ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (482)
  • Inter Research  (334)
  • La Habana
  • Oxford University Press
  • Periodicals Archive Online (PAO)
  • Santiago de Chile: Universidad de Chile, Departamento de Economía
  • Washington, DC: Inter-American Development Bank (IDB)
Collection
Publisher
  • 1
    Publication Date: 2024-02-23
    Description: Compositional variations of amphibole stratigraphically recovered from multiple eruptions at a given volcano have a great potential to archive long-term magmatic processes in its crustal plumbing system. Calcic amphibole is a ubiquitous yet chemically and texturally diverse mineral at Mount St. Helens (MSH), where it occurs in dacites and in co-magmatic enclaves throughout the Spirit Lake stage (last ~4000 years of eruptive history). It forms three populations with distinct geochemical trends in key major and trace elements, which are subdivided into a high-Al (11–14.5 wt% Al2O3), a medium-Al (10–12.5 wt% Al2O3), and a low-Al (7.5–10 wt% Al2O3) amphibole population. The oldest investigated tephra record (Smith Creek period, 3900–3300 years BP) yields a bimodal amphibole distribution in which lower-crustal, high-Al amphibole cores (crystallized dominantly from basaltic andesite to andesite melts) and upper-crustal, low-Al amphibole rims (crystallized from rhyolitic melt) document occasional recharge of a shallow silicic mush by a more mafic melt from a lower-crustal reservoir. The sudden appearance of medium-Al amphiboles enriched in incompatible trace elements in eruptive periods younger than 2900 years BP is associated with a change in reservoir conditions toward hotter and drier magmas, which indicates recharge of the shallow silicic reservoir by basaltic melt enriched in incompatible elements. Deep-crystallizing, high-Al amphibole, however, appears mostly unaffected by such incompatible-element-enriched basaltic recharge, suggesting that these basalts bypass the lower crustal reservoir. This could be the result of the eastward offset position of the lower crustal reservoir relative to the upper crustal storage zone underneath the MSH edifice. Amphibole has proven to be a sensitive geochemical archive for uncovering storage conditions of magmas at MSH. In agreement with geophysical observations, storage and differentiation have occurred in two main zones: an upper crustal and lower crustal reservoir (the lower one being chemically less evolved). The upper crustal silicic reservoir, offset to the west of the lower crustal reservoir, has captured compositionally unusual mafic recharge (drier, hotter, and enriched in incompatible trace elements in comparison to the typical parental magmas in the region), resulting in an increased chemical diversity of amphiboles and their carrier intermediate magmas, in the last ~3000 years of MSH’s volcanic record.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: Current global warming results in rising sea-water temperatures, and the loss of sea ice in arctic and subarctic oceans impacts the community composition of primary producers with cascading effects on the food web and potentially on carbon export rates. This study analyzes metagenomic shotgun and diatom rbcL amplicon-sequencing data from sedimentary ancient DNA (sedaDNA) of the subarctic western Bering Sea that records phyto- and zooplankton community changes over the last glacial–interglacial cycle, including the last interglacial period (Eemian). Our data show that interglacial and glacial plankton communities differ, with distinct Eemian and Holocene plankton communities. The generally warm Holocene period is dominated by pico-sized cyanobacteria and bacteria-feeding heterotrophic protists, while the Eemian period is dominated by eukaryotic pico-sized chlorophytes and Triparmaceae. In contrast, the glacial period is characterized by micro-sized phototrophic protists, including sea-ice associated diatoms in the family Bacillariaceae and co-occurring diatom-feeding crustaceous zooplankton. Our deep-time record of plankton community changes reveals a long-term decrease in phytoplankton cell size coeval with increasing temperatures, and resembling community changes in the currently warming Bering Sea. The phytoplankton community in the warmer-than-present Eemian period is distinct from modern communities and limits the use of the Eemian as an analog for future climate scenarios. However, under enhanced future warming, the expected shift towards the dominance of small-sized phytoplankton and heterotrophic protists might result in an increased productivity, whereas the community’s potential of carbon export will be decreased, thereby weakening the subarctic Bering Sea’s function as an effective carbon sink.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-15
    Description: The exploitation of marine resources has caused drastic declines of many large predatory fishes. Amongst these, sharks are of major conservation concern due to their high vulnerability to overfishing and their ecological role as top predators. The 2 protected and endangered shark species tope Galeorhinus galeus and smooth hammerhead Sphyrna zygaena use overlapping coastal areas around the globe as essential fish habitats, but data to assess their trophic ecology and niche partitioning are scarce. We provide the first comparative assessment of the trophic ecology, ontogenetic shifts, and niche partitioning of the co-occurring tope and juvenile smooth hammerhead around the Azores Islands, mid-north Atlantic, based on delta 13C, delta 15N, and delta 34S (CNS) stable isotope analysis of muscle tissue of the sharks and their putative prey species. Overall, isotopic niches of both species indicated a reliance on similar resources throughout the sampled sizes (tope: 35-190; smooth hammerhead 54-159 cm total length), with significant ontogenetic shifts. Topes displayed a gradual shift to higher trophic levels and a more generalist diet with increasing size (increasing delta 15N values and isotopic niche volumes, respectively), whereas smooth hammerhead diet shifted towards prey with lower delta 34S at a constant trophic level and a more specialized diet than tope of comparable body size (decreasing delta 34S and constant delta 15N and delta 13C values, respectively). Our results indicate contrasting ontogenetic shifts in delta 13C and delta 34S along with pronounced differences between niche overlap of life stages pointing to intra- and interspecific niche partitioning of habitat and prey.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-13
    Description: Neomphaloidean gastropods are endemic to chemosynthesis-based ecosystems ranging from hot vents to organic falls, and their diversity and evolutionary history remain poorly understood. In the southwestern Pacific, deep-sea hydrothermal vents on back-arc basins and volcanic arcs are found in three geographically secluded regions: a western region around Manus Basin, an eastern region around North Fiji and Lau Basins, and the intermediate Woodlark Basin where active venting was confirmed only recently, on the 2019 R/V L’Atalante CHUBACARC expedition. Although various lineages of neomphaloidean snails have been detected, typically restricted to one of the three regions, some of these have remained without names. Here, we use integrative taxonomy to describe three of these species: the neomphalid Symmetromphalus mithril sp. nov. from Woodlark Basin and the peltospirids Symmetriapelta becki sp. nov. from the eastern region and Symmetriapelta radiata sp. nov. from Woodlark Basin. A combination of shell sculpture and radular characters allow the morphological separation of these new species from their described congeners. A molecular phylogeny reconstructed from 570 bp of the mitochondrial cytochrome c oxidase subunit I gene confirmed the placement of the three new species in their respective genera and the superfamily Neomphaloidea. The finding of these new gastropods, particularly the ones from the Woodlark Basin, provides insights and implications on the historical role of Woodlark as a dispersing centre, in addition to highlighting the uniqueness of the Woodlark faunal community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-17
    Description: Several species from various zooplankton taxa perform seasonal vertical migrations (SVM) of typically several hundred meters between the surface layer and overwintering depths, particularly in high-latitude regions. We use OPtimality-based PLAnkton (OPPLA) ecosystem model) to simulate SVM behavior in zooplankton in the Labrador Sea. Zooplankton in OPPLA is a generic functional group without life cycle, which facilitates analyzing SVM evolutionary stability and interactions between SVM and the plankton ecosystem. A sensitivity analysis of SVM-related parameters reveals that SVM can amplify the seasonal variations of phytoplankton and zooplankton and enhance the reduction of summer surface nutrient concentrations. SVM is often explained as a strategy to reduce exposure to visual predators during winter. We find that species doing SVM can persist and even dominate the summer-time zooplankton community, even in the presence of Stayers, which have the same traits as the migrators, but do not perform SVM. The advantage of SVM depends strongly on the timing of the seasonal migrations, particularly the day of ascent. The presence of higher (visual) predators tends to suppress the Stayers in our simulations, whereas the SVM strategy can persist in the presence of non-migrating species even without higher predators.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-17
    Description: Background and Aims Dysregulated mineral homeostasis is common in chronic kidney disease (CKD) and associated with bone demineralization and vascular calcification. The balance between bone formation and resorption, which reflect the bone calcium (Ca) balance (BCaB), cannot be determined without bone biopsy which is invasive and not easily repeatable. Recently, we have shown that stable (i.e. non-radioactive) Ca isotopes, 42Ca and 44Ca, can be measured in serum and their ratio (δ44/42Caserum) quantitatively determines net bone gain or loss of Ca. Thus, when bone formation exceeds bone resorption, the net BCaB is positive and δ44/42Caserum is high, and when bone resorption is the predominant process δ44/42Caserum is low compared to age-matched controls. In this study we compared δ44/42Caserum against δ44/42Cabone and arterial biopsy samples (δ44/42Caartery) and the sensitivity of δ44/42Ca in predicting changes in bone histology.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The seismic receiver function (RF) technique is widely used as an economic method to image earth's deep interior in a large number of seismic experiments. P-wave receiver functions (RFs) constrain crustal thickness and average Vp/Vs in the crust by analysis of the Ps phase and multiples (reflected/converted waves) from the Moho. Regional studies often show significant differences between the Moho depth constrained by RF and by reflection/refraction methods. We compare the results from RF and controlled source seismology for the Baikal Rift Zone by calculating 1480 synthetic RFs for a seismic refraction/reflection velocity model and processing them with two common RF techniques [H–κ and Common Conversion Point (CCP) stacking]. We compare the resulting synthetic RF structure with the velocity model, a density model (derived from gravity and the velocity model), and with observed RFs. Our results demonstrate that the use of different frequency filters, the presence of complex phases from sediments and gradual changes in the properties of crustal layers can lead to erroneous interpretation of RFs and incorrect geological interpretations. We suggest that the interpretation of RFs should be combined with other geophysical methods, in particular in complex tectonic regions and that the long-wavelength Bouguer gravity anomaly signal may provide effective calibration for the determination of the correct Moho depth from RF results. We propose and validate a new automated, efficient method for this calibration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The neritic-oceanic squid Illex argentinus supports one of the largest fisheries in the Southwest Atlantic. It is characterized by extensive migrations across the Patagonian Shelf and complex population structure comprising distinct seasonal spawning groups. To address uncertainty as to the demographic independence of these groups that may compromise sustainable management, a multidisciplinary approach was applied integrating statolith ageing with genome-wide single-nucleotide polymorphism (SNP) analysis. To obtain complete coverage of the spawning groups, sampling was carried out at multiple times during the 2020 fishing season and covered a large proportion of the species' range across the Patagonian Shelf. Statolith and microstructure analysis revealed three distinct seasonal spawning groups of winter-, spring-, and summer-hatched individuals. Subgroups were identified within each seasonal group, with statolith microstructure indicating differences in environmental conditions during ontogeny. Analysis of 〉10 000 SNPs reported no evidence of neutral or non-neutral genetic structure among the various groups. These findings indicate that I. argentinus across the Patagonian Shelf belong to one genetic population and a collaborative management strategy involving international stakeholders is required. The connectivity among spawning groups may represent a "bet-hedging" mechanism important for population resilience.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The dynamics of marine systems at decadal scales are notoriously hard to predict—hence references to this timescale as the “grey zone” for ocean prediction. Nevertheless, decadal-scale prediction is a rapidly developing field with an increasing number of applications to help guide ocean stewardship and sustainable use of marine environments. Such predictions can provide industry and managers with information more suited to support planning and management over strategic timeframes, as compared to seasonal forecasts or long-term (century-scale) predictions. The most significant advances in capability for decadal-scale prediction over recent years have been for ocean physics and biogeochemistry, with some notable advances in ecological prediction skill. In this paper, we argue that the process of “lighting the grey zone” by providing improved predictions at decadal scales should also focus on including human dimensions in prediction systems to better meet the needs and priorities of end users. Our paper reviews information needs for decision-making at decadal scales and assesses current capabilities for meeting these needs. We identify key gaps in current capabilities, including the particular challenge of integrating human elements into decadal prediction systems. We then suggest approaches for overcoming these challenges and gaps, highlighting the important role of co-production of tools and scenarios, to build trust and ensure uptake with end users of decadal prediction systems. We also highlight opportunities for combining narratives and quantitative predictions to better incorporate the human dimension in future efforts to light the grey zone of decadal-scale prediction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Post-collisional volcanism contains important clues for understanding the processes that prevail in orogenic belts, including those in the mantle and the uplift and collapse of continents. Here we report new geochronological and geochemical data for a suite of post-collisional Miocene to Pleistocene volcanic rocks from northwest Iran. Four groups of volcanic rocks can be distinguished according to their geochemical and isotopic signatures, including: (1) Miocene depleted lavas with high Nd and Hf but low Pb and Sr isotopic ratios, (2) less depleted lavas with quite variable Pb isotopic composition, (3) lavas with non-radiogenic Nd and Hf isotopic values, but highly radiogenic Sr and Pb isotopic composition, and (4) Pleistocene adakitic rocks with depleted isotopic signatures. The isotopic data reveal that the Miocene rocks are derived from asthenospheric and highly heterogeneous sub-continental lithospheric mantle sources. Evidence suggests that the lithospheric mantle contains recycled upper continental material and is isotopically similar to the enriched mantle two (EMII) end-member. Analysis of Sr-Nd-Pb-Hf-O isotopes in both mineral and rock groundmass, in conjunction with energy-constrained assimilation and fractional crystallization (EC-AFC) numerical modeling, demonstrates that the incorporation of continental crust during magma fractionation via AFC had an insignificant impact on the isotopic composition of the Miocene lavas. Moreover, adakites are the youngest rocks and show a geochemical signature consistent with the partial melting of a young and mafic continental lower crust. Both seismological data and geochemical signatures on these Miocene to Pleistocene volcanic rocks indicate the initiation of asthenospheric upwelling and orogen uplift in the Arabia-Eurasia collision zone, which occurred after slab break-off, following the Neotethyan closure.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-07
    Description: Primary andesitic magmas could be an important component of arc magma genesis and might have played a key role in the advent of continents. Recent studies hypothesized that primary andesitic magmas occur in the oceanic arc, where the crust is thin. The Kermadec arc has the thinnest crust among all the studied oceanic arcs (〈15 km in thickness); however, there are no studies that corroborate the formation of primary andesitic magmas in the arc. The aim of this study is to develop a better understanding of primary andesites in oceanic arcs through the petrology of the Kermadec arc. Here, we present the petrology of volcanic rocks dredged from the Kibblewhite Volcano in the Kermadec arc during the R/V SONNE SO-255 expedition in 2017. Magma types range from andesite to rhyolite at the Kibblewhite Volcano, but basalts dominate at the neighboring cones. This study focuses on magnesian andesites from the northeastern flank of this volcano. The magnesian andesites are nearly aphyric and plagioclase free but contain microphenocrysts of olivine (Fo84–86) and clinopyroxene (Mg# = 81–87). Using olivine addition models, the primary magmas were estimated to contain 55–56 wt % SiO2 and 10–12 wt % MgO, similar to the high-Mg andesites observed in other convergent plate margins, indicating the generation of primary andesitic magma beneath the Kibblewhite Volcano. The trace element and isotopic characteristics of the magnesian andesites are typical of volcanic rocks from the Kermadec arc. This indicates that the subduction of a young plate or melting of a pyroxenitic source is not necessary to produce magnesian andesites. Instead, we propose that the magnesian andesites were produced by the direct melting of the uppermost mantle of the Kermadec arc. The thin crust of the Kermadec arc should yield low-pressure conditions in the uppermost mantle, allowing the sub-arc mantle to generate primary andesitic melts. This study supports the hypothesis that primary andesitic magmas generate in the arc where the crust is thin and provides a new insight into the magma genesis of the Kermadec arc.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-07
