ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (26,777)
  • Blackwell Publishing Ltd
  • MDPI Publishing
  • Geography  (17,614)
  • Physics  (6,935)
  • Computer Science  (2,228)
Collection
Years
Journal
  • 1
    Publication Date: 2018-07-25
    Description: Remote Sensing, Vol. 10, Pages 1171: Multi-Criteria Evaluation of Snowpack Simulations in Complex Alpine Terrain Using Satellite and In Situ Observations Remote Sensing doi: 10.3390/rs10081171 Authors: Jesús Revuelto Grégoire Lecourt Matthieu Lafaysse Isabella Zin Luc Charrois Vincent Vionnet Marie Dumont Antoine Rabatel Delphine Six Thomas Condom Samuel Morin Alessandra Viani Pascal Sirguey This work presents an extensive evaluation of the Crocus snowpack model over a rugged and highly glacierized mountain catchment (Arve valley, Western Alps, France) from 1989 to 2015. The simulations were compared and evaluated using in-situ point snow depth measurements, in-situ seasonal and annual glacier surface mass balance, snow covered area evolution based on optical satellite imagery at 250 m resolution (MODIS sensor), and the annual equilibrium-line altitude of glaciers, derived from satellite images (Landsat, SPOT, and ASTER). The snowpack simulations were obtained using the Crocus snowpack model driven by the same, originally semi-distributed, meteorological forcing (SAFRAN) reanalysis using the native semi-distributed configuration, but also a fully distributed configuration. The semi-distributed approach addresses land surface simulations for discrete topographic classes characterized by elevation range, aspect, and slope. The distributed approach operates on a 250-m grid, enabling inclusion of terrain shadowing effects, based on the same original meteorological dataset. Despite the fact that the two simulations use the same snowpack model, being potentially subjected to same potential deviation from the parametrization of certain physical processes, the results showed that both approaches accurately reproduced the snowpack distribution over the study period. Slightly (although statistically significantly) better results were obtained by using the distributed approach. The evaluation of the snow cover area with MODIS sensor has shown, on average, a reduction of the Root Mean Squared Error (RMSE) from 15.2% with the semi-distributed approach to 12.6% with the distributed one. Similarly, surface glacier mass balance RMSE decreased from 1.475 m of water equivalent (W.E.) for the semi-distributed simulation to 1.375 m W.E. for the distribution. The improvement, observed with a much higher computational time, does not justify the recommendation of this approach for all applications; however, for simulations that require a precise representation of snowpack distribution, the distributed approach is suggested.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-25
    Description: Remote Sensing, Vol. 10, Pages 1169: Multi-Year Analyses of Columnar Aerosol Optical and Microphysical Properties in Xi’an, a Megacity in Northwestern China Remote Sensing doi: 10.3390/rs10081169 Authors: Xiaoli Su Junji Cao Zhengqiang Li Kaitao Li Hua Xu Suixin Liu Xuehua Fan A thorough understanding of aerosol optical properties and their spatio-temporal variability are required to accurately evaluate aerosol effects in the climate system. In this study, a multi-year study of aerosol optical and microphysical properties was firstly performed in Xi’an based on three years of sun photometer remote sensing measurements from 2012 to 2015. The multi-year average of aerosol optical depth (AOD) at 440 nm was about 0.88 ± 0.24 (mean ± SD), while the averaged Ångström Exponent (AE) between 440 and 870 nm was 1.02 ± 0.15. The mean value of single scattering albedo (SSA) was around 0.89 ± 0.03. Aerosol optical depth and AE showed different seasonal variation patterns. Aerosol optical depth was slightly higher in winter (0.99 ± 0.36) than in other seasons (~0.85 ± 0.20), while AE showed its minimum in spring (0.85 ± 0.05) due to the impact of dust episodes. The seasonal variations of volume particle size distribution, spectral refractive index, SSA, and asymmetry factor were also analyzed to characterize aerosols over this region. Based on the aerosol products derived from sun photometer measurements, the classification of aerosol types was also conducted using two different methods in this region. Results show that the dominant aerosol types are absorbers in all seasons, especially in winter, demonstrating the strong absorptivity of aerosols in Xi’an.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-25
    Description: Remote Sensing, Vol. 10, Pages 1166: Inventory of Glaciers in the Shaksgam Valley of the Chinese Karakoram Mountains, 1970–2014 Remote Sensing doi: 10.3390/rs10081166 Authors: Haireti Alifu Yukiko Hirabayashi Brian Alan Johnson Jean-Francois Vuillaume Akihiko Kondoh Minoru Urai The Shaksgam Valley, located on the north side of the Karakoram Mountains of western China, is situated in the transition zone between the Indian monsoon system and dry arid climate zones. Previous studies have reported abnormal behaviors of the glaciers in this region compared to the global trend of glacier retreat, so the region is of special interest for glacier-climatological studies. For this purpose, long-term monitoring of glaciers in this region is necessary to obtain a better understanding of the relationships between glacier changes and local climate variations. However, accurate historical and up-to-date glacier inventory data for the region are currently unavailable. For this reason, this study conducted glacier inventories for the years 1970, 1980, 1990, 2000 and 2014 (i.e., a ~10-year interval) using multi-temporal remote sensing imagery. The remote sensing data used included Corona KH-4A/B (1965–1971), Hexagon KH-9 (1980), Landsat Thematic Mapper (TM) (1990/1993), Landsat Enhanced Thematic Mapper Plus (ETM+) (2000/2001), and Landsat Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (2014/2015) multispectral satellite images, as well as digital elevation models (DEMs) from the Shuttle Radar Topography Mission (SRTM), DEMs generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images (2005–2014), and Advanced Land Observing Satellite (ALOS) World 3D 30 m mesh (AW3D30). In the year 2014, a total of 173 glaciers (including 121 debris-free glaciers) (>0.5 km2), covering an area of 1478 ± 34 km2 (area of debris-free glaciers: 295 ± 7 km2) were mapped. The multi-temporal glacier inventory results indicated that total glacier area change between 1970–2014 was not significant. However, individual glacier changes showed significant variability. Comparisons of the changes in glacier terminus position indicated that 55 (32 debris-covered) glaciers experienced significant advances (~40–1400 m) between 1970–2014, and 74 (32 debris-covered) glaciers experienced significant advances (~40–1400 m) during the most recent period (2000–2014). Notably, small glaciers showed higher sensitivity to climate changes, and the glaciers located in the western part of the study site were exhibiting glacier area expansion compared to other parts of the Shaksgam Valley. Finally, regression analyses indicated that topographic parameters were not the main driver of glacier changes. On the contrary, local climate variability could explain the complex behavior of glaciers in this region.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 550: Information Geometry of Nonlinear Stochastic Systems Entropy doi: 10.3390/e20080550 Authors: Rainer Hollerbach Donovan Dimanche Eun-jin Kim We elucidate the effect of different deterministic nonlinear forces on geometric structure of stochastic processes by investigating the transient relaxation of initial PDFs of a stochastic variable x under forces proportional to -xn (n=3,5,7) and different strength D of δ-correlated stochastic noise. We identify the three main stages consisting of nondiffusive evolution, quasi-linear Gaussian evolution and settling into stationary PDFs. The strength of stochastic noise is shown to play a crucial role in determining these timescales as well as the peak amplitude and width of PDFs. From time-evolution of PDFs, we compute the rate of information change for a given initial PDF and uniquely determine the information length L(t) as a function of time that represents the number of different statistical states that a system evolves through in time. We identify a robust geodesic (where the information changes at a constant rate) in the initial stage, and map out geometric structure of an attractor as L(t→∞)∝μm, where μ is the position of an initial Gaussian PDF. The scaling exponent m increases with n, and also varies with D (although to a lesser extent). Our results highlight ubiquitous power-laws and multi-scalings of information geometry due to nonlinear interaction.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 553: Hierarchical Structure of Generalized Thermodynamic and Informational Entropy Entropy doi: 10.3390/e20080553 Authors: Pierfrancesco Palazzo The present research aimed at discussing the thermodynamic and informational aspects of entropy concept to propose a unitary perspective of its definitions as an inherent property of any system in any state. The dualism and the relation between physical nature of information and the informational content of physical states of matter and phenomena play a fundamental role in the description of multi-scale systems characterized by hierarchical configurations. A method is proposed to generalize thermodynamic and informational entropy property and characterize the hierarchical structure of its canonical definition at macroscopic and microscopic levels of a system described in the domain of classical and quantum physics. The conceptual schema is based on dualisms and symmetries inherent to the geometric and kinematic configurations and interactions occurring in many-particle and few-particle thermodynamic systems. The hierarchical configuration of particles and sub-particles, representing the constitutive elements of physical systems, breaks down into levels characterized by particle masses subdivision, implying positions and velocities degrees of freedom multiplication. This hierarchy accommodates the allocation of phenomena and processes from higher to lower levels in the respect of the equipartition theorem of energy. However, the opposite and reversible process, from lower to higher level, is impossible by virtue of the Second Law, expressed as impossibility of Perpetual Motion Machine of the Second Kind (PMM2) remaining valid at all hierarchical levels, and the non-existence of Maxwell’s demon. Based on the generalized definition of entropy property, the hierarchical structure of entropy contribution and production balance, determined by degrees of freedom and constraints of systems configuration, is established. Moreover, as a consequence of the Second Law, the non-equipartition theorem of entropy is enunciated, which would be complementary to the equipartition theorem of energy derived from the First Law.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    MDPI Publishing
    In: Entropy
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 552: The Gibbs Paradox Entropy doi: 10.3390/e20080552 Authors: Simon Saunders The Gibbs Paradox is essentially a set of open questions as to how sameness of gases or fluids (or masses, more generally) are to be treated in thermodynamics and statistical mechanics. They have a variety of answers, some restricted to quantum theory (there is no classical solution), some to classical theory (the quantum case is different). The solution offered here applies to both in equal measure, and is based on the concept of particle indistinguishability (in the classical case, Gibbs’ notion of ‘generic phase’). Correctly understood, it is the elimination of sequence position as a labelling device, where sequences enter at the level of the tensor (or Cartesian) product of one-particle state spaces. In both cases it amounts to passing to the quotient space under permutations. ‘Distinguishability’, in the sense in which it is usually used in classical statistical mechanics, is a mathematically convenient, but physically muddled, fiction.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 549: Entropy-Based Feature Extraction for Electromagnetic Discharges Classification in High-Voltage Power Generation Entropy doi: 10.3390/e20080549 Authors: Imene Mitiche Gordon Morison Alan Nesbitt Brian G. Stewart Philip Boreham This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert’s data analysis in order to identify and label the discharge source type contained within the signal. The classification was performed both within each site and across all sites. The system performs well for both cases with extremely high classification accuracy within site. This work demonstrates the ability to extract relevant entropy-based features from EMI discharge sources from time-resolved signals requiring minimal computation making the system ideal for a potential application to online condition monitoring based on EMI.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-26
    Description: Symmetry, Vol. 10, Pages 300: Computing Metric Dimension and Metric Basis of 2D Lattice of Alpha-Boron Nanotubes Symmetry doi: 10.3390/sym10080300 Authors: Zafar Hussain Mobeen Munir Maqbool Chaudhary Shin Min Kang Concepts of resolving set and metric basis has enjoyed a lot of success because of multi-purpose applications both in computer and mathematical sciences. For a connected graph G(V,E) a subset W of V(G) is a resolving set for G if every two vertices of G have distinct representations with respect to W. A resolving set of minimum cardinality is called a metric basis for graph G and this minimum cardinality is known as metric dimension of G. Boron nanotubes with different lattice structures, radii and chirality’s have attracted attention due to their transport properties, electronic structure and structural stability. In the present article, we compute the metric dimension and metric basis of 2D lattices of alpha-boron nanotubes.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-26
    Description: Symmetry, Vol. 10, Pages 299: Game-Theoretic Solutions for Data Offloading in Next Generation Networks Symmetry doi: 10.3390/sym10080299 Authors: Muhammad Asif Shafi Ullah Khan Rashid Ahmad Dhananjay Singh In recent years, global mobile data traffic has seen an unprecedented increase. This is due to worldwide usage of smart devices, availability of fast internet connections, and the popularity of social media. The Mobile Network Operators (MNOs) are, therefore, facing problems in handling this huge traffic flow. Each type of traffic, including real-time video, audio, and text has its own Quality of Services (QoS) requirements which, if not met, may cause a sufficient loss of profit. Offloading of these traffics can be made more efficient so that values of QoS parameters are enhanced. In this work, we propose an incentive-based game-theoretic frame work for downloading data. The download of each type of data will get an incentive determined by the two-stage Stackelberg game. We model the communication among single Mobile Base Station (MBS) and multiple Access Points (APs) in a crowded metropolitan environment. The leader offers an economic incentive based on the traffic type and followers respond to the incentive and offload traffic accordingly. The model optimizes strategies of both the MBS and APs in order to make the best use of their utilities. For the analysis, we have used a combination of analytical and experimental methods. The numerical outcome characterized a direct process of the best possible offloading ratio and legalized the efficiency of the proposed game. Optimal incentives and optimal offloading was the achievement of our proposed game-theoretic approach. We have implemented the model in MATLAB, and the experimental results show a maximum payoff was achieved and the proposed scheme achieved Nash Equilibria.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-27
    Description: Entropy, Vol. 20, Pages 555: Quantum Games with Unawareness Entropy doi: 10.3390/e20080555 Authors: Piotr Frąckiewicz Games with unawareness model strategic situations in which players’ perceptions about the game are limited. They take into account the fact that the players may be unaware of some of the strategies available to them or their opponents as well as the players may have a restricted view about the number of players participating in the game. The aim of the paper is to introduce this notion into theory of quantum games. We focus on games in strategic form and Eisert–Wilkens–Lewenstein type quantum games. It is shown that limiting a player’s perception in the game enriches the structure of the quantum game substantially and allows the players to obtain results that are unattainable when the game is played in a quantum way by means of previously used methods.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-07-27
    Description: Remote Sensing, Vol. 10, Pages 1181: Improved Albedo Estimates Implemented in the METRIC Model for Modeling Energy Balance Fluxes and Evapotranspiration over Agricultural and Natural Areas in the Brazilian Cerrado Remote Sensing doi: 10.3390/rs10081181 Authors: Bruno Silva Oliveira Elisabete Caria Moraes Marcos Carrasco-Benavides Gabriel Bertani Guilherme Augusto Verola Mataveli In this study we assessed METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model performance to estimate energy balance fluxes and evapotranspiration (ET) in two heterogeneous landscapes in the Brazilian Cerrado, including fluxes and ET in both agricultural and natural vegetation. The estimates were evaluated by comparing them to flux tower data collected over sugarcane (USR site), woody savanna (PDG site) and stricto-sensu savanna (RECOR site) areas. The selection of the study years (2005–2007 for USR/PDG sites and 2011–2015 for RECOR site) was based on the availability of meteorological data (to be used as inputs in METRIC) and of flux tower data for energy balance fluxes and ET comparisons. The broadband albedo submodel was adjusted in order to improve Net Radiation estimates. For this adjustment, we applied at-surface solar radiation simulations obtained from the SMARTS2 model under different conditions of land elevation, precipitable water content and solar angles. We also tested the equivalence between the measured crop coefficient (Kc_ec) and the reference evapotranspiration fraction (ETrF or F), seeking to extrapolate from instantaneous to daily values of actual evapotranspiration (ETa). Surface albedo was underestimated by 10% at the USR site (showing a better performance for full crop coverage), by 15% at the PDG site (following the woody savanna dynamics pattern through dry and wet seasons) and was overestimated by 21% at the RECOR site. METRIC was effective in simulating the spatial and temporal variability of energy balance fluxes and ET over agricultural and natural vegetation in the Brazilian Cerrado, with errors within those reported in the literature. Net radiation (Rn) presented consistent results (coefficient of determination (R2) > 0.94) but it was overestimated by 8% and 9% in sugarcane and woody savanna, respectively. METRIC-derived ET estimates showed an agreement with ground data at USR and PDG sites (R2 > 0.88, root mean square error (RMSE) up to 0.87 mm day−1), but at the RECOR site, ET was overestimated by 14% (R2 = 0.96, mean absolute error (MAE) = 0.62 mm.day−1 and RMSE = 0.75 mm day−1). Surface energy balance fluxes and ET were marked by seasonality, with direct dependence on available energy, rainfall distribution, soil moisture and other parameters like albedo and NDVI.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-07-27
    Description: Remote Sensing, Vol. 10, Pages 1182: Detection of Frozen Soil Using Sentinel-1 SAR Data Remote Sensing doi: 10.3390/rs10081182 Authors: Nicolas Baghdadi Hassan Bazzi Mohammad El Hajj Mehrez Zribi The objective of this paper is to evaluate the potential of Sentinel-1 Synthetic Aperture Radar “SAR” data (C-band) for monitoring agricultural frozen soils. First, investigations were conducted from simulated radar signal data using a SAR backscattering model combined with a dielectric mixing model. Then, Sentinel-1 images acquired at a study site near Paris, France were analyzed using temperature data to investigate the potential of the new Sentinel-1 SAR sensor for frozen soil mapping. The results show that the SAR backscattering coefficient decreases when the soil temperature drops below 0 °C. This decrease in signal is the most important for temperatures that ranges between 0 and −5 °C. A difference of at least 2 dB is observed between unfrozen soils and frozen soils. This difference increases under freezing condition when the temperature at the image acquisition date decreases. In addition, results show that the potential of the C-band radar signal for the discrimination of frozen soils slightly decreases when the soil moisture decreases (simulated data were used with soil moisture contents of 20 and 30 vol%). The difference between the backscattering coefficient of unfrozen soil and the backscattering coefficient of frozen soil decreases by approximately 1 dB when the soil moisture decreases from 30 to 20 vol%). Finally, the results show that both VV and VH allow a good detection of frozen soils but the sensitivity of VH is higher by approximately 1.5 dB. In conclusion, this study shows that the difference between a reference image acquired without freezing and an image acquired under freezing conditions is a good tool for detecting frozen soils.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-07-28
