ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Internal waves  (61)
  • Ocean-atmosphere interaction  (54)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (76)
  • American Meteorological Society  (38)
  • Acoustical Society of America  (1)
Collection
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(9), (2021): 2721–2733, https://doi.org/10.1175/JPO-D-20-0298.1.
    Description: A linear numerical model of an island or a tall seamount is used to explore superinertial leaky resonances forced by ambient vertically and horizontally uniform current fluctuations. The model assumes a circularly symmetric topography (including a shallow reef) and allows realistic stratification and bottom friction. As long as there is substantial stratification, a number of leaky resonances are found, and when the island’s flanks are narrow relative to the internal Rossby radius, some of the near-resonant modes resemble leaky internal Kelvin waves. Other “resonances” resemble higher radial mode long gravity waves as explored by Chambers. The near-resonances amplify the cross-reef velocities that help fuel biological activity. Results for cases with the central island replaced by a lagoon do not differ greatly from the island case which has land at the center. As an aside, insight is provided on the question of offshore boundary conditions for superinertial nearly trapped waves along a straight coast.
    Keywords: Baroclinic flows ; Internal waves ; Kelvin waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(5), (2022): 595–617, https://doi.org/10.1175/jtech-d-21-0039.1.
    Description: The future Surface Water and Ocean Topography (SWOT) mission aims to map sea surface height (SSH) in wide swaths with an unprecedented spatial resolution and subcentimeter accuracy. The instrument performance needs to be verified using independent measurements in a process known as calibration and validation (Cal/Val). The SWOT Cal/Val needs in situ measurements that can make synoptic observations of SSH field over an O(100) km distance with an accuracy matching the SWOT requirements specified in terms of the along-track wavenumber spectrum of SSH error. No existing in situ observing system has been demonstrated to meet this challenge. A field campaign was conducted during September 2019–January 2020 to assess the potential of various instruments and platforms to meet the SWOT Cal/Val requirement. These instruments include two GPS buoys, two bottom pressure recorders (BPR), three moorings with fixed conductivity–temperature–depth (CTD) and CTD profilers, and a glider. The observations demonstrated that 1) the SSH (hydrostatic) equation can be closed with 1–3 cm RMS residual using BPR, CTD mooring and GPS SSH, and 2) using the upper-ocean steric height derived from CTD moorings enable subcentimeter accuracy in the California Current region during the 2019/20 winter. Given that the three moorings are separated at 10–20–30 km distance, the observations provide valuable information about the small-scale SSH variability associated with the ocean circulation at frequencies ranging from hourly to monthly in the region. The combined analysis sheds light on the design of the SWOT mission postlaunch Cal/Val field campaign.
    Description: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). All authors are supported by the SWOT project. J. T. Farrar was partially supported by NASA NNX16AH76G.
    Description: 2022-11-01
    Keywords: Internal waves ; Ocean dynamics ; Small scale processes ; Altimetry ; Global positioning systems (GPS) ; In situ oceanic observations ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
    Description: In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
    Description: This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112.
    Keywords: Ocean ; Arctic ; Internal waves ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3267–3294, https://doi.org/10.1175/JPO-D-19-0310.1.
    Description: As part of the Flow Encountering Abrupt Topography (FLEAT) program, an array of pressure-sensor equipped inverted echo sounders (PIESs) was deployed north of Palau where the westward-flowing North Equatorial Current encounters the southern end of the Kyushu–Palau Ridge in the tropical North Pacific. Capitalizing on concurrent observations from satellite altimetry, FLEAT Spray gliders, and shipboard hydrography, the PIESs’ 10-month duration hourly bottom pressure p and round-trip acoustic travel time τ records are used to examine the magnitude and predictability of sea level and pycnocline depth changes and to track signal propagations through the array. Sea level and pycnocline depth are found to vary in response to a range of ocean processes, with their magnitude and predictability strongly process dependent. Signals characterized here comprise the barotropic tides, semidiurnal and diurnal internal tides, southeastward-propagating superinertial waves, westward-propagating mesoscale eddies, and a strong signature of sea level increase and pycnocline deepening associated with the region’s relaxation from El Niño to La Niña conditions. The presence of a broad band of superinertial waves just above the inertial frequency was unexpected and the FLEAT observations and output from a numerical model suggest that these waves detected near Palau are forced by remote winds east of the Philippines. The PIES-based estimates of pycnocline displacement are found to have large uncertainties relative to overall variability in pycnocline depth, as localized deep current variations arising from interactions of the large-scale currents with the abrupt topography around Palau have significant travel time variability.