    Description: Abundance, biomass and respiration rates of dominant medium- to larger-sized copepod species (ML class) from the upwelling system off Peru (8.5-16°S) were determined along with their carbon ingestion and egestion rates. Small copepods (S class) were included for comparisons of community rates. Overall, abundance/biomass was highest in the upper 50 m and decreased with depth and thus also community ingestion and egestion. Ingestion of the ML class (0-50 m) in shelf regions (14-515 mg C m -2 d -1 ) was lower in the south compared to the north and central study areas, while their offshore ingestion (11-502 mg C m -2 d -1 ) was comparable across regions (8.5-16°S). Ingestion rates (0-50 m) of the S class were in a range similar to those of the ML class in shelf regions (100-417 mg C m -2 d -1 ) but were higher offshore (177-932 mg C m -2 d -1 ). Calanus chilensis and the S class contributed most to total ingestion in the north, while in the south, Centropages brachiatus had the highest community ingestion aside from the S class. Egestion varied from 3-155 mg C m -2 d -1 for the ML class and 30-280 mg C m -2 d -1 for the S class. The high community rates highlight the crucial role of both size classes for carbon budgets in the northern Humboldt Current System off Peru and indicate that the ML class may enhance passive vertical carbon flux, whereas the S class may support carbon remineralization rates in surface waters.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-07
    Description: Mitochondrial genomes (mitogenomes) of flowering plants are composed of multiple chromosomes. Recombination within and between the mitochondrial chromosomes may generate diverse DNA molecules termed isoforms. The isoform copy number and composition can be dynamic within and among individual plants due to uneven replication and homologous recombination. Nonetheless, despite their functional importance, the level of mitogenome conservation within species remains understudied. Whether the ontogenetic variation translates to evolution of mitogenome composition over generations is currently unknown. Here we show that the mitogenome composition of the seagrass Zostera marina is conserved among worldwide populations that diverged ca. 350,000 years ago. Using long-read sequencing, we characterized the Z. marina mitochondrial genome and inferred the repertoire of recombination-induced configurations. To characterize the mitochondrial genome architecture worldwide and study its evolution, we examined the mitogenome in Z. marina meristematic region sampled in 16 populations from the Pacific and Atlantic oceans. Our results reveal a striking similarity in the isoform relative copy number, indicating a high conservation of the mitogenome composition among distantly related populations and within the plant germline, despite a notable variability during individual ontogenesis. Our study supplies a link between observations of dynamic mitogenomes at the level of plant individuals and long-term mitochondrial evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-07
    Description: Marine algae are central to global carbon fixation and their productivity is dictated largely by resource availability. Reduced nutrient availability is predicted for vast oceanic regions as an outcome of climate change, however there is much to learn regarding response mechanisms of the tiny picoplankton that thrive in these environments, especially eukaryotic phytoplankton. Here, we investigate responses of the picoeukaryote Micromonas commoda, a green alga found throughout subtropical and tropical oceans. Under shifting phosphate (P) availability scenarios, transcriptomic analyses revealed altered expression of transfer RNA (tRNA) modification enzymes and biased codon usage of transcripts more abundant during P-limiting versus P-replete conditions, consistent with the role of tRNA modifications in regulating codon recognition. To associate the observed shift in expression of the tRNA modification enzyme complement with the tRNAs encoded by M. commoda, we also determined the tRNA repertoire of this alga revealing potential targets of the modification enzymes. Codon usage bias was particularly pronounced in transcripts encoding proteins with direct roles in managing P-limitation and photosystem-associated proteins that have ill-characterized putative functions in “light stress”. The observed codon usage bias corresponds to a proposed stress response mechanism in which the interplay between stress-induced changes in tRNA modifications and skewed codon usage in certain essential response genes drives preferential translation of the encoded proteins. Collectively, we expose a potential underlying mechanism for achieving growth under enhanced nutrient limitation, that extends beyond the catalog of up- or down-regulated protein-encoding genes, to the cell biological controls that underpin acclimation to changing environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-07
    Description: Omic BON is a thematic Biodiversity Observation Network under the Group on Earth Observations Biodiversity Observation Network (GEO BON), focused on coordinating the observation of biomolecules in organisms and the environment. Our founding partners include representatives from national, regional, and global observing systems; standards organizations; and data and sample management infrastructures. By coordinating observing strategies, methods, and data flows, Omic BON will facilitate the co-creation of a global omics meta-observatory to generate actionable knowledge. Here, we present key elements of Omic BON's founding charter and first activities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-07
    Description: Young grapevines (Vitis vinifera) suffer and eventually can die from the crown gall disease caused by the plant pathogen Allorhizobium vitis (Rhizobiaceae). Virulent members of A. vitis harbor a tumor-inducing plasmid and induce formation of crown galls due to the oncogenes encoded on the transfer DNA. The expression of oncogenes in transformed host cells induces unregulated cell proliferation and metabolic and physiological changes. The crown gall produces opines uncommon to plants, which provide an important nutrient source for A. vitis harboring opine catabolism enzymes. Crown galls host a distinct bacterial community, and the mechanisms establishing a crown gall–specific bacterial community are currently unknown. Thus, we were interested in whether genes homologous to those of the tumor-inducing plasmid coexist in the genomes of the microbial species coexisting in crown galls. We isolated 8 bacterial strains from grapevine crown galls, sequenced their genomes, and tested their virulence and opine utilization ability in bioassays. In addition, the 8 genome sequences were compared with 34 published bacterial genomes, including closely related plant-associated bacteria not from crown galls. Homologous genes for virulence and opine anabolism were only present in the virulent Rhizobiaceae. In contrast, homologs of the opine catabolism genes were present in all strains including the nonvirulent members of the Rhizobiaceae and non-Rhizobiaceae. Gene neighborhood and sequence identity of the opine degradation cluster of virulent and nonvirulent strains together with the results of the opine utilization assay support the important role of opine utilization for cocolonization in crown galls, thereby shaping the crown gall community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-07
    Description: Eutrophication in marine waters is traditionally assessed by checking if nutrients, algal biomass and oxygen are below/above a given threshold. However, increased biomass, nutrient concentrations and oxygen demand do not lead to undesirable environmental effects if the flow of carbon/energy from primary producers toward high trophic levels is consistently preserved. Consequently, traditional indicators might provide a misleading assessment of the eutrophication risk. To avoid this, we propose to evaluate eutrophication by using a new index based on plankton trophic fluxes instead of biogeochemical concentrations. A preliminary, model-based, assessment suggests that this approach might give a substantially different picture of the eutrophication status of our seas, with potential consequences on marine ecosystem management. Given the difficulties to measure trophic fluxes in the field, the use of numerical simulations is recommended although the uncertainty associated with biogeochemical models inevitably affects the reliability of the index. However, given the effort currently in place to develop refined numerical tools describing the marine environment (Ocean Digital Twins), a reliable, model-based, eutrophication index could be operational in the near future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-07
    Description: Macroalgal (seaweed) genomic resources are generally lacking as compared to other eukaryotic taxa, and this is particularly true in the red algae (Rhodophyta). Understanding red algal genomes is critical to understanding eukaryotic evolution given that red algal genes are spread across eukaryotic lineages from secondary endosymbiosis and red algae diverged early in the Archaeplastids. The Gracilariales is a highly diverse and widely distributed order including species that can serve as ecosystem engineers in intertidal habitats and several notorious introduced species. The genus Gracilaria is cultivated worldwide, in part for its production of agar and other bioactive compounds with downstream pharmaceutical and industrial applications. This genus is also emerging as a model for algal evolutionary ecology. Here, we report new whole genome assemblies for two species (G. chilensis and G. gracilis), a draft genome assembly of G. caudata, and genome annotation of the previously published G. vermiculophylla genome. To facilitate accessibility and comparative analysis, we integrated these data in a newly created web-based portal dedicated to red algal genomics (https://rhodoexplorer.sb-roscoff.fr). These genomes will provide a resource for understanding algal biology and, more broadly, eukaryotic evolution.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-07
    Description: Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-07
    Description: The development and physiology of herring larvae were monitored for individuals reared in control and combined warming-acidification crossed with different food quality treatments. The experiment revealed that warming and acidification triggers a stress response at the molecular level and decrease herring larvae size-at-stage. Global change puts coastal systems under pressure, affecting the ecology and physiology of marine organisms. In particular, fish larvae are sensitive to environmental conditions, and their fitness is an important determinant of fish stock recruitment and fluctuations. To assess the combined effects of warming, acidification and change in food quality, herring larvae were reared in a control scenario (11 & DEG;C*pH 8.0) and a scenario predicted for 2100 (14 & DEG;C*pH 7.6) crossed with two feeding treatments (enriched in phosphorus and docosahexaenoic acid or not). The experiment lasted from hatching to the beginning of the post-flexion stage (i.e. all fins present) corresponding to 47 days post-hatch (dph) at 14 & DEG;C and 60 dph at 11 & DEG;C. Length and stage development were monitored throughout the experiment and the expression of genes involved in growth, metabolic pathways and stress responses were analysed for stage 3 larvae (flexion of the notochord). Although the growth rate was unaffected by acidification and temperature changes, the development was accelerated in the 2100 scenario, where larvae reached the last developmental stage at a smaller size (-8%). We observed no mortality related to treatments and no effect of food quality on the development of herring larvae. However, gene expression analyses revealed that heat shock transcripts expression was higher in the warmer and more acidic treatment. Our findings suggest that the predicted warming and acidification environment are stressful for herring larvae, inducing a decrease in size-at-stage at a precise period of ontogeny. This could either negatively affect survival and recruitment via the extension of the predation window or positively increase the survival by reducing the larval stage duration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-02-14
    Description: Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of & SIM;1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-03-25
    Description: The Humboldt Upwelling System (HUS) supports high levels of primary production and has the largest single-stock fishery worldwide. The high fish production is suggested to be related to high trophic transfer efficiency in the HUS. Mucous-mesh grazers (pelagic tunicates and gastropods) are mostly of low nutritious value and might reduce trophic transfer efficiency when they are locally abundant. Unfortunately, little is known about the spatial dynamics of mucous-mesh grazers from Peruvian waters, limiting our understanding of their potential ecological role(s). We provide a spatial assessment of mucous-mesh grazer abundance from the Peruvian shelf in austral summer 2018/2019 along six cross-shelf transects spanning from 8.5 to 16° S latitude. The community was dominated by appendicularians and doliolids. Salps occurred in high abundance but infrequently and pelagic gastropods were mostly restricted to the North. At low latitudes, the abundance of mucous-mesh grazers was higher than some key species of crustacean mesozooplankton. Transects in this region had stronger Ekman-transport, higher temperature, lower surface turbidity and a broader oxygenated upper water layer compared to higher-latitude transects. Small-scale lateral intrusions of upwelled water were potentially associated with high abundances of doliolids at specific stations. The high abundance and estimated ingestion rates of mucous-mesh grazers in the northern HUS suggest that a large flux of carbon from lower trophic levels is shunted to tunicates in recently upwelled water masses. The data provide important information on the ecology of mucous mesh grazers and stress the relevance to increase research effort on investigating their functioning in upwelling systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-02-07
    Description: We analyse the consistency of the delay time data in the most recent version of the ISC-EHB bulletin published by the International Seismological Centre covering the years 1964–2018. Considering that the delays are influenced by the lateral heterogeneity in the Earth’s mantle, we construct a tomographic matrix. We use singular value decomposition of the tomographic matrix for 19 707 dense clusters of earthquakes to compute objective estimates of the standard error from data that project into the null space and should be zero if there were no errors. Using a robust initial estimate of the standard deviation of the clustered delay times, we remove a small fraction of outliers before calculating the ultimate errors. We found that the errors depend on the type of body wave, depth of the earthquake (crust or mantle) and the number of decimals with which the arrival time was reported. Using these parameters, we distinguish 45 different classes of delay times for 11 different types of body waves. The errors of each class so divided generally follow a distribution that is approximately normal with a mean that ranges from 0.32 s for PKPbc waves from mantle earthquakes, to 2.82 s for S waves from shallow earthquakes bottoming in the upper mantle. The widths of the distributions of the errors themselves are small enough to serve in formal statistical quantification of the quality of fit in tomographic experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-02-07
    Description: The blue mussel (Mytilus species complex) is an important ecosystem engineer, and salinity can be a major abiotic driver of mussel functioning in coastal ecosystems. However, little is known about the interactive effects of abiotic drivers and trematode infection. This study investigated the combined effects of salinity and Himasthla elongata and Renicola roscovita metacercarial infections on the filtration capacity, growth, and condition of M. edulis from the Baltic Sea. In a laboratory experiment, groups of infected and uninfected mussels were exposed to a wide range of salinities (6−30, in steps of 3) for 1 mo. Shell growth was found to be positively correlated with salinity and optimal at 18−24 at the end of the experiment, imposed by constraints in shell calcification under lower salinities. Mussel shell growth was not affected by H. elongata infection. While salinity had only a minor effect on tissue dry weight, infected mussels had a significantly lower tissue dry weight than uninfected mussels. Most interestingly, the combination of salinity and trematode infections negatively affected the mussels’ condition indices at lower salinity levels (6 and 9), suggesting that trematode infections are more detrimental to mussels when combined with freshening. A significant positive effect of salinity on mussel filtration was found, with an initial optimum at salinity 18 shifting to 18−24 by the end of the experiment. These findings indicate that salinity and parasite infections act as synergistic stressors for mussels, and enhance the understanding of potential future ecosystem shifts under climate change-induced freshening in coastal waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-02-07
    Description: In the deep sea, benthic communities largely depend on organic material from the overlying water column for food. The remains of organisms on the seafloor (food falls) create areas of organic enrichment that attract scavengers. The scavenging rates and communities of food falls of medium-sized squid, fish and jellyfish (1-100 cm) are poorly known. To test our hypothesis that scavenging responses are specific for different food falls, we deployed camera landers baited with squid, jellyfish and fish for 9 to 25 h at 1360 to 1440 m in the southern Norwegian Sea. Image analysis of 8 deployments showed rapid food fall consumption (20.3 +/- 1.4 [SD] to 31.6 +/- 3.7 g h(-1)) by an amphipod-dominated scavenging community that was significantly different between the food fall types. Fish and squid carcasses were mostly attended by amphipods of the genus Eurythenes. Smaller unidentified amphipods dominated the jellyfish experiments together with brittle stars (cf. Ophiocten gracilis) and decapod shrimps (cf. Bythocaris spp.); the latter only occurred on jellyfish carcasses. The removal time for jellyfish (similar to 17 h) was almost twice as long as that for squid and fish (9-10 h). The maximum scavenger abundance was significantly higher on fish carcasses than on jellyfish and squid. The times at which abundances peaked were similar for jellyfish and fish (after 8-9 h) but significantly sooner for squid (3.00 +/- 0.35 h). Our results, although based on a small number of experiments, demonstrate differences in scavenging responses between food fall species, suggesting tight coupling between the diversity and ecology of benthic scavenging communities in the Norwegian Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-02-07
