description: Currently, the route planning functions in 2D/3D campus navigation systems in the market are unable to process indoor and outdoor localization information simultaneously, and the UI experiences are not optimal because they are limited by the service platforms. An ARCore-based augmented reality campus navigation system is designed in this paper in order to solve the relevant problems. Firstly, the proposed campus navigation system uses ARCore to enhance reality by presenting 3D information in real scenes. Secondly, a visual inertial ranging algorithm is proposed for real-time locating and map generating in mobile devices. Finally, rich Unity3D scripts are designed in order to enhance users’ autonomy and enjoyment during navigation experience. In this paper, indoor navigation and outdoor navigation experiments are carried out at the Lingang campus of Shanghai University of Electric Power. Compared with the AR outdoor navigation system of Gaode, the proposed AR system can achieve increased precise outdoor localization by deploying the visual inertia odometer on the mobile phone and realizes the augmented reality function of 3D information and real scene, thus enriching the user’s interactive experience. Furthermore, four groups of students have been selected for system testing and evaluation. Compared with traditional systems, such as Gaode map or Internet media, experimental results show that our system could facilitate the effectiveness and usability of learning on campus.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-08-19
    Description: This paper presents a novel architecture for detecting mathematical formulas in document images, which is an important step for reliable information extraction in several domains. Recently, Cascade Mask R-CNN networks have been introduced to solve object detection in computer vision. In this paper, we suggest a couple of modifications to the existing Cascade Mask R-CNN architecture: First, the proposed network uses deformable convolutions instead of conventional convolutions in the backbone network to spot areas of interest better. Second, it uses a dual backbone of ResNeXt-101, having composite connections at the parallel stages. Finally, our proposed network is end-to-end trainable. We evaluate the proposed approach on the ICDAR-2017 POD and Marmot datasets. The proposed approach demonstrates state-of-the-art performance on ICDAR-2017 POD at a higher IoU threshold with an f1-score of 0.917, reducing the relative error by 7.8%. Moreover, we accomplished correct detection accuracy of 81.3% on embedded formulas on the Marmot dataset, which results in a relative error reduction of 30%.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-08-18
    Description: The SE coast of Iran is of great economic and environmental importance. Global climate change affects this coastline through sea level rise (SLR), compounded by a decrease in sediment budgets in coastal areas. This study developed a Coastal Vulnerability Index (CVI) for the SE coast of Iran using satellite, instrumental and field data. Eight risk variables were defined: coastal slope, regional coastal elevation, mean tidal range, mean significant wave height, rate of relative sea-level change, rate of shoreline change, environmental sensitivity and socio-economic sensitivity. The coast was divided into 27 segments based on geomorphic, environmental and socioeconomic traits. Coastal segments were categorized based on their vulnerability to each risk factor using a CVI. The resulting maps highlighted the vulnerability of each coastal segment to SLR. Approximately 50% of the coast is comprised of mostly rocky shores, which are less vulnerable to SLR. Approximately 33% of the coastal length, including sandy beaches, tidal flats and mangrove forests, were determined to be highly vulnerable to SLR. Approximately 12% of the coastline was determined to be moderately vulnerable. Population centers and infrastructure were ranked as highly-to-moderately vulnerable to SLR. This study highlighted the high vulnerability of low-lying areas, such as lagoons and mangroves, in the western part of the Iranian coast of Makran. Proper coastal management and mitigation plans are essential in the future to protect coastal societies and environments.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-08-20
    Description: Collecting data allows researchers to store and analyze important information about activities, events, and situations. Gathering this information can also help us make decisions, control processes, and analyze what happens and when it happens. In fact, a scientific investigation is the way scientists use the scientific method to collect the data and evidence that they plan to analyze. Neuroscience and other related activities are set to collect their own big datasets, but to exploit their full potential, we need ways to standardize, integrate, and synthesize diverse types of data. Although the use of low-cost ElectroEncephaloGraphy (EEG) devices has increased, such as those whose price is below 300 USD, their role in neuroscience research activities has not been well supported; there are weaknesses in collecting the data and information. The primary objective of this paper was to describe a tool for data management and visualization, called MuseStudio, for low-cost devices; specifically, our tool is related to the Muse brain-sensing headband, a personal meditation assistant with additional possibilities. MuseStudio was developed in Python following the best practices in data analysis and is fully compatible with the Brain Imaging Data Structure (BIDS), which specifies how brain data must be managed. Our open-source tool can import and export data from Muse devices and allows viewing real-time brain data, and the BIDS exporting capabilities can be successfully validated following the available guidelines. Moreover, these and other functional and nonfunctional features were validated by involving five experts as validators through the DESMET method, and a latency analysis was also performed and discussed. The results of these validation activities were successful at collecting and managing electroencephalogram data.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-08-20
    Description: The number of people diagnosed with epilepsy as a common brain disease accounts for about 1% of the world’s total population. Seizure prediction is an important study that can improve the lives of patients with epilepsy, and, in recent years, it has attracted more and more attention. In this paper, we propose a novel hybrid deep learning model that combines a Dense Convolutional Network (DenseNet) and Long Short-Term Memory (LSTM) for epileptic seizure prediction using EEG data. The proposed method first converts the EEG data into the time-frequency domain through Discrete Wavelet Transform (DWT) for use in the input of the model. Then, we train the previously transformed image through a hybrid model combining Densenet and LSTM. To evaluate the performance of the proposed method, experiments are conducted for each preictal length of 5, 10, and 15 min using the CHB-MIT scalp EEG dataset. As a result, we obtained a prediction accuracy of 93.28%, a sensitivity of 92.92%, a specificity of 93.65%, a false positive rate of 0.063 per hour, and an F1-score of 0.923 when the preictal length was 5 min. Finally, as the proposed method is compared to previous studies, it is confirmed that the seizure prediction performance was improved significantly.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-08-19
    Description: 3D printing or additive manufacturing (AM) (in the industrial context) is an innovative, as opposed to subtractive, technology, bringing new opportunities and benefits to the spare part supply chain (SPSC). The aim of this work is to capture the views of the stakeholders at the end of the chain, extruding factors that will benefit the end-user and the factors that are likely to be an obstacle, by employing the questionnaire method. Company objectives regarding spares (cost reductions, improvement of services, space reduction) have been prioritized differently by the stakeholders. The most important barriers according to the participants are the quality assurance of the spare parts made by the new technology followed by the know-how and skills of staff. Other views such as suitable parts are suggested. The practical value of this work, in addition to assessing the readiness of the industry, is that it provides guidance for the successful implementation of AM in the maritime industry.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-08-19
    Description: Structure and strength are responsible for soil physical properties. This paper determines in a uniaxial compression test the strength of artificial soils containing different proportions of various clay-size minerals (cementing agents) and silt-size feldspar/quartz (skeletal particles). A novel empirical model relating the maximum stress and the Young’s modulus to the mineral content basing on the Langmuir-type curve was proposed. By using mercury intrusion porosimetry (MIP), bulk density (BD), and scanning electron microscopy (SEM), structural parameters influencing the strength of the soils were estimated and related to mechanical parameters. Size and shape of particles are considered as primary factors responsible for soil strength. In our experiments, the soil strength depended primarily on the location of fine particles in respect to silt grains and then, on a mineral particle size. The surface fractal dimension of mineral particles played a role of a shape parameter governing soil strength. Soils containing minerals of higher surface fractal dimensions (rougher surfaces) were more mechanically resistant. The two latter findings appear to be recognized herein for the first time.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-08-20
    Description: This paper presents a modified NSGA-II algorithm based on the spatial density (SD) operator, combined with computer graphics-based surface parameterisation methods and computational fluid dynamics (CFD) simulations. This was done to optimise the multi-objective aerodynamic design of a centrifugal impeller for a 100-kW vehicle-mounted fuel cell and improve the multi-conditions aerodynamic performance of the centrifugal impeller of the vehicle-mounted fuel cell (FC). The optimisation objectives are to maximise the isentropic efficiency of the rated and common operating conditions. The optimisation results showed that the efficiency of rated working conditions had an increase of 1.29%, mass flow increase of 8.8%, pressure ratio increase of 0.74% and comprehensive margin increase of 6.2%. The efficiency of common working conditions had an increase of 1.2%, mass flow increase of 9.1%, pressure ratio increase of 0.24% and comprehensive margin increase of 10%. The optimisation effect is obvious under the premise of satisfying the constraints, which proves the optimisation method’s engineering effectiveness and provides technical support and methodological research for the multi-objective aerodynamic design optimisation of centrifugal impellers for vehicle-mounted FCs.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-08-20
    Description: This paper presents new methodology for determining the actual stress–strain diagram based on analytical equations, in combination with numerical and experimental data. The first step was to use the 3D digital image correlation (DIC) to estimate true stress–strain diagram by replacing common analytical expression for contraction with measured values. Next step was to estimate the stress concentration by using a new methodology, based on recently introduced analytical expressions and numerical verification by the finite element method (FEM), to obtain actual stress–strain diagrams, as named in this paper. The essence of new methodology is to introduce stress concentration factor into the procedure of actual stress evaluation. New methodology is then applied to determine actual stress–strain diagrams for two undermatched welded joints with different rectangular cross-section and groove shapes, made of martensitic steels X10 CrMoVNb 9-1 and Armox 500T. Results indicated that new methodology is a general one, since it is not dependent on welded joint material and geometry.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-08-20