    Description: Algorithms, Vol. 11, Pages 112: A Novel Parallel Auto-Encoder Framework for Multi-Scale Data in Civil Structural Health Monitoring Algorithms doi: 10.3390/a11080112 Authors: Ruhua Wang Ling Li Jun Li In this paper, damage detection/identification for a seven-storey steel structure is investigated via using the vibration signals and deep learning techniques. Vibration characteristics, such as natural frequencies and mode shapes are captured and utilized as input for a deep learning network while the output vector represents the structural damage associated with locations. The deep auto-encoder with sparsity constraint is used for effective feature extraction for different types of signals and another deep auto-encoder is used to learn the relationship of different signals for final regression. The existing SAF model in a recent research study for the same problem processed all signals in one serial auto-encoder model. That kind of models have the following difficulties: (1) the natural frequencies and mode shapes are in different magnitude scales and it is not logical to normalize them in the same scale in building the models with training samples; (2) some frequencies and mode shapes may not be related to each other and it is not fair to use them for dimension reduction together. To tackle the above-mentioned problems for the multi-scale dataset in SHM, a novel parallel auto-encoder framework (Para-AF) is proposed in this paper. It processes the frequency signals and mode shapes separately for feature selection via dimension reduction and then combine these features together in relationship learning for regression. Furthermore, we introduce sparsity constraint in model reduction stage for performance improvement. Two experiments are conducted on performance evaluation and our results show the significant advantages of the proposed model in comparison with the existing approaches.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-07-28
    Description: Algorithms, Vol. 11, Pages 113: Improved Parameter Identification Method for Envelope Current Signals Based on Windowed Interpolation FFT and DE Algorithm Algorithms doi: 10.3390/a11080113 Authors: Xiangfeng Su Huaiqing Zhang Lin Chen Ling Qin Lili Yu Envelope current signals are increasingly emerging in power systems, and their parameter identification is particularly necessary for accurate measurement of electrical energy. In order to analyze the envelope current signal, the harmonic parameters, as well as the envelope parameters, need to be calculated. The interpolation fast Fourier transform (FFT) is a widely used approach which can estimate the signal frequency with high precision, but it cannot calculate the envelope parameters of the signal. Therefore, this paper proposes an improved method based on windowed interpolation FFT (WIFFT) and differential evolution (DE). The amplitude and phase parameters obtained through WIFFT and the envelope parameters estimated by the envelope analysis are optimized using the DE algorithm, which makes full use of the performance advantage of DE. The simulation results show that the proposed method can improve the accuracy of the harmonic parameters and the envelope parameter significantly. In addition, it has good anti-noise ability and high precision.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-07-28
    Description: Entropy, Vol. 20, Pages 560: Ensemble Estimation of Information Divergence † Entropy doi: 10.3390/e20080560 Authors: Kevin R. Moon Kumar Sricharan Kristjan Greenewald Alfred O. Hero Recent work has focused on the problem of nonparametric estimation of information divergence functionals between two continuous random variables. Many existing approaches require either restrictive assumptions about the density support set or difficult calculations at the support set boundary which must be known a priori. The mean squared error (MSE) convergence rate of a leave-one-out kernel density plug-in divergence functional estimator for general bounded density support sets is derived where knowledge of the support boundary, and therefore, the boundary correction is not required. The theory of optimally weighted ensemble estimation is generalized to derive a divergence estimator that achieves the parametric rate when the densities are sufficiently smooth. Guidelines for the tuning parameter selection and the asymptotic distribution of this estimator are provided. Based on the theory, an empirical estimator of Rényi-α divergence is proposed that greatly outperforms the standard kernel density plug-in estimator in terms of mean squared error, especially in high dimensions. The estimator is shown to be robust to the choice of tuning parameters. We show extensive simulation results that verify the theoretical results of our paper. Finally, we apply the proposed estimator to estimate the bounds on the Bayes error rate of a cell classification problem.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-07-28
    Description: Entropy, Vol. 20, Pages 556: Multivariate Multiscale Complexity Analysis of Self-Reproducing Chaotic Systems Entropy doi: 10.3390/e20080556 Authors: Shaobo He Chunbiao Li Kehui Sun Sajad Jafari Designing a chaotic system with infinitely many attractors is a hot topic. In this paper, multiscale multivariate permutation entropy (MMPE) and multiscale multivariate Lempel–Ziv complexity (MMLZC) are employed to analyze the complexity of those self-reproducing chaotic systems with one-directional and two-directional infinitely many chaotic attractors. The analysis results show that complexity of this class of chaotic systems is determined by the initial conditions. Meanwhile, the values of MMPE are independent of the scale factor, which is different from the algorithm of MMLZC. The analysis proposed here is helpful as a reference for the application of the self-reproducing systems.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-07-28
    Description: Remote Sensing, Vol. 10, Pages 1186: Application of Multi-Sensor Satellite Data for Exploration of Zn–Pb Sulfide Mineralization in the Franklinian Basin, North Greenland Remote Sensing doi: 10.3390/rs10081186 Authors: Amin Beiranvand Pour Tae-Yoon S. Park Yongcheol Park Jong Kuk Hong Basem Zoheir Biswajeet Pradhan Iman Ayoobi Mazlan Hashim Geological mapping and mineral exploration programs in the High Arctic have been naturally hindered by its remoteness and hostile climate conditions. The Franklinian Basin in North Greenland has a unique potential for exploration of world-class zinc deposits. In this research, multi-sensor remote sensing satellite data (e.g., Landsat-8, Phased Array L-band Synthetic Aperture Radar (PALSAR) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)) were used for exploring zinc in the trough sequences and shelf-platform carbonate of the Franklinian Basin. A series of robust image processing algorithms was implemented for detecting spatial distribution of pixels/sub-pixels related to key alteration mineral assemblages and structural features that may represent potential undiscovered Zn–Pb deposits. Fusion of Directed Principal Component Analysis (DPCA) and Independent Component Analysis (ICA) was applied to some selected Landsat-8 mineral indices for mapping gossan, clay-rich zones and dolomitization. Major lineaments, intersections, curvilinear structures and sedimentary formations were traced by the application of Feature-oriented Principal Components Selection (FPCS) to cross-polarized backscatter PALSAR ratio images. Mixture Tuned Matched Filtering (MTMF) algorithm was applied to ASTER VNIR/SWIR bands for sub-pixel detection and classification of hematite, goethite, jarosite, alunite, gypsum, chalcedony, kaolinite, muscovite, chlorite, epidote, calcite and dolomite in the prospective targets. Using the remote sensing data and approaches, several high potential zones characterized by distinct alteration mineral assemblages and structural fabrics were identified that could represent undiscovered Zn–Pb sulfide deposits in the study area. This research establishes a straightforward/cost-effective multi-sensor satellite-based remote sensing approach for reconnaissance stages of mineral exploration in hardly accessible parts of the High Arctic environments.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-07-28
    Description: Remote Sensing, Vol. 10, Pages 1184: An Evaluation of Forest Health Insect and Disease Survey Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States Remote Sensing doi: 10.3390/rs10081184 Authors: Ian W. Housman Robert A. Chastain Mark V. Finco The Operational Remote Sensing (ORS) program leverages Landsat and MODIS data to detect forest disturbances across the conterminous United States (CONUS). The ORS program was initiated in 2014 as a collaboration between the US Department of Agriculture Forest Service Geospatial Technology and Applications Center (GTAC) and the Forest Health Assessment and Applied Sciences Team (FHAAST). The goal of the ORS program is to supplement the Insect and Disease Survey (IDS) and MODIS Real-Time Forest Disturbance (RTFD) programs with imagery-derived forest disturbance data that can be used to augment traditional IDS data. We developed three algorithms and produced ORS forest change products using both Landsat and MODIS data. These were assessed over Southern New England and the Rio Grande National Forest. Reference data were acquired using TimeSync to conduct an independent accuracy assessment of IDS, RTFD, and ORS products. Overall accuracy for all products ranged from 71.63% to 92.55% in the Southern New England study area and 63.48% to 79.13% in the Rio Grande National Forest study area. While the accuracies attained from the assessed products are somewhat low, these results are similar to comparable studies. Although many ORS products met or exceeded the overall accuracy of IDS and RTFD products, the differences were largely statistically insignificant at the 95% confidence interval. This demonstrates the current implementation of ORS is sufficient to provide data to augment IDS data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-07-29
    Description: Algorithms, Vol. 11, Pages 114: Revisiting Chameleon Sequences in the Protein Data Bank Algorithms doi: 10.3390/a11080114 Authors: Mihaly Mezei The steady growth of the Protein Data Bank (PDB) suggests the periodic repetition of searches for sequences that form different secondary structures in different protein structures; these are called chameleon sequences. This paper presents a fast (nlog(n)) algorithm for such searches and presents the results on all protein structures in the PDB. The longest such sequence found consists of 20 residues.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-07-29
    Description: Algorithms, Vol. 11, Pages 115: Color-Based Image Retrieval Using Proximity Space Theory Algorithms doi: 10.3390/a11080115 Authors: Jing Wang Lidong Wang Xiaodong Liu Yan Ren Ye Yuan The goal of object retrieval is to rank a set of images by their similarity compared with a query image. Nowadays, content-based image retrieval is a hot research topic, and color features play an important role in this procedure. However, it is important to establish a measure of image similarity in advance. The innovation point of this paper lies in the following. Firstly, the idea of the proximity space theory is utilized to retrieve the relevant images between the query image and images of database, and we use the color histogram of an image to obtain the Top-ranked colors, which can be regard as the object set. Secondly, the similarity is calculated based on an improved dominance granule structure similarity method. Thus, we propose a color-based image retrieval method by using proximity space theory. To detect the feasibility of this method, we conducted an experiment on COIL-20 image database and Corel-1000 database. Experimental results demonstrate the effectiveness of the proposed framework and its applications.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-07-29
    Description: Entropy, Vol. 20, Pages 564: A New Fractional-Order Chaotic System with Different Families of Hidden and Self-Excited Attractors Entropy doi: 10.3390/e20080564 Authors: Jesus Munoz-Pacheco Ernesto Zambrano-Serrano Christos Volos Sajad Jafari Jacques Kengne Karthikeyan Rajagopal In this work, a new fractional-order chaotic system with a single parameter and four nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-order system generates several complex dynamics: self-excited attractors, hidden attractors, and the coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system presents a hidden chaotic attractor with a `hurricane’-like shape in the phase space. Multistability is also observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability. Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed using the hidden dynamics.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-07-29
    Description: Entropy, Vol. 20, Pages 561: Statistical Significance of Earth’s Electric and Magnetic Field Variations Preceding Earthquakes in Greece and Japan Revisited Entropy doi: 10.3390/e20080561 Authors: Nicholas Sarlis By analyzing the seismicity in a new time domain, termed natural time, we recently found that the change of the entropy under time reversal (Physica A2018, 506, 625–634) and the relevant complexity measures (Entropy2018, 20, 477) exhibit pronounced variations before the occurrence of the M8.2 earthquake in Mexico on 7 September 2017. Here, the statistical significance of precursory phenomena associated with other physical properties and in particular the anomalous variations observed in the Earth’s electric and magnetic fields before earthquakes in different regions of the world and in particular in Greece since 1980s and Japan during 2001–2010 are revisited (the latter, i.e., the magnetic field variations are alternatively termed ultra low frequency (ULF) seismo-magnetic phenomena). Along these lines we employ modern statistical tools like the event coincidence analysis and the receiver operating characteristics technique. We find that these precursory variations are far beyond chance and in addition their lead times fully agree with the experimental findings in Greece since the 1980s.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-07-29
    Description: Entropy, Vol. 20, Pages 563: A New Underwater Acoustic Signal Denoising Technique Based on CEEMDAN, Mutual Information, Permutation Entropy, and Wavelet Threshold Denoising Entropy doi: 10.3390/e20080563 Authors: Yuxing Li Yaan Li Xiao Chen Jing Yu Hong Yang Long Wang Owing to the complexity of the ocean background noise, underwater acoustic signal denoising is one of the hotspot problems in the field of underwater acoustic signal processing. In this paper, we propose a new technique for underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), mutual information (MI), permutation entropy (PE), and wavelet threshold denoising. CEEMDAN is an improved algorithm of empirical mode decomposition (EMD) and ensemble EMD (EEMD). First, CEEMDAN is employed to decompose noisy signals into many intrinsic mode functions (IMFs). IMFs can be divided into three parts: noise IMFs, noise-dominant IMFs, and real IMFs. Then, the noise IMFs can be identified on the basis of MIs of adjacent IMFs; the other two parts of IMFs can be distinguished based on the values of PE. Finally, noise IMFs were removed, and wavelet threshold denoising is applied to noise-dominant IMFs; we can obtain the final denoised signal by combining real IMFs and denoised noise-dominant IMFs. Simulation experiments were conducted by using simulated data, chaotic signals, and real underwater acoustic signals; the proposed denoising technique performs better than other existing denoising techniques, which is beneficial to the feature extraction of underwater acoustic signal.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-07-31
    Description: Future Internet, Vol. 10, Pages 71: Hybrid Approach with Improved Genetic Algorithm and Simulated Annealing for Thesis Sampling Future Internet doi: 10.3390/fi10080071 Authors: Shardrom Johnson Jinwu Han Yuanchen Liu Li Chen Xinlin Wu Sampling inspection uses the sample characteristics to estimate that of the population, and it is an important method to describe the population, which has the features of low cost, strong applicability and high scientificity. This paper aims at the sampling inspection of the master’s degree thesis to ensure their quality, which is commonly estimated by random sampling. Since there are disadvantages in random sampling, a hybrid algorithm combined with an improved genetic algorithm and a simulated annealing algorithm is proposed in this paper. Furthermore, a novel mutation strategy is introduced according to the specialty of Shanghai’s thesis sampling to improve the efficiency of sampling inspection; the acceleration of convergence of the algorithm can also take advantage of this. The new algorithm features the traditional genetic algorithm, and it can obtain the global optimum in the optimization process and provide the fairest sampling plan under the constraint of multiple sampling indexes. The experimental results on the master’s thesis dataset of Shanghai show that the proposed algorithm well meets the requirements of the sampling inspection in Shanghai with a lower time-complexity.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-07-31
    Description: Future Internet, Vol. 10, Pages 70: Multidiscipline Integrated Platform Based on Probabilistic Analysis for Manufacturing Engineering Processes Future Internet doi: 10.3390/fi10080070 Authors: Lijun Zhang Kai Liu Jian Liu Researchers from different disciplines, such as materials science, computer science, safety science, mechanical engineering and controlling engineering, have aimed to improve the quality of manufacturing engineering processes. Considering the requirements of research and development of advanced materials, reliable manufacturing and collaborative innovation, a multidiscipline integrated platform framework based on probabilistic analysis for manufacturing engineering processes is proposed. The proposed platform consists of three logical layers: The requirement layer, the database layer and the application layer. The platform is intended to be a scalable system to gradually supplement related data, models and approaches. The main key technologies of the platform, encapsulation methods, information fusion approaches and the collaborative mechanism are also discussed. The proposed platform will also be gradually improved in the future. In order to exchange information for manufacturing engineering processes, scientists and engineers of different institutes of materials science and manufacturing engineering should strengthen their cooperation.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-07-31
    Description: Entropy, Vol. 20, Pages 567: Nonlocality in Bell’s Theorem, in Bohm’s Theory, and in Many Interacting Worlds Theorising Entropy doi: 10.3390/e20080567 Authors: Mojtaba Ghadimi Michael J. W. Hall Howard M. Wiseman “Locality” is a fraught word, even within the restricted context of Bell’s theorem. As one of us has argued elsewhere, that is partly because Bell himself used the word with different meanings at different stages in his career. The original, weaker, meaning for locality was in his 1964 theorem: that the choice of setting by one party could never affect the outcome of a measurement performed by a distant second party. The epitome of a quantum theory violating this weak notion of locality (and hence exhibiting a strong form of nonlocality) is Bohmian mechanics. Recently, a new approach to quantum mechanics, inspired by Bohmian mechanics, has been proposed: Many Interacting Worlds. While it is conceptually clear how the interaction between worlds can enable this strong nonlocality, technical problems in the theory have thus far prevented a proof by simulation. Here we report significant progress in tackling one of the most basic difficulties that needs to be overcome: correctly modelling wavefunctions with nodes.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-07-31