    Description: Support for this research was provided by Office of Naval Research Grants N00014-16-1-2668, N00014-18-1-2406, N00014-15-1-2488, and N00014-15-1-2622. R.C.M. was additionally supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Tropics ; Currents ; Eddies ; ENSO ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., & Shakespeare, C. J. Observed eddy-internal wave interactions in the Southern Ocean. Journal of Physical Oceanography, 50(10), (2020): 3042-3062, doi:10.1175/JPO-D-20-0001.1.
    Description: The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct energy transfer to the internal wave field in the ocean interior, via eddy-induced straining and shearing of preexisting internal waves. The magnitude, vertical structure, and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of −2.2 ± 0.6 mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2 ± 0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to −2.5 ± 0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy–internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.
    Description: Funding for DIMES was provided by U.K. Natural Environment Research Council (NERC) Grants NE/E007058/1 and NE/E005667/1. JMC acknowledges the support of a NERC PhD studentship, and ACNG that of the Royal Society and the Wolfson Foundation. NV acknowledges support from the ARC Centre of Excellence for Climate Extremes (CLEX) Honours Scholarship and the ANU PBSA Partnership - Spotless Scholarship. CJS acknowledges support from an ARC Discovery Early Career Researcher Award DE180100087 and an Australian National University Futures Scheme award. Numerical simulations were conducted on the National Computational Infrastructure (NCI) facility, Canberra, Australia. This study has been conducted using E.U. Copernicus Marine Service Information. We thank two anonymous reviewers for their comments which helped to improve the manuscript significantly. Codes and output files are available online at the project repository (https://github.com/jessecusack/DIMES_eddy_wave_interactions).
    Keywords: Southern Ocean ; Eddies ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9),(2020): 2797-2814, https://doi.org/10.1175/JPO-D-19-0326.1.
    Description: Hydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.
    Description: This study is supported by NSFC (91858204), the CAS Strategic Priority Research Program (XDB42000000), NSFC(41720104008, 41421005, 41876025), QMSNL (2018SDKJ0104-02), and the Shandong Provincial projects (U1606402). L. Pratt was supported by the U.S. NSF Grant OCE-1657870.
    Keywords: Diapycnal mixing ; Entrainment ; Internal waves ; Topographic effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3061-3068, doi: 10.1175/JPO-D-18-0172.1.
    Description: The calculation of energy flux in coastal trapped wave modes is reviewed in the context of tidal energy pathways near the coast. The significant barotropic pressures and currents associated with coastal trapped wave modes mean that large errors in estimating the wave flux are incurred if only the baroclinic component is considered. A specific example is given showing that baroclinic flux constitutes only 10% of the flux in a mode-1 wave for a reasonable choice of stratification and bathymetry. The interpretation of baroclinic energy flux and barotropic-to-baroclinic conversion at the coast is discussed: in contrast to the open ocean, estimates of baroclinic energy flux do not represent a wave energy flux; neither does conversion represent the scattering of energy from the tidal Kelvin wave to higher modes.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship, and by NSF under Grant OCE-1756781. I am grateful to K. Brink for the many useful conversations that contributed to this work and to J. Toole for providing detailed comments on an early version of this paper. The comments of three anonymous reviewers were very helpful in improving this paper.