    Description: The aim of this study was to determine the basic chemical composition, the content of bioactive compounds and antioxidant activity in currant leaves. The leaves of black, red and white currant shrubs were collected in May, and in the beginning of June, July and August, for two years between 2018 and 2019. The proximate analysis, including dry matter, protein, fat, ash and total carbohydrates, was determined. In addition, the content of the polyphenols and the total antioxidant activity using ABTS, DPPH and FRAP assays were conducted. The highest concentration of protein was detected in the whitecurrant leaves harvested in May in both years, while the highest content of crude fat was found in the blackcurrant leaves harvested in both years, with the exception of the August harvest. Extracts from the blackcurrant leaves collected in June/July 2019 had the highest antioxidant activity that was measured by the ABTS method (about 7000 µmol Trolox/g DM) and confirmed by other methods, while extracts from the whitecurrant leaves produced from the August 2018 collection had the lowest antioxidant activity (1884 µmol Trolox/g DM). Currant leaves are a rich source of bioactive compounds and contain higher amounts of polyphenols as compared with currant fruits. These compounds may play a very important role in the risk reduction and even prevention of the most chronic non-communicable diseases. Therefore, further research is needed to identify currant leaves as a source of bioactives for functional foods and natural health products. The highest antioxidant activity was in the redcurrant leaves from all the harvest times in 2018 as measured by the ABTS and FRAP methods. On the contrary, blackcurrant leaves from all the harvest times in 2019 had the highest antioxidant activity.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-08-20
    Description: With the wide increase in global forestry resources trade, the demand for wood is increasing day by day, especially rare wood. Finding a computer-based method that can identify wood species has strong practical value and very important significance for regulating the wood trade market and protecting the interests of all parties, which is one of the important problems to be solved by the wood industry. This article firstly studies the establishment of wood microscopic images dataset through a combination of traditional image amplification technology and Mix-up technology expansion strategy. Then with the traditional Faster Region-based Convolutional Neural Networks (Faster RCNN) model, the receptive field enhancement Spatial Pyramid Pooling (SPP) module and the multi-scale feature fusion of Feature Pyramid Networks (FPN) module are introduced to construct a microscopic image identification model based on the migration learning fusion model and analyzes the three factors (Mix-up, Enhanced SPP and FPN modules) affecting the wood microscopic image detection model. The experimental results show that the proposed approach can identify 10 kinds of wood microscopic images, and the accuracy rate has increased from 77.8% to 83.8%, which provides convenient conditions for further in-depth study of the microscopic characteristics of wood cells and is of great significance to the field of wood science.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-08-20
    Description: The gamma-ray shielding ability of various Bentonite–Cement mixed materials from northeast Egypt have been examined by determining their theoretical and experimental mass attenuation coefficients, μm (cm2g−1), at photon energies of 59.6, 121.78, 344.28, 661.66, 964.13, 1173.23, 1332.5 and 1408.01 keV emitted from 241Am, 137Cs, 152Eu and 60Co point sources. The μm was theoretically calculated using the chemical compositions obtained by Energy Dispersive X-ray Analysis (EDX), while a NaI (Tl) scintillation detector was used to experimentally determine the μm (cm2g−1) of the mixed samples. The theoretical values are in acceptable agreement with the experimental calculations of the XCom software. The linear attenuation coefficient (μ), mean free path (MFP), half-value layer (HVL) and the exposure buildup factor (EBF) were also calculated by knowing the μm values of the examined samples. The gamma-radiation shielding ability of the selected Bentonite–Cement mixed samples have been studied against other puplished shielding materials. Knowledge of various factors such as thermo-chemical stability, availability and water holding capacity of the bentonite–cement mixed samples can be analyzed to determine the effectiveness of the materials to shield gamma rays.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-08-19
    Description: Topologically nontrivial spin textures host great promise for future spintronic applications. Skyrmions in particular are of burgeoning interest owing to their nanometric size, topological protection, and high mobility via ultra-low current densities. It has been previously reported through magnetic susceptibility, microscopy, and scattering techniques that Co8Zn8Mn4 forms an above room temperature triangular skyrmion lattice. Here, we report the synthesis procedure and characterization of a polycrystalline Co8Zn8Mn4 disordered bulk sample. We employ powder X-ray diffraction and backscatter Laue diffraction as characterization tools of the crystallinity of the samples, while magnetic susceptibility and Small Angle Neutron Scattering (SANS) measurements are performed to study the skyrmion phase. Magnetic susceptibility measurements show a dip anomaly in the magnetization curves, which persists over a range of approximately 305 K–315 K. SANS measurements reveal a rotationally disordered polydomain skyrmion lattice. Applying a symmetry-breaking magnetic field sequence, we were able to orient and order the previously jammed state to yield the prototypical hexagonal diffraction patterns with secondary diffraction rings. This emergence of the skyrmion order serves as a unique demonstration of the fundamental interplay of structural disorder and anisotropy in stabilizing the thermal equilibrium phase.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-08-20
    Description: With the increasing integration of non-linear electronic loads, the diagnosis and classification of power quality are becoming crucial for power grid signal management. This paper presents a novel diagnosis strategy based on unsupervised learning, namely residual denoising convolutional auto-encoder (RDCA), which extracts features from the complex power quality disturbances (PQDs) automatically. Firstly, the time–frequency analysis is applied to isolate frequency domain information. Then, the RDCA with a weight residual structure is utilized to extract the useful features in the contaminated PQD data, where the performance is improved using the residual structure. A single-layer convolutional neural network (SCNN) with an added batch normalization layer is proposed to classify the features. Furthermore, combining with RDCA and SCNN, we further propose a classification framework to classify complex PQDs. To provide a reasonable interpretation of the RDCA, visual analysis is employed to gain insight into the model, leading to a better understanding of the features from different layers. The simulation and experimental tests are conducted to verify the practicability and robustness of the RDCA.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-08-20
    Description: Construction projects usually involve signing various contracts with specific billing procedures. In practice, dealing with complex contract structures causes significant problems, especially with regard to timely payment and guaranteed cash flow. Furthermore, a lack of transparency leads to a loss of trust. As a result, late or non-payment is a common problem in the construction industry. This paper presents the concept of implementing smart contracts for automated, transparent, and traceable payment processing for construction projects. Automated billing is achieved by combining Building Information Modeling (BIM) approaches with blockchain-based smart contracts. Thereby, parts of traditional construction contracts are transferred to a smart contract. The smart contract is set up using digital BIM-based tender documents and contains all of the relevant data for financial transactions. Once the contracted construction work has been accepted by the client, payments can be made automatically via authorized financial institutions. This paper describes the framework, referred to as BIMcontracts, the container-based data exchange, and the digital contract management workflow. It discusses the industry-specific requirements for blockchain and data storage and explains which technical and software architectural decisions were made. A case study is used to demonstrate the current implementation of the concept.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-08-20
    Description: The La2O3-doped basaltic glass simulated high-level waste form (HLW) was prepared by the solid-state melt method. The simulated waste La2O3 maximum loading and the doping effect on structure, thermal stability, leaching behavior, density, and hardness of basaltic glasses were studied. XRD and SEM results show that the simulated waste loading of La2O3 in basaltic glass can be up to ~46 wt.%, and apatite (CaLa4(SiO4)3O) precipitates when the content of La2O3 reaches 56 wt.%. Raman results indicate that the addition of La2O3 breaks the Si–O–Si bond of large-membered and four-membered, but the number of A13+ involved in the formation of the network increase. Low content of La2O3 can help to repair the glass network, but it destroys the network as above 26 wt.%. DSC results show the thermal stability of simulated waste forms first increases and then decreases with the increase of La2O3 content. With the increase of La2O3 content, the density of the simulated waste form increases, and the hardness decreases. The leaching chemical stability of samples was evaluated by the ASTM Product Consistency Test (PCT) Method, which show that all the samples have good chemical stability. The leaching rates of La and Fe are three orders of magnitude lower than those of the other elements. Among them, L36 has the best comprehensive leaching performance.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-08-20
    Description: By optimizing the distribution of steel fibers in fiber-reinforced cementitious mortar (FRCM) through the layered structure, the role of fibers can be fully utilized, thus improving the flexural behavior. In this study, the flexural behavior of layered FRCM at different thicknesses (25 mm, 50 mm, 75 mm, 100 mm) of the steel fiber layer was investigated. The evolution of the crack propagation behavior was analyzed using the digital image correlation (DIC) technique. The results showed that the steel fiber layer thickness of 75 mm has the best flexural behavior. Moreover, the crack propagation path is more tortuous. The maximum value of crack opening displacement (COM) increases with the increase in fiber thickness. In addition, increasing the bottom layer thickness can increase the height of the tensile zone, but the interface inhibits the increase of the tensile zone.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-08-20
    Description: The advent of chip calorimetry has enabled an unprecedented extension of the capability of differential scanning calorimetry to explore new domains of materials behavior. In this paper, we highlight some of our recent work: the application of heating and cooling rates above 104 K/s allows for the clear determination of the glass transition temperature, Tg, in systems where Tg and the onset temperature for crystallization, Tx, overlap; the evaluation of the delay time for crystal nucleation; the discovery of new polyamorphous materials; and the in-situ formation of glass in liquid crystals. From these application examples, it is evident that chip calorimetry has the potential to reveal new reaction and transformation behavior and to develop a new understanding.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-08-20
    Description: The organic residues on titanium(IV) oxide may be a significant factor that decreases the efficiency of dye-sensitized solar cells (DSSC). Here, we suggest the UV-ozone cleaning process to remove impurities from the surface of TiO2 nanoparticles before dye-sensitizing. Data obtained from scanning electron microscopy, Kelvin probe, Fourier-transform infrared spectroscopy, and Raman spectroscopy showed that the amounts of organic contamination were successfully reduced. Additionally, the UV-VIS spectrophotometry, spectrofluorometry, and secondary ion mass spectrometry proved that after ozonization, the dyeing process was relevantly enhanced. Due to the removal of organics, the power conversion efficiency (PCE) of the prepared DSSC devices was boosted from 4.59% to 5.89%, which was mostly caused by the increment of short circuit current (Jsc) and slight improvement of the open circuit voltage (Voc).