    Description: Remote Sensing, Vol. 10, Pages 1196: Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China Remote Sensing doi: 10.3390/rs10081196 Authors: Davide Fornacca Guopeng Ren Wen Xiao Remote mountainous regions are among the Earth’s last remaining wild spots, hosting rare ecosystems and rich biodiversity. Because of access difficulties and low population density, baseline information about natural and human-induced disturbances in these regions is often limited or nonexistent. Landsat time series offer invaluable opportunities to reconstruct past land cover changes. However, the applicability of this approach strongly depends on the availability of good quality, cloud-free images, acquired at a regular time interval, which in mountainous regions are often difficult to find. The present study analyzed burn scar detection capabilities of 11 widely used spectral indices (SI) at 1 to 5 years after fire events in four dominant vegetation groups in a mountainous region of northwest Yunnan, China. To evaluate their performances, we used M-statistic as a burned-unburned class separability index, and we adapted an existing metric to quantify the SI residual burn signal at post-fire dates compared to the maximum severity recorded soon after the fire. Our results show that Normalized Burn Ratio (NBR) and Normalized Difference Moisture Index (NDMI) are always among the three best performers for the detection of burn scars starting 1 year after fire but not for the immediate post-fire assessment, where the Mid Infrared Burn Index, Burn Area Index, and Tasseled Cap Greenness were superior. Brightness and Wetness peculiar patterns revealed long-term effects of fire in vegetated land, suggesting their potential integration to assist other SI in burned area detection several years after the fire event. However, in general, class separability of most of the SI was poor after one growing season, due to the seasonal rains and the relatively fast regrowth rate of shrubs and grasses, confirming the difficulty of assessment in mountainous ecosystems. Our findings are meaningful for the selection of a suitable SI to integrate in burned area detection workflows, according to vegetation type and time lag between image acquisitions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-07-31
    Description: Remote Sensing, Vol. 10, Pages 1192: Automating Parameter Learning for Classifying Terrestrial LiDAR Point Cloud Using 2D Land Cover Maps Remote Sensing doi: 10.3390/rs10081192 Authors: Chen-Chieh Feng Zhou Guo The automating classification of point clouds capturing urban scenes is critical for supporting applications that demand three-dimensional (3D) models. Achieving this goal, however, is met with challenges because of the varying densities of the point clouds and the complexity of the 3D data. In order to increase the level of automation in the point cloud classification, this study proposes a segment-based parameter learning method that incorporates a two-dimensional (2D) land cover map, in which a strategy of fusing the 2D land cover map and the 3D points is first adopted to create labelled samples, and a formalized procedure is then implemented to automatically learn the following parameters of point cloud classification: the optimal scale of the neighborhood for segmentation, optimal feature set, and the training classifier. It comprises four main steps, namely: (1) point cloud segmentation; (2) sample selection; (3) optimal feature set selection; and (4) point cloud classification. Three datasets containing the point cloud data were used in this study to validate the efficiency of the proposed method. The first two datasets cover two areas of the National University of Singapore (NUS) campus while the third dataset is a widely used benchmark point cloud dataset of Oakland, Pennsylvania. The classification parameters were learned from the first dataset consisting of a terrestrial laser-scanning data and a 2D land cover map, and were subsequently used to classify both of the NUS datasets. The evaluation of the classification results showed overall accuracies of 94.07% and 91.13%, respectively, indicating that the transition of the knowledge learned from one dataset to another was satisfactory. The classification of the Oakland dataset achieved an overall accuracy of 97.08%, which further verified the transferability of the proposed approach. An experiment of the point-based classification was also conducted on the first dataset and the result was compared to that of the segment-based classification. The evaluation revealed that the overall accuracy of the segment-based classification is indeed higher than that of the point-based classification, demonstrating the advantage of the segment-based approaches.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-07-31
    Description: Remote Sensing, Vol. 10, Pages 1197: Quantifying Drought Propagation from Soil Moisture to Vegetation Dynamics Using a Newly Developed Ecohydrological Land Reanalysis Remote Sensing doi: 10.3390/rs10081197 Authors: Yohei Sawada Despite the importance of the interaction between soil moisture and vegetation dynamics to understand the complex nature of drought, few land reanalyses explicitly simulate vegetation growth and senescence. In this study, I provide a new land reanalysis which explicitly simulates the interaction between sub-surface soil moisture and vegetation dynamics by the sequential assimilation of satellite microwave brightness temperature observations into a land surface model (LSM). Assimilating satellite microwave brightness temperature observations improves the skill of a LSM to simultaneously simulate soil moisture and the seasonal cycle of leaf area index (LAI). By analyzing soil moisture and LAI simulated by this new land reanalysis, I identify the drought events which significantly damage LAI on the climatological day-of-year of the LAI’s seasonal peak and quantify drought propagation from soil moisture to LAI in the global snow-free region. On average, soil moisture in the shallow soil layers (0–0.45 m) quickly recovers from the drought condition before the climatological day-of-year of the LAI’s seasonal peak while soil moisture in the deeper soil layer (1.05–2.05 m) and LAI recover from the drought condition approximately 100 days after the climatological day-of-year of the LAI’s seasonal peak.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-08-01
    Description: Future Internet, Vol. 10, Pages 72: Context Analysis of Cloud Computing Systems Using a Pattern-Based Approach Future Internet doi: 10.3390/fi10080072 Authors: Ludger Goeke Nazila Gol Mohammadi Maritta Heisel Cloud computing services bring new capabilities for hosting and offering complex collaborative business operations. However, these advances might bring undesirable side-effects, e.g., introducing new vulnerabilities and threats caused by collaboration and data exchange over the Internet. Hence, users have become more concerned about security and privacy aspects. For secure provisioning of a cloud computing service, security and privacy issues must be addressed by using a risk assessment method. To perform a risk assessment, it is necessary to obtain all relevant information about the context of the considered cloud computing service. The context analysis of a cloud computing service and its underlying system is a difficult task because of the variety of different types of information that have to be considered. This context information includes (i) legal, regulatory and/or contractual requirements that are relevant for a cloud computing service (indirect stakeholders); (ii) relations to other involved cloud computing services; (iii) high-level cloud system components that support the involved cloud computing services; (iv) data that is processed by the cloud computing services; and (v) stakeholders that interact directly with the cloud computing services and/or the underlying cloud system components. We present a pattern for the contextual analysis of cloud computing services and demonstrate the instantiation of our proposed pattern with real-life application examples. Our pattern contains elements that represent the above-mentioned types of contextual information. The elements of our pattern conform to the General Data Protection Regulation. Besides the context analysis, our pattern supports the identification of high-level assets. Additionally, our proposed pattern supports the documentation of the scope and boundaries of a cloud computing service conforming to the requirements of the ISO 27005 standard (information security risk management). The results of our context analysis contribute to the transparency of the achieved security and privacy level of a cloud computing service. This transparency can increase the trust of users in a cloud computing service. We present results of the RestAssured project related to the context analysis regarding cloud computing services and their underlying cloud computing systems. The context analysis is the prerequisite to threat and control identification that are performed later in the risk management process. The focus of this paper is the use of a pattern at the time of design systematic context analysis and scope definition for risk management methods.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-07-26
    Description: Algorithms, Vol. 11, Pages 111: A Weighted Histogram-Based Tone Mapping Algorithm for CT Images Algorithms doi: 10.3390/a11080111 Authors: David Völgyes Anne Catrine Trægde Martinsen Arne Stray-Pedersen Dag Waaler Marius Pedersen Computed Tomography (CT) images have a high dynamic range, which makes visualization challenging. Histogram equalization methods either use spatially invariant weights or limited kernel size due to the complexity of pairwise contribution calculation. We present a weighted histogram equalization-based tone mapping algorithm which utilizes Fast Fourier Transform for distance-dependent contribution calculation and distance-based weights. The weights follow power-law without distance-based cut-off. The resulting images have good local contrast without noticeable artefacts. The results are compared to eight popular tone mapping operators.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-08-01
    Description: Remote Sensing, Vol. 10, Pages 1202: Potential of Photochemical Reflectance Index for Indicating Photochemistry and Light Use Efficiency in Leaves of European Beech and Norway Spruce Trees Remote Sensing doi: 10.3390/rs10081202 Authors: Daniel Kováč Petra Veselovská Karel Klem Kristýna Večeřová Alexander Ač Josep Peñuelas Otmar Urban Hyperspectral reflectance is becoming more frequently used for measuring the functions and productivity of ecosystems. The purpose of this study was to re-evaluate the potential of the photochemical reflectance index (PRI) for evaluating physiological status of plants. This is needed because the reasons for variation in PRI and its relationships to physiological traits remain poorly understood. We examined the relationships between PRI and photosynthetic parameters in evergreen Norway spruce and deciduous European beech grown in controlled conditions during several consecutive periods of 10–12 days between which the irradiance and air temperature were changed stepwise. These regime changes induced significant changes in foliar biochemistry and physiology. The responses of PRI corresponded particularly to alterations in the actual quantum yield of photosystem II photochemistry (ΦPSII). Acclimation responses of both species led to loss of PRI sensitivity to light use efficiency (LUE). The procedure of measuring PRI at multiple irradiance-temperature conditions has been designed also for testing accuracy of ΔPRI in estimating LUE. A correction mechanism of subtracting daily measured PRI from early morning PRI has been performed to account for differences in photosynthetic pigments between irradiance-temperature regimes. Introducing ΔPRI, which provided a better estimate of non-photochemical quenching (NPQ) compared to PRI, also improved the accuracy of LUE estimation. Furthermore, ΔPRI was able to detect the effect of drought, which is poorly observable from PRI.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-08-01
    Description: Remote Sensing, Vol. 10, Pages 1200: Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images Remote Sensing doi: 10.3390/rs10081200 Authors: Xin Zhang Bingfang Wu Guillermo E. Ponce-Campos Miao Zhang Sheng Chang Fuyou Tian Rice is a staple food in East Asia and Southeast Asia—an area that accounts for more than half of the world’s population, and 11% of its cultivated land. Studies on rice monitoring can provide direct or indirect information on food security, and water source management. Remote sensing has proven to be the most effective method for the large-scale monitoring of croplands, by using temporary and spectral information. The Google Earth Engine (GEE) is a cloud-based platform providing access to high-performance computing resources for processing extremely large geospatial datasets. In this study, by leveraging the computational power of GEE and a large pool of satellite and other geophysical data (e.g., forest and water extent maps, with high accuracy at 30 m), we generated the first up-to-date rice extent map with crop intensity, at 10 m resolution in the three provinces with the highest rice production in China (the Heilongjiang, Hunan and Guangxi provinces). Optical and synthetic aperture radar (SAR) data were monthly and metric composited to ensure a sufficient amount of up-to-date data without cloud interference. To remove the common confounding noise in the pixel-based classification results at medium to high resolution, we integrated the pixel-based classification (using a random forest classifier) result with the object-based segmentation (using a simple linear iterative clustering (SLIC) method). This integration resulted in the rice planted area data that most closely resembled official statistics. The overall accuracy was approximately 90%, which was validated by ground crop field points. The F scores reached 87.78% in the Heilongjiang Province for monocropped rice, 89.97% and 80.00% in the Hunan Province for mono- and double-cropped rice, respectively, and 88.24% in the Guangxi Province for double-cropped rice.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-08-02
    Description: Symmetry, Vol. 10, Pages 315: Long Time Behavior and Global Dynamics of Simplified Von Karman Plate Without Rotational Inertia Driven by White Noise Symmetry doi: 10.3390/sym10080315 Authors: Huatao Chen Dengqing Cao Jingfei Jiang Xiaoming Fan Without the assumption that the coefficient of weak damping is large enough, the existence of the global random attractors for simplified Von Karman plate without rotational inertia driven by either additive white noise or multiplicative white noise are proved. Instead of the classical splitting method, the techniques to verify the asymptotic compactness rely on stabilization estimation of the system. Furthermore, a clear relationship between in-plane components of the external force that act on the edge of the plate and the expectation of radius of the global random attractors can be obtained from the theoretical results. Based on the relationship between global random attractor and random probability invariant measure, the global dynamics of the plates are analyzed numerically. With increasing the in-plane components of the external force that act on the edge of the plate, global D-bifurcation, secondary global D-bifurcation and complex local dynamical behavior occur in motion of the system. Moreover, increasing the intensity of white noise leads to the dynamical behavior becoming simple. The results on global dynamics reveal that random snap-through which seems to be a complex dynamics intuitively is essentially a simple dynamical behavior.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-08-02
    Description: Symmetry, Vol. 10, Pages 314: Systematic Review of Decision Making Algorithms in Extended Neutrosophic Sets Symmetry doi: 10.3390/sym10080314 Authors: Mohsin Khan Le Hoang Son Mumtaz Ali Hoang Thi Minh Chau Nguyen Thi Nhu Na Florentin Smarandache The Neutrosophic set (NS) has grasped concentration by its ability for handling indeterminate, uncertain, incomplete, and inconsistent information encountered in daily life. Recently, there have been various extensions of the NS, such as single valued neutrosophic sets (SVNSs), Interval neutrosophic sets (INSs), bipolar neutrosophic sets (BNSs), Refined Neutrosophic Sets (RNSs), and triangular fuzzy number neutrosophic set (TFNNs). This paper contains an extended overview of the concept of NS as well as several instances and extensions of this model that have been introduced in the last decade, and have had a significant impact in literature. Theoretical and mathematical properties of NS and their counterparts are discussed in this paper as well. Neutrosophic-set-driven decision making algorithms are also overviewed in detail.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-08-02
    Description: Symmetry, Vol. 10, Pages 311: On p-Adic Fermionic Integrals of q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials † Symmetry doi: 10.3390/sym10080311 Authors: Lee-Chae Jang Taekyun Kim Dae San Kim Dmitry Victorovich Dolgy We study a q-analogue of Euler numbers and polynomials naturally arising from the p-adic fermionic integrals on Zp and investigate some properties for these numbers and polynomials. Then we will consider p-adic fermionic integrals on Zp of the two variable q-Bernstein polynomials, recently introduced by Kim, and demonstrate that they can be written in terms of the q-analogues of Euler numbers. Further, from such p-adic integrals we will derive some identities for the q-analogues of Euler numbers.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-08-02
    Description: Symmetry, Vol. 10, Pages 312: Connecting Electroweak Symmetry Breaking and Flavor: A Light Dilaton D and a Sequential Heavy Quark Doublet Q Symmetry doi: 10.3390/sym10080312 Authors: Wei-Shu Hou The 125 GeV boson is quite consistent with the Higgs boson of the Standard Model (SM), but there is a challenge from Anderson as to whether this particle is in the Lagrangian. As Large Hadron Collider (LHC) Run 2 enters its final year of running, we ought to reflect and make sure we have gotten everything right. The ATLAS and CMS combined Run 1 analysis claimed a measurement of 5.4σ vector boson fusion (VBF) production which is consistent with SM, which seemingly refutes Anderson. However, to verify the source of electroweak symmetry breaking (EWSB), we caution that VBF measurement is too important for us to be imprudent in any way, and gluon–gluon fusion (ggF) with similar tag jets must be simultaneous measured, which should be achievable in LHC Run 2. The point is to truly test the dilaton possibility—the pseudo-Goldstone boson of scale invariance violation. We illustrate EWSB by dynamical mass generation of a sequential quark doublet (Q) via its ultrastrong Yukawa coupling and argue how this might be consistent with a 125 GeV dilaton, D. The ultraheavy 2mQ≳4–5 TeV scale explains the absence of New Physics so far, while the mass generation mechanism shields us from the UV theory for the strong Yukawa coupling. Collider and flavor physics implications are briefly touched upon. Current Run 2 analyses show correlations between the ggF and VBF measurements, but the newly observed tt¯H production at LHC poses a challenge.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-08-02
    Description: Symmetry, Vol. 10, Pages 305: Evaluation of a Third-Party Logistics (3PL) Provider Using a Rough SWARA–WASPAS Model Based on a New Rough Dombi Agregator Symmetry doi: 10.3390/sym10080305 Authors: Siniša Sremac Željko Stević Dragan Pamučar Miloš Arsić Bojan Matić For companies active in various sectors, the implementation of transport services and other logistics activities has become one of the key factors of efficiency in the total supply chain. Logistics outsourcing is becoming more and more important, and there is an increasing number of third party logistics providers. In this paper, logistics providers were evaluated using the Rough SWARA (Step-Wise Weight Assessment Ratio Analysis) and Rough WASPAS (Weighted Aggregated Sum Product Assessment) models. The significance of the eight criteria on the basis of which evaluation was carried out was determined using the Rough SWARA method. In order to allow for a more precise consensus in group decision-making, the Rough Dombi aggregator was developed in order to determine the initial rough matrix of multi-criteria decision-making. A total of 10 logistics providers dealing with the transport of dangerous goods for chemical industry companies were evaluated using the Rough WASPAS approach. The obtained results demonstrate that the first logistics provider is also the best one, a conclusion confirmed by a sensitivity analysis comprised of three parts. In the first part, parameter ρ was altered through 10 scenarios in which only alternatives four and five change their ranks. In the second part of the sensitivity analysis, a calculation was performed using the following approaches: Rough SAW (Simple Additive Weighting), Rough EDAS (Evaluation Based on Distance from Average Solution), Rough MABAC (MultiAttributive Border Approximation Area Comparison), and Rough TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). They showed a high correlation of ranks determined by applying Spearman’s correlation coefficient in the third part of the sensitivity analysis.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-08-03