    Description: In this work, we focused on the functional characterization of unicellular eukaryotic assemblages that had previously been taxonomically characterized by 18S rRNA gene amplicon sequencing in a eutrophic coastal site with marked plankton blooms. Biological traits of different functional groups were assigned to the retrieved operational taxonomic units (OTUs). The traits included size, trophic strategy, the presence of spines, mucilage production, colony formation, motility, spore formation, and potential harmfulness. Functional diversity indices were calculated and compared to analogous taxonomic diversity indices, indicating a strong positive coupling of richness and dominance and a negative coupling of evenness, even at a low taxonomic resolution (at the family/genus/species level). Biological trait trade-offs and co-occurrences of specific traits were evident during the succession of plankton blooms. The trophic strategy dominating in the assemblages frequently alternated between autotrophy, mixotrophy, and a few recorded cases of parasitism. Given that there was no indication of nutrient limitation, we suggest that biotic pressures force marine eukaryotes to exploit narrow niches by adopting specific strategies/traits that favour their survival. These traits act by increasing resource acquisition potential and via predator avoidance. This leads to a unique succession of blooms in the system, characterized by adaptations of the bloom taxa that are a direct response to the preceding assemblage.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-02-07
    Description: Recent advancements in telemetry have redefined our ability to quantify the fine-scale movements of aquatic animals and derive a mechanistic understanding of movement behaviours. The VEMCO Positioning System (VPS) is a fine-scale commercial positioning system used to generate highly accurate semi-continuous animal tracks. To date, VPS has been used to study 86 species, spanning 25 taxonomic orders. It has provided fine-scale movement data for critical life stages, from tracking day-old turtle hatchlings on their first foray into the sea to adult fish returning to natal rivers to spawn. These high-resolution tracking data have improved our understanding of the movements of species across environmental gradients within rivers, estuaries and oceans, including species of conservation concern and commercial value. Existing VPS applications range from quantifying spatio-temporal aspects of animal space use and key aspects of ecology, such as rate of movement and resource use, to higher-order processes such as interactions among individuals and species. Analytical approaches have seen a move towards techniques that incorporate error frameworks such as autocorrelated kernel density estimators for home range calculations. VPS technology has the potential to bridge gaps in our fundamental understanding of fine-scale ecological and physiological processes for single and multi-species studies under natural conditions. Through a systematic review of the VPS literature, we focus on 4 principle topics: the diversity of species studied, current ecological and ecophysiological applications and data analysis techniques, and we highlight future frontiers of exploration.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-02-07
    Description: Juvenile sea turtles can disperse thousands of kilometers from nesting beaches to oceanic development habitats, aided by ocean currents. In the North Atlantic, turtles dispersing from American beaches risk being advected out of warm nursery grounds in the North Atlantic Gyre into lethally cold Northern European waters (e.g. around the United Kingdom). We used an ocean model simulation to compare simulated numbers of turtles that were advected to cold waters around the UK with observed numbers of turtles reported in the same area over ~5 decades. Rates of virtual turtles predicted to encounter lethal temperatures (≤10 and 15°C, mean 19% ± 2.7) and reach the UK were consistently low (median 0.83%, lower quartile 0.67%, upper quartile 1.02%), whereas there was high inter-annual variability in the numbers of dead or critically ill turtles reported in the UK. Generalized additive models suggest inter-annual variability in the North Atlantic Oscillation (NAO) index to be a good indicator of annual numbers of turtle strandings reported in the UK. We demonstrate that NAO variability drives variability in the dispersion scenarios of juvenile turtles from key nesting regions into the North Atlantic. Coastal effects, such as the number of storms and mean sea surface temperatures in the UK were significant but weak predictors, with a weak effect on turtle strandings. Further understanding how changing environmental conditions such as NAO variability and storms affect the fate of juvenile turtles is vital for understanding the distribution and population dynamics of sea turtles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-02-07
    Description: Mothers impact the survival and performance of their offspring through the resources they provision, and the degree of maternal investment in an individual offspring can be broadly estimated by egg size for organisms that lack parental care. Animals may also actively maintain symbiotic partnerships with microorganisms through the germ line, but whether microbes are a fundamental component of maternal provisioning is an untested hypothesis in evolutionary symbiosis. We present a preliminary test of this by comparing the egg-associated microbiota of ten sea urchin species with ecological factors known to influence egg size. We found that the microbiota associated with sea urchin eggs had a phylogenetic signal in both composition and richness, which varied between years but not between individuals or within a clutch. Moreover, we found a negative correlation between microbiome richness and taxonomic dominance, and that community diversity covaried with egg size and energetic content but not with pelagic larval duration or latitude. These data suggest that there are multiple parallels between the ecological factors that govern changes in egg size and microbiome composition and diversity, implying that microbial symbionts may be another constituent potentially provided by the mother.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-02-23
    Description: Volcano seismology is an essential tool for monitoring volcanic processes in the advent and during eruptions. A variety of seismic signals can be recorded at volcanoes, of which some are thought to be related to the migration of fluids which is of primary importance for the anticipation of imminent eruptions. We investigate the volcanic crises at Villarrica volcano in 2015 and report on a newly discovered very-long-period (VLP) signal that accompanies phases of periodic long period (LP) signal burst. Despite their low amplitude emergent character, we can locate the source region of the 1 Hz LP signals to the close vicinity of the volcano using a network-based correlation method. The source of the VLP signal with a period of about 30–100 s appears to locate in the vicinity of two stations a few kilometres from the summit. Both stations record very similar VLP waveforms that are correlated with the envelope of the LP bursts. A shallow magma reservoir was inferred by Contreras from surface deformation as the source of inflation following the eruption in 2015. Cyclic volume changes of 6 m3 in this reservoir at 3 km depth can explain the observed amplitudes of the vertical VLP signal. We propose that the LP signal is generated by the migration of gas or gas-rich magma that is periodically released from the inflating reservoir through a non-linear valve structure which modulates the flux, and thereby causes bursts of flow-related LP signals and pressure changes observed as VLP deformation. Our model predicts that the correlated occurrence of LP bursts and VLP surface motion depends on the intensity of the fluid flux. A weaker flux of fluids may not exceed the opening pressure of valve structure, and higher rates might maintain pressure above the closing pressure. In both cases, the VLP signal vanishes. Our observation provides constrains for models of fluid transport inside volcanoes. At Villarrica the VLP signal, and its relation to the LP activity, reveal additional information about fluxes in the magmatic reservoir that might aide forecasting of volcanic activity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-02-07
    Description: Full waveform inversion (FWI) is a data-fitting technique capable of generating high-resolution velocity models with a resolution down to half the seismic wavelength. FWI is applied typically to densely sampled seismic data. In this study, we applied FWI to 3D wide-angle seismic data acquired using sparsely spaced ocean bottom seismometers (OBSs) from the Deep Galicia Margin west of Iberia. Our dataset samples the S-reflector, a low-angle detachment present in this area. Here we highlight differences between 2D, 2.5D and 3D-FWI performances using a real sparsely spaced dataset. We performed 3D FWI in the time domain and compared the results with 2D and 2.5D FWI results from a profile through the 3D model. When overlaid on multichannel seismic images, the 3D FWI results constrain better the complex faulting within the pre- and syn-rift sediments and crystalline crust compared to the 2D result. Furthermore, we estimate variable serpentinisation of the upper mantle below the S-reflector along the profile using 3D FWI, reaching a maximum of 45 per cent. Differences in the data residuals of the 2D, 2.5D and 3D inversions suggest that 2D inversion can be prone to overfitting when using a sparse dataset. To validate our results, we performed tests to recover the anomalies introduced by the inversions in the final models using synthetic datasets. Based on our comparison of the velocity models, we conclude that the use of 3D data can partially mitigate the problem of receiver sparsity in FWI.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-02-07
    Description: A large-volume mesocosm-based nutrient perturbation experiment was conducted off the island of Hawai‘I, USA, to investigate the response of surface ocean phytoplankton communities to nutrient addition of macronutrients, trace metals, and vitamins and to assess the feasibility of using mesocosms in the open ocean. Three free-drifting mesocosms (~60 m3) were deployed: one mesocosm served as a control (no nutrient amendments), a second (termed +P) was amended with nitrate (N), silicate (Si), phosphate (P) and a trace metal + vitamin mixture, and a third (termed -P) was amended with N, Si, and a trace metal + vitamin mixture but no P. These mesocosms were unreplicated due to logistical constraints and hence differences between treatments are qualitative. After 6 d, the largest response of the phytoplankton community was observed in the +P mesocosm where chlorophyll a (chl a) and 14C-based primary production were 2–3× greater than the -P mesocosm and 4–6× greater than the control. Comparison between mesocosm and ‘microcosm’ incubations (20 l) revealed differences in the magnitude and timing of production and marked differences in community structure with a reduced response of diatoms in microcosm treatments. Notably, we also observed pronounced declines in Prochlorococcus populations in all treatments: although these were greater in microcosms (up to 99%). Overall, this study confirmed the feasibility of deploying free-drifting mesocosms in the open ocean as a potentially powerful tool to investigate ecological impacts of nutrient perturbations and constitutes a valuable first step towards scaling plankton manipulation experiments.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-02-07
    Description: The trophic ecology of mixotrophic, zooxanthellate jellyfishes potentially spans a wide spectrum between autotrophy and heterotrophy. However, their degree of trophic plasticity along this spectrum is not well known. To better characterize their trophic ecology, we sampled the zooxanthellate medusa Mastigias papua in contrasting environments and sizes in Palau (Micronesia). We characterized their trophic ecology using isotopic (bulk δ13C and δ15N), elemental (C:N ratios), and fatty acid compositions. The different trophic indicators were correlated or anti-correlated as expected (Pearson’s correlation coefficient, rP 〉 0.5 or 〈 -0.5 in 91.1% of cases, p 〈 0.05), indicating good agreement. The sampled M. papua were ordered in a trophic spectrum between autotrophy and heterotrophy (supported by decreasing δ13C, C:N, proportion of neutral lipid fatty acids (NLFA:TLFA), n-3:n-6 and increasing δ15N, eicosapentaenoic acid to docosahexaenoic acid ratio (EPA:DHA)). This trophic spectrum was mostly driven by sampling location with little influence of medusa size. Moreover, previous observations have shown that in a given location, the trophic ecology of M. papua can change over time. Thus, the positions on the trophic spectrum of the populations sampled here are not fixed, suggesting high trophic plasticity in M. papua. The heterotrophic end of the trophic spectrum was occupied by non-symbiotic M. papua, whereas the literature indicates that the autotrophic end of the spectrum corresponds to dominant autotrophy, where more than 100% of the carbon requirement is obtained by photosynthesis. Such high trophic plasticity has critical implications for the trophic ecology and blooming ability of zooxanthellate jellyfishes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-02-07
    Description: The Asian shore crab Hemigrapsus takanoi, native to the northwest Pacific Ocean, was recently discovered in Kiel Fjord (southwestern Baltic Sea). In laboratory experiments, we tested the salinity tolerance of H. takanoi across 8 levels (0 to 35) and across 3 life history stages (larvae, juveniles and adults) to assess its potential to invade the brackish Baltic Sea. Larval development at different salinities was monitored from hatching to the megalopa stage, while survival and feeding of juveniles and adults were assessed over 17 d. Larvae of H. takanoi were able to complete their development to megalopa at salinities 〉= 20 and the time needed after hatch to reach this stage did not differ between salinities of 20, 25, 30 and 35. At a salinity of 15, larvae still reached the last zoea stage (zoea V), but development to the megalopa stage was not completed. All juveniles and adults survived at salinities from 5 to 35. Feeding rates of juveniles increased with increasing salinity across the entire salinity range. However, feeding rates of adults reached their maximum between salinities of 15 and 35. Our results indicate that both juveniles and adults of H. takanoi are euryhaline and can tolerate a wide range of salinities, at least for the time period tested (2 wk). However, larval development was impaired at salinities lower than 20, which may prevent the spread of H. takanoi into the Baltic Proper.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-02-07
    Description: Probing seismic anisotropy of the lithosphere provides valuable clues on the fabric of rocks. We present a 3-D probabilistic model of shear wave velocity and radial anisotropy of the crust and uppermost mantle of Europe, focusing on the mountain belts of the Alps and Apennines. The model is built from Love and Rayleigh dispersion curves in the period range 5–149 s. Data are extracted from seismic ambient noise recorded at 1521 broad-band stations, including the AlpArray network. The dispersion curves are first combined in a linearized least squares inversion to obtain 2-D maps of group velocity at each period. Love and Rayleigh maps are then jointly inverted at depth for shear wave velocity and radial anisotropy using a Bayesian Monte Carlo scheme that accounts for the trade-off between radial anisotropy and horizontal layering. The isotropic part of our model is consistent with previous studies. However, our anisotropy maps differ from previous large scale studies that suggested the presence of significant radial anisotropy everywhere in the European crust and shallow upper mantle. We observe instead that radial anisotropy is mostly localized beneath the Apennines while most of the remaining European crust and shallow upper mantle is isotropic. We attribute this difference to trade-offs between radial anisotropy and thin (hectometric) layering in previous studies based on least-squares inversions and long period data (〉30 s). In contrast, our approach involves a massive data set of short period measurements and a Bayesian inversion that accounts for thin layering. The positive radial anisotropy (VSH 〉 VSV) observed in the lower crust of the Apennines cannot result from thin layering. We rather attribute it to ductile horizontal flow in response to the recent and present-day extension in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-02-07
    Description: Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the full waveform inversion is a non-linear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely non-linear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a non-linear method should be used. We propose to solve this strong non-linear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is idealy parameterized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity-depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from travel time tomography and is kept unchanged during inversion; the 1-D model parameterization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity-depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km/s in the lower crust to 8 km/s of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-02-07
    Description: Understanding the underlying ecological factors that affect the distribution patterns of organisms is vital for their conservation. Cephalopods such as giant warty squids Moroteuthopsis longimana are important in the diets of marine predators, including grey-headed albatrosses Thalassarche chrysostoma, yet our understanding of their habitat and trophic ecology remains limited. We investigated the habitat and trophic niche utilised by M. longimana through the delta C-13 and delta N-15 profiles captured in their beaks. M. longimana beaks were collected around grey-headed albatross nests at the Prince Edward Islands during 2004 and 2013 (n = 40 beaks). The results showed distinctly Antarctic distributions (delta C-13 = -24.0 +/- 1.0 parts per thousand, mean +/- SD) for M. longimana, consistent with albatrosses foraging at the Southwest Indian Ridge, as opposed to broader foraging zones utilised by albatrosses from Iles Crozet and Iles Kerguelen. Slightly lower delta N-15 values (5.4 +/- 0.7 parts per thousand) were found compared to other islands in the Indian Sector of the Southern Ocean, which may indicate more crustaceans in the squid diets. Sequential sampling along the lateral walls of individual beaks (n = 4) revealed ontogenetic shifts in delta C-13 and delta N-15 values, but individual variation in these shifts requires further investigation.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-02-07