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-08-20
    Description: Optical turbulence, as determined by the widely accepted practice of profiling the temperature structure constant, CT2, via the measurement of ambient atmospheric temperature gradients, can be found to differ quite significantly when characterizing such gradients via thermal-couple differential temperature sensors as compared to doing so with acoustic probes such as those commonly used in sonic anemometry. Similar inconsistencies are observed when comparing optical turbulence strength derived via CT2 as compared to those through direct optical or imaging measurements of small fluctuations of the index of refraction of air (i.e., scintillation). These irregularities are especially apparent in stable atmospheric layers and during diurnal quiescent periods. Our research demonstrates that when care is taken to properly remove large-scale index of refraction gradients, the sonic anemometer-derived velocity structure constant, Cv2, coupled with the similarly derived turbulence-driven index of refraction and vertical wind shear gradients, provides a refractive index structure constant, Cn2, that can more closely match the optical turbulence strengths inferred by more direct means such as scintillometers or differential image motion techniques. The research also illustrates the utility and robustness of quantifying Cn2 from CT2 at a point using a single sonic anemometer and establishes a clear set of equations to calculate volumetric Cn2 data using instrumentation that measures wind velocities with more spatial/temporal fidelity than temperature.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-08-17
    Description: This paper reviews recent progress on different high-speed optical short- and medium-reach transmission systems. Furthermore, a comprehensive tutorial on high-performance, low-cost, and advanced optical transceiver (TRx) paradigms is presented. In this context, recent advances in high-performance digital signal processing algorithms and innovative optoelectronic components are extensively discussed. Moreover, based on the growing increase in the dynamic environment and the heterogeneous nature of different applications and services to be supported by the systems, we discuss the reconfigurable and sliceable TRxs that can be employed. The associated technical challenges of various system algorithms are reviewed, and we proffer viable solutions to address them.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-08-18
    Description: The demand for LNG-powered ships and related equipment is rapidly increasing among major domestic and foreign carriers due to the strengthened IMO regulations on the sulfur content of ship fuel oil. LNG operation in a cryogenic environment requires a storage tank and fuel supply system that uses steel with excellent brittleness and fatigue strength. A ship using LNG is very sensitive to explosion and fire. For this reason, 9% Ni is often used, because ships require high quality products with special materials and structural technologies that ensure operability at cryogenic temperatures. However, research to derive uniform welding quality is urgent because the deterioration of weld quality in the 9% Ni steel welding process is caused by high process difficulty and differences in welding quality depending on a welder’s skill set. This study proposes a method to guarantee a uniform quality of 9% Ni steel in a fiber laser welding process by categorizing weld joint hardness according to the dilution ratio of a base material and establishing a standard for quantitative evaluation.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-08-19
    Description: In this paper, a coordinated multipoint joint transmission (CoMP-JT) framework at mmWave for a cyclic prefix (CP)-free multiuser OFDM wireless communication system is developed and analyzed. The aim is to provide high-quality service to cell-edge users; otherwise, the cell-users would suffer from significant signal degradation due to undesired interference. The impact of complex Hadamard transform with block diagonalization channel precoding for multiuser interference reduction and designed subcarrier mapping for out-of-band (OOB) reduction are investigated. In addition, the paper studied the input back-off-aided high-power amplifier for peak-to-average power ratio (PAPR) reduction and forward error correction channel coding for improved bit error rate (BER) for cell-edge users at mmWave frequencies. Moreover, signal-to-interference-noise ratio and ergodic achievable rate are estimated both in the presence and absence of CoMP-JT-based transmission technique to verify their significance in terms of transmitted power. Numerical investigations showed an OOB reduction of 312 dB, PAPR reduction from 17.50 dB to 7.66 dB, and improved BER of 1×10−3 in 16-QAM for a signal-to-noise ratio of −6 dB. Hence, the simulation results demonstrated the effectiveness of the developed system.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-08-19
    Description: Cheese is a worldwide produced and consumed commodity. There are many varieties of cheese from soft to hard, white to yellow, and fresh to aged after ripening. Especially, each category has its own producing technology. Many countries have labeled their most traditional cheese as Protective Designation of Origin (PDO). Moreover, several studies using advanced technologies, such as proteomics, have been performed to enhance labeling. In this review, broadly diffused and marketed, as well as Mediterranean countries’ special interest in Mediterranean diet-related PDO cheeses have been chosen as a reference. The aim of this work was to highlight the use of proteomics methods to examine how cheese proteins and peptides rearrange after ripening and use of starters. Further, we aimed to examine what kind of proteins are produced. Finally, we focused on bioactive molecules in cheeses and distinction of the original product from its counterfeit.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-08-19
    Description: Low pressure fluid transport (1) applications often require low and precise volumetric flow rates (2) including low leakage to reduce additional costly and complex sensors. A peristaltic pump design (3) was realized, with the fluid’s flexible transport channel formed by a solid cavity and a wobbling plate comprising a rigid and a soft layer (4). In operation, the wobbling plate is driven externally by an electric motor, hence, the soft layer is contracted and unloaded (5) during pump-cycles transporting fluid from low to high pressure sides. A thorough characterization of the pump system is required to design and dimension the components of the peristaltic pump. To capture all these parameters and their dependencies on various operation-states, often complex and long-lasting dynamic 3D FE-simulations are required. We present, here, a holistic design methodology (6) including analytical as well as numerical calculations, and experimental validations for a peristaltic pump with certain specifications of flow-rate range, maximum pressures, and temperatures. An experimental material selection process is established and material data of candidate materials (7) (liquid silicone rubber, acrylonitrile rubber, thermoplastic-elastomer) are directly applied to predict the required drive torque. For the prediction, a semi-physical, analytical model was derived and validated by characterizing the pump prototype.
    Electronic ISSN: 2076-0825
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-08-19
    Description: This research deals with determination of the loading of an open container during operating modes. The special feature of this container is its convex walls. This engineering solution increases the useful capacity of a container by 8% in comparison to that of the prototype. The elastic elements in the bearing structure of a container were introduced to decrease the dynamic loads. The dynamic loads in the vertical plane were dumped by means of the dry friction forces between the components of the cross bearers of the container’s base. The dynamic loads in the longitudinal plane were dumped by means of the dry friction forces between the horizontal parts of fittings and fixed lashing components. This study presents the modelling of the dynamic loading of a container in a vertical plane. The dynamic loads of a container in the longitudinal plane were determined with a mathematical model. The authors determined the basic strength characteristics of the bearing structure of a container; and found that the maximum stresses to a container were about 200 MPa, concentrated near the front fittings. The maximum displacements were recorded in the cross bearers of the base and amounted to about 4 mm.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-08-20
    Description: With easy-to-process 3D printing materials and fast production, the quality of dental services can be improved. In the conventional procedure, the dentist makes temporary crowns directly in the patient’s mouth, e.g., from the most commonly used bis-acrylic composites. Temporary crowns made directly in the office without the use of CAD/CAM are often of inferior quality, which directly results in impaired hygiene, poorer masticatory mechanics, greater deposition of plaque, calculus and sediment, and may adversely affect periodontal and gum health. The mechanical strength, resistance to aging and abrasion of 3D printing materials are higher than those of the soft materials used in conventional methods. This translates into durability. The patient leaves the surgery with a restoration of higher utility quality compared to the conventional method. The objective of the paper was to determine the influence of aging in artificial saliva of AM (additive manufacturing) orthodontic composites on their functional properties. For the purpose of the study, fillings well-known worldwide were selected. These were traditional UV-curable resins (M I, M II, M III, M V) and a hybrid material based on a UV-curable resin (M VI). Samples were stored in artificial saliva at 37 ± 1 °C in a thermal chamber for 6 months. Indentation hardness, frictional tests and sliding wear measurements were conducted. A comparison between various materials was made. Descriptive statistics, degradation coefficients, H2E, Archard wear and specific wear rate were calculated. The Weibull statistical test for indentation hardness was performed and Hertzian contact stresses for the frictional association were calculated for unaged (M I, M II, M III, M V, M VI) and aged (M I AS, M II AS, M III AS, M V AS, M VI AS) samples. M I exhibited the lowest average hardness among the unaged materials, while M III AS had the lowest average hardness among the aged materials. Comparably low hardness was demonstrated by the M I AS material. The coefficient of friction values for the aged samples were found to be higher. The lowest wear value was demonstrated by the M I material. The wear resistance of most of the tested materials deteriorated after aging. The M VI AS material had the highest increase in wear. According to the results provided, not only the chemical composition and structure, but also aging have a great impact on the indentation hardness and wear resistance of the tested orthodontic materials.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-08-18
    Description: The aim of this research project is to analyze support panels that are based on aramid fabrics which are reinforced with polybenzoxazine/urethane (poly(BA-a/PU)) composites and contain multiwalled carbon nanotubes (MWCNTs). Through the measurement of mechanical properties and a series of ballistic-impact tests that used 7.62 × 51 mm2 projectiles (National Institute of Justice (NIJ), level III), the incorporated MWCNTs were found to enhance the energy-absorption (EAbs) property of the composites, improve ballistic performance, and reduce damage. The perforation process and the ballistic limit (V50) of the composite were also studied via numerical simulation, and the calculated damage patterns were correlated with the experimental results. The result indicated hard armor based on polybenzoxazine nanocomposites could completely protect the perforation of a 7.62 × 51 mm2 projectile at impact velocity range of 847 ± 9.1 m/s. The results revealed the potential for using the poly(BA-a/PU) nanocomposites as energy-absorption panels for hard armor.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-08-20
    Description: The paper presents the results of a study on improving the safety of navigation, during maneuvers in restricted areas, with the use of an augmented virtuality navigation information display. The augmented virtuality solution has been developed by one of the authors and has been described in a previous paper. A set of simulation scenarios has been proposed to study various maneuvers with different types of ships. Models of existing areas and existing ships have been used so the study can be recreated and reevaluated with different types of interfaces. The study is focused on comparing safe maneuvering areas with different information sources used. The results showed that augmented virtuality solution can indeed decrease the safe maneuvering areas and thus increase the safety of navigation for maneuvers in restricted areas.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-08-20
    Description: Background: Circulating tumor DNA (ctDNA) and exosome have been widely researched in the field of medical technology and diagnosis platforms. The purpose of our study was to improve the capturing properties of ctDNA and exosome, which involved combining two beads using approaches that may provide a new method for cancer diagnoses. Methods: We present a dual isolation system including a polydopamine (PDA)–silica-coated alginate bead for circulating tumor DNA (ctDNA) capture and an anti-CD63 immobilized bead for exosome capture. We examined the ctDNA mutation in pre-operative plasma samples obtained from 91 colorectal cancer (CRC) patients using a droplet digital PCR (ddPCR). Results: The area under the curve (AUROC) of ctKRAS G12D mutation in the buffy coat was 0.718 (95% CI: 0.598−0.838; p = 0.001). Patients with CRC that had unmethylation of MLH1 and MSH2 showed significantly higher buffy coat ctKRAS G12D mutations, ascites ctKRAS G12D mutations, miR-31-5, and mixed scores than the patients with a methylation of MLH1 and MSH2. Conclusion: Our proposed alginate bead using the specific gravity-free method suggests that the screening of mutated ctKRAS DNA and miR-31-5 by liquid biopsy aids in identifying the patients, predicting a primary tumor, and monitoring in the early detection of a tumor.
