ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2015-05-20
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2021-02-08
    Description: Nitrogen fixation is a key source of nitrogen in the Baltic Sea which counteracts nitrogen loss processes in the deep anoxic basins. Laboratory and field studies have indicated that single-strain nitrogen-fixing (diazotrophic) cyanobacteria from the Baltic Sea are sensitive to ocean acidification and warming, two drivers of marked future change in the marine environment. Here, we enclosed a natural plankton community in twelve indoor mesocosms (volume ~1400 L) and manipulated pCO2 to yield six CO2 treatments with two different temperature treatments (16.6°C and 22.4°C, pCO2 range = 360 – 2030 μatm). We followed the filamentous, heterocystous diazotrophic cyanobacteria community (Nostocales, primarily Nodularia spumigena) over four weeks. Our results indicate that heterocystous diazotrophic cyanobacteria may become less competitive in natural plankton communities under ocean acidification. Elevated CO2 had a negative impact on Nodularia sp. biomass, which was exacerbated by warming. Our results imply that Nodularia sp. may contribute less to new nitrogen inputs in the Baltic Sea in future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Talk] In: ASLO Aquatic Sciences Meeting 2015, 22.-27.02.2015, Granada, Spain .
    Publication Date: 2016-05-09
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-12
    Description: We investigated the impacts of predicted ocean acidification and future warming on the quantity and nutritional quality of a natural phytoplankton autumn bloom in a mesocosm experiment. Since the effects of CO2-enrichment and temperature have usually been studied independently, we were also interested in the interactive effects of both aspects of climate change. Therefore, we used a factorial design with 2 temperature and 2 acidification levels in a mesocosm experiment with a Baltic Sea phytoplankton community. Our results show a significant time-dependent influence of warming on phytoplankton carbon, chlorophyll a, and particulate organic carbon. Phytoplankton carbon, for instance, decreased by more than half with increasing temperature at bloom time. Additionally, elemental carbon to phosphorus ratios (C:P) increased significantly, by approximately 5 to 8%, due to warming. Impacts of CO2 or synergetic effects of warming and acidification could not be detected. We suggest that stronger grazing pressure induced by temperature was responsible for the significant decline in phytoplankton biomass. Our results suggest that the biological effects of warming on Baltic Sea phytoplankton are considerable and will likely have fundamental consequences for trophic transfer in the pelagic food web
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-13
    Description: While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studied intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15°C) and pCO2 (means: 439 ppm and 1040 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of CO2 seem to be rather resistant to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 61 (3). pp. 853-868.
    Publication Date: 2019-02-01
    Description: Increasing seawater temperature and CO2 concentrations both are expected to increase coastal phytoplankton biomass and carbon to nutrient ratios in nutrient limited seasonally stratified summer conditions. This is because temperature enhances phytoplankton growth while grazing is suggested to be reduced during such bottom-up controlled situations. In addition, enhanced CO2 concentrations potentially favor phytoplankton species, that otherwise depend on costly carbon concentrating mechanisms (CCM). The trophic consequences for consumers under such conditions, however, remain little understood. We set out to experimentally explore the combined effects of increasing temperature and CO2 concentration for phytoplankton biomass and stoichiometry and the consequences for trophic transfer (here for copepods) on a natural nutrient limited Baltic Sea summer plankton community. The results show, that warming effects were translated to the next trophic level by switching the system from a bottom-up controlled to a mainly top-down controlled one. This was reflected in significantly down-grazed phytoplankton and increased zooplankton abundance in the warm temperature treatment (22.5°C). Additionally, at low temperature (16.5°C) rising CO2 concentrations significantly increased phytoplankton biomass. The latter effect however, was due to direct negative impact of CO2 on copepod nauplii which released phytoplankton from grazing in the cold but not in the warm treatments. Our results suggest that future seawater warming has the potential to switch trophic relations between phytoplankton and their grazers under nutrient limited conditions with the consequence of potentially disguising CO2 effects on coastal phytoplankton biomass.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Poster] In: Joint Aquatic Sience Meeting (JASM), 18.-23.05.2014, Portland, Oregon, USA .
    Publication Date: 2016-05-09
    Description: We investigated the impacts of ocean acidification and future warming on the quantity and nutritional quality of a natural phytoplankton autumn bloom in a mesocosm experiment. Since the effects of CO2-enrichment and temperature have usually been studied in isolation, we were also interested in the interactive effects of both aspects of climate change. In that way we used a factorial design with two temperature and two acidification levels for our mesocosm experiment with a Baltic Sea phytoplankton community. Our results report a significant influence of warming as average and maximal phytoplankton carbon decreased significantly with increasing temperature. Additionally fatty acid composition changed with increasing temperature and biomass. Impacts of CO2 or synergetic effects of warming and acidification could not be detected. Nevertheless our analyses suggest that biological effects of warming on Baltic Sea phytoplankton are considerable and will influence the food cycle in case of food quantity as well as quality.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Talk] In: BIOACID Annual Meeting 2014, 10-11.09.2014, Kiel, Germany .
    Publication Date: 2014-10-31
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Talk] In: 15. Scientific Conference of the Phycology Section of the German Botanical Society, Stralsund, 23.-26.02.2014, Stralsund, Germany .
    Publication Date: 2016-05-09
    Description: We investigated the impacts of ocean acidification and future warming on the quantity and nutritional quality of a natural phytoplankton autumn bloom in a mesocosm experiment. Since the effects of CO2-enrichment and temperature have usually been studied in isolation, we were also interested in the interactive effects of both aspects of climate change. In that way we used a factorial design with two temperature and two acidification levels for our mesocosm experiment with a Baltic Sea phytoplankton community. Our results report a significant influence of warming as average and maximal phytoplankton carbon decreased significantly with increasing temperature. Additionally fatty acid composition changed with increasing temperature and biomass. Impacts of CO2 or synergetic effects of warming and acidification could not be detected. Nevertheless our analyses suggest that biological effects of warming on Baltic Sea phytoplankton are considerable and will influence the food cycle in case of food quantity as well as quality.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...