    Description: Symmetry, Vol. 10, Pages 318: Detectability Improved Tamper Detection Scheme for Absolute Moment Block Truncation Coding Compressed Images Symmetry doi: 10.3390/sym10080318 Authors: Wien Hong Xiaoyu Zhou Der-Chyuan Lou Xiaoqin Huang Cancan Peng Since digital media is gaining popularity nowadays, people are more concerned about its integrity protection and authentication since tampered media may result in unexpected problems. Considering a better media protection technique, this paper proposes an efficient tamper detection scheme for absolute moment block truncation coding (AMBTC) compressed images. In AMBTC, each image block is represented by two quantization levels (QLs) and a bitmap. Requiring insignificant computation cost, it attracts not only a wide range of application developers, but also a variety of studies to investigate the authentication of its codes. While the existing methods protect the AMBTC codes to a large extent, the leakage of some unprotected codes may be insensitive to intentional tampering. The proposed method fully protects the AMBTC codes by embedding authentication codes (ACs) into QLs. Meanwhile, the most significant bits of QLs are symmetrically perturbed to generate the candidates of ACs. The ACs that cause the minimum distortion are embedded into the least significant bits of QLs to minimize the distortion. When compared with prior works, the experimental results reveal that the proposed method offers a significant sensitivity-of-tamper property while providing a comparable image quality.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-08-03
    Description: Remote Sensing, Vol. 10, Pages 1211: Evaluating Metal Effects on the Reflectance Spectra of Plant Leaves during Different Seasons in Post-Mining Areas, China Remote Sensing doi: 10.3390/rs10081211 Authors: Chao Zhou Shengbo Chen Yuanzhi Zhang Jianhua Zhao Derui Song Dawei Liu This study examined the relationship between the leaf reflectance of different seasons and the concentration of heavy metal elements in leaves, such as Co, Cu, Mo, and Ni in a post-mining area. The reflectance spectra and leaf samples of three typical plants were measured and collected in a whole growth cycle (June, July, August, and September). The Red Edge Position (REP), Readjustment Normalized Difference Vegetation Index (RE-NDVI), and Photochemical Reflectance Index (PRI) were extracted and used to explore its relation with the heavy metals concentrations in leaves between different seasons. The results show that all three Vegetation Indices (VIs) were insensitive indicators for monitoring the metal effects of vegetation in different seasons, which showed similar trends. Based on this, the Continuum Removal Indices (CRIs) were proposed from the continuum removed approach and extended for detecting the effects of heavy metal pollution over a full growth cycle. The relationship between the metal concentrations and CRIs of different plants was respectively analyzed by Stepwise Multiple Linear Regression (SMLR) and Partial Least Squares Regression (PLSR). It is found that a significant correlation exists between the band depth and the concentration of Cu and Ni based on the White birch data sets using the PLSR, resulting in a small deviation from the established relationships. Compared with VIs, the approach of coupling CRIs and multiple regressions was effective for improving the estimation accuracy. The presented study provides a detection model of leaf heavy metals that can be adapted to different growing cycles, even an arbitrary growing cycle.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-08-03
    Description: Symmetry, Vol. 10, Pages 319: CRCM: A New Combined Data Gathering and Energy Charging Model for WRSN Symmetry doi: 10.3390/sym10080319 Authors: Yuhou Wang Ying Dong Shiyuan Li Hao Wu Mengyao Cui With the development of wireless sensor networks (WSNs), the problem about how to increase the lifecycle of the WSNs is always a hot discussion point, and some researchers have devoted to the ‘energy saving’ to decrease the energy consumption of the sensor nodes by different algorithms. However, the fundamental technique is ‘energy acquiring’ for the battery which can solve the limited capacity problem. In this paper, we study the data gathering and energy charging by a mobile charger (MC) at the same time that most energy consumption can be saved by short communication distance. We have named this as the recharging model-combined recharging and collecting data model on-demand (CRCM). Firstly, the hexagon-based (HB) algorithm is proposed to sort all sensor nodes in the region to make data collecting and energy charging work at the same time. Then we consider both residual energy and geographic position (REGP) of the sensor node to calculate the priority of each cluster. Thirdly, the dynamic mobile charger (DMC) algorithm is proposed to calculate the number of MCs to make sure no sensor node will die in each charging queue. Finally, the simulations show that our REGP algorithm is better than Earliest Deadline First (EDF) and Nearest-Job-Next with Preemption (NJNP), and the DMC plays well when the number of sensor nodes increase.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-08-07
    Description: Remote Sensing, Vol. 10, Pages 1234: HOMPC: A Local Feature Descriptor Based on the Combination of Magnitude and Phase Congruency Information for Multi-Sensor Remote Sensing Images Remote Sensing doi: 10.3390/rs10081234 Authors: Zhitao Fu Qianqing Qin Bin Luo Hong Sun Chun Wu Local region description of multi-sensor images remains a challenging task in remote sensing image analysis and applications due to the non-linear radiation variations between images. This paper presents a novel descriptor based on the combination of the magnitude and phase congruency information of local regions to capture the common features of images with non-linear radiation changes. We first propose oriented phase congruency maps (PCMs) and oriented magnitude binary maps (MBMs) using the multi-oriented phase congruency and magnitude information of log-Gabor filters. The two feature vectors are then quickly constructed based on the convolved PCMs and MBMs. Finally, a dense descriptor named the histograms of oriented magnitude and phase congruency (HOMPC) is developed by combining the histograms of oriented phase congruency (HPC) and the histograms of oriented magnitude (HOM) to capture the structure and shape properties of local regions. HOMPC was evaluated with three datasets composed of multi-sensor remote sensing images obtained from unmanned ground vehicle, unmanned aerial vehicle, and satellite platforms. The descriptor performance was evaluated by recall, precision, F1-measure, and area under the precision-recall curve. The experimental results showed the advantages of the HOM and HPC combination and confirmed that HOMPC is far superior to the current state-of-the-art local feature descriptors.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-08-07
    Description: Remote Sensing, Vol. 10, Pages 1236: Progressive Degradation of an Ice Rumple in the Thwaites Ice Shelf, Antarctica, as Observed from High-Resolution Digital Elevation Models Remote Sensing doi: 10.3390/rs10081236 Authors: Seung Hee Kim Duk-jin Kim Hyun-Cheol Kim Ice rumples are locally-grounded features of flowing ice shelves, elevated tens of meters above the surrounding surface. These features may significantly impact the dynamics of ice-shelf grounding lines, which are strongly related to shelf stability. In this study, we used TanDEM-X data to construct high-resolution DEMs of the Thwaites ice shelf in West Antarctica from 2011 to 2013. We also generated surface deformation maps which allowed us to detect and monitor the elevation changes of an ice rumple that appeared sometime between the observations of a grounding line of the Thwaites glacier using Double-Differential Interferometric SAR (DDInSAR) in 1996 and 2011. The observed degradation of the ice rumple during 2011–2013 may be related to a loss of contact with the underlying bathymetry caused by the thinning of the ice shelf. We subsequently used a viscoelastic deformation model with a finite spherical pressure source to reproduce the surface expression of the ice rumple. Global optimization allowed us to fit the model to the observed deformation map, producing reasonable estimates of the ice thickness at the center of the pressure source. Our conclusion is that combining the use of multiple high-resolution DEMs and the simple viscoelastic deformation model is feasible for observing and understanding the transient nature of small ice rumples, with implications for monitoring ice shelf stability.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-08-07
    Description: Remote Sensing, Vol. 10, Pages 1232: Assessing Coastal SMAP Surface Salinity Accuracy and Its Application to Monitoring Gulf of Maine Circulation Dynamics Remote Sensing doi: 10.3390/rs10081232 Authors: Semyon A. Grodsky Douglas Vandemark Hui Feng Monitoring the cold and productive waters of the Gulf of Maine and their interactions with the nearby northwestern (NW) Atlantic shelf is important but challenging. Although remotely sensed sea surface temperature (SST), ocean color, and sea level have become routine, much of the water exchange physics is reflected in salinity fields. The recent invention of satellite salinity sensors, including the Soil Moisture Active Passive (SMAP) radiometer, opens new prospects in regional shelf studies. However, local sea surface salinity (SSS) retrieval is challenging due to both cold SST limiting salinity sensor sensitivity and proximity to land. For the NW Atlantic, our analysis shows that SMAP SSS is subject to an SST-dependent bias that is negative and amplifies in winter and early spring due to the SST-related drop in SMAP sensor sensitivity. On top of that, SMAP SSS is subject to a land contamination bias. The latter bias becomes noticeable and negative when the antenna land contamination factor (LC) exceeds 0.2%, and attains maximum negative values at LC = 0.4%. Coastward of LC = 0.5%, a significant positive land contamination bias in absolute SMAP SSS is evident. SST and land contamination bias components are seasonally dependent due to seasonal changes in SST/winds and terrestrial microwave properties. Fortunately, it is shown that SSS anomalies computed relative to a satellite SSS climatology can effectively remove such seasonal biases along with the real seasonal cycle. SMAP monthly SSS anomalies have sufficient accuracy and applicability to extend nearer to the coasts. They are used to examine the Gulf of Maine water inflow, which displayed important water intrusions in between Georges Banks and Nova Scotia in the winters of 2016/17 and 2017/18. Water intrusion patterns observed by SMAP are generally consistent with independent measurements from the European Soil Moisture Ocean Salinity (SMOS) mission. Circulation dynamics related to the 2016/2017 period and enhanced wind-driven Scotian Shelf transport into the Gulf of Maine are discussed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-08-07
    Description: Remote Sensing, Vol. 10, Pages 1230: Assisting Flood Disaster Response with Earth Observation Data and Products: A Critical Assessment Remote Sensing doi: 10.3390/rs10081230 Authors: Guy J-P. Schumann G. Robert Brakenridge Albert J. Kettner Rashid Kashif Emily Niebuhr Floods are among the top-ranking natural disasters in terms of annual cost in insured and uninsured losses. Since high-impact events often cover spatial scales that are beyond traditional regional monitoring operations, remote sensing, in particular from satellites, presents an attractive approach. Since the 1970s, there have been many studies in the scientific literature about mapping and monitoring of floods using data from various sensors onboard different satellites. The field has now matured and hence there is a general consensus among space agencies, numerous organizations, scientists, and end-users to strengthen the support that satellite missions can offer, particularly in assisting flood disaster response activities. This has stimulated more research in this area, and significant progress has been achieved in recent years in fostering our understanding of the ways in which remote sensing can support flood monitoring and assist emergency response activities. This paper reviews the products and services that currently exist to deliver actionable information about an ongoing flood disaster to emergency response operations. It also critically discusses requirements, challenges and perspectives for improving operational assistance during flood disaster using satellite remote sensing products.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-08-07
    Description: Symmetry, Vol. 10, Pages 323: Temperature-Dependent s± ↔ s++ Transitions in the Multiband Model for Fe-Based Superconductors with Impurities Symmetry doi: 10.3390/sym10080323 Authors: V. A. Shestakov M. M. Korshunov O. V. Dolgov We study the dependence of the superconducting gaps on both the disorder and the temperature within the two-band model for iron-based materials. In the clean limit, the system is in the s± state with sign-changing gaps. Scattering by nonmagnetic impurities leads to the change of the sign of the smaller gap, resulting in a transition from the s± to the s++ state with the sign-preserving gaps. We show here that the transition is temperature-dependent. Thus, there is a line of s±→s++ transition in the temperature–disorder phase diagram. There is a narrow range of impurity scattering rates, where the disorder-induced s±→s++ transition occurs at low temperatures, but then the low-temperature s++ state transforms back to the s± state at higher temperatures. With increasing impurity scattering rate, the temperature of such s++→s± transition shifts to the critical temperature Tc, and only the s++ state is left for higher amounts of disorder.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-08-06
    Description: Remote Sensing, Vol. 10, Pages 1228: Generic and Automatic Markov Random Field-Based Registration for Multimodal Remote Sensing Image Using Grayscale and Gradient Information Remote Sensing doi: 10.3390/rs10081228 Authors: Li Yan Ziqi Wang Yi Liu Zhiyun Ye The automatic image registration serves as a technical prerequisite for multimodal remote sensing image fusion. Meanwhile, it is also the technical basis for change detection, image stitching and target recognition. The demands of subpixel level registration accuracy can be rarely satisfied with a multimodal image registration method based on feature matching. In light of this, we propose a Generic and automatic Markov Random Field (MRF)-based registration framework of multimodal image using grayscale and gradient information. The proposed approach performs non-rigid registration and formulates an MRF model while grayscale and gradient statistical information of a multimodal image is employed for the evaluation of similarity while the spatial weighting function is optimized simultaneously. Besides, the value space is discretized to improve the convergence speed. The developed automatic approach was validated both qualitatively and quantitatively, demonstrating its potential for a variety of multimodal remote sensing datasets and scenes. As for the registration accuracy, the average target registration error of the proposed framework is less than 1 pixel, while the maximum displacement error is less than 1 pixel. Compared with the polynomial model registration based on manual selection, the registration accuracy has been significantly improved. In the meantime, the proposed approach had the partial applicability for the multimodal image registration of large deformation scenes. It is also proved that the proposed registration framework using grayscale and gradient information outperforms the MRF-based registration using only grayscale information and only gradient information while the proposed registration framework using Gaussian function as spatial weighting function is superior to that using distance inverse weight method.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-08-07
    Description: Algorithms, Vol. 11, Pages 119: An Opportunistic Network Routing Algorithm Based on Cosine Similarity of Data Packets between Nodes Algorithms doi: 10.3390/a11080119 Authors: Yucheng Lin Zhigang Chen Jia Wu Leilei Wang The mobility of nodes leads to dynamic changes in topology structure, which makes the traditional routing algorithms of a wireless network difficult to apply to the opportunistic network. In view of the problems existing in the process of information forwarding, this paper proposed a routing algorithm based on the cosine similarity of data packets between nodes (cosSim). The cosine distance, an algorithm for calculating the similarity between text data, is used to calculate the cosine similarity of data packets between nodes. The data packet set of nodes are expressed in the form of vectors, thereby facilitating the calculation of the similarity between the nodes. Through the definition of the upper and lower thresholds, the similarity between the nodes is filtered according to certain rules, and finally obtains a plurality of relatively reliable transmission paths. Simulation experiments show that compared with the traditional opportunistic network routing algorithm, such as the Spray and Wait (S&W) algorithm and Epidemic algorithm, the cosSim algorithm has a better transmission effect, which can not only improve the delivery ratio, but also reduce the network transmission delay and decline the routing overhead.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-08-07
    Description: Algorithms, Vol. 11, Pages 120: Probabilistic Interval-Valued Hesitant Fuzzy Information Aggregation Operators and Their Application to Multi-Attribute Decision Making Algorithms doi: 10.3390/a11080120 Authors: Wenying Wu Ying Li Zhiwei Ni Feifei Jin Xuhui Zhu Based on the probabilistic interval-valued hesitant fuzzy information aggregation operators, this paper investigates a novel multi-attribute group decision making (MAGDM) model to address the serious loss of information in a hesitant fuzzy information environment. Firstly, the definition of probabilistic interval-valued hesitant fuzzy set will be introduced, and then, using Archimedean norm, some new probabilistic interval-valued hesitant fuzzy operations are defined. Secondly, based on these operations, the generalized probabilistic interval-valued hesitant fuzzy ordered weighted averaging (GPIVHFOWA) operator, and the generalized probabilistic interval-valued hesitant fuzzy ordered weighted geometric (GPIVHFOWG) operator are proposed, and their desirable properties are discussed. We further study their common forms and analyze the relationship among these proposed operators. Finally, a new probabilistic interval-valued hesitant fuzzy MAGDM model is constructed, and the feasibility and effectiveness of the proposed model are verified by using an example of supplier selection.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-08-08
    Description: Remote Sensing, Vol. 10, Pages 1242: Ocean Wave Measurement Using Short-Range K-Band Narrow Beam Continuous Wave Radar Remote Sensing doi: 10.3390/rs10081242 Authors: Jian Cui Ralf Bachmayer Brad deYoung Weimin Huang We describe a technique to measure ocean wave period, height and direction. The technique is based on the characteristics of transmission and backscattering of short-range K-band narrow beam continuous wave radar at the sea surface. The short-range K-band radar transmits and receives continuous signals close to the sea surface at a low-grazing angle. By sensing the motions of a dominant facet at the sea surface that strongly scatters signals back and is located directly in front of the radar, the wave orbital velocity can be measured from the Doppler shift of the received radar signal. The period, height and direction of ocean wave are determined from the relationships among wave orbital velocity, ocean wave characteristics and the Doppler shift. Numerical simulations were performed to validate that the dominant facet exists and ocean waves are measured by sensing its motion. Validation experiments were conducted in a wave tank to verify the feasibility of the proposed ocean wave measurement method. The results of simulations and experiments demonstrate the effectiveness of the short-range K-band narrow beam continuous wave radar for the measurement of ocean waves.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-08-08