    Electronic ISSN: 2072-666X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-08-20
    Description: The reinforcement of plywood is demonstrated by laminating pretensioned basalt fibers between veneer sheets, to fabricate so-called prestressed plywood. Belt type basalt fibers bearing a specific adhesion promoting silane sizing were aligned between veneer sheets with 20 mm spacing and were pretensioned at 150 N. Three-layer plywood samples were prepared and tested for tensile strength at room temperature and at 150 °C. The room temperature tensile tests revealed a 35% increase in tensile strength for prestressed plywood compared to that of the conventional specimen. The reinforcement effect deteriorated at 150 °C but was restored upon cooling to room temperature. The deterioration is attributed to the weakening of bonding between the basalt fibers and phenolic resin matrix at elevated temperatures due to the softening of the resin.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-08-19
    Description: Nutraceutical industrial fenugreek seed spent (NIFGS), a relatively low-cost material abundantly available with little toxicity is used in crystal violet (CV) dye remediation from aqueous media and reported in the present study. To access the adsorption capacity, the factors affecting it are kinetics and the equilibrium thermodynamics. All the experiments were designed at approximately pH 7. The adsorption isotherm model proposed by Langmuir fits better than the Freundlich isotherm model. Kinetic studies data confirm the pseudo-second order model. It is evident from thermodynamic parameter values that the process of adsorption is endothermic, physical and dynamic. The process optimization of independent variables that influence adsorption was carried out using response surface methodology (RSM) through bi-level fractional factorial experimental design (FEED). The analysis of variance (ANOVA) was implemented to investigate the combined effect of parameters influencing adsorption. The possibilities of using dye-adsorbed NIFGS (“sludge”) for the fabrication of the composites using plastic waste are suggested.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-08-20
    Description: In their daily activity planning, travelers always considers time and space constraints such as working or education hours and distances to facilities that can restrict the location and time-of-day choices of other activities. In the field of population synthesis, current demand models lack dynamic consistency and often fail to capture the angle of activity choices at different times of the day. This article presents a method for synthetic population generation with a focus on activity-time choice. Activity-time choice consists mainly in the activity’s starting time and its duration, and we consider daily planning with some mandatory home-based activity: the chain of other subsequent activities a traveler can participate in depends on their possible end-time and duration as well as the travel distance from one another and opening hours of commodities. We are interested in a suburban area with sparse data available on population, where a discrete choice model based on utilities cannot be implemented due to the lack of microeconomic data. Our method applies activity-hours distributions extracted from the public census, with a limited corpus, to draw the time of a potential next activity based on the end-time of the previous one, predicted travel times, and the successor activities the agent wants to participate in during the day. We show that our method is able to construct plannings for 126k agents over five municipalities, with chains of activity made of work, education, shopping, leisure, restaurant and kindergarten, which fit adequately real-world time distributions.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-08-20
    Description: Transfer learning is a growing field that can address the variability of activity recognition problems by reusing the knowledge from previous experiences to recognise activities from different conditions, resulting in the leveraging of resources such as training and labelling efforts. Although integrating ubiquitous sensing technology and transfer learning seem promising, there are some research opportunities that, if addressed, could accelerate the development of activity recognition. This paper presents TL-FmRADLs; a framework that converges the feature fusion strategy with a teacher/learner approach over the active learning technique to automatise the self-training process of the learner models. Evaluation TL-FmRADLs is conducted over InSync; an open access dataset introduced for the first time in this paper. Results show promising effects towards mitigating the insufficiency of labelled data available by enabling the learner model to outperform the teacher’s performance.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-08-20
    Description: Intraoral ultrasonography has been widely employed for the preoperative assessment of tumor margins due to its capability to evaluate depth of invasion (DOI) and tumor thickness (TT). Recently, a novel ultrasonographic technique, ultra-high frequency ultrasound (UHFUS) has been increasingly applied to the study of oral lesions. This study evaluates the potential application of intraoral UHFUS to assess DOI and TT parameters of oral squamous cell carcinoma (OSCC) lesions. Patients clinically suspected of OSCC lesions were enrolled and underwent an intraoral UHFUS examination preoperatively. The parameters of TT, DOI, echogenicity, and vascularization were assessed. The parameters of TT and DOI as evaluated by means of UHFUS were compared to histology, which was set as the benchmark. Ten patients in total were enrolled. UHFUS-based DOI and TT measurements were found to positively correlate with histology (p 〈 0.05), although UHFUS provided a slight overestimation of DOI. No differences were found in terms of echogenicity or vascularization depending on the site of the lesion. According to these preliminary results, UHFUS could support the preoperative assessment of TT and DOI, potentially enhancing the clinical evaluation of OSCC.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-08-20
    Description: The low-power wide-area (LPWA) technologies, which enable cost and energy-efficient wireless connectivity for massive deployments of autonomous machines, have enabled and boosted the development of many new Internet of things (IoT) applications; however, the security of LPWA technologies in general, and specifically those operating in the license-free frequency bands, have received somewhat limited attention so far. This paper focuses specifically on the security and privacy aspects of one of the most popular license-free-band LPWA technologies, which is named LoRaWAN. The paper’s key contributions are the details of the design and experimental validation of a security-focused testbed, based on the combination of software-defined radio (SDR) and GNU Radio software with a standalone LoRaWAN transceiver. By implementing the two practical man-in-the-middle attacks (i.e., the replay and bit-flipping attacks through intercepting the over-the-air activation procedure by an external to the network attacker device), we demonstrate that the developed testbed enables practical experiments for on-air security in real-life conditions. This makes the designed testbed perspective for validating the novel security solutions and approaches and draws attention to some of the relevant security challenges extant in LoRaWAN.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-08-20
    Description: In the current work a new equation for initial damage assessment of limestone based on plane strain theory is proposed. Detailed investigations of the static and dynamic characteristics of limestone with different initial damage degree, using longitudinal wave speed, and static-dynamic compression tests are performed. This study investigated the static and dynamic characteristics of limestone with different initial damage degree, using longitudinal wave speed, and static-dynamic compression tests. Experimental results show that the degree of initial damage decreases with increasing longitudinal wave speed, which reaches the minimum when the longitudinal wave speed is approximately 6000 m/s, and the smaller the longitudinal wave velocity, the greater the degree of initial damage. The static and dynamic compressive strengths of limestone increase with the longitudinal wave velocity and strain rate, but the elastic modulus and Poisson’s ratio do not change significantly. Finally, based on the experimental results, the definitions of damage threshold value and strain softening are proposed, which further verify the influence of strain rate and initial damage on rock compression characteristics. The present study sheds light on the importance of initial damage for the mechanical state of rock in underground engineering.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-08-19
    Description: Capabilities of the attenuated total reflection (ATR) at THz wavelengths for increased sub-surface depth characterisation of (bio-)materials are presented. The penetration depth of a THz evanescent wave in biological samples is dependent on the wavelength and temperature and can reach 0.1–0.5 mm depth, due to the strong refractive index change ∼0.4 of the ice-water transition; this is quite significant and important when studying biological samples. Technical challenges are discussed when using ATR for uneven, heterogeneous, high refractive index samples with the possibility of frustrated total internal reflection (a breakdown of the ATR reflection mode into transmission mode). Local field enhancements at the interface are discussed with numerical/analytical examples. Maxwell’s scaling is used to model the behaviour of absorber–scatterer inside the materials at the interface with the ATR prism for realistic complex refractive indices of bio-materials. The modality of ATR with a polarisation analysis is proposed, and its principle is illustrated, opening an invitation for its experimental validation. The sensitivity of the polarised ATR mode to the refractive index between the sample and ATR prism is numerically modelled and experimentally verified for background (air) spectra. The design principles of polarisation active optical elements and spectral filters are outlined. The results and proposed concepts are based on experimental conditions at the THz beamline of the Australian Synchrotron.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-08-20