    Description: The maraena whitefish Coregonus maraena is a threatened anadromous species in the North Sea, which in the past was decimated to near extinction. Since the late 1980s, several re-establishment programs have been implemented in rivers draining into the North Sea, but the scientific basis for sustainable conservation measures is often lacking, since little is known about the biology of this species. In this study, otolith microchemistry of fish ranging from 24.6 to 58.4 cm in total length (median 31.3 cm, SD 8.4 cm) was used to characterize the migration behavior of a reintroduced population of maraena whitefish from the River Elbe, Germany. Our analyses revealed the presence of 3 different migration patterns: (1) one-time migration into high-salinity habitat (North Sea) within the first year of life (29.6%), (2) multiple migrations between lowland high-salinity habitats starting in the first year of life (14.8%) and (3) permanent residency within low-salinity habitats, a pattern displayed by the majority (55.6%) of sampled individuals. Not only do these results reveal differential migration behavior, but they also indicate that permanent river residency is common in the River Elbe population of C. maraena. The role of the Elbe as both a feeding and a spawning habitat should thus be considered more explicitly in current conservation measures to support recovery of this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-02-07
    Description: To constrain seismic anisotropy under and around the Alps in Europe, we study SKS shear wave splitting from the region densely covered by the AlpArray seismic network. We apply a technique based on measuring the splitting intensity, constraining well both the fast orientation and the splitting delay. Four years of teleseismic earthquake data were processed, from 723 temporary and permanent broad-band stations of the AlpArray deployment including ocean-bottom seismometers, providing a spatial coverage that is unprecedented. The technique is applied automatically (without human intervention), and it thus provides a reproducible image of anisotropic structure in and around the Alpine region. As in earlier studies, we observe a coherent rotation of fast axes in the western part of the Alpine chain, and a region of homogeneous fast orientation in the Central Alps. The spatial variation of splitting delay times is particularly interesting though. On one hand, there is a clear positive correlation with Alpine topography, suggesting that part of the seismic anisotropy (deformation) is caused by the Alpine orogeny. On the other hand, anisotropic strength around the mountain chain shows a distinct contrast between the Western and Eastern Alps. This difference is best explained by the more active mantle flow around the Western Alps. The new observational constraints, especially the splitting delay, provide new information on Alpine geodynamics.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-04-19
    Description: Understanding the behavioural ecology of endangered taxa can inform conservation strategies. The activity budgets of the loggerhead turtle Caretta caretta are still poorly understood because many tracking methods show only horizontal displacement and ignore dives and associated behaviours. However, time-depth recorders have enabled researchers to identify flat, U-shaped dives (or type 1a dives) and these are conventionally labelled as resting dives on the seabed because they involve no vertical displacement of the animal. Video- and acceleration-based studies have demonstrated this is not always true. Focusing on sea turtles nesting on the Cabo Verde archipelago, we describe a new metric derived from magnetometer data, absolute angular velocity, that integrates indices of angular rotation in the horizontal plane to infer activity. Using this metric, we evaluated the variation in putative resting behaviours during the bottom phase of type 1a dives for 5 individuals over 13 to 17 d at sea during a single inter-nesting interval (over 75 turtle d in total). We defined absolute resting within the bottom phase of type 1a dives as periods with no discernible acceleration or angular movement. Whilst absolute resting constituted a significant proportion of each turtle’s time budget for this 1a dive type, turtles allocated 16−38% of their bottom time to activity, with many dives being episodic, comprised of intermittent bouts of rest and rotational activity. This implies that previously considered resting behaviours are complex and need to be accounted for in energy budgets, particularly since energy budgets may impact conservation strategies. © The authors 2021. Open Access under Creative Commons by Attribution Licence. Use, distribution and reproduction are unrestricted. Authors and original publication must be credited
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Oxford Research Encyclopedia of Climate Science. Oxford University Press, pp. 1-51. ISBN 9780190228620
    Publication Date: 2021-02-17
    Description: In this article, the concepts and background of regional climate modeling of the future Baltic Sea are summarized and state-of-the-art projections, climate change impact studies, and challenges are discussed. The focus is on projected oceanographic changes in future climate. However, as these changes may have a significant impact on biogeochemical cycling, nutrient load scenario simulations in future climates are briefly discussed as well. The Baltic Sea is special compared to other coastal seas as it is a tideless, semi-enclosed sea with large freshwater and nutrient supply from a partly heavily populated catchment area and a long response time of about 30 years, and as it is, in the early 21st century, warming faster than any other coastal sea in the world. Hence, policymakers request the development of nutrient load abatement strategies in future climate. For this purpose, large ensembles of coupled climate–environmental scenario simulations based upon high-resolution circulation models were developed to estimate changes in water temperature, salinity, sea-ice cover, sea level, oxygen, nutrient, and phytoplankton concentrations, and water transparency, together with uncertainty ranges. Uncertainties in scenario simulations of the Baltic Sea are considerable. Sources of uncertainties are global and regional climate model biases, natural variability, and unknown greenhouse gas emission and nutrient load scenarios. Unknown early 21st-century and future bioavailable nutrient loads from land and atmosphere and the experimental setup of the dynamical downscaling technique are perhaps the largest sources of uncertainties for marine biogeochemistry projections. The high uncertainties might potentially be reducible through investments in new multi-model ensemble simulations that are built on better experimental setups, improved models, and more plausible nutrient loads. The development of community models for the Baltic Sea region with improved performance and common coordinated experiments of scenario simulations is recommended.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-01-07
    Description: Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allows them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter, and include precursors to climate active compounds (e.g., dimethyl sulfide [DMS]), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggests different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-02-08
    Description: Deep-towed geophysical surveys require precise knowledge of navigational parameters such as instrument position and orientation because navigational uncertainties reflect in the data and therefore in the inferred geophysical properties of the subseafloor. We address this issue for the case of electrical conductivity inferred from controlled source electromagnetic data. We show that the data error is laterally variable due to irregular motion during deep towing, but also due to lateral variations in conductivity, including those resulting from topography. To address this variability and quantify the data error prior to inversion, we propose a 2-D perturbation study. Our workflow enables stable and geologically reliable results for multicomponent and multifrequency inversions. An error estimation workflow is presented, which comprises the assessment of navigational uncertainties, perturbation of navigational parameters, and forward modelling of electric field amplitudes for a homogeneous and then a heterogeneous subseafloor conductivity model. Some navigational uncertainties are estimated from variations of direct measurements. Other navigational parameters required for inversion are derived from the measured quantities and their error is calculated by means of error propagation. Some navigational parameters show direct correlation with the measured electric fields. For example, the antenna dip correlates with the vertical electric field and the depth correlates with the horizontal electric field. For the perturbation study each standard deviation is added to the navigational parameters. Forward models are run for each perturbation. Amplitude deviations are summed in quadrature with the stacking error for a total, laterally varying, data error. The error estimation is repeated for a heterogeneous subseafloor model due to the large conductivity range (several orders of magnitude), which affects the forward model. The approach enables us to utilize data from several components (multiple electric fields, frequencies and receivers) in the inversion to constrain the final model and reduce ambiguity. The final model is geologically reasonable, in this case enabling the identification of conductive metal sulphide deposits on the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-02-08
    Description: Cape anchovy Engraulis encrasicolus is an ecologically and economically important pelagic fish species occurring along the coast of South Africa. A recent eastward shift in Cape anchovy distribution indicates that environmental conditions are becoming more favorable for the species on the east coast. This shift is particularly important in the sheltered Algoa Bay region, a nursery area for fish larvae. However, the relatively low productivity of the Agulhas Current Large Marine Ecosystem on the eastern coast of South Africa may result in an anchovy population in poorer nutritional condition and with slower growth rates than the west coast population. Using otolith and nucleic acid analyses, the growth rates of anchovy larvae from the western and southeastern coasts of South Africa were compared. The otolith analysis results indicated that, at any given age, individual growth rates for anchovy larvae were higher on the southeast coast than on the west coast. The RNA:DNA values also indicated that instantaneous growth rates of anchovy larvae were higher in Algoa Bay than on the west coast. At the time of sampling, chlorophyll and zooplankton productivity were higher at sampling sites in Algoa Bay than sites on the west coast, potentially due to favorable oceanographic features in the bay. As such, the results suggest that Algoa Bay is a suitable and potentially favorable nursery area for the early stages of anchovy, highlighting the importance of separate management of the southeast coast region in a changing world.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-02-08
    Description: A mesocosm approach was used to investigate the effects of ocean acidification (OA) on a natural plankton community in coastal waters off Norway by manipulating CO2 partial pressure ( pCO2). Eight enclosures were deployed in the Raunefjord near Bergen. Treatment levels were ambient (~320 µatm) and elevated pCO2 (~2000 µatm), each in 4 replicate enclosures. The experiment lasted for 53 d in May-June 2015. To assess impacts of OA on the plankton community, phytoplankton and protozooplankton biomass and total seston fatty acid content were analyzed. In both treatments, the plankton community was dominated by the dinoflagellate Ceratium longipes. In the elevated pCO2 treatment, however, biomass of this species as well as that of other dinoflagellates was strongly negatively affected. At the end of the experiment, total dinoflagellate biomass was 4-fold higher in the control group than under elevated pCO2 conditions. In a size comparison of C. longipes, cell size in the high pCO2 treatment was significantly larger. The ratio of polyunsaturated fatty acids to saturated fatty acids of seston decreased at high pCO2. In particular, the concentration of docosahexaenoic acid (C 22:6n3c), essential for development and reproduction of metazoans, was less than half at high pCO2 compared to ambient pCO2. Thus, elevated pCO2 led to a deterioration in the quality and quantity of food in a natural plankton community, with potential consequences for the transfer of matter and energy to higher trophic levels
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-02-08
    Description: We investigated trace element stoichiometries of the nitrogen-fixing marine cyanobacterium Crocosphaera subtropica ATCC51142 under steady-state growth conditions. We utilized exponentially fed batch cultures and varied iron (Fe) concentrations to establish nutrient limitation in C. subtropica growing at a constant growth rate (0.11 d -1 ). No statistical difference in cell density, chlorophyll a , particulate organic carbon (C), nitrogen (N) and phosphorus (P) were observed between consecutive days after Day 14, and cultures were assumed to be at steady state with respect to growth for the remaining 11 d of the experiment. Cultures were limited by P in the highest Fe treatment (41 nmol l -1 ) and by Fe in the 2 lower-concentration Fe treatments (1 and 5 nmol l -1 ). Cell size and in vivo fluorescence changed throughout the experiment in the 1 nmol l -1 Fe treatment, suggesting ongoing acclimation of C. subtropica to our lowest Fe supply. Nevertheless, Fe:C ratios were not significantly different between the Fe treatments, and we calculated an average (±SD) Fe:C ratio of 32 ± 14 µmol mol -1 for growth at 0.11 d -1 . Steady-state P-limited cells had lower P quotas, whilst Fe-limited cells had higher manganese (Mn) and cobalt (Co) quotas. We attribute the increase in Mn and Co quotas at low Fe to a competitive effect resulting from changes in the supply ratio of trace elements. Such an effect has implications for variability in elemental stoichiometry in marine phytoplankton, and potential consequences for trace metal uptake and cycling in marine systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-02-08
    Description: Background: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. Findings: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. Conclusions: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-02-08
    Description: Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections. In a controlled infection experiment, we used the three-spined stickleback fish, a model species for host-parasite studies, and their nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are higher in infected fish. Results furthermore suggest correlations between DNA methylation and shifts in key fitness and immune traits between infected and control fish, including respiratory burst and functional trans-generational traits such as the concentration of motile sperm. We revealed that genes associated with metabolic, developmental and regulatory processes (cell death and apoptosis) were differentially methylated between infected and control fish. Interestingly, genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. Our study brings novel insights into the evolution of vertebrate immunity and suggests that epigenetic mechanisms are complementary to genetic responses against parasite-mediated selection.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-02-08
    Description: International Ocean Discovery Program (IODP) Expedition 351 “Izu–Bonin–Mariana (IBM) Arc Origins” drilled Site U1438, situated in the north-western region of the Philippine Sea. Here volcaniclastic sediments and the igneous basement of the proto-IBM volcanic arc were recovered. To gain a better understanding of the magmatic processes and evolution of the proto-IBM arc, we studied melt inclusions hosted in fresh igneous minerals and sampled from 30- to 40-Ma-old deposits, reflecting the maturation of arc volcanism following subduction initiation at 52 Ma. We performed a novel statistical analysis on the major element composition of 237 representative melt inclusions selected from a previously published dataset, covering the full age range between 30 and 40 Ma. In addition, we analysed volatiles (H2O, S, F and Cl) and P2O5 by Secondary Ion Mass Spectrometry (SIMS) for a subset of 47 melt inclusions selected from the dataset. Based on statistical analysis of the major element composition of melt inclusions and by considering their trace and volatile element compositions, we distinguished five main clusters of melt inclusions, which can be further separated into a total of eight subclusters. Among the eight subclusters, we identified three major magma types: (1) enriched medium-K magmas, which form a tholeiitic trend (30–38 Ma); (2) enriched medium-K magmas, which form a calc-alkaline trend (30–39 Ma); and (3) depleted low-K magmas, which form a calc-alkaline trend (35–40 Ma). We demonstrate that (1) the eruption of depleted low-K calc-alkaline magmas occurred prior to 40 Ma and ceased sharply at 35 Ma; (2) the eruption of depleted low-K calc-alkaline magmas, enriched medium-K calc-alkaline magmas and enriched medium-K tholeiitic magmas overlapped between 35 and 38 − 39 Ma; and (3) the eruption of enriched medium-K tholeiitic and enriched medium-K calc-alkaline magmas became predominant thereafter at the proto-IBM arc. Identification of three major magma types are distinct from the previous work, in which enriched medium-K calc-alkaline magmas and depleted low-K calc-alkaline magmas were not identified. This indicates the usefulness of our statistical analysis as a powerful tool to partition a mixture of multivariable geochemical datasets, such as the composition of melt inclusions in this case. Our data suggest that a depleted mantle source had been replaced by an enriched mantle source due to convection beneath the proto-IBM arc from >40 to 35 Ma. Finally, thermodynamic modelling indicates that the overall geochemical variation of melt inclusions assigned to each cluster can be broadly reproduced either by crystallisation differentiation assuming P = 50 MPa (∼2-km deep) and ∼2 wt % H2O (almost saturated H2O content at 50 MPa) or P = 300 MPa (∼15-km deep) and ∼6 wt % H2O (almost saturated H2O content at 300 MPa). Assuming oxygen fugacity (fO2) of log fO2 equal to + 1 relative to nickel-nickel oxide (NNO) buffer best reproduces the overall geochemical variation of melt inclusions, but assuming a more oxidising conditions (log fO2 = +1 to + 2 NNO) likely reproduces the geochemical variation of enriched medium-K and calc-alkaline melt inclusions (30 − 39 Ma).