    Description: Remote Sensing, Vol. 10, Pages 1241: Troposphere Water Vapour Tomography: A Horizontal Parameterised Approach Remote Sensing doi: 10.3390/rs10081241 Authors: Qingzhi Zhao Yibin Yao Wanqiang Yao Global Navigation Satellite System (GNSS) troposphere tomography has become one of the most cost-effective means to obtain three-dimensional (3-d) image of the tropospheric water vapour field. Traditional methods divide the tomography area into a number of 3-d voxels and assume that the water vapour density at any voxel is a constant during the given period. However, such behaviour breaks the spatial continuity of water vapour density in a horizontal direction and the number of unknown parameters needing to be estimated is very large. This is the focus of the paper, which tries to reconstruct the water vapor field using the tomographic technique without imposing empirical horizontal and vertical constraints. The proposed approach introduces the layered functional model in each layer vertically and only an a priori constraint is imposed for the water vapor information at the location of the radiosonde station. The elevation angle mask of 30° is determined according to the distribution of intersections between the satellite rays and different layers, which avoids the impact of ray bending and the error in slant water vapor (SWV) at low elevation angles on the tomographic result. Additionally, an optimal weighting strategy is applied to the established tomographic model to obtain a reasonable result. The tomographic experiment is performed using Global Positioning System (GPS) data of 12 receivers derived from the Satellite Positioning Reference Station Network (SatRef) in Hong Kong. The quality of the established tomographic model is validated under different weather conditions and compared with the conventional tomography method using 31-day data, respectively. The numerical result shows that the proposed method is applicable and superior to the traditional one. Comparisons of integrated water vapour (IWV) of the proposed method with that derived from radiosonde and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data show that the root mean square (RMS)/Bias of their differences are 3.2/−0.8 mm and 3.3/−1.7 mm, respectively, while the values of traditional method are 5.1/−3.9 mm and 6.3/−5.9 mm, respectively. Furthermore, the water vapour density profiles are also compared with radiosonde and ECMWF data, and the values of RMS/Bias error for the proposed method are 0.88/0.06 g/m3 and 0.92/−0.08 g/m3, respectively, while the values of the traditional method are 1.33/0.38 g/m3 and 1.59/0.40 g/m3, respectively.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-08-08
    Description: Remote Sensing, Vol. 10, Pages 1237: Detection of Methane Plumes Using Airborne Midwave Infrared (3–5 µm) Hyperspectral Data Remote Sensing doi: 10.3390/rs10081237 Authors: Rebecca Del’ Papa Moreira Scafutto Carlos Roberto de Souza Filho Methane (CH4) display spectral features in several regions of the infrared range (0.75–14 µm), which can be used for the remote mapping of emission sources through the detection of CH4 plumes from natural seeps and leaks. Applications of hyperspectral remote sensing techniques for the detection of CH4 in the near and shortwave infrared (NIR-SWIR: 0.75–3 µm) and longwave infrared (LWIR: 7–14 µm) have been demonstrated in the literature with multiple sensors and scenarios. However, the acquisition and processing of hyperspectral data in the midwave infrared (MWIR: 3–5 µm) for this application is rather scarce. Here, a controlled field experiment was used to evaluate the potential for CH4 plume detection in the MWIR based on hyperspectral data acquired with the SEBASS airborne sensor. For comparison purposes, LWIR data were also acquired simultaneously with the same instrument. The experiment included surface and undersurface emission sources (ground stations), with flow rates ranging between 0.6–40 m3/h. The data collected in both ranges were sequentially processed using the same methodology. The CH4 plume was detected, variably, in both datasets. The gas plume was detected in all LWIR images acquired over nine gas leakage stations. In the MWIR range, the plume was detected in only four stations, wherein 18 m3/h was the lowest flux sensed. We demonstrate that the interference of target reflectance, the low contrast between plume and background and a low signal of the CH4 feature in the MWIR at ambient conditions possibly explain the inferior results observed for this range when compared to LWIR. Furthermore, we show that the acquisition time and weather conditions, including specific limits of temperature, humidity, and wind speed, proved critical for plume detection using daytime MWIR hyperspectral data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-08-08
    Description: Remote Sensing, Vol. 10, Pages 1238: Refining Land Cover Classification Maps Based on Dual-Adaptive Majority Voting Strategy for Very High Resolution Remote Sensing Images Remote Sensing doi: 10.3390/rs10081238 Authors: Guoqing Cui Zhiyong Lv Guangfei Li Jón Atli Benediktsson Yudong Lu Land cover classification that uses very high resolution (VHR) remote sensing images is a topic of considerable interest. Although many classification methods have been developed, the accuracy and usability of classification systems can still be improved. In this paper, a novel post-processing approach based on a dual-adaptive majority voting strategy (D-AMVS) is proposed to improve the performance of initial classification maps. D-AMVS defines a strategy for refining each label of a classified map that is obtained by different classification methods from the same original image, and fusing the different refined classification maps to generate a final classification result. The proposed D-AMVS contains three main blocks. (1) An adaptive region is generated by gradually extending the region around a central pixel based on two predefined parameters (T1 and T2) to utilize the spatial feature of ground targets in a VHR image. (2) For each classified map, the label of the central pixel is refined according to the majority voting rule within the adaptive region. This is defined as adaptive majority voting. Each initial classified map is refined in this manner pixel by pixel. (3) Finally, the refined classified maps are used to generate a final classification map, and the label of the central pixel in the final classification map is determined by applying AMV again. Each entire classified map is scanned and refined pixel by pixel based on the proposed D-AMVS. The accuracies of the proposed D-AMVS approach are investigated with two remote sensing images with high spatial resolutions of 1.0 m and 1.3 m. Compared with the classical majority voting method and a relatively new post-processing method called the general post-classification framework, the proposed D-AMVS can achieve a land cover classification map with less noise and higher classification accuracies.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-12
    Description: Entropy, Vol. 20, Pages 455: A Novel Fault Diagnosis Method of Rolling Bearings Based on AFEWT-KDEMI Entropy doi: 10.3390/e20060455 Authors: Mingtao Ge Jie Wang Fangfang Zhang Ke Bai Xiangyang Ren According to the dynamic characteristics of the rolling bearing vibration signal and the distribution characteristics of its noise, a fault identification method based on the adaptive filtering empirical wavelet transform (AFEWT) and kernel density estimation mutual information (KDEMI) classifier is proposed. First, we use AFEWT to extract the feature of the rolling bearing vibration signal. The hypothesis test of the Gaussian distribution is carried out for the sub-modes that are obtained by the twice decomposition of EWT, and Gaussian noise is filtered out according to the test results. In this way, we can overcome the noise interference and avoid the mode selection problem when we extract the feature of the signal. Then we combine the advantages of kernel density estimation (KDE) and mutual information (MI) and put forward a KDEMI classifier. The mutual information of the probability density combining the unknown signal feature vector and the probability density of the known type signal is calculated. The type of the unknown signal is determined via the value of the mutual information, so as to achieve the purpose of fault identification of the rolling bearing. In order to verify the effectiveness of AFEWT in feature extraction, we extract signal features using three methods, AFEWT, EWT, and EMD, and then use the same classifier to identify fault signals. Experimental results show that the fault signal has the highest recognition rate by using AFEWT for feature extraction. At the same time, in order to verify the performance of the AFEWT-KDEMI method, we compare two classical fault signal identification methods, SVM and BP neural network, with the AFEWT-KDEMI method. Through experimental analysis, we found that the AFEWT-KDEMI method is more stable and effective.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-05
    Description: Future Internet, Vol. 10, Pages 46: A Tiered Control Plane Model for Service Function Chaining Isolation Future Internet doi: 10.3390/fi10060046 Authors: Håkon Gunleifsen Vasileios Gkioulos Thomas Kemmerich This article presents an architecture for encryption automation in interconnected Network Function Virtualization (NFV) domains. Current NFV implementations are designed for deployment within trusted domains, where overlay networks with static trusted links are utilized for enabling network security. Nevertheless, within a Service Function Chain (SFC), Virtual Network Function (VNF) flows cannot be isolated and end-to-end encrypted because each VNF requires direct access to the overall SFC data-flow. This restricts both end-users and Service Providers from enabling end-to-end security, and in extended VNF isolation within the SFC data traffic. Encrypting data flows on a per-flow basis results in an extensive amount of secure tunnels, which cannot scale efficiently in manual configurations. Additionally, creating secure data plane tunnels between NFV providers requires secure exchange of key parameters, and the establishment of an east–west control plane protocol. In this article, we present an architecture focusing on these two problems, investigating how overlay networks can be created, isolated, and secured dynamically. Accordingly, we propose an architecture for automated establishment of encrypted tunnels in NFV, which introduces a novel, tiered east–west communication channel between network controllers in a multi-domain environment.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-13
    Description: Remote Sensing, Vol. 10, Pages 929: Intercomparison and Validation of SAR-Based Ice Velocity Measurement Techniques within the Greenland Ice Sheet CCI Project Remote Sensing doi: 10.3390/rs10060929 Authors: John Peter Merryman Boncori Morten Langer Andersen Jørgen Dall Anders Kusk Martijn Kamstra Signe Bech Andersen Noa Bechor Suzanne Bevan Christian Bignami Noel Gourmelen Ian Joughin Hyung-Sup Jung Adrian Luckman Jeremie Mouginot Julia Neelmeijer Eric Rignot Kilian Scharrer Thomas Nagler Bernd Scheuchl Tazio Strozzi Ice velocity is one of the products associated with the Ice Sheets Essential Climate Variable. This paper describes the intercomparison and validation of ice-velocity measurements carried out by several international research groups within the European Space Agency Greenland Ice Sheet Climate Change Initiative project, based on space-borne Synthetic Aperture Radar (SAR) data. The goal of this activity was to survey the best SAR-based measurement and error characterization approaches currently in practice. To this end, four experiments were carried out, related to different processing techniques and scenarios, namely differential SAR interferometry, multi aperture SAR interferometry and offset-tracking of incoherent as well as of partially-coherent data. For each task, participants were provided with common datasets covering areas located on the Greenland ice-sheet margin and asked to provide mean velocity maps, quality characterization and a description of processing algorithms and parameters. The results were then intercompared and validated against GPS data, revealing in several cases significant differences in terms of coverage and accuracy. The algorithmic steps and parameters influencing the coverage, accuracy and spatial resolution of the measurements are discussed in detail for each technique, as well as the consistency between quality parameters and validation results. This allows several recommendations to be formulated, in particular concerning procedures which can reduce the impact of analyst decisions, and which are often found to be the cause of sub-optimal algorithm performance.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-13
    Description: Remote Sensing, Vol. 10, Pages 926: Comparison of SNAP-Derived Sentinel-2A L2A Product to ESA Product over Europe Remote Sensing doi: 10.3390/rs10060926 Authors: Najib Djamai Richard Fernandes Sentinel-2 is a constellation of two satellites launched by the European Space Agency (ESA), respectively on 23 June 2015 and 7 March 2017, to map geophysical parameters over land surfaces. ESA provides Level 2 bottom-of-atmosphere reflectance (BOA) products (ESA-L2A) for Europe, with plans for operational global coverage, as well as the Sen2Cor (S2C) offline processor. In this study, aerosol optical thickness (AOT), precipitable water vapour (WVP) and surface reflectance from ESA-L2A products are compared with S2C output when using identical input Level 1 radiance products. Additionally, AOT and WVP are validated against reference measurement. As ESA and S2C share the same input and atmospheric correction algorithm, it was hypothesized that they should show identical validation performance and that differences between products should be negligible in comparison to the uncertainty of retrieved geophysical parameters due to radiometric uncertainty alone. Validation and intercomparison was performed for five clear-sky growing season dates for each of three ESA-L2A tiles selected to span a range of vegetation and topography as well as to be close to the AERONET measurement site. Validation of S2C (ESA) products using AERONET site measurements indicated an overall root mean square error (RMSE) of 0.06 (0.07) and a bias of 0.05 (0.09) for AOT and 0.20 cm (0.22 cm) and the bias was −0.02 cm (−0.10 cm) for WVP. Intercomparison of S2C-L2A and ESA-L2A showed an overall agreement higher than 99% for scene classification (SCL) maps and negligible differences for WVP (RMSE under 0.09 and R2 above 0.99). Larger disagreement was observed for aerosol optical thickness (AOT) (RMSE up to 0.04 and R2 as low as 0.14). For BOA reflectance, disagreement between products depends on vegetation cover density, topography slope and spectral band. The largest differences were observed for red-edge and infrared bands in mountainous vegetated areas (RMSE up to 4.9% reflectance and R2 as low as 0.53). These differences are of similar magnitude to the radiometric calibration requirements for the Sentinel 2 imager. The differences had minimal impact of commonly used vegetation indices (NDVI, NDWI, EVI), but application of the Sentinel Level 2 biophysical processor generally resulted in proportional differences in most derived vegetation parameters. It is recommended that the consistency of ESA and S2C products should be improved by the developers of the ESA and S2C processors.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-14
    Description: Entropy, Vol. 20, Pages 458: Vacuum Landscaping: Cause of Nonlocal Influences without Signaling Entropy doi: 10.3390/e20060458 Authors: Gerhard Grössing Siegfried Fussy Johannes Mesa Pascasio Herbert Schwabl In the quest for an understanding of nonlocality with respect to an appropriate ontology, we propose a “cosmological solution”. We assume that from the beginning of the universe each point in space has been the location of a scalar field representing a zero-point vacuum energy that nonlocally vibrates at a vast range of different frequencies across the whole universe. A quantum, then, is a nonequilibrium steady state in the form of a “bouncer” coupled resonantly to one of those (particle type dependent) frequencies, in remote analogy to the bouncing oil drops on an oscillating oil bath as in Couder’s experiments. A major difference to the latter analogy is given by the nonlocal nature of the vacuum oscillations. We show with the examples of double- and n-slit interference that the assumed nonlocality of the distribution functions alone suffices to derive the de Broglie–Bohm guiding equation for N particles with otherwise purely classical means. In our model, no influences from configuration space are required, as everything can be described in 3-space. Importantly, the setting up of an experimental arrangement limits and shapes the forward and osmotic contributions and is described as vacuum landscaping.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-05
    Description: Remote Sensing, Vol. 10, Pages 870: Low-Frequency Sea Surface Radar Doppler Echo Remote Sensing doi: 10.3390/rs10060870 Authors: Yury Yu. Yurovsky Vladimir N. Kudryavtsev Semyon A. Grodsky Bertrand Chapron The sea surface normalized radar backscatter cross-section (NRCS) and Doppler velocity (DV) exhibit energy at low frequencies (LF) below the surface wave peak. These NRCS and DV variations are coherent and thus may produce a bias in the DV averaged over large footprints, which is important for interpretation of Doppler scatterometer measurements. To understand the origin of LF variations, the platform-borne Ka-band radar measurements with well-pronounced LF variations at frequencies below wave peak (0.19 Hz) are analyzed. These data show that the LF NRCS is coherent with wind speed at 21 m height while the LF DV is not. The NRCS-wind correlation is significant only at frequencies below 0.01 Hz indicating either differences between near-surface wind (affecting radar signal) and 21-m height wind (actually measured) or contributions of other mechanisms of LF radar signal variations. It is shown that non-linearity in NRCS-wave slope Modulation Transfer Function (MTF) and inherent averaging within radar footprint account for NRCS and DV LF variance, with the exception of VV NRCS for which almost half of the LF variance is unexplainable by these mechanisms and perhaps attributable to wind fluctuations. Although the distribution of radar DV is quasi-Gaussian, suggesting virtually little impact of non-linearity, the LF DV variations arise due to footprint averaging of correlated local DV and non-linear NRCS. Numerical simulations demonstrate that MTF non-linearity weakly affects traditional linear MTF estimate (less than 10% for typical MTF magnitudes less than 20). Thus the linear MTF is a good approximation to evaluate the DV averaged over large footprints typical of satellite observations.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-05