    Description: The COVID-19 pandemic has become both a challenge and an opportunity to implement certain changes in the world of education. One of the most important differences has been online evaluation, which had, until now, been marginal in most prestigious universities. This study compared the academic achievement of the last cohort that performed classroom assessment and the first group that was graded for an official degree using synchronous online evaluation. Other variables measured were the self-assessment of students in this second group, in order to understand how it affected their perception of the process using three different indicators: stress, difficulty, and fairness. Nine hundred and nineteen students participated in the study. The results indicate that online assessment resulted in grades that were 10% higher while enjoying the same degree of validity and reliability. In addition, stress and difficulty levels were also in line with the on-site experience, as was the perception that the results were fair. The results allow us to conclude that online evaluation, when proctored, provides the same guarantees as desktop exams, with the added bonus of certain advantages which strongly support their continued use, especially in degrees with many students who may come from many different locations.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-08-20
    Description: The steel–concrete composite structures consist of two different material parts, which are connected with reliable shear connectors to enable the combined action of the steel and concrete members. The shear connectors may experience either one-directional repeated cyclic loadings or fully reversed cyclic loadings depending on the structural functions and acting loadings. It is essential for structural engineers to estimate the residual shear strength of the shear connectors after action of repeated loads. The characteristics of deteriorating shear capacities of Y-type perfobond rib shear connectors under repeated loads were investigated to estimate the energy dissipating capacity as well as the residual shear strength after repeated loads. To perform the repeated load experiments four different intensities of repeated loads were selected based on the monotonic push-out tests which were performed with 15 specimens with five different design variables. The selected load levels range from 35% to 65% of the representative ultimate shear strength under the monotonic load. In total, 12 specimens were tested under five different repeated load types which were applied to observe the energy dissipating characteristics under various load intensities. It was found that the dissipated energy per cycle becomes stable and converges with the increasing number of cycles. A design formula to estimate the residual shear strength after the repeated loads was proposed, which is based on the residual shear strength factor and the nominal ultimate shear strength of the fresh Y-type perfobond rib shear connectors. The design residual shear strength was computed from the number of repeated loads and the energy dissipation amount per cycle. The reduction factor for the design residual shear strength was also proposed considering the target reliability level. The various reduction factors for the design residual shear strength were derived based on the probabilistic characteristics of the residual shear strength as well as the energy dissipation due to repeated loads.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-08-19
    Description: A passive micromixer was designed by combining two mixing units: the cross-channel split and recombined (CC-SAR) and a mixing cell with baffles (MC-B). The passive micromixer was comprised of eight mixing slots that corresponded to four combination units; two mixing slots were grouped as one combination unit. The combination of the two mixing units was based on four combination schemes: (A) first mixing unit, (B) first combination unit, (C) first combination module, and (D) second combination module. The statistical significance of the four combination schemes was analyzed using analysis of variance (ANOVA) in terms of the degree of mixing (DOM) and mixing energy cost (MEC). The DOM and MEC were simulated numerically for three Reynolds numbers (Re = 0.5, 2, and 50), representing three mixing regimes. The combination scheme (B), using different mixing units in the first two mixing slots, was significant for Re = 2 and 50. The four combination schemes had little effect on the mixing performance of a passive micromixer operating in the mixing regime of molecular dominance. The combination scheme (B) was generalized to arbitrary mixing slots, and its significance was analyzed for Re = 2 and 50. The general combination scheme meant two different mixing units in two consecutive mixing slots. The numerical simulation results showed that the general combination scheme was statistically significant in the first three combination units for Re = 2, and significant in the first two combination units for Re = 50. The combined micromixer based on the general combination scheme throughout the entire micromixer showed the best mixing performance over a wide range of Reynolds numbers, compared to other micromixers that did not adopt completely the general combination scheme. The most significant enhancement due to the general combination scheme was observed in the transition mixing scheme and was negligible in the molecular dominance scheme. The combination order was less significant after three combination units.
    Electronic ISSN: 2072-666X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-08-19
    Description: An artificial neural network (ANN) model was designed to predict the tensile properties in high-strength, low-carbon bainitic steels with a focus on the fraction of constituents such as PF (polygonal ferrite), AF (acicular ferrite), GB (granular bainite), and BF (bainitic ferrite). The input parameters of the model were the fraction of constituents, while the output parameters of the model were composed of the yield strength, yield-to-tensile ratio, and uniform elongation. The ANN model to predict the tensile properties exhibited a higher accuracy than the multi linear regression (MLR) model. According to the average index of the relative importance for the input parameters, the yield strength, yield-to-tensile ratio, and uniform elongation could be effectively improved by increasing the fraction of AF, bainitic microstructures (AF, GB, and BF), and PF, respectively, in terms of the work hardening and dislocation slip behavior depending on their microstructural characteristics such as grain size and dislocation density. The ANN model is expected to provide a clearer understanding of the complex relationships between constituent fraction and tensile properties in high-strength, low-carbon bainitic steels.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-08-20
    Description: Hydraulic power take-off (HPTO) is considered to be one of the most effective power take-off schemes for wave energy conversion systems (WECs). The HPTO unit can be constructed using standard hydraulic components that are readily available from the hydraulic industry market. However, the construction and operation of the HPTO unit are more complex rather than other types of power take-off, as many components parameters need to be considered during the optimization. Generator damping, hydraulic motor displacement, hydraulic cylinder and accumulator size are among the important parameters that influence the HPTO performance in generating usable electricity. Therefore, the influence of these parameters on the amount of generated electrical power from the HPTO unit was investigated in the present study. A simulation study was conducted using MATLAB/Simulink software, in which a complete model of WECs was developed using the Simscape fluids toolbox. During the simulation, each parameters study of the HPTO unit were separately manipulated to investigate its effects on the WECs performance in five different sea states. Finally, the simulated result of the effect of HPTO parameters on the amount of generated electrical power from the HPTO unit in different sea states is given and discussed.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-08-20
    Description: We consider the development of ligand-assisted growth processes for generating shape-anisotropic nanomaterials. Using statistical mechanics, we analyze the conditions under which ligand-assisted growth of shape-anisotropic crystalline nanomaterials from solution can take place. Depending on ligand-facet interaction energy and crystal facet area, molecular ligands can form compact layers on some facets leaving other facets free. The growth process is then restricted to free facets and may result in significant anisotropy in crystal shape. Our study uncovers the conditions for ligand-assisted growth of nanoplatelets and nanowires from isotropic or anisotropic seed nanocrystals of cuboid shape. We show that in contrast to nanoplatelets, ligand-assisted growth of nanowires requires certain anisotropy in the ligand-facet interaction energy.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-08-20
    Description: In on-orbit services, the relative position and attitude estimation of non-cooperative spacecraft has become the key issues to be solved in many space missions. Because of the lack of prior knowledge about manual marks and the inability to communicate between non-cooperative space targets, the relative position and attitude estimation system poses great challenges in terms of accuracy, intelligence, and power consumptions. To address these issues, this study uses a stereo camera to extract the feature points of a non-cooperative spacecraft. Then, the 3D position of the feature points is calculated according to the camera model to estimate the relationship. The optical flow method is also used to obtain the geometric constraint information between frames. In addition, an extended Kalman filter is used to update the measurement results and obtain more accurate pose optimization results. Moreover, we present a closed-loop simulation system, in which the Unity simulation engine is employed to simulate the relative motion of the spacecraft and binocular vision images, and a JetsonTX2 supercomputer is involved to conduct the proposed autonomous relative navigation algorithm. The simulation results show that our approach can estimate the non-cooperative target’s relative pose accurately.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-08-20
    Description: Medication-related osteonecrosis of the jaw (MRONJ) has been associated with the use of different drugs administered in the treatment of malignant neoplasms or metastases and in antiresorptive therapies. Since 2010, denosumab, a monoclonal antibody whose mechanism of action is to prevent the activation of the RANK receptor on the surface of osteoclasts, has been associated with osteonecrosis of the jaw. Primary intraosseous squamous cell carcinoma (PIOSCC) is a rare neoplasm characterised by the presence of squamous cells within the maxillary or mandibular bone without an initial clinical association with the oral mucosa. We present a case of a PIOSCC in an osteonecrosis of the jaw related to a patient who received antiresorptive treatment with denosumab outlining the clinical and histopathological features of MRONJ and PIOSCC.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-08-18