    Description: 2020-06-03
    Keywords: Diapycnal mixing ; Internal waves ; Kelvin waves ; Topographic effects ; Waves, oceanic ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1639-1649, doi: 10.1175/JPO-D-18-0154.1.
    Description: Using a recently developed asymptotic theory of internal solitary wave propagation over a sloping bottom in a rotating ocean, some new qualitative and quantitative features of this process are analyzed for internal waves in a two-layer ocean. The interplay between different singularities—terminal damping due to radiation and disappearing quadratic nonlinearity, and reaching an “internal beach” (e.g., zero lower-layer depth)—is discussed. Examples of the adiabatic evolution of a single solitary wave over a uniformly sloping bottom under realistic conditions are considered in more detail and compared with numerical solutions of the variable-coefficient, rotation-modified Korteweg–de Vries (rKdV) equation.
    Description: LAO is thankful to Yu. Stepanyants for broad discussions of mutual benefit. KRH was supported by Grant N00014-18-1-2542 from the Office of Naval Research.
    Description: 2020-06-13
    Keywords: Internal waves ; Differential equations ; Nonlinear models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1969-1993, doi:10.1175/JPO-D-18-0031.1.
    Description: Upstream mean semidiurnal internal tidal energy flux has been found in the Gulf Stream in hydrodynamical model simulations of the Atlantic Ocean. A major source of the energy in the simulations is the south edge of Georges Bank, where strong and resonant Gulf of Maine tidal currents are found. An explanation of the flux pattern within the Gulf Stream is that internal wave modal rays can be strongly redirected by baroclinic currents and even trapped (ducted) by current jets that feature strong velocities above the thermocline that are directed counter to the modal wavenumber vector (i.e., when the waves travel upstream). This ducting behavior is analyzed and explained here with ray-based wave propagation studies for internal wave modes with anisotropic wavenumbers, as occur in mesoscale background flow fields. Two primary analysis tools are introduced and then used to analyze the strong refraction and ducting: the generalized Jones equation governing modal properties and ray equations that are suitable for studying waves with anisotropic wavenumbers.
    Description: The Woods Hole research was supported by National Science Foundation Grant OCE-1060430 and by the Office of Naval Research Grants N00014-11-1-0701 and N00014-17-1-2624. The USM research was supported by ONR Grant N00014-15-1-2288 and National Science Foundation Grant OCE-1537449.
    Description: 2019-02-28
    Keywords: Internal waves ; Wave properties ; Tides ; Differential equations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1789-1797, doi:10.1175/JPO-D-16-0240.1.
    Description: Internal solitary waves are commonly observed in the coastal ocean where they are known to contribute to mass transport and turbulent mixing. While these waves are often generated by cross-isobath barotropic tidal currents, novel observations are presented suggesting that internal solitary waves result from along-isobath tidal flows over channel-shoal bathymetry. Mooring and ship-based velocity, temperature, and salinity data were collected over a cross-channel section in a stratified estuary. The data show that Ekman forcing on along-channel tidal currents drives lateral circulation, which interacts with the stratified water over the deep channel to generate a supercritical mode-2 internal lee wave. This lee wave propagates onto the shallow shoal and evolves into a group of internal solitary waves of elevation due to nonlinear steepening. These observations highlight the potential importance of three-dimensionality on the conversion of tidal flow to internal waves in the rotating ocean.
    Description: National Science Foundation (OCE-1061609)
    Description: 2018-01-03
    Keywords: Estuaries ; Internal waves ; Solitary waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2611-2630, doi:10.1175/JPO-D-16-0259.1.
    Description: This study reports the results of large-eddy simulations of an axisymmetric turbulent buoyant plume in a stratified fluid. The configuration used is an idealized model of the plume generated by a subglacial discharge at the base of a tidewater glacier with an ambient stratification typical of Greenland fjords. The plume is discharged from a round source of various diameters and characteristic stratifications for summer and winter are considered. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions in the weakly stratified lower layer up to the pycnocline, and the plume dynamics are not sensitive to changes in the source diameter. In winter, when the stratification is similar to an idealized two-layer case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment by the plume top is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates internal waves that might serve as an indicator of submerged plumes not penetrating to the surface.
