ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-08
    Description: The literature reports the proofs that entropy is an inherent property of any system in any state and governs thermal energy, which depends on temperature and is transferred by heat interactions. A first novelty proposed in the present study is that mechanical energy, determined by pressure and transferred by work interactions, is also characterized by the entropy property. The second novelty is that a generalized definition of entropy relating to temperature, chemical potential and pressure of many-particle systems, is established to calculate the thermal, chemical and mechanical entropy contribution due to heat, mass and work interactions. The expression of generalized entropy is derived from generalized exergy, which in turn depends on temperature, chemical potential and pressure of the system, and by the entropy-exergy relationship constituting the basis of the method adopted to analyze the available energy and its transfer interactions with a reference system which may be external or constitute a subsystem. This method is underpinned by the Second Law statement enunciated in terms of existence and uniqueness of stable equilibrium for each value of energy content of the system. The equality of chemical potential and equality of pressure are assumed, in addition to equality of temperature, to be necessary conditions for stable equilibrium.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-26
    Description: Entropy, Vol. 20, Pages 553: Hierarchical Structure of Generalized Thermodynamic and Informational Entropy Entropy doi: 10.3390/e20080553 Authors: Pierfrancesco Palazzo The present research aimed at discussing the thermodynamic and informational aspects of entropy concept to propose a unitary perspective of its definitions as an inherent property of any system in any state. The dualism and the relation between physical nature of information and the informational content of physical states of matter and phenomena play a fundamental role in the description of multi-scale systems characterized by hierarchical configurations. A method is proposed to generalize thermodynamic and informational entropy property and characterize the hierarchical structure of its canonical definition at macroscopic and microscopic levels of a system described in the domain of classical and quantum physics. The conceptual schema is based on dualisms and symmetries inherent to the geometric and kinematic configurations and interactions occurring in many-particle and few-particle thermodynamic systems. The hierarchical configuration of particles and sub-particles, representing the constitutive elements of physical systems, breaks down into levels characterized by particle masses subdivision, implying positions and velocities degrees of freedom multiplication. This hierarchy accommodates the allocation of phenomena and processes from higher to lower levels in the respect of the equipartition theorem of energy. However, the opposite and reversible process, from lower to higher level, is impossible by virtue of the Second Law, expressed as impossibility of Perpetual Motion Machine of the Second Kind (PMM2) remaining valid at all hierarchical levels, and the non-existence of Maxwell’s demon. Based on the generalized definition of entropy property, the hierarchical structure of entropy contribution and production balance, determined by degrees of freedom and constraints of systems configuration, is established. Moreover, as a consequence of the Second Law, the non-equipartition theorem of entropy is enunciated, which would be complementary to the equipartition theorem of energy derived from the First Law.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-01
    Print ISSN: 2008-9163
    Electronic ISSN: 2251-6832
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-25
    Description: The present research aimed at discussing the thermodynamic and informational aspects of entropy concept to propose a unitary perspective of its definitions as an inherent property of any system in any state. The dualism and the relation between physical nature of information and the informational content of physical states of matter and phenomena play a fundamental role in the description of multi-scale systems characterized by hierarchical configurations. A method is proposed to generalize thermodynamic and informational entropy property and characterize the hierarchical structure of its canonical definition at macroscopic and microscopic levels of a system described in the domain of classical and quantum physics. The conceptual schema is based on dualisms and symmetries inherent to the geometric and kinematic configurations and interactions occurring in many-particle and few-particle thermodynamic systems. The hierarchical configuration of particles and sub-particles, representing the constitutive elements of physical systems, breaks down into levels characterized by particle masses subdivision, implying positions and velocities degrees of freedom multiplication. This hierarchy accommodates the allocation of phenomena and processes from higher to lower levels in the respect of the equipartition theorem of energy. However, the opposite and reversible process, from lower to higher level, is impossible by virtue of the Second Law, expressed as impossibility of Perpetual Motion Machine of the Second Kind (PMM2) remaining valid at all hierarchical levels, and the non-existence of Maxwell’s demon. Based on the generalized definition of entropy property, the hierarchical structure of entropy contribution and production balance, determined by degrees of freedom and constraints of systems configuration, is established. Moreover, as a consequence of the Second Law, the non-equipartition theorem of entropy is enunciated, which would be complementary to the equipartition theorem of energy derived from the First Law.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-07
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...