    Description: Remote Sensing, Vol. 10, Pages 869: The Potential and Challenges of Using Soil Moisture Active Passive (SMAP) Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes Remote Sensing doi: 10.3390/rs10060869 Authors: Wenqing Tang Simon Yueh Daqing Yang Alexander Fore Akiko Hayashi Tong Lee Severine Fournier Benjamin Holt Sea surface salinity (SSS) links various components of the Arctic freshwater system. SSS responds to freshwater inputs from river discharge, sea ice change, precipitation and evaporation, and oceanic transport through the open straits of the Pacific and Atlantic oceans. However, in situ SSS data in the Arctic Ocean are very sparse and insufficient to depict the large-scale variability to address the critical question of how climate variability and change affect the Arctic Ocean freshwater. The L-band microwave radiometer on board the NASA Soil Moisture Active Passive (SMAP) mission has been providing SSS measurements since April 2015, at approximately 60 km resolution with Arctic Ocean coverage in 1–2 days. With improved land/ice correction, the SMAP SSS algorithm that was developed at the Jet Propulsion Laboratory (JPL) is able to retrieve SSS in ice-free regions 35 km of the coast. SMAP observes a large-scale contrast in salinity between the Atlantic and Pacific sides of the Arctic Ocean, while retrievals within the Arctic Circle vary over time, depending on the sea ice coverage and river runoff. We assess the accuracy of SMAP SSS through comparative analysis with in situ salinity data collected by Argo floats, ships, gliders, and in field campaigns. Results derived from nearly 20,000 pairs of SMAP and in situ data North of 50°N collocated within a 12.5-km radius and daily time window indicate a Root Mean Square Difference (RMSD) less than ~1 psu with a correlation coefficient of 0.82 and a near unity regression slope over the entire range of salinity. In contrast, the Hybrid Coordinate Ocean Model (HYCOM) has a smaller RMSD with Argo. However, there are clear systematic biases in the HYCOM for salinity in the range of 25–30 psu, leading to a regression slope of about 0.5. In the region North of 65°N, the number of collocated samples drops more than 70%, resulting in an RMSD of about 1.2 psu. SMAP SSS in the Kara Sea shows a consistent response to discharge anomalies from the Ob’ and Yenisei rivers between 2015 and 2016, providing an assessment of runoff impact in a region where no in situ salinity data are available for validation. The Kara Sea SSS anomaly observed by SMAP is missing in the HYCOM SSS, which assimilates climatological runoffs without interannual changes. We explored the feasibility of using SMAP SSS to monitor the sea surface salinity variability at the major Arctic Ocean gateways. Results show that although the SMAP SSS is limited to about 1 psu accuracy, many large salinity changes are observable. This may lead to the potential application of satellite SSS in the Arctic monitoring system as a proxy of the upper ocean layer freshwater exchanges with subarctic oceans.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-12
    Description: Symmetry, Vol. 10, Pages 210: An Improved Whale Optimization Algorithm Based on Different Searching Paths and Perceptual Disturbance Symmetry doi: 10.3390/sym10060210 Authors: Wei-zhen Sun Jie-sheng Wang Xian Wei Whale optimization algorithm (WOA) is a swarm intelligence optimization algorithm inspired by humpback whale hunting behavior. WOA has many similarities with other swarm intelligence algorithms (PSO, GWO, etc.). WOA’s unique search mechanism enables it to have a strong global search capability while taking into account the strong global search capabilities. In this work, considering the the deficiency of WOA in local search mechanism, combined with the optimization methods of other group intelligent algorithms, perceptual perturbation mechanism is introduced, which makes the agent perform more detailed searches near the local extreme point. At the same time, since the WOA uses a logarithmic spiral curve, the agent cannot fully search all the spaces within its search range, even though the introduction of the perturbation mechanism may still lead to the algorithm falling into a local optimum. Therefore, the equal pitch Archimedes spiral curve is chosen to replace the classic logarithmic spiral curve. In order to fully verify the effect of the search path on the performance of the algorithm, several other spiral curves have been chosen for experimental comparison. By utilizing the 23 benchmark test functions, the simulation results show that WOA (PDWOA) with perceptual perturbation significantly outperforms the standard WOA. Then, based on the PDWOA, the effect of the search path on the performance of the algorithm has been verified. The simulation results show that the equal pitch of the Archimedean spiral curve is best.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-05
    Description: Symmetry, Vol. 10, Pages 201: Topological Characterization of the Symmetrical Structure of Bismuth Tri-Iodide Symmetry doi: 10.3390/sym10060201 Authors: Muhammad Imran Muhammad Arfan Ali Sarfaraz Ahmad Muhammad Kamran Siddiqui Abdul Qudair Baig The bismuth tri-iodide ( B i I 3 ) is an inorganic compound. It is the result of the response of bismuth and iodine, which has inspired enthusiasm for subjective inorganic investigation. The topological indices are the numerical invariants of the molecular graph that portray its topology and are normally graph invariants. In 1975, Randic presented, in a bond-added substance, a topological index as a descriptor for portraying subatomic branching. In this paper, we investigate the precious stone structure of bismuth tri-iodide chain and sheet. Moreover, exact formulas of degree-based added-substance topological indices principally the first, second, and hyper Zagreb indices, the general Randic index, the geometric-arithmetic index, the fourth atom-bond connectivity index, and the fifth geometric arithmetic index of the subatomic graph of bismuth tri-iodide for both chain and sheet structures are determined.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-14
    Description: Remote Sensing, Vol. 10, Pages 934: Concentric Circle Pooling in Deep Convolutional Networks for Remote Sensing Scene Classification Remote Sensing doi: 10.3390/rs10060934 Authors: Kunlun Qi Qingfeng Guan Chao Yang Feifei Peng Shengyu Shen Huayi Wu Convolutional neural networks (CNNs) have been increasingly used in remote sensing scene classification/recognition. The conventional CNNs are sensitive to the rotation of the image scene, which will inevitably result in the misclassification of remote sensing scene images that belong to the same category. In this work, we equip the networks with a new pooling strategy, “concentric circle pooling”, to alleviate the above problem. The new network structure, called CCP-net can generate a concentric circle-based spatial-rotation-invariant representation of an image, hence improving the classification accuracy. The square kernel is adopted to approximate the circle kernels in concentric circle pooling, which is much more efficient and suitable for CNNs to propagate gradients. We implement the training of the proposed network structure with standard back-propagation, thus CCP-net is an end-to-end trainable CNNs. With these advantages, CCP-net should in general improve CNN-based remote sensing scene classification methods. Experiments using two publicly available remote sensing scene datasets demonstrate that using CCP-net can achieve competitive classification results compared with the state-of-art methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-06
    Description: Algorithms, Vol. 11, Pages 80: Scheduling a Single Machine with Primary and Secondary Objectives Algorithms doi: 10.3390/a11060080 Authors: Nodari Vakhania We study a scheduling problem in which jobs with release times and due dates are to be processed on a single machine. With the primary objective to minimize the maximum job lateness, the problem is strongly NP-hard. We describe a general algorithmic scheme to minimize the maximum job lateness, with the secondary objective to minimize the maximum job completion time. The problem of finding the Pareto-optimal set of feasible solutions with these two objective criteria is strongly NP-hard. We give the dominance properties and conditions when the Pareto-optimal set can be formed in polynomial time. These properties, together with our general framework, provide the theoretical background, so that the basic framework can be expanded to (exponential-time) implicit enumeration algorithms and polynomial-time approximation algorithms (generating the Pareto sub-optimal frontier with a fair balance between the two objectives). Some available in the literature experimental results confirm the practical efficiency of the proposed framework.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 436: Information Geometry of κ-Exponential Families: Dually-Flat, Hessian and Legendre Structures Entropy doi: 10.3390/e20060436 Authors: Antonio M. Scarfone Hiroshi Matsuzoe Tatsuaki Wada In this paper, we present a review of recent developments on the κ -deformed statistical mechanics in the framework of the information geometry. Three different geometric structures are introduced in the κ -formalism which are obtained starting from three, not equivalent, divergence functions, corresponding to the κ -deformed version of Kullback–Leibler, “Kerridge” and Brègman divergences. The first statistical manifold derived from the κ -Kullback–Leibler divergence form an invariant geometry with a positive curvature that vanishes in the κ → 0 limit. The other two statistical manifolds are related to each other by means of a scaling transform and are both dually-flat. They have a dualistic Hessian structure endowed by a deformed Fisher metric and an affine connection that are consistent with a statistical scalar product based on the κ -escort expectation. These flat geometries admit dual potentials corresponding to the thermodynamic Massieu and entropy functions that induce a Legendre structure of κ -thermodynamics in the picture of the information geometry.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 440: On a Common Misconception Regarding the de Broglie–Bohm Theory Entropy doi: 10.3390/e20060440 Authors: Oliver Passon We discuss a common misconception regarding the de Broglie–Bohm (dBB) theory; namely, that it not only assigns a position to each quantum object but also contains the momenta as “hidden variables”. Sometimes this alleged property of the theory is even used to argue that the dBB theory is inconsistent with quantum theory. We explain why this claim is unfounded and show in particular how this misconception veils the true novelty of the dBB theory.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 438: Analysis of Cell Signal Transduction Based on Kullback–Leibler Divergence: Channel Capacity and Conservation of Its Production Rate during Cascade Entropy doi: 10.3390/e20060438 Authors: Tatsuaki Tsuruyama Kullback–Leibler divergence (KLD) is a type of extended mutual entropy, which is used as a measure of information gain when transferring from a prior distribution to a posterior distribution. In this study, KLD is applied to the thermodynamic analysis of cell signal transduction cascade and serves an alternative to mutual entropy. When KLD is minimized, the divergence is given by the ratio of the prior selection probability of the signaling molecule to the posterior selection probability. Moreover, the information gain during the entire channel is shown to be adequately described by average KLD production rate. Thus, this approach provides a framework for the quantitative analysis of signal transduction. Moreover, the proposed approach can identify an effective cascade for a signaling network.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 437: Complexity Analysis of Global Temperature Time Series Entropy doi: 10.3390/e20060437 Authors: António M. Lopes J. A. Tenreiro Machado Climate has complex dynamics due to the plethora of phenomena underlying its evolution. These characteristics pose challenges to conducting solid quantitative analysis and reaching assertive conclusions. In this paper, the global temperature time series (TTS) is viewed as a manifestation of the climate evolution, and its complexity is calculated by means of four different indices, namely the Lempel–Ziv complexity, sample entropy, signal harmonics power ratio, and fractal dimension. In the first phase, the monthly mean TTS is pre-processed by means of empirical mode decomposition, and the TTS trend is calculated. In the second phase, the complexity of the detrended signals is estimated. The four indices capture distinct features of the TTS dynamics in a 4-dim space. Hierarchical clustering is adopted for dimensional reduction and visualization in the 2-dim space. The results show that TTS complexity exhibits space-time variability, suggesting the presence of distinct climate forcing processes in both dimensions. Numerical examples with real-world data demonstrate the effectiveness of the approach.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 439: Factoid Question Answering with Distant Supervision Entropy doi: 10.3390/e20060439 Authors: Hongzhi Zhang Xiao Liang Guangluan Xu Kun Fu Feng Li Tinglei Huang Automatic question answering (QA), which can greatly facilitate the access to information, is an important task in artificial intelligence. Recent years have witnessed the development of QA methods based on deep learning. However, a great amount of data is needed to train deep neural networks, and it is laborious to annotate training data for factoid QA of new domains or languages. In this paper, a distantly supervised method is proposed to automatically generate QA pairs. Additional efforts are paid to let the generated questions reflect the query interests and expression styles of users by exploring the community QA. Specifically, the generated questions are selected according to the estimated probabilities they are asked. Diverse paraphrases of questions are mined from community QA data, considering that the model trained on monotonous synthetic questions is very sensitive to variants of question expressions. Experimental results show that the model solely trained on generated data via the distant supervision and mined paraphrases could answer real-world questions with the accuracy of 49.34%. When limited annotated training data is available, significant improvements could be achieved by incorporating the generated data. An improvement of 1.35 absolute points is still observed on WebQA, a dataset with large-scale annotated training samples.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-06
    Description: Entropy, Vol. 20, Pages 434: Complexity Analysis of Carbon Market Using the Modified Multi-Scale Entropy Entropy doi: 10.3390/e20060434 Authors: Jiuli Yin Cui Su Yongfen Zhang Xinghua Fan Carbon markets provide a market-based way to reduce climate pollution. Subject to general market regulations, the major existing emission trading markets present complex characteristics. This paper analyzes the complexity of carbon market by using the multi-scale entropy. Pilot carbon markets in China are taken as the example. Moving average is adopted to extract the scales due to the short length of the data set. Results show a low-level complexity inferring that China’s pilot carbon markets are quite immature in lack of market efficiency. However, the complexity varies in different time scales. China’s carbon markets (except for the Chongqing pilot) are more complex in the short period than in the long term. Furthermore, complexity level in most pilot markets increases as the markets developed, showing an improvement in market efficiency. All these results demonstrate that an effective carbon market is required for the full function of emission trading.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-14
    Description: Symmetry, Vol. 10, Pages 218: Gauss Map and Its Applications on Ruled Submanifolds in Minkowski Space Symmetry doi: 10.3390/sym10060218 Authors: Sun Jung Young Kim We study ruled submanifolds in Minkowski space in regard to the Gauss map satisfying some partial differential equation. As a generalization of usual cylinders, cones and null scrolls in a three-dimensional Minkowski space, a cylinder over a space curve, a product manifold of a right cone and a k-plane, a product manifold of a hyperbolic cone and a k-plane which look like kinds of cylinders over cones in 3-space, and the generalized B-scroll kind in Minkowski space are characterized with the partial differential equation regarding the Gauss map, where k is a positive integer.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-14
    Description: Symmetry, Vol. 10, Pages 217: Decision-Making via Neutrosophic Support Soft Topological Spaces Symmetry doi: 10.3390/sym10060217 Authors: Parimala Mani Karthika Muthusamy Saeid Jafari Florentin Smarandache Udhayakumar Ramalingam The concept of interval neutrosophic sets has been studied and the introduction of a new kind of set in topological spaces called the interval valued neutrosophic support soft set has been suggested. We study some of its basic properties. The main purpose of this paper is to give the optimum solution to decision-making in real life problems the using interval valued neutrosophic support soft set.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-15
    Description: Algorithms, Vol. 11, Pages 85: ILC with Initial State Learning for Fractional Order Linear Distributed Parameter Systems Algorithms doi: 10.3390/a11060085 Authors: Yong-Hong Lan Zhe-Min Cui This paper presents a second order P-type iterative learning control (ILC) scheme with initial state learning for a class of fractional order linear distributed parameter systems. First, by analyzing the control and learning processes, a discrete system for P-type ILC is established, and the ILC design problem is then converted to a stability problem for such a discrete system. Next, a sufficient condition for the convergence of the control input and the tracking errors is obtained by introducing a new norm and using the generalized Gronwall inequality, which is less conservative than the existing one. Finally, the validity of the proposed method is verified by a numerical example.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-15
    Description: Entropy, Vol. 20, Pages 462: On Bohmian Mechanics, Particle Creation, and Relativistic Space-Time: Happy 100th Birthday, David Bohm! Entropy doi: 10.3390/e20060462 Authors: Roderich Tumulka The biggest and most lasting among David Bohm’s (1917–1992) many achievements is to have proposed a picture of reality that explains the empirical rules of quantum mechanics. This picture, known as pilot wave theory or Bohmian mechanics among other names, is still the simplest and most convincing explanation available. According to this theory, electrons are point particles in the literal sense and move along trajectories governed by Bohm’s equation of motion. In this paper, I describe some more recent developments and extensions of Bohmian mechanics, concerning in particular relativistic space-time and particle creation and annihilation.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-15
    Description: Entropy, Vol. 20, Pages 465: Ontological Clarity via Canonical Presentation: Electromagnetism and the Aharonov–Bohm Effect Entropy doi: 10.3390/e20060465 Authors: Tim Maudlin Quantum physics demands some radical revision of our fundamental beliefs about physical reality. We know that because there are certain verified physical phenomena—two-slit interference, the disappearance of interference upon monitoring, violations of Bell’s inequality—that have no classical analogs. But the exact nature of that revision has been under dispute since the foundation of quantum theory. I offer a method of clarifying what the commitments of a clearly formulated physical theory are, and apply it to a discussion of some options available to account for another non-classical phenomenon: the Aharonov–Bohm effect.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-15
    Description: Entropy, Vol. 20, Pages 464: Non-Quadratic Distances in Model Assessment Entropy doi: 10.3390/e20060464 Authors: Marianthi Markatou Yang Chen One natural way to measure model adequacy is by using statistical distances as loss functions. A related fundamental question is how to construct loss functions that are scientifically and statistically meaningful. In this paper, we investigate non-quadratic distances and their role in assessing the adequacy of a model and/or ability to perform model selection. We first present the definition of a statistical distance and its associated properties. Three popular distances, total variation, the mixture index of fit and the Kullback-Leibler distance, are studied in detail, with the aim of understanding their properties and potential interpretations that can offer insight into their performance as measures of model misspecification. A small simulation study exemplifies the performance of these measures and their application to different scientific fields is briefly discussed.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-13
    Description: Symmetry, Vol. 10, Pages 214: Intelligent Prognostics of Degradation Trajectories for Rotating Machinery Based on Asymmetric Penalty Sparse Decomposition Model Symmetry doi: 10.3390/sym10060214 Authors: Qing Li Steven Y. Liang The ability to accurately track the degradation trajectories of rotating machinery components is arguably one of the challenging problems in prognostics and health management (PHM). In this paper, an intelligent prediction approach based on asymmetric penalty sparse decomposition (APSD) algorithm combined with wavelet neural network (WNN) and autoregressive moving average-recursive least squares algorithm (ARMA-RLS) is proposed for degradation prognostics of rotating machinery, taking the accelerated life test of rolling bearings as an example. Specifically, the health indicators time series (e.g., peak-to-peak value and Kurtosis) is firstly decomposed into low frequency component (LFC) and high frequency component (HFC) using the APSD algorithm; meanwhile, the resulting non-convex regularization problem can be efficiently solved using the majorization-minimization (MM) method. In particular, the HFC part corresponds to the stable change around the zero line of health indicators which most extensively occurs; in contrast, the LFC part is essentially related to the evolutionary trend of health indicators. Furthermore, the nonparametric-based method, i.e., WNN, and parametric-based method, i.e., ARMA-RLS, are respectively introduced to predict the LFC and HFC that focus on abrupt degradation regions (e.g., last 100 points). Lastly, the final predicted data could be correspondingly obtained by integrating the predicted LFC and predicted HFC. The proposed methodology is tested using degradation health indicator time series from four rolling bearings. The proposed approach performed favorably when compared to some state-of-the-art benchmarks such as WNN and largest Lyapunov (LLyap) methods.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-15