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-02-08
    Description: The present study quantified prey preferences by adult males and females of the mysid Mesopodopsis wooldridgei fed the calanoid copepods Pseudodiaptomus hessei and Paracartia longipatella at varying proportions. Both sexes of M. wooldridgei showed a lack of prey switching and a strong preference for the smaller, less active P. longipatella irrespective of density. Given a lack of low-density prey refuge, this finding may have important implications for the distribution of P. longipatella in estuaries along the eastern seaboard of South Africa. Results of the present study contribute to a growing body of literature that suggests that selective predation may play an important role in structuring plankton prey populations in shallow water ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-02-08
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-02-08
    Description: The two toothed jaws of cichlid fishes provide textbook examples of convergent evolution. Tooth phenotypes such as enlarged molar-like teeth used to process hard-shelled molluscs have evolved numerous times independently during cichlid diversification. While the ecological benefit of molar-like teeth to crush prey is known, it is unclear whether the same molecular mechanisms underlie these convergent traits. To identify genes involved in the evolution and development of enlarged cichlid teeth, we performed RNA-seq on the serially homologous toothed oral and pharyngeal jaws as well as the fourth toothless gill arch of Astatoreochromis alluaudi. We identified 27 genes that are highly upregulated on both tooth-bearing jaws compared to the toothless gill arch. Most of these genes have never been reported to play a role in tooth formation. Two of these genes (unk, rpfA) are not found in other vertebrate genomes but are present in all cichlid genomes. They also cluster genomically with two other highly expressed tooth genes (odam, scpp5) that exhibit conserved expression during vertebrate odontogenesis. Unk and rpfA were confirmed via in situ hybridization to be expressed in developing teeth of Astatotilapia burtoni. We then examined expression of the cluster's four genes in six evolutionarily independent and phylogenetically disparate cichlid species pairs each with a large- and a small-toothed species. Odam and unk commonly and scpp5 and rpfA always showed higher expression in larger-toothed cichlid jaws. Convergent trophic adaptations across cichlid diversity are associated with the repeated developmental deployment of this genomic cluster containing conserved and novel cichlid-specific genes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Zoological Journal of the Linnean Society, 185 (3). pp. 555-635.
    Publication Date: 2020-01-02
    Description: Polynoidae contains ~900 species within 18 subfamilies, some of them restricted to the deep sea. Macellicephalinae is the most diverse among these deep-sea subfamilies. In the abyssal Equatorial Pacific Ocean, the biodiversity of benthic communities is at stake in the Clarion-Clipperton Fracture Zone (CCFZ) owing to increased industrial interest in polymetallic nodules. The records of polychaetes in this region are scarce. Data gathered during the JPI Oceans cruise SO239 made a significant contribution to fill this gap, with five different localities sampled between 4000 and 5000 m depth. Benthic samples collected using an epibenthic sledge or a remotely operated vehicle resulted in a large collection of polynoids. The aims of this study are as follows: (1) to describe new species of deep-sea polynoids using morphology and molecular data (COI, 16S and 18S); and (2) to evaluate the monophyly of Macellicephalinae. Based on molecular and morphological phylogenetic analyses, ten subfamilies are synonymized with Macellicephalinae in order to create a homogeneous clade determined by the absence of lateral antennae. Within this clade, the Anantennata clade was well supported, being determined by the absence of a median antenna. Furthermore, 17 new species and four new genera are described, highlighting the high diversity hidden in the deep. A taxonomic key for the 37 valid genera of the subfamily Macellicephalinae is provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Oxford University Press
    In:  FEMS Microbiology Letters, 366 (11).
    Publication Date: 2020-01-02
    Description: Metabolites give us a window into the chemistry of microbes and are split into two subclasses: primary and secondary. Primary metabolites are required for life whereas secondary metabolites have historically been classified as those appearing after exponential growth and are not necessarily needed for survival. Many microbial species are estimated to produce hundreds of metabolites and can be affected by differing nutrients. Using various analytical techniques, metabolites can be directly detected in order to elucidate their biological significance. Currently, a single experiment can produce anywhere from megabytes to terabytes of data. This big data has motivated scientists to develop informatics tools to help target specific metabolites or sets of metabolites. Broadly, it is imperative to identify clear biological questions before embarking on a study of metabolites (metabolomics). For instance, studying the effect of a transposon insertion on phenazine biosynthesis in Pseudomonas is a very different from asking what molecules are present in a specific banana-derived strain of Pseudomonas. This review is meant to serve as a primer for a ‘choose your own adventure’ approach for microbiologists with limited mass spectrometry expertise, with a strong focus on liquid chromatography mass spectrometry based workflows developed or optimized within the past five years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Behavioral Ecology, 31 (2). pp. 287-291.
    Publication Date: 2021-01-08
    Description: Marine prey and predators will respond to future climate through physiological and behavioral adjustments. However, our understanding of how such direct effects may shift the outcome of predator–prey interactions is still limited. Here, we investigate the effects of ocean warming and acidification on foraging behavior and biomass of a common prey (shrimps, Palaemon spp.) tested in large mesocosms harboring natural resources and habitats. Acidification did not alter foraging behavior in prey. Under warming, however, prey showed riskier behavior by foraging more actively and for longer time periods, even in the presence of a live predator. No effects of longer-term exposure to climate stressors were detected on prey biomass. Our findings suggest that ocean warming may increase the availability of some prey to predators via a behavioral pathway (i.e., increased risk-taking by prey), likely by elevating metabolic demand of prey species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Oxford Research Encyclopedia of Climate Science. Oxford University Press, Oxford. ISBN 9780190228620
    Publication Date: 2021-02-23
    Description: Climate change influences the Baltic Sea ecosystem via its effects on oceanography and biogeochemistry. Sea surface temperature has been projected to increase by 2 to 4 °C until 2100 due to global warming; the changes will be more significant in the northern areas and less so in the south. The warming up will also diminish the annual sea ice cover by 57% to 71%, and ice season will be one to three months shorter than in the early 21st century, depending on latitude. A significant decrease in sea surface salinity has been projected because of an increase in rainfall and decrease of saline inflows into the Baltic Sea. The increasing surface flow has, in turn, been projected to increase leaching of nutrients from the soil to the watershed and eventually into the Baltic Sea. Also, acidification of the seawater and sea-level rise have been predicted. Increasing seawater temperature speeds up metabolic processes and increases growth rates of many secondary producers. Species associated with sea ice, from salt brine microbes to seals, will suffer. Due to the specific salinity tolerances, species’ geographical ranges may shift by tens or hundreds of kilometres with decreasing salinity. A decrease in pH will slow down calcification of bivalve shells, and higher temperatures also alleviate establishment of non-indigenous species originating from more southern sea areas. Many uncertainties still remain in predicting the couplings between atmosphere, oceanography and ecosystem. Especially projections of many oceanographic parameters, such as wind speeds and directions, the mean salinity level, and density stratification, are still ambiguous. Also, the effects of simultaneous changes in multiple environmental factors on species with variable preferences to temperature, salinity, and nutrient conditions are difficult to project. There is, however, enough evidence to claim that due to increasing runoff of nutrients from land and warming up of water, primary production and sedimentation of organic matter will increase; this will probably enhance anoxia and release of phosphorus from sediments. Such changes may keep the Baltic Sea in an eutrophicated state for a long time, unless strong measures to decrease nutrient runoff from land are taken. Changes in the pelagic and benthic communities are anticipated. Benthic communities will change from marine to relatively more euryhaline communities and will suffer from hypoxic events. The projected temperature increase and salinity decline will contribute to maintain the pelagic ecosystem of the Central Baltic and the Gulf of Finland in a state dominated by cyanobacteria, flagellates, small-sized zooplankton and sprat, instead of diatoms, large marine copepods, herring, and cod. Effects vary from area to area, however. In particular the Bothnian Sea, where hypoxia is less common and rivers carry a lot of dissolved organic carbon, primary production will probably not increase as much as in the other basins. The coupled oceanography-biogeochemistry ecosystem models have greatly advanced our understanding of the effects of climate change on marine ecosystems. Also, studies on climate associated “regime shifts” and cascading effects from top predators to plankton have been fundamental for understanding of the response of the Baltic Sea ecosystem to anthropogenic and climatic stress. In the future, modeling efforts should be focusing on coupling of biogeochemical processes and lower trophic levels to the top predators. Also, fine resolution species distribution models should be developed and combined with 3-D modelling, to describe how the species and communities are responding to climate-induced changes in environmental variables.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-01-07
    Description: This review shows that the presence of seagrass microbial community is critical for the development of seagrasses; from seed germination, through to phytohormone production and enhanced nutrient availability, and defence against pathogens and saprophytes. The tight seagrass-bacterial relationship highlighted in this review supports the existence of a seagrass holobiont and adds to the growing evidence for the importance of marine eukaryotic microorganisms in sustaining vital ecosystems. Incorporating a micro-scale view on seagrass ecosystems substantially expands our understanding of ecosystem functioning and may have significant implications for future seagrass management and mitigation against human disturbance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-01-31
    Description: Repeated and independent emergence of trait divergence that matches habitat differences is a sign of parallel evolution by natural selection. Yet, the molecular underpinnings that are targeted by adaptive evolution often remain elusive. We investigate this question by combining genome-wide analyses of copy number variants (CNVs), single nucleotide polymorphisms (SNPs), and gene expression across four pairs of lake and river populations of the three-spined stickleback (Gasterosteus aculeatus). We tested whether CNVs that span entire genes and SNPs occurring in putative cis-regulatory regions contribute to gene expression differences between sticklebacks from lake and river origins. We found 135 gene CNVs that showed a significant positive association between gene copy number and gene expression, suggesting that CNVs result in dosage effects that can fuel phenotypic variation and serve as substrates for habitat-specific selection. Copy number differentiation between lake and river sticklebacks also contributed to expression differences of two immune-related genes in immune tissues, cathepsin A and GIMAP7. In addition, we identified SNPs in cis-regulatory regions (eSNPs) associated with the expression of 1,865 genes, including one eSNP upstream of a carboxypeptidase gene where both the SNP alleles differentiated and the gene was differentially expressed between lake and river populations. Our study highlights two types of mutations as important sources of genetic variation involved in the evolution of gene expression and in potentially facilitating repeated adaptation to novel environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-01-31
    Description: Cichlid fishes provide textbook examples of explosive phenotypic diversification and sympatric speciation, thereby making them ideal systems for studying the molecular mechanisms underlying rapid lineage divergence. Despite the fact that gene regulation provides a critical link between diversification in gene function and speciation, many genomic regulatory mechanisms such as microRNAs (miRNAs) have received little attention in these rapidly diversifying groups. Therefore, we investigated the posttranscriptional regulatory role of miRNAs in the repeated sympatric divergence of Midas cichlids (Amphilophus spp.) from Nicaraguan crater lakes. Using miRNA and mRNA sequencing of embryos from five Midas species, we first identified miRNA binding sites in mRNAs and highlighted the presences of a surprising number of novel miRNAs in these adaptively radiating species. Then, through analyses of expression levels, we identified putative miRNA/gene target pairs with negatively correlated expression level that were consistent with the role of miRNA in downregulating mRNA. Furthermore, we determined that several miRNA/gene pairs show convergent expression patterns associated with the repeated benthic/limnetic sympatric species divergence implicating these miRNAs as potential molecular mechanisms underlying replicated sympatric divergence. Finally, as these candidate miRNA/gene pairs may play a central role in phenotypic diversification in these cichlids, we characterized the expression domains of selected miRNAs and their target genes via in situ hybridization, providing further evidence that miRNA regulation likely plays a role in the Midas cichlid adaptive radiation. These results provide support for the hypothesis that extremely quickly evolving miRNA regulation can contribute to rapid evolutionary divergence even in the presence of gene flow.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-01-31