    Description: This work was supported by Linné FLOW Centre at KTH and the Academy of Finland Centre of Excellence program (Grant 307331) (E. E.) and VR Swedish Research Council, Outstanding Young Researcher Award, Grant VR 2014-5001 (L. B.). Support to C. C. was given by the NSF Project OCE-1434041.
    Description: 2018-04-26
    Keywords: Buoyancy ; Internal waves ; Turbulence ; Jets ; Oscillations ; Large eddy simulations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2479-2498, doi:10.1175/JPO-D-16-0167.1.
    Description: The generation of trapped and radiating internal tides around Izu‐Oshima Island located off Sagami Bay, Japan, is investigated using the three-dimensional Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS) that is validated with observations of isotherm displacements in shallow water. The model is forced by barotropic tides, which generate strong baroclinic internal tides in the study region. Model results showed that when diurnal K1 barotropic tides dominate, resonance of a trapped internal Kelvin wave leads to large-amplitude internal tides in shallow waters on the coast. This resonance produces diurnal motions that are much stronger than the semidiurnal motions. The weaker, freely propagating, semidiurnal internal tides are generated on the western side of the island, where the M2 internal tide beam angle matches the topographic slope. The internal wave energy flux due to the diurnal internal tides is much higher than that of the semidiurnal tides in the study region. Although the diurnal internal tide energy is trapped, this study shows that steepening of the Kelvin waves produces high-frequency internal tides that radiate from the island, thus acting as a mechanism to extract energy from the diurnal motions.
    Description: This study was supported by JST CREST Grant Number JPRMJCR12A6.
    Description: 2018-04-12
    Keywords: Pacific Ocean ; Internal waves ; Kelvin waves ; In situ oceanic observations ; Baroclinic models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3661-3679, doi:10.1175/JPO-D-16-0018.1.
    Description: A hydrostatic, coupled-mode, shallow-water model (CSW) is described and used to diagnose and simulate tidal dynamics in the greater Mid-Atlantic Bight region. The reduced-physics model incorporates realistic stratification and topography, internal tide forcing from a priori estimates of the surface tide, and advection terms that describe first-order interactions of internal tides with slowly varying mean flow and mean buoyancy fields and their respective shear. The model is validated via comparisons with semianalytic models and nonlinear primitive equation models in several idealized and realistic simulations that include internal tide interactions with topography and mean flows. Then, 24 simulations of internal tide generation and propagation in the greater Mid-Atlantic Bight region are used to diagnose significant internal tide interactions with the Gulf Stream. The simulations indicate that locally generated mode-one internal tides refract and/or reflect at the Gulf Stream. The redirected internal tides often reappear at the shelf break, where their onshore energy fluxes are intermittent (i.e., noncoherent with surface tide) because meanders in the Gulf Stream alter their precise location, phase, and amplitude. These results provide an explanation for anomalous onshore energy fluxes that were previously observed at the New Jersey shelf break and linked to the irregular generation of nonlinear internal waves.
    Description: We thank the National Science Foundation for support under Grant OCE-1061160 (ShelfIT) to the Massachusetts Institute of Technology (MIT) and under Grant OCE-1060430 to the Woods Hole Oceanographic Institution. PFJL and PJH also thank the Office of Naval Research for research support under Grants N00014-11-1-0701 (MURI-IODA), N00014-12-1-0944 (ONR6.2), and N00014-13-1-0518 (Multi-DA) to MIT.
    Description: 2017-06-14
    Keywords: Continental shelf/slope ; Inertia-gravity waves ; Internal waves ; Boundary currents ; Tides ; Baroclinic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 85-100, doi:10.1175/JPO-D-15-0234.1.