    Description: Symmetry, Vol. 10, Pages 222: Bayer Image Demosaicking Using Eight-Directional Weights Based on the Gradient of Color Difference Symmetry doi: 10.3390/sym10060222 Authors: Yizheng Liu Chengyou Wang Hongming Zhao Jiayang Song Shiyue Chen In this paper, we propose a new demosaicking algorithm which uses eight-directional weights based on the gradient of color difference (EWGCD) for Bayer image demosaicking. To obtain the interpolation of green (G) pixels, the eight-directional G pixel values are first estimated in red (R)/blue (B) pixels. This estimate is used to calculate the color difference in R/B pixels of the Bayer image in diagonal directions. However, in horizontal and vertical directions, the new estimated G pixels are defined to obtain the color difference. The eight-directional weights of estimated G pixels can be obtained by considering the gradient of the color difference and the gradient of the RGB pixels of the Bayer image. Therefore, the eight-directional weighted values and the first estimated G pixel values are combined to obtain the full G image. Compared with six similar algorithms using the same eighteen McMaster images, the results of the experiment demonstrate that the proposed algorithm has a better performance not only in the subjective visual measurement but also in the assessments of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index measurement.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-16
    Description: Remote Sensing, Vol. 10, Pages 961: Temporal and Spatial Characteristics of EVI and Its Response to Climatic Factors in Recent 16 years Based on Grey Relational Analysis in Inner Mongolia Autonomous Region, China Remote Sensing doi: 10.3390/rs10060961 Authors: Dong He Guihua Yi Tingbin Zhang Jiaqing Miao Jingji Li Xiaojuan Bie The Inner Mongolia Autonomous Region (IMAR) is a major source of rivers, catchment areas, and ecological barriers in the northeast of China, related to the nation’s ecological security and improvement of the ecological environment. Therefore, studying the response of vegetation to climate change has become an important part of current global change research. Since existing studies lack detailed descriptions of the response of vegetation to different climatic factors using the method of grey correlation analysis based on pixel, the temporal and spatial patterns and trends of enhanced vegetation index (EVI) are analyzed in the growing season in IMAR from 2000 to 2015 based on moderate resolution imaging spectroradiometer (MODIS) EVI data. Combined with the data of air temperature, relative humidity, and precipitation in the study area, the grey relational analysis (GRA) method is used to study the time lag of EVI to climate change, and the study area is finally zoned into different parts according to the driving climatic factors for EVI on the basis of lag analysis. The driving zones quantitatively show the characteristics of temporal and spatial differences in response to different climatic factors for EVI. The results show that: (1) The value of EVI generally features in spatial distribution, increasing from the west to the east and the south to the north. The rate of change is 0.22/10°E from the west to the east, 0.28/10°N from the south to the north; (2) During 2000–2015, the EVI in IMAR showed a slightly upward trend with a growth rate of 0.021/10a. Among them, the areas with slight and significant improvement accounted for 21.1% and 7.5% of the total area respectively, ones with slight and significant degradation being 24.6% and 4.3%; (3) The time lag analysis of climatic factors for EVI indicates that vegetation growth in the study area lags behind air temperature by 1–2 months, relative humidity by 1–2 months, and precipitation by one month respectively; (4) During the growing season, the EVI of precipitation driving zone (21.8%) in IMAR is much larger than that in the air temperature driving zone (8%) and the relative humidity driving zone (11.6%). The growth of vegetation in IMAR generally has the closest relationship with precipitation. The growth of vegetation does not depend on the change of a single climatic factor. Instead, it is the result of the combined action of multiple climatic factors and human activities.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-16
    Description: Remote Sensing, Vol. 10, Pages 959: The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016) Remote Sensing doi: 10.3390/rs10060959 Authors: Ying Liu Hui Yue Traditional NDVI-Ts space is triangular or trapezoidal, but Liu et al. (2015) discovered that the NDVI-Ts space was bi-parabolic when the study area was covered with low biomass vegetation. Moreover, the numerical value of the indicator was considered in most of the study when the drought conditions in the space domain were evaluated. In addition, quantitatively assessing the spatial-temporal changes of the drought was not enough. In this study, first, we used MODIS NDVI and Ts data to reexamine if the NDVI-Ts space with “time” and a single pixel domain is bi-parabolic in the Shaanxi province of China, which is vegetated with low biomass to high biomass. This is compared with the triangular NDVI-Ts space and one of the well-known drought indexes called the temperature-vegetation index (TVX). The results demonstrated that dry and wet edges exhibited a parabolic shape again in scatter plots of Ts and NDVI in the Shaanxi province, which was linear in the triangular NDVI-Ts space. The Temperature Vegetation Dryness Index (TVDIc) was obtained from bi-parabolic NDVI-Ts andTVDIt was obtained from the triangular NDVI-Ts space and TVX were compared with 10-cm depth relative soil moisture. By estimating the 10-cm depth soil moisture, TVDIc was better than TVDIt, which were all apparently better than TVX. Second, combined with MODIS data, the drought conditions of the study area were assessed by TVDIc between 2000 to 2016. Spatially, the drought in the Shaanxi Province between 2000 to 2016 were mainly distributed in the northwest, North Shaanxi, and the North and East Guanzhong plain. The drought area of the Shaanxi province accounted for 31.95% in 2000 and 27.65% in 2016, respectively. Third, we quantitatively evaluated the variation of the drought status by using Gradient-based Structural Similarity (GSSIM) methods. The area of the drought conditions significantly changed and moderately changed at 5.34% and 40.22%, respectively, between 2000 and 2016. Finally, the possible reasons for drought change were discussed. The change of precipitation, temperature, irrigation, destruction or betterment of vegetation, and the enlargement of opening mining, etc., can lead to the variations of drought.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-16
    Description: Entropy, Vol. 20, Pages 466: The Gibbs Paradox and Particle Individuality Entropy doi: 10.3390/e20060466 Authors: Dennis Dieks A consensus seems to have developed that the Gibbs paradox in classical thermodynamics (the discontinuous drop in the entropy of mixing when the mixed gases become equal to each other) is unmysterious: in any actual situation, two gases can be separated or not, and the associated harmless discontinuity from “yes” to “no” is responsible for the discontinuity. By contrast, the Gibbs paradox in statistical physics continues to attract attention. Here, the problem is that standard calculations in statistical mechanics predict a non-vanishing value of the entropy of mixing even when two gases of the same kind are mixed, in conflict with thermodynamic predictions. This version of the Gibbs paradox is often seen as a sign that there is something fundamentally wrong with either the traditional expression S=klnW or with the way W is calculated. It is the aim of this article to review the situation from the orthodox (as opposed to information theoretic) standpoint. We demonstrate how the standard formalism is not only fully capable of dealing with the paradox, but also provides an intuitively clear picture of the relevant physical mechanisms. In particular, we pay attention to the explanatory relevance of the existence of particle trajectories in the classical context. We also discuss how the paradox survives the transition to quantum mechanics, in spite of the symmetrization postulates.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-16
    Description: Remote Sensing, Vol. 10, Pages 963: A Seismic Capacity Evaluation Approach for Architectural Heritage Using Finite Element Analysis of Three-Dimensional Model: A Case Study of the Limestone Hall in the Ming Dynasty Remote Sensing doi: 10.3390/rs10060963 Authors: Siliang Chen Shaohua Wang Chen Li Qingwu Hu Hongjun Yang A lot of architectural heritage in China are urgently in need to carry out seismic assessment for further conservation. In this paper, a seismic capacity evaluation approach for architectural heritage using finite element analysis with precision three-dimensional data was proposed. The Limestone Hall of Shaanxi Province was taken as an example. First, low attitude unmanned aerial vehicle photogrammetry and a close-range photogrammetry camera were used to collect multiple view images to obtain the precision three-dimensional current model of the Limestone. Second, the dimensions of internal structures of Limestone Hall are obtained by means of structural analysis; re-establishing the ideal model of Limestone Hall based on the modeling software. Third, a finite element analysis was conducted to find out the natural frequency and seismic stress in various conditions with the 3D model using ANSYS software. Finally, the seismic capacity analysis results were comprehensively evaluated for the risk assessment and simulation. The results showed that for architectural heritage with a multilayer structure, utilizing photogrammetric surveying and mapping, 3D software modeling, finite element software simulation, and seismic evaluation for simulation was feasible where the precision of the modeling and parameters determine the accuracy of the simulation. The precise degree of the three-dimensional model, the accurate degree of parameter measurement and estimation, the setting of component attributes in the finite element model and the strategy of finite element analysis have an important effect on the result of seismic assessment. The main body structure of the Limestone Hall could resist an VII-degree earthquake at most, and the ridge of the second floor could not resist a V-degree earthquake due to unsupported conditions. The maximum deformation of the Limestone Hall during the earthquake occurred in the tabia layer below the second roof.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-18
    Description: Entropy, Vol. 20, Pages 470: Noise Enhanced Signal Detection of Variable Detectors under Certain Constraints Entropy doi: 10.3390/e20060470 Authors: Ting Yang Shujun Liu Wenguo Liu Jishun Guo Pin Wang In this paper, a noise enhanced binary hypothesis-testing problem was studied for a variable detector under certain constraints in which the detection probability can be increased and the false-alarm probability can be decreased simultaneously. According to the constraints, three alternative cases are proposed, the first two cases concerned minimization of the false-alarm probability and maximization of the detection probability without deterioration of one by the other, respectively, and the third case was achieved by a randomization of two optimal noise enhanced solutions obtained in the first two limit cases. Furthermore, the noise enhanced solutions that satisfy the three cases were determined whether randomization between different detectors was allowed or not. In addition, the practicality of the third case was proven from the perspective of Bayes risk. Finally, numerous examples and conclusions are presented.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-18
    Description: Algorithms, Vol. 11, Pages 86: Performance Optimal PI controller Tuning Based on Integrating Plus Time Delay Models Algorithms doi: 10.3390/a11060086 Authors: Christer Dalen David Di Ruscio A method for tuning PI controller parameters, a prescribed maximum time delay error or a relative time delay error is presented. The method is based on integrator plus time delay models. The integral time constant is linear in the relative time delay error, and the proportional constant is seen inversely proportional to the relative time delay error. The keystone in the method is the method product parameter, i.e., the product of the PI controller proportional constant, the integral time constant, and the integrator plus time delay model, velocity gain. The method product parameter is found to be constant for various PI controller tuning methods. Optimal suggestions are given for choosing the method product parameter, i.e., optimal such that the integrated absolute error or, more interestingly, the Pareto performance objective (i.e., integrated absolute error for combined step changes in output and input disturbances) is minimised. Variants of the presented tuning method are demonstrated for tuning PI controllers for motivated (possible) higher order process model examples, i.e., the presented method is combined with the model reduction step (process–reaction curve) in Ziegler–Nichols.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-20
    Description: Remote Sensing, Vol. 10, Pages 975: A Hybrid Analytic Network Process and Artificial Neural Network (ANP-ANN) Model for Urban Earthquake Vulnerability Assessment Remote Sensing doi: 10.3390/rs10060975 Authors: Mohsen Alizadeh Ibrahim Ngah Mazlan Hashim Biswajeet Pradhan Amin Beiranvand Pour Vulnerability assessment is one of the prerequisites for risk analysis in disaster management. Vulnerability to earthquakes, especially in urban areas, has increased over the years due to the presence of complex urban structures and rapid development. Urban vulnerability is a result of human behavior which describes the extent of susceptibility or resilience of social, economic, and physical assets to natural disasters. The main aim of this paper is to develop a new hybrid framework using Analytic Network Process (ANP) and Artificial Neural Network (ANN) models for constructing a composite social, economic, environmental, and physical vulnerability index. This index was then applied to Tabriz City, which is a seismic-prone province in the northwestern part of Iran with recurring devastating earthquakes and consequent heavy casualties and damages. A Geographical Information Systems (GIS) analysis was used to identify and evaluate quantitative vulnerability indicators for generating an earthquake vulnerability map. The classified and standardized indicators were subsequently weighed and ranked using an ANP model to construct the training database. Then, standardized maps coupled with the training site maps were presented as input to a Multilayer Perceptron (MLP) neural network for producing an Earthquake Vulnerability Map (EVM). Finally, an EVM was produced for Tabriz City and the level of vulnerability in various zones was obtained. South and southeast regions of Tabriz City indicate low to moderate vulnerability, while some zones of the northeastern tract are under critical vulnerability conditions. Furthermore, the impact of the vulnerability of Tabriz City on population during an earthquake was included in this analysis for risk estimation. A comparison of the result produced by EVM and the Population Vulnerability (PV) of Tabriz City corroborated the validity of the results obtained by ANP-ANN. The findings of this paper are useful for decision-makers and government authorities to obtain a better knowledge of a city’s vulnerability dimensions, and to adopt preparedness strategies in the future for Tabriz City. The developed hybrid framework of ANP and ANN Models can easily be replicated and applied to other urban regions around the world for sustainability and environmental management.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-22
    Description: Entropy, Vol. 20, Pages 483: Non-Commutative Worlds and Classical Constraints Entropy doi: 10.3390/e20070483 Authors: Louis Kauffman This paper reviews results about discrete physics and non-commutative worlds and explores further the structure and consequences of constraints linking classical calculus and discrete calculus formulated via commutators. In particular, we review how the formalism of generalized non-commutative electromagnetism follows from a first order constraint and how, via the Kilmister equation, relationships with general relativity follow from a second order constraint. It is remarkable that a second order constraint, based on interlacing the commutative and non-commutative worlds, leads to an equivalent tensor equation at the pole of geodesic coordinates for general relativity.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-22
    Description: Entropy, Vol. 20, Pages 481: Relating Vertex and Global Graph Entropy in Randomly Generated Graphs Entropy doi: 10.3390/e20070481 Authors: Philip Tee George Parisis Luc Berthouze Ian Wakeman Combinatoric measures of entropy capture the complexity of a graph but rely upon the calculation of its independent sets, or collections of non-adjacent vertices. This decomposition of the vertex set is a known NP-Complete problem and for most real world graphs is an inaccessible calculation. Recent work by Dehmer et al. and Tee et al. identified a number of vertex level measures that do not suffer from this pathological computational complexity, but that can be shown to be effective at quantifying graph complexity. In this paper, we consider whether these local measures are fundamentally equivalent to global entropy measures. Specifically, we investigate the existence of a correlation between vertex level and global measures of entropy for a narrow subset of random graphs. We use the greedy algorithm approximation for calculating the chromatic information and therefore Körner entropy. We are able to demonstrate strong correlation for this subset of graphs and outline how this may arise theoretically.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-22
    Description: Future Internet, Vol. 10, Pages 56: Big Data Perspective and Challenges in Next Generation Networks Future Internet doi: 10.3390/fi10070056 Authors: Kashif Sultan Hazrat Ali Zhongshan Zhang With the development towards the next generation cellular networks, i.e., 5G, the focus has shifted towards meeting the higher data rate requirements, potential of micro cells and millimeter wave spectrum. The goals for next generation networks are very high data rates, low latency and handling of big data. The achievement of these goals definitely require newer architecture designs, upgraded technologies with possible backward support, better security algorithms and intelligent decision making capability. In this survey, we identify the opportunities which can be provided by 5G networks and discuss the underlying challenges towards implementation and realization of the goals of 5G. This survey also provides a discussion on the recent developments made towards standardization, the architectures which may be potential candidates for deployment and the energy concerns in 5G networks. Finally, the paper presents a big data perspective and the potential of machine learning for optimization and decision making in 5G networks.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-21
    Description: Remote Sensing, Vol. 10, Pages 976: Physical Retrieval of Land Surface Emissivity Spectra from Hyper-Spectral Infrared Observations and Validation with In Situ Measurements Remote Sensing doi: 10.3390/rs10060976 Authors: Guido Masiello Carmine Serio Sara Venafra Giuliano Liuzzi Laurent Poutier Frank-M. Göttsche A fully physical retrieval scheme for land surface emissivity spectra is presented, which applies to high spectral resolution infrared observations from satellite sensors. The surface emissivity spectrum is represented with a suitably truncated Principal Component Analysis (PCA) transform and PCA scores are simultaneously retrieved with surface temperature and atmospheric parameters. The retrieval methodology has been developed within the general framework of Optimal Estimation and, in this context, is the first physical scheme based on a PCA representation of the emissivity spectrum. The scheme has been applied to IASI (Infrared Atmospheric Sounder Interferometer) and the retrieved emissivities have been validated with in situ observations acquired during a field experiment carried out in 2017 at Gobabeb (Namib desert) validation station. It has been found that the retrieved emissivity spectra are independent of background information and in good agreement with in situ observations.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-23