    Description: In fisheries, vulnerability assessments - also commonly known as ecological risk assessments (ERAs) -have been an increasingly popular alternative to stock assessments to evaluate the vulnerability of non-target species in resource- and data-limited settings. The widely-used productivity-susceptibility analysis (PSA) requires detailed species-specific biological information and fishery susceptibility for a large number of parameters to produce a relative vulnerability score. The two major disadvantages of PSA are that each species is assessed against an arbitrary reference point, and PSA cannot quantify cumulative impacts of multiple fisheries. This paper introduces an Ecological Assessment of the Sustainable Impacts of Fisheries (EASI-Fish), a flexible approach that quantifies the cumulative impacts of fisheries on data-limited bycatch species, demonstrated in eastern Pacific Ocean (EPO) tuna fisheries. The method first estimates fishing mortality (F) based on the 'volumetric overlap' of each fishery with the distribution of each species. F is then used in length-structured per-recruit models to assess population vulnerability status using conventional biological reference points. Model results were validated by comparison with stock assessments for bigeye and yellowfin tunas in the EPO for 2016. Application of the model to 24 species of epipelagic and mesopelagic teleosts, sharks, rays, sea turtles and cetaceans and identification of the most vulnerable species is demonstrated. With increasing demands on fisheries to demonstrate ecological sustainability, EASI-Fish allows fishery managers to more confidently identify vulnerable species to which resources can be directed to either implement mitigation measures or collect further data for more formal stock assessment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-01-31
    Description: The Arctic Limnocalanus macrurus is a prominent representative of large copepods which performs several essential functions in freshwater and marine ecosystems. Being a cold stenotherm species, its distribution is primarily confined to deeper water layers. Based on the long-term observations from one of the largest spatially confined natural populations of this species in the Baltic Sea, we detected profound long-term variability of L. macrurus during 1958–2016: high abundances before the 1980s, then nearly disappearance in the 1990s and recovery in the 2000s. The main environmental parameters explaining the interannual variability of L. macrurus in spring were herring spawning stock biomass in preceding year, winter severity, and bottom water temperature in preceding summer. The effect of winter severity and water temperature was also non-linear. The sliding window correlation analysis pointed to a non-stationary relationship between the abundance of L. macrurus and the key variables. Given the observed pronounced seasonality in the population structure of L. macrurus (young stages dominated in the beginning of the year and only adults were left in the population in summer and autumn) we identified the dynamics of key environmental variables to understand this species under different ecosystem configurations and different combinations of drivers of change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-01-31
    Description: Oxygen (O2) deficiency and nutrient concentrations in marine systems are impacting organisms from microbes to higher trophic levels. In coastal and enclosed seas, O2 deficiency is often related to eutrophication and high degradation rates of organic matter. To investigate the impact of O2 concentration on bacterial growth and the turnover of organic matter, we conducted multifactorial batch experiments with natural microbial communities of the central Baltic Sea. Water was collected from suboxic (〈5 µmol L -1) depths in the Gotland Basin during June 2015. Samples were kept for four days under fully oxygenated and low O2 conditions (mean: 34 µmol L-1 O2), with or without nutrient (ammonium, phosphate, nitrate) and labile carbon (glucose) amendments. We measured bacterial abundance, bacterial heterotrophic production, extracellular enzyme rates (leucine-aminopeptidase) and changes in dissolved and particulate organic carbon concentrations. Our results show that the bacterial turnover of organic matter was limited by nutrients under both oxic and low O2 conditions. In nutrient and glucose replete treatments, low O2 concentrations significantly reduced the net uptake of dissolved organic carbon and lead to higher accumulation of more labile dissolved organic matter. Our results therewith suggest that the combined effects of eutrophication and deoxygenation on heterotrophic bacterial activity may potentially favor the accumulation of dissolved organic carbon in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-01-31
    Description: The Swan Islands Transform Fault (SITF) marks the southern boundary of the Cayman Trough and the ocean–continent transition of the North American–Caribbean Plate boundary offshore Honduras. The CAYSEIS experiment acquired a 180-km-long seismic refraction and gravity profile across this transform margin, ∼70 km to the west of the Mid-Cayman Spreading Centre (MCSC). This profile shows the crustal structure across a transform fault system that juxtaposes Mesozoic-age continental crust to the south against the ∼10-Myr-old ultraslow spread oceanic crust to the north. Ocean-bottom seismographs were deployed along-profile, and inverse and forward traveltime modelling, supported by gravity analysis, reveals ∼23-km-thick continental crust that has been thinned over a distance of ∼70 km to ∼10 km-thick at the SITF, juxtaposed against ∼4-km-thick oceanic crust. This thinning is primarily accommodated within the lower crust. Since Moho reflections are not widely observed, the 7.0 km s−1 velocity contour is used to define the Moho along-profile. The apparent lack of reflections to the north of the SITF suggests that the Moho is more likely a transition zone between crust and mantle. Where the profile traverses bathymetric highs in the off-axis oceanic crust, higher P-wave velocity is observed at shallow crustal depths. S-wave arrival modelling also reveals elevated velocities at shallow depths, except for crust adjacent to the SITF that would have occupied the inside corner high of the ridge-transform intersection when on axis. We use a Vp/Vs ratio of 1.9 to mark where lithologies of the lower crust and uppermost mantle may be exhumed, and also to locate the upper-to-lower crustal transition, identify relict oceanic core complexes and regions of magmatically formed crust. An elevated Vp/Vs ratio suggests not only that serpentinized peridotite may be exposed at the seafloor in places, but also that seawater has been able to flow deep into the crust and upper mantle over 20–30-km-wide regions which may explain the lack of a distinct Moho. The SITF has higher velocities at shallower depths than observed in the oceanic crust to the north and, at the seabed, it is a relatively wide feature. However, the velocity–depth model subseabed suggests a fault zone no wider than ∼5–10 km, that is mirrored by a narrow seabed depression ∼7500 m deep. Gravity modelling shows that the SITF is also underlain, at 〉2 km subseabed, by a ∼20-km-wide region of density 〉3000 kg m−3 that may reflect a broad region of metamorphism. The residual mantle Bouguer anomaly across the survey region, when compared with the bathymetry, suggests that the transform may also have a component of left-lateral trans-tensional displacement that accounts for its apparently broad seabed appearance, and that the focus of magma supply may currently be displaced to the north of the MCSC segment centre. Our results suggest that Swan Islands margin development caused thinning of the adjacent continental crust, and that the adjacent oceanic crust formed in a cool ridge setting, either as a result of reduced mantle upwelling and/or due to fracture enhanced fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Geophysical Journal International, 219 (3). pp. 1876-1884.
    Publication Date: 2022-01-31
    Description: Standard seismic acquisition and processing require appropriate source-receiver offsets. P-cable technology represents the opposite, namely, very short source-receiver offsets at the price of increased spatial and lateral resolution with a high-frequency source. To use this advantage, a processing flow excluding offset information is required. This aim can be achieved with a processing tuned to diffractions because point diffractions scatter the same information in offset and midpoint direction. Usually, diffractions are small amplitude events and a careful diffraction separation is required as a first step. We suggest the strategy to use a multiparameter stacking operator, e.g, common-reflection surface, and stack along the midpoint direction. The obtained kinematic wavefront attributes are used to calculate time-migration velocities. A diffractivity map serves as filter to refine the velocities. This strategy is applied to a 3D P-cable data set to obtain a time-migrated image.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-02-08
    Description: In the 1930s the wasting disease pathogen Labyrinthula zosterae is believed to have killed 90% of the temperate seagrass Zostera marina in the Atlantic Ocean. Despite the devastating impact of this disease the host–pathogen interaction is still poorly understood, and few field studies have investigated factors correlating with the prevalence and abundance of L. zosterae. This study measures wasting disease in natural populations of Z. marina, showing a strong correlation between the disease and both salinity and water depth. No infection was detected in Z. marina shoots from low salinity (13–25 PSU) meadows, whereas most shoots carried the disease in high salinity (25–29 PSU). Shallow (1 m) living Z. marina shoots were also more infected compared to shoots in deeper (5 m) meadows. In addition, infection and transplantation experiments showed that Z. marina shoots from low salinity meadows with low pathogen pressure were more susceptible to L. zosterae infection. The higher susceptibility could not be explained by lower content of inhibitory defense compounds in the shoots. Instead, extracts from all Z. marina shoots significantly reduced pathogen growth, suggesting that Z. marina contains inhibitory compounds that function as a constitutive defense. Overall, the results show that seagrass wasting disease is common in natural Z. marina populations in the study area and that it increases with salinity and decreases with depth. Our findings also suggest that low salinity areas can act as a refuge against seagrass wasting disease.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-02-08
    Description: The high biodiversity of coral reefs results in complex trophic webs where energy and nutrients are transferred between species through a multitude of pathways. Here, we hypothesize that reef sponges convert the dissolved organic matter released by benthic primary producers (e.g. corals) into particulate detritus that is transferred to sponge-associated detritivores via the sponge loop pathway. To test this hypothesis, we conducted stable isotope (13C and15N) tracer experiments to investigate the uptake and transfer of coral-derived organic matter from the sponges Mycale fistulifera and Negombata magnifica to 2 types of detritivores commonly associated with sponges: ophiuroids (Ophiothrix savignyi and Ophiocoma scolopendrina) and polychaetes (Polydorella smurovi). Findings revealed that the organic matter naturally released by the corals was indeed readily assimilated by both sponges and rapidly released again as sponge detritus. This detritus was subsequently consumed by the detritivores, demonstrating transfer of coral-derived organic matter from sponges to their associated fauna and confirming all steps of the sponge loop. Thus, sponges provide a trophic link between corals and higher trophic levels, thereby acting as key players within reef food webs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-02-08
    Description: We present high-resolution resistivity imaging of gas hydrate pipe-like structures, as derived from marine controlled-source electromagnetic (CSEM) inversions that combine towed and ocean-bottom electric field receiver data, acquired from the Nyegga region, offshore Norway. Two-dimensional CSEM inversions applied to the towed receiver data detected four new prominent vertical resistive features that are likely gas hydrate structures, located in proximity to a major gas hydrate pipe-like structure, known as the CNE03 pockmark. The resistivity model resulting from the CSEM data inversion resolved the CNE03 hydrate structure in high resolution, as inferred by comparison to seismically constrained inversions. Our results indicate that shallow gas hydrate vertical features can be delineated effectively by inverting both ocean-bottom and towed receiver CSEM data simultaneously. The approach applied here can be utilised to map and monitor seafloor mineralisation, freshwater reservoirs, CO2 sequestration sites and near-surface geothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-02-08
    Description: Nitrogen fixation is a key source of nitrogen in the Baltic Sea which counteracts nitrogen loss processes in the deep anoxic basins. Laboratory and field studies have indicated that single-strain nitrogen-fixing (diazotrophic) cyanobacteria from the Baltic Sea are sensitive to ocean acidification and warming, two drivers of marked future change in the marine environment. Here, we enclosed a natural plankton community in twelve indoor mesocosms (volume ~1400 L) and manipulated pCO2 to yield six CO2 treatments with two different temperature treatments (16.6°C and 22.4°C, pCO2 range = 360 – 2030 μatm). We followed the filamentous, heterocystous diazotrophic cyanobacteria community (Nostocales, primarily Nodularia spumigena) over four weeks. Our results indicate that heterocystous diazotrophic cyanobacteria may become less competitive in natural plankton communities under ocean acidification. Elevated CO2 had a negative impact on Nodularia sp. biomass, which was exacerbated by warming. Our results imply that Nodularia sp. may contribute less to new nitrogen inputs in the Baltic Sea in future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-02-08
    Description: Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesised that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival e.g. through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 605 . pp. 151-164.