    Description: This paper considers the metallurgical processes of dissociation, ionization, oxidation, deoxidation, and dissolution of oxides during underwater wet cutting. A multiphase mechanism of underwater wet cutting consisting of working and idle cycles of the electrical process in a pulsating vapor gas bubble is proposed. A model of arc penetration into metal due to metal oxidation and stabilization of the arc by the inner walls of a narrow kerf is proposed. For underwater cutting of 10 KhSND, 304L steel, CuAl5, and AlMg4.5Mn0.7 alloy, we provide a principle of modeling the phase composition of the gas mixture based on high oxygen concentration, improving ionization, enthalpy, heat capacity, and thermal conductivity of plasma through the use of a mixture of KNO3, FeCO3 and aluminum. The method of improving the thermophysical properties and ionization of plasma due to the exothermic effect when introducing Fe3O4, MoO2, WO2 oxides and Al, Mg, Ti deoxidizers is proposed. Although a negative effect of refractory slag was revealed, it could be removed by using the method of reducing surface tension through the ionic dissolution of refractory oxides in Na3AlF6 cryolite. In underwater cutting of 10 KhSND and 304L, the steel welding current was 344–402 A with a voltage of 36–39 V; in cutting of CuAl5 and AlMg4.5Mn0.7 alloy, the welding current was 360–406; 240 A, with a voltage of 35–37; 38 V, respectively, with the optimal composition of flux-cored wire: 50–60% FeCO3 and KNO3, 20–30% aluminum, 20% Na3AlF6. Application of flux-cored wires of the KNO3-FeCO3-Na3AlF6-Al system allowed stable cutting of 10KhSND, AISI 304L steels, and CuAl5 bronze with kerf width up to 2.5–4.7 mm.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-08-19
    Description: Organic–inorganic nanoparticles, which can improve and modify the mechanical and chemical properties of polymers, have been used as fillers to prepare high-performance hybrid nanocomposite membranes. In this study, we explored whether the incorporation of organic nanofillers (graphene (G), graphene oxide (GO), carbon nanotubes (CNTs), or oxidized carbon nanotubes (CNTOxi)) into polysulfone (PSF) and montmorillonite (MMt)-modified PSF membranes could enhance membrane performance for the removal of heavy metal ions from contaminated solutions. These hybrid membranes were prepared by a phase inversion method using chloroform as the solvent. The surface morphologies of the membranes revealed good dispersibility of the organoclay and carbon nanomaterials in the PSF matrix. The hybrid nanocomposite membranes showed significantly improved thermal stability and mechanical properties as compared to the pristine PSF and PSF/MMt membranes. The adsorption efficiencies of these hybrid adsorptive membranes for Hg(II), Pb(II), Sr(II), Fe(III), Zn(II), Ni(II), Al(III), Co(II), Y(III), and Cr(III) were investigated. The PSF/MMt/CNTOxi and PSF/MMt/GO membranes exhibited the highest adsorption efficiencies. In particular, these adsorptive membranes showed selectivity toward Hg(II), and the Hg(II) extraction percentage was maximized at pH 2. The maximum Hg(II) adsorption capacities of PSF/MMt/CNTOxi and PSF/MMt/GO were 151.36 and 144.89 mg/g, respectively, and the adsorption isotherm was in approval with the Langmuir model. These hybrid nanocomposites can be used in water purification application.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-08-18
    Description: The article deals with research related to the issues of nanomodification of elastomers as a basis of electric heaters with self-regulating temperature. The effect of multistage mechanical activation of multilayer carbon nanotubes (MCNTs) with graphite on the uniformity of the temperature field distribution on the surface of nanomodified organosilicon elastomer has been studied. The influence of the stages of mechanical action on the parameters of MCNTs is revealed. It has been ascertained that for the MCNTs/graphite bulk material, which has passed the stage of mechanical activation in the vortex layer apparatus, a more uniform distribution of the temperature field and an increase in temperature to 57.1 °C at the supply voltage of 100 V are typical. The distribution of the temperature field in the centrifugal paddle mixer “WF-20B” for mixing MCNTs with graphite has been investigated. It has been found that there is also a thermal effect in addition to the mechanical action on the MCNTs in the paddle mixer “WF-20B”. The thermal effect is associated with the transfer of the mechanical energy of friction of the binary mixture MCNTs/graphite on the paddle and the walls of the vessel. The multiplicity of the starting current Ip to the nominal In (Ip/In) is 5 for the first sample, 7.5 for the second sample, and 10 for the third sample at the supply voltage of 100 V. The effect of reducing the starting current and stabilizing the temperature indicates the presence of self-regulation, which is expressed in maintaining a certain level of temperature.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-08-18
    Description: We propose a simple and robust HSV color-space-based algorithm that can automatically extract object position information without human intervention or prior knowledge. In manufacturing sites with high variability, it is difficult to recognize products through robot machine vision, especially in terms of extracting object information accurately, owing to various environmental factors such as the noise around objects, shadows, light reflections, and illumination interferences. The proposed algorithm, which does not require users to reset the HSV color threshold value whenever a product is changed, uses ROI referencing method to solve this problem. The algorithm automatically identifies the object’s location by using the HSV color-space-based ROI random sampling, ROI similarity comparison, and ROI merging. The proposed system utilizes an IoT device with several modules for the detection, analysis, control, and management of object data. The experimental results show that the proposed algorithm is very useful for industrial automation applications under complex and highly variable manufacturing environments.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2021-08-19
    Description: Graphite is used as a state-of-the-art anode in commercial lithium-ion batteries (LIBs) due to its highly reversible lithium-ion storage capability and low electrode potential. However, graphite anodes exhibit sluggish diffusion kinetics for lithium-ion intercalation/deintercalation, thus limiting the rate capability of commercial LIBs. In order to determine the lithium-ion diffusion coefficient of commercial graphite anodes, we employed a galvanostatic intermittent titration technique (GITT) to quantify the quasi-equilibrium open circuit potential and diffusion coefficient as a function of lithium-ion concentration and potential for a commercial graphite electrode. Three plateaus are observed in the quasi-equilibrium open circuit potential curves, which are indicative of a mixed phase upon lithium-ion intercalation/deintercalation. The obtained diffusion coefficients tend to increase with increasing lithium concentration and exhibit an insignificant difference between charge and discharge conditions. This study reveals that the diffusion coefficient of graphite obtained with the GITT (1 × 10−11 cm2/s to 4 × 10−10 cm2/s) is in reasonable agreement with literature values obtained from electrochemical impedance spectroscopy. The GITT is comparatively simple and direct and therefore enables systematic measurements of ion intercalation/deintercalation diffusion coefficients for secondary ion battery materials.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-08-19
    Description: Chenopodium formosanum (CF), rich in nutrients and antioxidants, is a native plant in Taiwan. During the harvest, the seeds are collected, while the roots, stems, and leaves remain on the field as agricultural waste. In this study, di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) radical scavenging ability and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging ability experiments of seeds, leaves, stems, and roots were designed using the Taguchi method (TM) under three conditions: Ethanol concentration (0–100%), temperature (25–65 °C), and extraction time (30–150 min). The result demonstrates that seeds and leaves have higher radical scavenging ability than stems and roots. Many studies focused on CF seeds. Therefore, this study selected CF leaves and optimized DPPH, ABTS, total phenol content (TPC), total flavonoid content (TFC), and reducing power (RP) through TM, showing that the predicted value of the leaf is close to the actual value. The optimized results of CF leaves were DPPH 85.22%, ABTS 46.51%, TPC 116.54 µg GAE/mL, TFC 143.46 µg QE/mL, and RP 23.29 µg VCE (vitamin C equivalent)/mL. The DPPH and ABTS of CF leaves were second only to the results of CF seeds. It can be seen that CF leaves have the potential as a source of antioxidants and help in waste reduction.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-08-18
    Description: Sky surveys with wide and deep field are the key direction of international astronomy research for the next decades. It is worthwhile to study how to design a sky survey algorithm to obtain the maximum scientific output in a limited period of observation. In this paper, the modeling and simulation of a wide and deep sky survey mission are presented using a Staged Design Algorithm (SDA), which takes into account the inefficient time periods and difficult-to-observe sky areas. In order to ensure the effective completion of the long-time survey observation tasks in large sky areas, a two-stage scheduling algorithm is designed. Firstly, the inefficient time periods and difficult observation areas are scheduled, and then the overall observation is carried out. The prearranged schedule is arranged when inefficient time periods or difficult areas are encountered during the overall arrangement. The simulation results are verified on the basic data of the China Space Station Telescope (CSST), and the obtained simulation result is three years ahead of the target of the telescope design to complete the wide and deep sky survey of 15,000 deg2. The design ideas in this paper not only have good results for sky survey observation but also can be extended to similar satellite Earth observation mission planning.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-08-18
    Description: This study set out to extract the charging characteristics of an electrical vehicle (EV) from massive real operating data. Firstly, an unsupervised learning method based on self-organizing map (SOM) is developed to deal with the power supply side data of various charging operators. Secondly, a multi-dimensional evaluation index system is constructed for charging operation and vehicle-to-grid (V2G). Finally, according to more than five million pieces of charging operating data collected over a period of two years, the charging load composition and characteristics under different charging station types, daily types and weather conditions are analyzed. The results show that bus, high-way, and urban public charging loads are different in concentration and regulation flexibility, however, they all have the potential to synergy with power grid and cooperate with renewable energy. Especially in an urban area, more than 37 GWh of photovoltaic (PV) power can be consumed by smart charging at the current penetration rate of EVs.