    Description: Entropy, Vol. 20, Pages 485: Symmetric Logarithmic Derivative of Fermionic Gaussian States Entropy doi: 10.3390/e20070485 Authors: Angelo Carollo Bernardo Spagnolo Davide Valenti In this article, we derive a closed form expression for the symmetric logarithmic derivative of Fermionic Gaussian states. This provides a direct way of computing the quantum Fisher Information for Fermionic Gaussian states. Applications range from quantum Metrology with thermal states to non-equilibrium steady states with Fermionic many-body systems.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-23
    Description: Remote Sensing, Vol. 10, Pages 993: Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method Remote Sensing doi: 10.3390/rs10070993 Authors: Chaoying Zhao Ya Kang Qin Zhang Zhong Lu Bin Li Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the prevention of landslide hazards. Surface deformation results with different scales can serve for different landslide analysis. L-band synthetic aperture radar (SAR) data calculated with Interferometric Point Target Analysis (IPTA) are first employed to detect potential landslides at the catchment-scale Wudongde reservoir area. Twenty-two active landslides are identified and mapped over more than 2500 square kilometers. Then, for one typical landslide, Jinpingzi landslide, its spatiotemporal deformation characteristics are analyzed with the small baseline subsets (SBAS) interferometric synthetic aperture radar (InSAR) technique. High-precision surface deformation results are obtained by comparing with in-situ georobot measurements. The spatial deformation pattern reveals the different stabilities among five different sections of Jinpingzi landslide. InSAR results for Section II of Jinpingzi landslide show that this active landslide is controlled by two boundaries and geological structure, and its different landslide deformation magnitudes at different sections on the surface companying with borehole deformation reveals the pull-type landslide mode. Correlation between time series landslide motion and monthly precipitation, soil moisture inverted from SAR intensity images and water level fluctuations suggests that heavy rainfall is the main trigger factor, and the maximum deformation of the landslide was highly consistent with the peak precipitation with a time lag of about 1 to 2 months, which gives us important guidelines to mitigate and prevent this kind of hazard.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-24
    Description: Entropy, Vol. 20, Pages 489: A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data Entropy doi: 10.3390/e20070489 Authors: N. Alex Cayco-Gajic Joel Zylberberg Eric Shea-Brown Correlations in neural activity have been demonstrated to have profound consequences for sensory encoding. To understand how neural populations represent stimulus information, it is therefore necessary to model how pairwise and higher-order spiking correlations between neurons contribute to the collective structure of population-wide spiking patterns. Maximum entropy models are an increasingly popular method for capturing collective neural activity by including successively higher-order interaction terms. However, incorporating higher-order interactions in these models is difficult in practice due to two factors. First, the number of parameters exponentially increases as higher orders are added. Second, because triplet (and higher) spiking events occur infrequently, estimates of higher-order statistics may be contaminated by sampling noise. To address this, we extend previous work on the Reliable Interaction class of models to develop a normalized variant that adaptively identifies the specific pairwise and higher-order moments that can be estimated from a given dataset for a specified confidence level. The resulting “Reliable Moment” model is able to capture cortical-like distributions of population spiking patterns. Finally, we show that, compared with the Reliable Interaction model, the Reliable Moment model infers fewer strong spurious higher-order interactions and is better able to predict the frequencies of previously unobserved spiking patterns.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-24
    Description: Remote Sensing, Vol. 10, Pages 1000: Post-Fire Vegetation Succession and Surface Energy Fluxes Derived from Remote Sensing Remote Sensing doi: 10.3390/rs10071000 Authors: Xuedong Li Hongyan Zhang Guangbin Yang Yanling Ding Jianjun Zhao The increasing frequency of fires inhibits the estimation of carbon reserves in boreal forest ecosystems because fires release significant amounts of carbon into the atmosphere through combustion. However, less is known regarding the effects of vegetation succession processes on ecosystem C-flux that follow fires. This paper describes intra- and inter-annual vegetation restoration trajectories via MODIS time-series and Landsat data. The temporal and spatial characteristics of the natural succession were analyzed from 2000 to 2016. Finally, we regressed post-fire MODIS EVI, LST and LSWI values onto GPP and NPP values to identify the main limiting factors during post-fire carbon exchange. The results show immediate variations after the fire event, with EVI and LSWI decreasing by 0.21 and 0.31, respectively, and the LST increasing to 6.89 °C. After this initial variation, subsequent fire-induced variations were significantly smaller; instead, seasonality began governing the change characteristics. The greatest differences in EVI, LST and LSWI were observed in August and September compared to those in other months (0.29, 6.9 and 0.35, respectively), including July, which was the second month after the fire. We estimated the mean EVI recovery periods under different fire intensities (approximately 10, 12 and 16 years): the LST recovery time is one year earlier than that of the EVI. GPP and NPP decreased after the fire by 22–45 g C·m−2·month−1 (30–80%) and 0.13–0.35 kg C·m−2·year−1 (20–60%), respectively. Excluding the winter period, when no photosynthesis occurred, the correlation between the EVI and GPP was the strongest, and the correlation coefficient varied with the burn intensity. When changes in EVI, LST and LSWI after the fire in the boreal forest were more significant, the severity of the fire determined the magnitude of the changes, and the seasonality aggravated these changes. On the other hand, the seasonality is another important factor that affects vegetation restoration and land-surface energy fluxes in boreal forests. The strong correlations between EVI and GPP/NPP reveal that the C-flux can be simply and directly estimated on a per-pixel basis from EVI data, which can be used to accurately estimate land-surface energy fluxes during vegetation restoration and reduce uncertainties in the estimation of forests’ carbon reserves.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-22
    Description: Symmetry, Vol. 10, Pages 231: Observers and Their Notion of Spacetime beyond Special Relativity Symmetry doi: 10.3390/sym10070231 Authors: José Manuel Carmona José Luis Cortés José Javier Relancio It is plausible that quantum gravity effects may lead us to a description of Nature beyond the framework of special relativity. In this case, either the relativity principle is broken or it is maintained. These two scenarios (a violation or a deformation of special relativity) are very different, both conceptually and phenomenologically. We discuss some of their implications on the description of events for different observers and the notion of spacetime.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-22
    Description: Symmetry, Vol. 10, Pages 233: Symmetries of Differential Equations in Cosmology Symmetry doi: 10.3390/sym10070233 Authors: Michael Tsamparlis Andronikos Paliathanasis The purpose of the current article is to present a brief albeit accurate presentation of the main tools used in the study of symmetries of Lagrange equations for holonomic systems and subsequently to show how these tools are applied in the major models of modern cosmology in order to derive exact solutions and deal with the problem of dark matter/energy. The key role in this approach are the first integrals of the field equations. We start with the Lie point symmetries and the first integrals defined by them, that is, the Hojman integrals. Subsequently, we discuss the Noether point symmetries and the well-known method for deriving the Noether integrals. By means of the Inverse Noether Theorem, we show that, to every Hojman quadratic first integral, it is possible to associate a Noether symmetry whose Noether integral is the original Hojman integral. It is emphasized that the point transformation generating this Noether symmetry need not coincide with the point transformation defining the Lie symmetry which produces the Hojman integral. We discuss the close connection between the Lie point and the Noether point symmetries with the collineations of the metric defined by the kinetic energy of the Lagrangian. In particular, the generators of Noether point symmetries are elements of the homothetic algebra of that metric. The key point in the current study of cosmological models is the introduction of the mini superspace, which is the space that is defined by the physical variables of the model, which is not the spacetime where the model evolves. The metric in the mini superspace is found from the kinematic part of the Lagrangian and we call it the kinetic metric. The rest part of the Lagrangian is the effective potential. We consider coordinate transformations of the original mini superspace metric in order to bring it to a form where we know its collineations, that is, the Killing vectors, the homothetic vector, etc. Then, we write the field equations of the cosmological model and we use the connection of these equations with the collineations of the mini superspace metric to compute the first integrals and subsequently to obtain analytic solutions for various allowable potentials and finally draw conclusions about the problem of dark energy. We consider the ΛCDM cosmological model, the scalar field cosmology, the Brans–Dicke cosmology, the f(R) gravity, the two scalar fields cosmology with interacting scalar fields and the Galilean cosmology. In each case, we present the relevant results in the form of tables for easy reference. Finally, we discuss briefly the higher order symmetries (the contact symmetries) and show how they are applied in the cases of scalar field cosmology and in the f(R) gravity.
    Electronic ISSN: 2073-8994
    Topics: Mathematics , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-27
    Description: Remote Sensing, Vol. 10, Pages 1018: An Appraisal of the Potential of Landsat 8 in Estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators Remote Sensing doi: 10.3390/rs10071018 Authors: Vassiliki Markogianni Dionissios Kalivas George P. Petropoulos Elias Dimitriou In-situ monitoring of lake water quality in synergy with satellite remote sensing represents the latest scientific trend in many water quality monitoring programs worldwide. This study investigated the suitability of the Operational Land Imager (OLI) instrument onboard the Landsat 8 satellite platform in accurately estimating key water quality parameters such as chlorophyll-a and nutrient concentrations. As a case study the largest freshwater body of Greece (Trichonis Lake) was used. Two Landsat 8 images covering the study site were acquired on 30 October 2013 and 30 August 2014 respectively. Near concurrent in-situ observations from two water sampling campaigns were also acquired from 22 stations across the lake under study. In-situ measurements (nutrients and chlorophyll-a concentrations) were statistically correlated with various spectral band combinations derived from the Landsat imagery of year 2014. Subsequently, the most statistically promising predictive models were applied to the satellite image of 2013 and validation was conducted using in-situ data of 2013 as reference. Results showed a relatively variable statistical relationship between the in-situ and reflectances (R logchl-a: 0.58, R NH4+: 0.26, R chl-a: 0.44). Correlation coefficient (R) values reported of up to 0.7 for ammonium concentrations and also up to 0.5 and up to 0.4 for chl-a concentration and chl-a concentrations respectively. These results represent a higher accuracy of Landsat 8 in comparison to its predecessors in the Landsat satellites series, as evidenced in the literature. Our findings suggest that Landsat 8 has a promising capability in estimating water quality components in an oligotrophic freshwater body characterized by a complete absence of any quantitative, temporal and spatial variance, as is the case of Trichonis lake. Yet, even with the presence of a lot of ground information as was the case in our study, a quantitatively accurate estimation of water quality constituents in coastal/inland waters remains a great challenge. The launch of sophisticated spaceborne sensing systems, such as that of Landsat 8, can assist in improving our ability to estimate freshwater lake properties from space.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-28
    Description: Entropy, Vol. 20, Pages 498: Assessing Information Transmission in Data Transformations with the Channel Multivariate Entropy Triangle Entropy doi: 10.3390/e20070498 Authors: Francisco J. Valverde-Albacete Carmen Peláez-Moreno Data transformation, e.g., feature transformation and selection, is an integral part of any machine learning procedure. In this paper, we introduce an information-theoretic model and tools to assess the quality of data transformations in machine learning tasks. In an unsupervised fashion, we analyze the transformation of a discrete, multivariate source of information X¯ into a discrete, multivariate sink of information Y¯ related by a distribution PX¯Y¯. The first contribution is a decomposition of the maximal potential entropy of (X¯,Y¯), which we call a balance equation, into its (a) non-transferable, (b) transferable, but not transferred, and (c) transferred parts. Such balance equations can be represented in (de Finetti) entropy diagrams, our second set of contributions. The most important of these, the aggregate channel multivariate entropy triangle, is a visual exploratory tool to assess the effectiveness of multivariate data transformations in transferring information from input to output variables. We also show how these decomposition and balance equations also apply to the entropies of X¯ and Y¯, respectively, and generate entropy triangles for them. As an example, we present the application of these tools to the assessment of information transfer efficiency for Principal Component Analysis and Independent Component Analysis as unsupervised feature transformation and selection procedures in supervised classification tasks.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-28
    Description: Remote Sensing, Vol. 10, Pages 1022: Improving the Estimation of Daily Aerosol Optical Depth and Aerosol Radiative Effect Using an Optimized Artificial Neural Network Remote Sensing doi: 10.3390/rs10071022 Authors: Wenmin Qin Lunche Wang Aiwen Lin Ming Zhang Muhammad Bilal Aerosols can absorb and scatter surface solar radiation (SSR), which is called the aerosol radiative forcing effect (ARF). Great efforts have been made for the estimation of the aerosol optical depth (AOD), SSR and ARF using meteorological measurements and satellite observations. However, the accuracy, and spatial and temporal resolutions of these existing AOD, SSR and ARF models should be improved to meet the application requirements, due to the uncertainties and gaps of input parameters. In this study, an optimized back propagation (BP) artificial neural network (Genetic_BP) was developed for improving the estimation of the AOD values. The retrieved AOD values using the Genetic_BP model and meteorological measurements at China Meteorological Administration (CMA) stations were used to calculate SSR and bottom of the atmosphere (BOA) ARF (ARFB) using Yang’s Hybrid model (YHM). The result show that the Genetic_BP could be used for estimating AOD values with high accuracy (R = 0.866 for CASNET (China Aerosol Remote Sensing Network) stations and R = 0.865 for AERONET (Aerosol Robotic Network) stations). The estimated SSR also showed a good agreement with SSR measurements at 96 CMA radiation stations, with RMSE, MAE, R and R2 of 29.27%, 23.77%, 0.948, and 0.899, respectively. The estimated ARFB values are also highly correlated with the AERONET ARFB ones with RMSE, MAE, R and R2 of −35.47%, −25.33%, 0.843, and 0.711, respectively. Finally, the spatial and temporal variations of AOD, SSR, and ARFB values over Mainland China were investigated. Both AOD and SSR values are generally higher in summer than in other seasons. The ARFB are generally stronger in spring and summer than in other seasons. The ranges for the monthly mean AOD, SSR and ARFB values over Mainland China are 0.183–0.333, 10.218–24.196 MJ m−2day−1 and −2.986 to −1.244 MJ m−2day−1, respectively. The Qinghai-Tibetan Plateau has always been an area with the highest SSR, the lowest AOD and the weakest ARFB. In contrast, the Sichuan Basin has always been an area with low SSR, high AOD, and strong ARFB. The newly proposed AOD model may be of vital importance for improving the accuracy and computational efficiency of AOD, SSR and ARFB estimations for solar energy applications, ecological modeling, and energy policy.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-29
    Description: Algorithms, Vol. 11, Pages 94: Tensor Completion Based on Triple Tubal Nuclear Norm Algorithms doi: 10.3390/a11070094 Authors: Dongxu Wei Andong Wang Xiaoqin Feng Boyu Wang Bo Wang Many tasks in computer vision suffer from missing values in tensor data, i.e., multi-way data array. The recently proposed tensor tubal nuclear norm (TNN) has shown superiority in imputing missing values in 3D visual data, like color images and videos. However, by interpreting in a circulant way, TNN only exploits tube (often carrying temporal/channel information) redundancy in a circulant way while preserving the row and column (often carrying spatial information) relationship. In this paper, a new tensor norm named the triple tubal nuclear norm (TriTNN) is proposed to simultaneously exploit tube, row and column redundancy in a circulant way by using a weighted sum of three TNNs. Thus, more spatial-temporal information can be mined. Further, a TriTNN-based tensor completion model with an ADMM solver is developed. Experiments on color images, videos and LiDAR datasets show the superiority of the proposed TriTNN against state-of-the-art nuclear norm-based tensor norms.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-29
    Description: Algorithms, Vol. 11, Pages 93: Layered Graphs: Applications and Algorithms Algorithms doi: 10.3390/a11070093 Authors: Bhadrachalam Chitturi Srijith Balachander Sandeep Satheesh Krithic Puthiyoppil The computation of distances between strings has applications in molecular biology, music theory and pattern recognition. One such measure, called short reversal distance, has applications in evolutionary distance computation. It has been shown that this problem can be reduced to the computation of a maximum independent set on the corresponding graph that is constructed from the given input strings. The constructed graphs primarily fall into a class that we call layered graphs. In a layered graph, each layer refers to a subgraph containing, at most, some k vertices. The inter-layer edges are restricted to the vertices in adjacent layers. We study the MIS, MVC, MDS, MCV and MCD problems on layered graphs where MIS computes the maximum independent set; MVC computes the minimum vertex cover; MDS computes the minimum dominating set; MCV computes the minimum connected vertex cover; and MCD computes the minimum connected dominating set. The MIS, MVC and MDS are computed in polynomial time if k=Θ(log|V|). MCV and MCD are computed polynomial time if k=O((log|V|)α), where α<1. If k=Θ((log|V|)1+ϵ), for ϵ>0, then MIS, MVC and MDS are computed in quasi-polynomial time. If k=Θ(log|V|), then MCV and MCD are computed in quasi-polynomial time.
    Electronic ISSN: 1999-4893
    Topics: Computer Science
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...