    Publication Date: 2021-02-08
    Description: Recent studies on the life history of cephalopods have challenged the paradigm that all coleoid cephalopods have a single reproductive cycle and a short lifespan. Although lifespan has been investigated in several octopod species, few studies have considered their life-history traits in relation to environmental conditions via a comparative approach. We tested the hypothesis that octopod lifespan is correlated with habitat characteristics. For that purpose, life history and environmental data of 25 incirrate octopod species and the vampire squid Vampyroteuthis infernalis were compiled from the literature. Regression analysis showed that the relationship between age at maturity and average habitat temperature was best described by a negative power function (r2 = 0.86). The depth ranges of occurrence (minimum-midpoint-maximum) were positively correlated with time to reach maturity, with maximum depth showing the best fit (r2 = 0.47). Using literature data and our analyses, we estimated that octopods living in polar and deep seas mature after 3 to 5 yr. The reviewed and estimated instantaneous relative growth rates ranged from 0.1% body weight (BW) d-1 in the Antarctic species Pareledone charcoti to nearly 6% BW d-1 in the temperate species Macroctopus maorum. Our analyses suggest that low water temperatures (〈5°C) result in an extended ontogenetic development, potentially as a result of reduced metabolic rates and constraints on protein synthesis, which increases the lifespan of octopods living in cold environments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-09-18
    Description: Brown skuas Catharacta antarctica lonnbergi breed across a broad latitudinal range from the Antarctic to temperate regions. While information on the non-breeding distribution and behaviour for Antarctic and subantarctic populations is known, no data exist for populations breeding at temperate latitudes. We combined geolocation sensing and stable isotope analysis of feather tissue to study the non-breeding behaviour of brown skuas from the temperate Chatham Islands, a population that was historically thought to be resident year-round. Analysis of 27 non-breeding tracks across 2 winters revealed that skuas left the colony for a mean duration of 146 d, which is 64% of the duration reported for Antarctic and subantarctic populations from King George Island, South Shetland Islands, and Bird Island, South Georgia. Consistent with populations of brown skuas from Antarctica and the Subantarctic, the distribution was throughout mixed subtropical-subantarctic and shelf waters. Stable isotope analysis of 72 feathers suggests that moulting takes place over mixed subtropical-subantarctic and subtropical shelf waters. We conclude that brown skuas from the Chatham Islands are migratory, but the year-round mild environmental conditions may reduce the necessity to leave their territories for extended periods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-02-06
    Description: Coccolithophores, a globally distributed group of marine phytoplankton, showed diverse responses to ocean acidification (OA) and to combinations of OA with other environmental factors. While their growth can be enhanced and calcification be hindered by OA under constant indoor light, fluctuation of solar radiation with ultraviolet irradiances might offset such effects. In this study, when a calcifying and a non-calcifying strain of Emiliania huxleyi were grown at 2 CO2 concentrations (low CO2 [LC]: 395 µatm; high CO2 [HC]: 1000 µatm) under different levels of incident solar radiation in the presence of ultraviolet radiation (UVR), HC and increased levels of solar radiation acted synergistically to enhance the growth in the calcifying strain but not in the non-calcifying strain. HC enhanced the particulate organic carbon (POC) and nitrogen (PON) productions in both strains, and this effect was more obvious at high levels of solar radiation. While HC decreased calcification at low solar radiation levels, it did not cause a significant effect at high levels of solar radiation, implying that a sufficient supply of light energy can offset the impact of OA on the calcifying strain. Our data suggest that increased light exposure, which is predicted to happen with shoaling of the upper mixing layer due to progressive warming, could counteract the impact of OA on coccolithophores distributed within this layer.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Marine Plankton: A practical guide to ecology, methodology, and taxonomy. , ed. by Castellani, C. and Edwards, M. Oxford University Press, Oxford, UK, pp. 538-550. ISBN 978-0-19-923326-7
    Publication Date: 2020-03-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-02-06
    Description: Nitrification, the step-wise oxidation of ammonium to nitrite and nitrate, is important in the marine environment because it produces nitrate, the most abundant marine dissolved inorganic nitrogen (DIN) component and N-source for phytoplankton and microbes. This study focused on the second step of nitrification, which is carried out by a distinct group of organisms, nitrite-oxidizing bacteria (NOB). The growth of NOB is characterized by nitrite oxidation kinetics, which we investigated for 4 pure cultures of marine NOB (Nitrospina watsonii 347, Nitrospira sp. Ecomares 2.1, Nitrococcus mobilis 231, and Nitrobacter sp. 311). We further compared the kinetics to those of non-marine species because substrate concentrations in marine environments are comparatively low, which likely influences kinetics and highlights the importance of this study. We also determined the isotope effect during nitrite oxidation of a pure culture of Nitrospina (Nitrospina watsonii 347) belonging to one of the most abundant marine NOB genera, and for a Nitrospira strain (Nitrospira sp. Ecomares 2.1). The enzyme kinetics of nitrite oxidation, described by Michaelis-Menten kinetics, of 4 marine genera are rather narrow and fall in the low end of half-saturation constant (Km) values reported so far, which span over 3 orders of magnitude between 9 and 〉1000 µM NO2-. Nitrospina has the lowest Km (19 µM NO2-), followed by Nitrobacter (28 µM NO2-), Nitrospira (54 µM NO2-), and Nitrococcus (120 µM NO2-). The isotope effects during nitrite oxidation by Nitrospina watsonii 347 and Nitrospira sp. Ecomares 2.1 were 9.7 ± 0.8 and 10.2 ± 0.9‰, respectively. This confirms the inverse isotope effect of NOB described in other studies; however, it is at the lower end of reported isotope effects. We speculate that differences in isotope effects reflect distinct nitrite oxidoreductase (NXR) enzyme orientations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-20
    Description: The nature of many microbe-host interactions is not static, but may shift along a continuum from mutualistic to harmful depending on the environmental conditions. In this study, we assessed the interaction between the foundation plant eelgrass Zostera marina and the frequently associated protist Labyrinthula zosterae. We tested how an important environmental factor, nutrient availability, would modulate their interaction. We experimentally infected naive eelgrass plants in combination with 2 nutrient levels (fertilized and non-fertilized). We followed L. zosterae infection, eelgrass growth parameters and host defense gene expression over 3 wk in large 600 l tanks. Inoculation with L. zosterae and nutrient limitation both reduced eelgrass growth. These effects were additive, whereas no interaction of nutrient treatment and L. zosterae inoculation was detected. Gene expression levels of 15 candidate genes revealed a reduced expression of photosynthesis-related genes but an increased expression of classical stress genes such as Hsp80 in inoculated plants 2 d post-inoculation. However, we found no effects on plant mortality, and plants were able to clear high infection levels within 3 wk to ambient background levels of infection as assessed via specific RT-qPCR designed to quantify endophytic L. zosterae. Thus, we found no evidence that L. zosterae is a facultative mutualist that facilitates eelgrass growth under nutrient-limiting conditions. We suggest that the interaction between contemporary L. zosterae genotypes and Z. marina represents a mild form of parasitism in northern Europe because the damage to the plant is moderate even under nutrient limitation stress.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-10-26
    Description: Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-07-31
    Description: To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases inChloroflexisequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-04-23
    Description: Global climate change involves an increase in oceanic CO2 concentrations as well as thermal stratification of the water column, thereby reducing nutrient supply from deep to surface waters. Changes in inorganic carbon (C) or nitrogen (N) availability have been shown to affect marine primary production, yet little is known about their interactive effects. To test for these effects, we conducted continuous culture experiments under N limitation and exposed the bloomforming dinoflagellate species Scrippsiella trochoidea and Alexandrium fundyense (formerly A. tamarense) to CO2 partial pressures (pCO(2)) ranging between 250 and 1000 mu atm. Ratios of particulate organic carbon (POC) to organic nitrogen (PON) were elevated under N limitation, but also showed a decreasing trend with increasing pCO(2). PON production rates were highest and affinities for dissolved inorganic N were lowest under elevated pCO(2), and our data thus demonstrate a CO2-dependent trade-off in N assimilation. In A. fundyense, quotas of paralytic shellfish poisoning toxins were lowered under N limitation, but the offset to those obtained under N-replete conditions became smaller with increasing pCO(2). Consequently, cellular toxicity under N limitation was highest under elevated pCO(2). All in all, our observations imply reduced N stress under elevated pCO(2), which we attribute to a reallocation of energy from C to N assimilation as a consequence of lowered costs in C acquisition. Such interactive effects of ocean acidification and nutrient limitation may favor species with adjustable carbon concentrating mechanisms and have consequences for their competitive success in a future ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-02-01
    Description: Connectivity of pelagic, early life stages via transport by ocean currents may affect survival chances of offspring, recruitment success, and mixing of stocks across management units. Based on drift model studies, transport patterns of particles representing exogenously feeding cod larvae in the transition area between North Sea and Baltic were investigated to (i) determine long-term trends and variability in advective transport of larvae from spawning grounds to juvenile nursery areas, (ii) estimate the degree of exchange between different management areas, and (iii) compare the results with spatial distributions of juvenile cod. The transport of particles showed considerable intra- and interannual variability, but also some general patterns of retention within and dispersion to different management areas. Good spatial overlap of particle end positions, representing potential juvenile settlement areas, with observed distributions of juveniles in bottom trawl surveys suggests that the drift simulations provide reasonable estimates of early life stage connectivity between cod populations in the investigated areas. High exchange rates of particles between management areas of up to ca. 70% suggest that cod populations in the investigated areas are demographically correlated. Results are discussed in relation to their relevance for stock structure, fish stock assessment, and management.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-09-23
    Description: Previous bioassays conducted in the oligotrophic Atlantic Ocean identified availability of inorganic nitrogen (N) as the proximate limiting nutrient control of primary production, but additionally displayed a synergistic growth effect of combined N and phosphorus (P) addition. To classify conditions of nutrient limitation of coastal phytoplankton in the tropical ocean, we performed an 11 d nutrient-enrichment experiment with a natural phytoplankton community from shelf waters off northwest Africa in shipboard mesocosms. We used pigment and gene fingerprinting in combination with flow cytometry for classification and quantification of the taxon-specific photoautotrophic response to differences in nutrient supply. The developing primary bloom was dominated by diatoms and was significantly higher in the treatments receiving initial N addition. The combined supply of N and P did not induce a further increase in phytoplankton abundance compared to high N addition alone. A secondary bloom during the course of the experiment again displayed higher primary producer standing stock in the N-fertilized treatments. Bacterial abundance correlated positively with phytoplankton biomass. Dominance of the photoautotrophic assemblage by N-limited diatoms in conjunction with a probable absence of any P-limited phytoplankton species prevented an additive effect of combined N and P addition on total phytoplankton biomass. Furthermore, after nutrient exhaustion, dinitrogen (N-2)-fixing cyanobacteria succeeded the bloom-forming diatoms. Shelf waters in the tropical eastern Atlantic may thus support growth of diazotrophic cyanobacteria such as Trichodesmium sp. subsequent to upwelling pulses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-02-01
    Description: Multiple investigators often generate data from seabed images within a single image set to reduce the time burden, particularly with the large photographic surveys now available to ecological studies. These data (annotations) are known to vary as a result of differences in investigator opinion on specimen classification and of human factors such as fatigue and cognition. These variations are rarely recorded or quantified, nor are their impacts on derived ecological metrics (density, diversity, composition). We compared the annotations of 3 investigators of 73 megafaunal morphotypes in ~28 000 images, including 650 common images. Successful annotation was defined as both detecting and correctly classifying a specimen. Estimated specimen detection success was 77%, and classification success was 95%, giving an annotation success rate of 73%. Specimen detection success varied substantially by morphotype (12-100%). Variation in the detection of common taxa resulted in significant differences in apparent faunal density and community composition among investigators. Such bias has the potential to produce spurious ecological interpretations if not appropriately controlled or accounted for. We recommend that photographic studies document the use of multiple annotators and quantify potential inter-investigator bias. Randomisation of the sampling unit (photograph or video clip) is clearly critical to the effective removal of human annotation bias in multiple annotator studies (and indeed single annotator works).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Molecular Biology and Evolution, 33 (9). pp. 2376-2390.
    Publication Date: 2019-10-10
    Description: While we know much about the evolutionary patterns of endosymbiotic organelle origins, we know less about how the actual process unfolded within each system. This is partly due to the massive changes endosymbiosis appears to trigger, and partly because most organelles evolved in the distant past. The dinotoms are dinoflagellates with diatom endosymbionts, and they represent a relatively recent but nevertheless obligate endosymbiotic association. We have carried out deep sequencing of both the host and endosymbiont transcriptomes from two dinotoms, Durinskia baltica and Glenodinium foliaceum, to examine how the nucleocytosolic compartments have functionally integrated. This analysis showed little or no functional reduction in either the endosymbiont or host, and no evidence for genetic integration. Rather, host and endosymbiont seem to be bound to each other via metabolites, such as photosynthate exported from the endosymbiont to the host as indicated by the presence of plastidic phosphate translocators in the host transcriptome. The host is able to synthesize starch, using plant-specific starch synthases, as a way to store imported photosynthate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-04-23
    Description: Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Climate Justice in a Non-Ideal World
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-02-05
    Description: Barnacles of the genus Galkinius occupy a large spectrum of host corals, making it one of the least host-specific genera within the Pyrgomatidae. Molecular analyses show that within the genus Galkinius there are highly supported clades, suggesting that the genus Galkinius is a complex of evolutionarily significant units (ESUs). The morphology of the opercular valves has been used as the basis for the separation of species of Galkinius. In this study, morphological variability was found both between specimens within ESUs extracted from different host species and between specimens extracted from the same colony. Identifications based on the opercular valves cannot therefore be assigned to different species despite being genetically distinguishable. It is proposed that in many cases the differences between valve morphology of different species of Galkinius are the outcome of ontogeny. Allometric growth of the valves has resulted in differences in the proportions of the parts of the valve.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 519 . pp. 103-113.
    Publication Date: 2020-01-21
    Description: The combined effects of warming and overwintering copepod densities on the spring succession of Baltic Sea plankton were investigated using indoor mesocosms. Three zooplankton (1.5, 4 and 10 copepods L-1) and two temperature levels called ∆0°C and ∆6°C (0°C and 6°C above the present day temperature scenario for Kiel Bight) were chosen. Both, the timing and the duration of the protozooplankton (PZP) bloom were significantly affected by temperature, but not by copepod density. In contrast, the bloom intensity of PZP was highly affected by the factors temperature and copepod density and its interaction. This suggests that at elevated temperature conditions PZP grows faster but, at the same time, are subject to higher top-down control by copepods. At low temperatures and low copepod densities, PZP in turn fully escaped from copepod predation. Further changes in the overwintering copepod densities resulted in a strong ciliate suppression of which small-sized ciliates (〈30 µm) were especially vulnerable to copepod predation while other PZP size classes remained unaffected. In conclusion, the results presented point at a pivotal regulating role of overwintering copepods under future warming condition. Further, warming was shown to cause a distinct match between phytoplankton and PZP thus strengthening trophic pathways through PZP. Our findings are discussed in the context of the ‘trophic link-sink’ debate by considering potential alterations in the flux of matter and energy up the food web.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-01-01
    Description: Snow crabs Chionoecetes opilio are quite productive at suitable temperatures, but can also be abundant in water cold enough to depress settlement of larvae, growth, and reproduction. In much of the northern Bering Sea, bottom water temperatures are below -1°C for most or all of the year. Crab pelagic larvae prefer to settle at temperatures above 0°C, so we found high densities of juveniles only where intruding warm currents deposited larvae in localized areas. After settlement, maturing crabs appeared to exhibit ontogenetic migration toward deeper, warmer water. Cold temperatures excluded key predators, but decreased fecundity by restricting females to small body size (with associated small clutches) and to breeding every 2 yr. Migration to warmer water may allow females to breed annually and to encounter more adult males needed to fertilize subsequent clutches. Because older males also emigrate, remaining adolescent males probably inseminate newly maturing females. Without localized intrusion of warmer currents, snow crabs might not persist at high densities in such cold waters. However, they are currently very abundant, and export many pelagic larvae and adults.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-07-31
    Description: In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 534 . pp. 49-64.