    Description: Observations and analyses of two tidally recurring, oblique, internal hydraulic jumps at a stratified estuary mouth (Columbia River, Oregon/Washington) are presented. These hydraulic features have not previously been studied due to the challenges of both horizontally resolving the sharp gradients and temporally resolving their evolution in numerical models and traditional observation platforms. The jumps, both of which recurred during ebb, formed adjacent to two engineered lateral channel constrictions and were identified in marine radar image time series. Jump occurrence was corroborated by (i) a collocated sharp gradient in the surface currents measured via airborne along-track interferometric synthetic aperture radar and (ii) the transition from supercritical to subcritical flow in the cross-jump direction via shipborne velocity and density measurements. Using a two-layer approximation, observed jump angles at both lateral constrictions are shown to lie within the theoretical bounds given by the critical internal long-wave (Froude) angle and the arrested maximum-amplitude internal bore angle, respectively. Also, intratidal and intertidal variability of the jump angles are shown to be consistent with that expected from the two-layer model, applied to varying stratification and current speed over a range of tidal and river discharge conditions. Intratidal variability of the upchannel jump angle is similar under all observed conditions, whereas the downchannel jump angle shows an additional association with stratification and ebb velocity during the low discharge periods. The observations additionally indicate that the upchannel jump achieves a stable position that is collocated with a similarly oblique bathymetric slope.
    Description: We acknowledge the financial support of the Office of Naval Research under Awards N00014-10-1-0932 and N00014-13-1-0364.
    Description: 2017-07-04
    Keywords: Estuaries ; Baroclinic flows ; Internal waves ; Microwave observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1998
    Description: This thesis is written in two parts. The first part deals with the problem oflateral dispersion due to mesoscale eddies in the open ocean, and the interaction between the mesoscale strain and horizontal diffusion on spatial scales less than 10 km. The second and major part examines lateral dispersion over the continental shelf on scales of 100 m to 10 km and over time scales of 1- 5 days. PART I: Lateral Dispersion and the North Atlantic Tracer Release Experiment Mixing and stirring of Lagrangian particles and a passive tracer were studied by comparison of float and tracer observations from the North Atlantic Tracer Release Experiment. Statistics computed from the NATRE floats were found to be similar to those estimated by Ledwell et al. (1998) from the tracer dispersion. Mean velocities computed from the floats were (u, v) = ( -1.2±0.3, -0.9±0.2) em s-1 for the (zonal, meridional) components, and large-scale effective eddy diffusivities were (KP. 11 , K:e 22 ) = (1.5±0. 7, 0. 7±0.4) x 103 m2 s-1 . The NATRE observations were used to evaluate theoretical models of tracer and particle dispersal. The tracer dispersion observed by Ledwell et al. (1998) was consistent with an exponential growth phase for about the first 6 months and a linear growth at larger times. A numerical model of mesoscale turbulence that was calibrated with float statistics also showed an exponential growth phase of tracer and a reduced growth for longer times. Numerical results further show that Garrett's (1983) theory, relating the effective small-scale diffusivity to the rms strain rate and tracer streak width, requires a scale factor of 2 when the observed growth rate of streak length is used as a measure of the strain rate. This scale factor will be different for different measures of the strain rate, and may also be affected by temporal and spatial variations in the mesoscale strain field. PART II: Lateral Dispersion over the New England Continental Shelf Lateral dispersion over the continental shelf was examined using dye studies of the Coastal Mixing and Optics (CMO) program. Four experiments performed at intermediate depths and lasting 3 to 5 days were examined. In some cases, the dye patches remained fairly homogeneous both vertically and horizontally throughout an experiment. In other cases, significant patchiness was observed on scales ranging from 2- 10 m vertically and a few hundred meters to a few kilometers horizontally. The observations also showed that the dye distributions were significantly influenced by shearing and straining on scales of 5- 10 m in the vertical and 1- 10 km in the horizontal. Superimposed on these larger-scale distortions were simultaneous increases in the horizontal second moments of the dye patches, with corresponding horizontal diffusivities based on a Fickian diffusion model of 0.3 to 4.9 m2 s-1 . Analysis of the dye data in concert with shear estimates from shipboard ADCP observations showed that the existing paradigms of shear dispersion and dispersion by interleaving water-masses can not account for the observed diffusive spreading of the dye patches. This result suggests that some other mechanisms provided an additional diffusivity of order 0.15 to 4.0 m2 s-1 . An alternative mechanism, dispersion by vortical motions caused by the relaxation of diapycnal mixing events, was proposed which could explain the observed dispersion in some cases. Order-of-magnitude estimates of the effective lateral dispersion due to vortical motions showed that this mechanism could account for effective horizontal diffusivities of order 0.01 to 1.1 m2 s-1 . The upper range of these estimates were within the range required by the observations for two of the four experiments examined.