    Electronic ISSN: 2032-6653
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2021-08-19
    Description: Volatile fatty acids obtained from the fermentation of the organic fraction of municipal solid waste can be used as raw materials for non-toxic ethyl ester (EE) synthesis as well as feedstock for the production of polyhydroxyalkanoates (PHAs). Taking advantage of the concept of an integrated process of a bio-refinery, in the present paper, a systematic investigation on the extraction of intracellular poly(3-hydroxybutyrate-co-3-hydroxyvalerate), produced by mixed microbial culture by using EEs was reported. Among the tested EEs, ethyl acetate (EA) was the best solvent, dissolving the copolymer at the lowest temperature. Then, extraction experiments were carried out by EA at different temperatures on two biomass samples containing PHAs with different average molecular weights. The parallel characterization of the extracted and non-extracted PHAs evidenced that at the lower temperature (100 °C) EA solubilizes preferentially the polymer fractions richer in 3HV comonomers and with the lower molecular weight. By increasing the extraction temperature from 100 °C to 125 °C, an increase of recovery from about 50 to 80 wt% and a molecular weight reduction from 48% to 65% was observed. The results highlighted that the extracted polymer purity is always above 90 wt% and that it is possible to choose the proper extraction condition to maximize the recovery yield at the expense of polymer fractionation and degradation at high temperatures or use milder conditions to maintain the original properties of a polymer.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2021-08-19
    Description: Downregulation of the ubiquitin-like containing PHD and ring finger 1 (UHRF1) oncogene in cancer cells in response to natural anticancer drugs, including thymoquinone (TQ), is a key event that induces apoptosis. TQ can induce UHRF1 autoubiquitination via the E3 ligase activity of its RING domain, most likely through the downregulation of herpes virus-associated ubiquitin-specific protease (HAUSP). In this study, we evaluated whether HAUSP downregulation and fast ubiquitination of UHRF1 are prerequisites for UHRF1 degradation in response to TQ in cancer cells and whether doxorubicin can mimic the effects of TQ on UHRF1 ubiquitination. RNA sequencing was performed to investigate differentially expressed genes in TQ-treated Jurkat cells. The protein expression of UHRF1, HAUSP and Bcl-2 was detected by means of Western blot analysis. The proliferation of human colon cancer (HCT-116) and Jurkat cells was analyzed via the WST-1 assay. RNA sequencing data revealed that TQ significantly decreased HAUSP expression. TQ triggered UHRF1 to undergo rapid ubiquitination as the first step in its degradation and the inhibition of its cell proliferation. TQ-induced UHRF1 ubiquitination is associated with HAUSP downregulation. Like TQ, doxorubicin induced a similar dose- and time-dependent downregulation of UHRF1 in cancer cells, but UHRF1 did not undergo ubiquitination as detected in response to TQ. Furthermore, TQ decreased Bcl-2 expression without triggering its ubiquitination. A fast UHRF1 ubiquitination is an indispensable event for its degradation in response to TQ but not for its responses to doxorubicin. TQ appears to trigger ubiquitination of UHRF1 but not of the Bcl-2 oncogene, thereby identifying UHRF1 as a specific target of TQ for cancer therapy.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-08-20
    Description: This research uses EBSD data of two thermo-mechanically processed medium carbon (C45EC) steel samples to simulate micromechanical deformation and damage behavior. Two samples with 83% and 97% spheroidization degrees are subjected to virtual monotonic quasi-static tensile loading. The ferrite phase is assigned already reported elastic and plastic parameters, while the cementite particles are assigned elastic properties. A phenomenological constitutive material model with critical plastic strain-based ductile damage criterion is implemented in the DAMASK framework for the ferrite matrix. At the global level, the calibrated material model response matches well with experimental results, with up to ~97% accuracy. The simulation results provide essential insight into damage initiation and propagation based on the stress and strain localization due to cementite particle size, distribution, and ferrite grain orientations. In general, it is observed that the ferrite–cementite interface is prone to damage initiation at earlier stages triggered by the cementite particle clustering. Furthermore, it is observed that the crystallographic orientation strongly affects the stress and stress localization and consequently nucleating initial damage.
    Electronic ISSN: 2504-477X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-08-20
    Description: An online corn moisture content measurement device would be a key technology for providing accurate feedback information for industrial drying processes to enable the dynamic tracking and closed-loop control of the process. To overcome the problem of large measurement error caused by the characteristics of the corn flow state and the pore distribution when a parallel plate capacitor is applied to the online moisture content measurement process, in this study, we summarized the constraint conditions of the sensor’s structure parameters by mathematical modeling and calculated the optimal sensor design size. Moreover, the influence of porosity variation on moisture content measurement was studied by using the designed sensor. In addition, a mathematical model for calculating corn moisture content was obtained for the moisture content range of 14.7% to 26.4% w.b., temperature of 5 °C to 35 °C, and porosity of 38.4% to 44.6%. The results indicated that the fluctuation in the online moisture content measurement value was obviously reduced after the porosity compensation. The absolute error of the measured moisture content value was −0.62 to 0.67% w.b., and the average of absolute values of error was 0.32% w.b. The main results provide a theoretical basis and technical support for the development of intelligent industrial grain–drying equipment.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2021-08-20
    Description: CRISP-DM (cross-industry standard process for data mining) methodology was developed as an intuitive tool for data scientists, to help them with applying Big Data methods in the complex technological environment of Industry 4.0. The review of numerous recent papers and studies uncovered that most of papers focus either on the application of existing methods in case studies, summarizing existing knowledge, or developing new methods for a certain kind of problem. Although all of these types of research are productive and required, we identified a lack of complex best practices for a specific field. Therefore, our goal is to propose best practices for the data analysis in production industry. The foundation of our proposal is based on three main points: the CRISP-DM methodology as the theoretical framework, the literature overview as an expression of current needs and interests in the field of data analysis, and case studies of projects we were directly involved in as a source of real-world experience. The results are presented as lists of the most common problems for selected phases (‘Data Preparation’ and ‘Modelling’), proposal of possible solutions, and diagrams for these phases. These recommendations can help other data scientists avoid certain problems or choose the best way to approach them.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2021-08-19
    Description: The application of pulsed electric fields (PEF) is an innovative extraction technology promoting cell membrane electroporation, thus allowing for an efficient recovery, from an energy point of view, of antioxidant compounds (chlorophylls, carotenoids, total phenolic compounds, etc.) from microalgae. Due to its selectivity and high extraction yield, the effects of PEF pre-treatment (3 kV/cm, 100 kJ/kg) combined with supplementary extraction at different times (5–180 min) and with different solvents (ethanol (EtOH)/H2O, 50:50, v/v; dimethyl sulfoxide (DMSO)/H2O, 50:50, v/v) were evaluated in order to obtain the optimal conditions for the extraction of different antioxidant compounds and pigments. In addition, the results obtained were compared with those of a conventional treatment (without PEF pre-treatment but with constant shaking). After carrying out the different experiments, the best extraction conditions to recover the different compounds were obtained after applying PEF pre-treatment combined with the binary mixture EtOH/H2O, 50:50, v/v, for 60–120 min. PEF extraction was more efficient throughout the study, especially at short extraction times (5–15 min). In this sense, recovery of 55–60%, 85–90%, and 60–70% was obtained for chlorophylls, carotenoids, and total phenolic compounds, respectively, compared to the maximum total extracted amount. These results show that PEF improves the extraction yield of antioxidant bioactive compounds from microalgae and is a promising technology due to its profitability and environmental sustainability.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2021-08-20
    Description: After five decades of development, mode-locked lasers have become significant building blocks for many optical systems in scientific research, industry, and biomedicine. Advances in noise measurement and reduction are motivated for both shedding new light on the fundamentals of realizing ultra-low-noise optical frequency combs and their extension to potential applications for standards, metrology, clock comparison, and so on. In this review, the theoretical models of noise in mode-locked lasers are first described. Then, the recent techniques for timing jitter, carrier-envelope phase noise, and comb-line noise measurement and their stabilization are summarized. Finally, the potential of the discussed technology to be fulfilled in novel optical frequency combs, such as electro-optic (EO) modulated combs, microcombs, and quantum cascade laser (QCL) combs, is envisioned.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-08-20
    Description: Chalcones are naturally occurring compounds exhibiting multiple biological functions related to their structure. The investigation of complexes formed by chalcones, namely 2′,4′-dihydroxy-2-methoxychalcone (DH-2-MC) and 2′,4′-dihydroxy-3-methoxychalcone (DH-3-MC), with organo-functionalized Fe3O4 magnetic nanoparticles using mass spectrometric techniques is reported. The magnetic nanoparticles were obtained by the silanization of Fe3O4 particles with 3-aminopropyltrimethosysilane, which were subsequently reacted with 3-hydroxybenzaldehyde (3-HBA) or 2-pyridinecarboxaldehyde (2-PCA), resulting in the formation of Schiff base derivatives. The formation of their complexes with chalcones was studied using electrospray (ESI) and flowing atmosphere-pressure afterglow (FAPA) mass spectrometric (MS) ionization techniques. The functional nanoparticles which were synthesized using 3-hydroxybenzaldehyde displayed higher affinity towards examined chalcones than their counterparts obtained using 2-pyridinecarboxaldehyde, which has been proved by both ESI and FAPA techniques. For the examined chalcones, two calibration curves were obtained using the ESI-MS method, which allowed for the quantitative analysis of the performed adsorption processes. The presence of Cu(II) ions in the system significantly hindered the formation of material–chalcone complexes, which was proved by the ESI and FAPA techniques. These results indicate that both mass spectrometric techniques used in our study possess a large potential for the investigation of the binding properties of various functional nanoparticles.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-08-18
    Description: The aim of this work was to determine the influence of the tungsten addition to TiB2 coatings on their microstructure and brittle cracking resistance. Four coatings of different compositions (0, 7, 15, and 20 at.% of W) were deposited by magnetron sputtering from TiB2 and W targets. The coatings were investigated by the following methods: X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). All coatings had a homogeneous columnar structure with decreasing column width as the tungsten content increased. XRD and XPS analysis showed the presence of TiB2 and nonstoichiometric TiBx phases with an excess or deficiency of boron depending on composition. The crystalline size decreased from 27 nm to 10 nm with increasing W content. The brittle cracking resistance improved with increasing content of TiBx phase with deficiency of B and decreasing crystalline size.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-08-17