    Publication Date: 2020-08-28
    Description: Many ecosystems are facing biodiversity loss and environmental change due to anthropogenic activities, with these impacts occurring within the context of natural disturbance. Understanding ecosystem functioning and the response of communities to these impacts is necessary in order to evaluate the effects of future environmental change. The aim of this study was to determine the consequences of the loss of key species on the structure and function of intertidal communities in a context of nutrient enrichment, so as to ascertain the resistance of these communities when disturbance and stresses are compounded. Subarctic rocky intertidal communities in Quebec were subjected to an orthogonal factorial field experiment with 3 stress factors (macroalgae canopy loss, grazer exclusion, and nutrient enrichment), each with 2 disturbance levels. Simple and interactive effects of these factors were followed for 4 mo, and responses in structure (% cover and biomass) and productivity were evaluated. The communities that were not subjected to canopy loss showed greater resistance and very limited effects from enrichment and grazer reduction. The loss of canopy altered the community structure (e.g. reduction in richness and biomass) and functioning (reduced productivity), probably due to increased temperatures and desiccation. This lack of resistance was amplified through the addition of a stress. The application of multiple stresses within field experiments allows for a better understanding of the mechanisms affecting community structure and ecosystem functioning under situations of increased natural and anthropogenic stress.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 534 . pp. 251-272.
    Publication Date: 2015-10-02
    Description: There is growing evidence that average global phytoplankton concentrations have been changing over the past century, yet published trajectories of change are highly divergent. Here, we review and analyze 115 published phytoplankton trend estimates originating from a wide variety of sampling instruments to explore the underlying patterns and ecological implications of phytoplankton change over the period of oceanographic measurement (1889 to 2010). We found that published estimates of phytoplankton change were much less variable when estimated over longer time series and consistent spatial scales and from the same sampling instruments. Average phytoplankton concentrations tended to increase over time in near-shore waters and over more recent time periods and declined in the open oceans and over longer time periods. Most published evidence suggests changes in temperature and nutrient supply rates as leading causes of these phytoplankton trends. In near-shore waters, altered coastal runoff and increased nutrient flux from land may primarily explain widespread increases in phytoplankton there. Conversely, in the open oceans, increasing surface temperatures are strengthening water column stratification, reducing nutrient flux from deeper waters and negatively influencing phytoplankton. Phytoplankton change is further affected by biological processes, such as changes in grazing regimes and nutrient cycling, but these effects are less well studied at large scales. The possible ecosystem consequences of observed phytoplankton changes include altered species composition and abundance across multiple trophic levels, effects on fisheries yield, and changing patterns of export production. We conclude that there is evidence for substantial changes in phytoplankton concentration over the past century, but the magnitude of these changes remains uncertain at a global scale; standardized long-term measurements of phytoplankton abundance over time can substantially reduce this uncertainty
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 534 . pp. 121-134.
    Publication Date: 2015-10-02
    Description: Benthic infauna in marine sediments have well-documented effects on biogeochemical cycling, from individual to ecosystem scales, including stimulation of nitrification and nitrogen removal via denitrification. However, the effects of burrowing depth and irrigation patterns on nitrogen cycling have not been as well described. Here we examined the effects of lugworm behavior on sediment nitrogen cycling using a reaction-transport model parameterized with literature and laboratory data. Feeding pocket depth and pumping characteristics (flow rate and pattern) were varied, and rates of nitrification, denitrification, and benthic exchange fluxes were computed. As expected, more intense burrow irrigation stimulated denitrification and coupled nitrification-denitrification. At high pumping rates and low sediment oxygen consumption rates (~10-6 mol m-3 s-1), simulation results showed a decrease in rates of nitrification and denitrification with decreasing burrow depth due to incomplete consumption of injected oxidants. Model results also suggest that discontinuous irrigation leads to temporal variability in sediment nitrogen cycling, but that the time-averaged rates do not depend on the irrigation pattern. We identify (1) the poorly constrained chemical composition of lumen fluid injected into sediments and (2) the response of microbial activity/distribution to oscillating redox conditions as critical knowledge gaps affecting estimates of sediment nitrogen removal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-02-05
    Description: Archaea associated with marine sponges are active and influence the nitrogen metabolism of sponges. However, we know little about their occurrence, specificity, and persistence. We aimed to elucidate the relative importance of host specificity and biogeographic background in shaping the symbiotic archaeal communities. We investigated these communities in sympatric sponges from the Mediterranean (Ircinia fasciculata and Ircinia oros, sampled in summer and winter) and from the Caribbean (Ircinia strobilina and Mycale laxissima). PCR cloning and sequencing of archaeal 16S rRNA and amoA genes showed that the archaeal community composition and structure were different from that in seawater and varied among sponge species. We found that the communities were dominated by ammonia-oxidizing archaea closely related to Nitrosopumilus. The community in M. laxissima differed from that in Ircinia spp., including the sympatric sponge I. strobilina; yet, geographical clusters within Ircinia spp. were observed. Whereas archaeal phylotypes in Ircinia spp. were persistent and belong to 'sponge-enriched' clusters, archaea in M. laxissima were closely related with those from diverse habitats (i.e. seawater and sediments). For all four sponge species, the expression of the archaeal amoA gene was confirmed. Our results indicate that host-specific processes, such as host ecological strategy and evolutionary history, control the sponge-archaeal communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-01-11
    Description: We applied a 2-step clustering algorithm and Bayesian stable isotope mixing model to examine intraspecific differences in the contribution of prey sources to the diet and foraging habitat of harbor seals Phoca vitulina in the Salish Sea, USA. We analyzed stable isotopes of carbon and nitrogen collected from 32 seals and 248 prey samples representing 18 of 25 of the most common seal prey items identified in seal scat. Stable isotope analyses identified significant harbor seal sex- and size-based differences in diet and foraging habitat use. In comparison to males, female harbor seals had a higher contribution of prey items that were more 13C-enriched. This result may indicate that females derived more of their δ13C value from nearshore versus offshore food webs, an explanation supported by movement data on this population. However, large seals of both sexes displayed a greater offshore signal in their diet, indicating that seal mass effects on foraging habitat use were somewhat independent of sex. Our work contributes to understanding trophic linkages between these generalist consumers and their prey. The foraging differences that we detected between male and female harbor seals present complex challenges for fisheries management and for the design of marine reserves. Many marine reserves in the Pacific Northwest are located in close proximity to seal haul-out sites. By lowering the energetic costs of foraging of females, these reserves may ultimately have the unintended effect of increasing individual fitness, population growth rate, and influencing future predator-induced mortality on endangered species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-07-31
    Description: The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 519 . pp. 129-140.
    Publication Date: 2020-01-21
    Description: Within mono-specific meadows of clonal plants, genotypic diversity may functionally replace species diversity. Little is known about the variability in performance and plasticity of different genotypes towards anthropogenically induced stressors. In this field experiment we compared light-limitation stress responses and recovery of different eelgrass Zostera marina genotypes to assess the variability in phenotypic plasticity and gene expression between different genotypes. Replicated monoculture plots of 4 genotypes were subjected to a simulated turbidity period of 4 wk using shading screens, and their performance during light limitation and 4 wk of recovery was compared to non-shaded controls. In addition to growth and biomass, we investigated storage carbohydrates and quantified the expression of genes involved in carbohydrate metabolism, photosynthesis and control of oxidative stress. Plants showed remarkable plasticity in their stress responses and all phenotypic variables recovered to the control level within 4 wk. Depletion and subsequent restoration of sucrose levels differed among genotypes. In terms of gene expression, no consistent patterns were observed. Our study confirms that stress responses and recovery processes can vary substantially between genotypes and the results emphasize the importance of preserving regional genotypic diversity for immediate positive diversity effects and for adaptive evolution in response to global change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Oxford University Press
    In:  IMA Journal of Applied Mathematics, 80 (3). pp. 811-824.
    Publication Date: 2015-07-06
    Description: The permafrost methane emission problem is the focus of attention on different climate models. Here, we present a mathematical model for permafrost lake methane emission and its influence on the climate system. We model this process using the theory of non-linear phase transitions. Further, we find that a climate catastrophe possibility depends on a value of feedback connecting the methane concentration in the atmosphere and temperature, and on the tundra permafrost methane pool.We note that the permafrost lake model that we developed for the methane emission positive feedback loop problem is a conceptual climate model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 532 . pp. 29-40.
    Publication Date: 2021-04-23
    Description: Heme is the iron-containing prosthetic group of hemoproteins, and is thus required for photosynthesis, respiration and nitrate reduction in marine phytoplankton. Here we report concentrations of heme b in Southern Ocean phytoplankton and contrast our findings with those in coastal species. The concentration of particulate heme b (pmol l-1) observed at the end of the exponential growth phase was related to the concentration of dissolved iron in the culture media. Small Southern Ocean phytoplankton species (〈6 μm in diameter) had heme b quotas 〈1 μmol mol-1 carbon, the lowest yet reported for marine phytoplankton. Heme b was also depleted in these species with respect to chlorophyll a. We calculated the amount of carbon accumulated per mole of heme b per second in our cultures (heme growth efficiency, HGE) and found that small Southern Ocean species can maintain growth rates, even while heme b content is reduced. Small Southern Ocean phytoplankton can thus produce more particulate carbon than larger Southern Ocean or small coastal species at equivalent iron concentrations. Combining primary productivity and heme b concentrations reported for the open ocean, we found that HGE in natural populations was within the range of our laboratory culture results. HGE was also observed to be higher at open ocean stations characterized by low iron concentrations. Our results suggest that low heme b quotas do not necessarily result in reduced growth and that marine phytoplankton can optimize iron use by manipulating the intracellular hemoprotein pool
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-12
    Description: We investigated the impacts of predicted ocean acidification and future warming on the quantity and nutritional quality of a natural phytoplankton autumn bloom in a mesocosm experiment. Since the effects of CO2-enrichment and temperature have usually been studied independently, we were also interested in the interactive effects of both aspects of climate change. Therefore, we used a factorial design with 2 temperature and 2 acidification levels in a mesocosm experiment with a Baltic Sea phytoplankton community. Our results show a significant time-dependent influence of warming on phytoplankton carbon, chlorophyll a, and particulate organic carbon. Phytoplankton carbon, for instance, decreased by more than half with increasing temperature at bloom time. Additionally, elemental carbon to phosphorus ratios (C:P) increased significantly, by approximately 5 to 8%, due to warming. Impacts of CO2 or synergetic effects of warming and acidification could not be detected. We suggest that stronger grazing pressure induced by temperature was responsible for the significant decline in phytoplankton biomass. Our results suggest that the biological effects of warming on Baltic Sea phytoplankton are considerable and will likely have fundamental consequences for trophic transfer in the pelagic food web
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-07-03
    Description: Sprat Sprattus sprattus larvae were used as model organisms to evaluate whether larval lipids reflect in situ feeding conditions and can thus identify match-mismatch situations. In detail, we determined larval lipid content, growth rates based on RNA:DNA ratios, and fatty acid (FA) composition during the spawning season in the Central Baltic Sea, and evaluated these in light of feeding, mortality and recruitment (which were determined in parallel within the project ‘GLOBEC Germany’). Based on the opposing trend of RNA:DNA and lipid content, as well as on previous observations, we hypothesized that lipid content and current feeding conditions are largely uncoupled in the early life stages of sprat due to reduced lipid anabolism. However, lipids still provide information in several ways: (1) segmented generalised linear models proved to be a suitable tool for identifying phases of lipid catabolism during development, with the slope reflecting size-specific environmental starvation pressure. This method detected a previously identified mismatch situation with suitable prey in the early spawning season, which increased mortality of larger larvae. (2) Estimated starvation resistance, a proxy that accounts for temperature- and size-dependent metabolism, reflected the likelihood of near future starvation of individual larvae. (3) Principal component analyses on FAs identified monthly differences in diet composition. Biomarkers indicated a dinoflagellate and/or microbial loop based carbon flux to the larvae. (4) Regression analyses revealed lower docosahexaenoic acid (DHA) levels in spring, but no obvious effect on growth. Food quality was generally high, and its impact on larval survival was less evident than that of prey size suitability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-25
    Description: The community respiration of 2 tidally dominated cold-water coral (CWC) sites was estimated using the non-invasive eddy correlation (EC) technique. The first site, Mingulay Reef Complex, was a rock ridge located in the Sea of Hebrides off Scotland at a depth of 128 m and the second site, Stjernsund, was a channel-like sound in Northern Norway at a depth of 220 m. Both sites were characterized by the presence of live mounds of the reef framework-forming scleractinian Lophelia pertusa and reef-associated fauna such as sponges, crustaceans and other corals. The measured O2 uptake at the 2 sites varied between 5 and 46 mmol m–2 d–1, mainly depending on the ambient flow characteristics. The average uptake rate estimated from the ~24 h long deployments amounted to 27.8 ± 2.3 mmol m–2 d–1 at Mingulay and 24.8 ± 2.6 mmol m–2 d–1 at Stjernsund (mean ± SE). These rates are 4 to 5 times higher than the global mean for soft sediment communities at comparable depths. The measurements document the importance of CWC communities for local and regional carbon cycling and demonstrate that the EC technique is a valuable tool for assessing rates of benthic O2 uptake in such complex and dynamic settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...