    Description: This work focuses on the temperature evolution of the martensitic phase ε (hexagonal close packed) induced by the severe plastic deformation via High Speed High Pressure Torsion method in Fe57Mn27Si11Cr5 (at %) alloy. The iron rich alloy crystalline structure, magnetic and transport properties were investigated on samples subjected to room temperature High Speed High Pressure Torsion incorporating 1.86 degree of deformation and also hot-compression. Thermo-resistivity as well as thermomagnetic measurements indicate an antiferromagnetic behavior with the Néel temperature (TN) around 244 K, directly related to the austenitic γ-phase. The sudden increase of the resistivity on cooling below the Néel temperature can be explained by an increased phonon-electron interaction. In-situ magnetic and electric transport measurements up to 900 K are equivalent to thermal treatments and lead to the appearance of the bcc-ferrite-like type phase, to the detriment of the ε(hcp) martensite and the γ (fcc) austenite phases.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-08-18
    Description: Traceability, namely the ability to access information about a product and its movement across all stages of the supply chain, has been emerged as a key criterion of a product’s quality and safety. Managing fresh products, such as fruits and vegetables, is a particularly complicated task, since they are perishable with short shelf lives and are vulnerable to environmental conditions. This makes traceability of fresh produce very significant. The present study provides a brief overview of the relative literature on fresh produce traceability systems. It was concluded that the commercially available traceability systems usually neither cover the entire length of the supply chain nor rely on open and transparent interoperability standards. Therefore, a user-friendly open access traceability system is proposed for the development of an integrated solution for traceability and agro-logistics of fresh products, focusing on interoperability and data sharing. Various Internet of Things technologies are incorporated and connected to the web, while an android-based platform enables the monitoring of the quality of fruits and vegetables throughout the whole agri-food supply chain, starting from the field level to the consumer and back to the field. The applicability of the system, named AgroTRACE, is further extended to waste management, which constitutes an important aspect of a circular economy.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-08-18
    Description: In powder bed fusion–electron beam melting, the alloy powder can scatter under electron beam irradiation. When this phenomenon—known as smoking—occurs, it makes the PBF-EBM process almost impossible. Therefore, avoiding smoking in EBM is an important research issue. In this study, we aimed to clarify the effects of powder bed preheating and mechanical stimulation on the suppression of smoking in the powder bed fusion–electron beam melting process. Direct current electrical resistivity and alternating current impedance spectroscopy measurements were conducted on Inconel 718 alloy powder at room temperature and elevated temperatures before and after mechanical stimulation (ball milling for 10–60 min) to investigate changes in the electrical properties of the surface oxide film, alongside X-ray photoelectron spectroscopy to identify the surface chemical composition. Smoking tests confirmed that preheating and ball milling both suppressed smoking. Furthermore, smoking did not occur after ball milling, even when the powder bed was not preheated. This is because the oxide film undergoes a dielectric–metallic transition due to the lattice strain introduced by ball milling. Our results are expected to benefit the development of the powder bed fusion–electron beam melting processes from the perspective of materials technology and optimization of the process conditions and powder properties to suppress smoking.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-08-18
    Description: The chemically cross-linking 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride/N-hydroxy-succinimide (EDC/NHS) collagen membrane endows such natural polymers with promising mechanical properties. Nevertheless, it is inadequate to advance the modulation of foreign body response (FBR) after implantation or guidance of tissue regeneration. In previous research, macrophages have a strong regulatory effect on regeneration, and such enhanced membranes underwent the modification with Epigallocatechin-3-gallate (EGCG) could adjust the recruitment and phenotypes of macrophages. Accordingly, we develop EGCG-EDC/NHS membranes, prepared with physical immersion, while focusing on the surface morphology through SEM, the biological activity of collagen was determined by FTIR, the activity and adhesion of cell culture in vitro, angiogenesis and monocyte/macrophage recruitment after subcutaneous implantation in vivo, are characterized. It could be concluded that it is hopeful EGCG-EDC/NHS collagen membrane can be used in implant dentistry for it not only retains the advantages of the collagen membrane itself, but also improves cell viability, adhesion, vascularization, and immunoregulation tendency.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-08-18
    Description: Quantum annealing is an emerging new platform for combinatorial optimization, requiring an Ising model formulation for optimization problems. The formulation can be an essential obstacle to the permeation of this innovation into broad areas of everyday life. Our research is aimed at the proposal of a Petri net modeling approach for an Ising model formulation. Although the proposed method requires users to model their optimization problems with Petri nets, this process can be carried out in a relatively straightforward manner if we know the target problem and the simple Petri net modeling rules. With our method, the constraints and objective functions in the target optimization problems are represented as fundamental characteristics of Petri net models, extracted systematically from Petri net models, and then converted into binary quadratic nets, equivalent to Ising models. The proposed method can drastically reduce the difficulty of the Ising model formulation.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-08-19
    Description: TiMoNbZrx refractory high-entropy alloys were prepared by vacuum arc melting, and the influence of the Zr alloying element and its content on the phases, microstructure, mechanical properties, and wear resistance of TiMoNbZrx alloys was explored. It was found that the alloys after Zr addition were composed of a single BCC phase. Upon increasing the Zr content, the grain size of the as-cast alloy decreased first and then increased, and TiMoNbZr0.5 exhibited the smallest grain size. Adding an appropriate amount of Zr increased the strength and hardness of the alloys. TiMoNbZr0.5 exhibited the best wear resistance, with a friction coefficient of about 0.33. It also displayed the widest wear scar, the shallowest depth, and the greatest degree of wear on the grinding ball because of the formation of an oxide film during wear.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-08-19
    Description: Fire is an abnormal event that can cause significant damage to lives and property. Deep learning approach has made large progress in vision-based fire detection. However, there is still the problem of false detections due to the objects which have similar fire-like visual properties such as colors or textures. In the previous video-based approach, Faster Region-based Convolutional Neural Network (R-CNN) is used to detect the suspected regions of fire (SRoFs), and long short-term memory (LSTM) accumulates the local features within the bounding boxes to decide a fire in a short-term period. Then, majority voting of the short-term decisions is taken to make the decision reliable in a long-term period. To ensure that the final fire decision is more robust, however, this paper proposes to use a Bayesian network to fuse various types of information. Because there are so many types of Bayesian network according to the situations or domains where the fire detection is needed, we construct a simple Bayesian network as an example which combines environmental information (e.g., humidity) with visual information including the results of location recognition and smoke detection, and long-term video-based majority voting. Our experiments show that the Bayesian network successfully improves the fire detection accuracy when compared against the previous video-based method and the state of art performance has been achieved with a public dataset. The proposed method also reduces the latency for perfect fire decisions, as compared with the previous video-based method.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-08-19
    Description: Despite the wide application of organic light-emitting diodes (OLEDs), the performance of OLED devices is sometimes limited by their reliabilities. In this paper, we report the transient degradation behaviors of fluorescent blue OLEDs, where both the current and luminance initially increase under electrical stress within a short stress time. We analyze the degradation mechanism in terms of the carrier recombination and transport. From the comprehensive analyses of electrical and optical characteristics, it is suggested that the electron transport is responsible for the initial transient behavior of the device.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-08-19
    Description: Concentrated solar power (CSP) is an important option as a competitive, secure, and sustainable energy system. At the moment, cost-effective solutions are required for a wider-scale deployment of the CSP technology: in particular, the industrial exploitation of CSP has been so far hindered by limitations in the materials used for the central receiver—a key component in the system. In this context, the H2020 NEXTOWER project is focused on next-generation CSP technologies, particularly on advanced materials for high temperatures (e.g., 〉900 °C) and extreme applications environments (e.g., corrosive). The research activity described in this paper is focused on two industrial solutions for new SiC ceramic receivers for high thermal gradient continued operations: porous SiC and silicon-infiltrated silicon carbide ceramics (SiSiC). The new receivers should be mechanically tough and highly thermally conductive. This paper presents the activity related to the manufacturing of these components, their joining, and characterization.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-08-19
    Description: The term “osseointegrated implants” mainly relates to structural systems that contain open spaces, which enable osteoblasts and connecting tissue to migrate during natural bone growth. Consequently, the coherency and bonding strength between the implant and natural bone can be significantly increased, for example in operations related to dental and orthopedic applications. The present study aims to evaluate the prospects of a Ti–6Al–4V lattice, produced by selective laser melting (SLM) and infiltrated with biodegradable Zn2%Fe alloy, as an OI–TiZn system implant in in vitro conditions. This combined material structure is designated by this study as an osseointegrated implant (OI–TiZn) system. The microstructure of the tested alloys was examined both optically and using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The mechanical properties were assessed in terms of compression strength, as is commonly acceptable in cases of lattice-based structures. The corrosion performance was evaluated by immersion tests and electrochemical analysis in terms of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), all in simulated physiological environments in the form of phosphate buffered saline (PBS) solution. The cytotoxicity was evaluated in terms of indirect cell viability. The results obtained demonstrate the adequate performance of the OI–TiZn system as a non-cytotoxic structural material that can maintain its mechanical integrity under compression, while presenting acceptable corrosion rate degradation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-08-19
    Description: The present study aims to reduce the pitch motion of an assault amphibious vehicle system in seaways by waterjet impeller revolution rate control. A series of seakeeping tests were performed in a towing tank with a 1/4.5-scale model. This vehicle is manufactured as a box-shaped hull, and since an appendage that generates lift force is attached, the amount of change in pitch motion is large according to the forward speed. For pitch motion reduction, the impeller revolution rate and resultant pitch moment were controlled through a proportional-integral-derivative controller. Improvements in seakeeping performance were examined in both regular and irregular conditions by the model tests in terms of root mean square of pitch motion. The tuned controller decreased pitch motion by more than 60%.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...