    Description: The work in Part I relating to the North Atlantic Tracer Release Experiment was supported by the National Science Foundation under grant OCE90-05738. The work in Part II relating to the Coastal Mixing and Optics program was funded by the Office of Naval Research under grant N00014-95-1-0633 (tracer experiments) and grant N00014-95-1-1063 (AASERT fellowship).
    Keywords: Oceanic mixing ; Ocean-atmosphere interaction ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 417-437, doi:10.1175/JPO-D-15-0055.1.
    Description: In the stratified ocean, turbulent mixing is primarily attributed to the breaking of internal waves. As such, internal waves provide a link between large-scale forcing and small-scale mixing. The internal wave field north of the Kerguelen Plateau is characterized using 914 high-resolution hydrographic profiles from novel Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. Altogether, 46 coherent features are identified in the EM-APEX velocity profiles and interpreted in terms of internal wave kinematics. The large number of internal waves analyzed provides a quantitative framework for characterizing spatial variations in the internal wave field and for resolving generation versus propagation dynamics. Internal waves observed near the Kerguelen Plateau have a mean vertical wavelength of 200 m, a mean horizontal wavelength of 15 km, a mean period of 16 h, and a mean horizontal group velocity of 3 cm s−1. The internal wave characteristics are dependent on regional dynamics, suggesting that different generation mechanisms of internal waves dominate in different dynamical zones. The wave fields in the Subantarctic/Subtropical Front and the Polar Front Zone are influenced by the local small-scale topography and flow strength. The eddy-wave field is influenced by the large-scale flow structure, while the internal wave field in the Subantarctic Zone is controlled by atmospheric forcing. More importantly, the local generation of internal waves not only drives large-scale dissipation in the frontal region but also downstream from the plateau. Some internal waves in the frontal region are advected away from the plateau, contributing to mixing and stratification budgets elsewhere.
    Description: A.M. was supported by the joint CSIRO-University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. K.L.P.’s salary support was provided by Woods Hole Oceanographic Institution bridge support funds. B.M.S. was supported by the Australian Climate Change Science Program.
    Description: 2016-06-07
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Internal waves ; Mixing ; Wave properties ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2015
    Description: The scattering of low-mode internal tides by ocean-floor topography is extensively studied through analytical models and field observations at the Line Islands Ridge (LIR). An existing Green function method is utilized to examine the generation of internal tides by idealized topographic shapes as well as realistic transects of the LIR. The method is also applied to examine the scattering of a mode-1 internal tide at these topographies to determine the relative high mode energy flux due to generated and scattered internal tides at the realistic transects. A method of determining the modal content of an internal wave field is advanced to account for arbitrary stratification and rotation. It is then adjusted to allow for image loss as is common to oceanographic studies. Its performance is compared to the existing regression method widely used by oceanographers to determine the modal content of internal tides. The results from this comparison are used to inform the analysis of the field observations. This thesis concludes by examining the modal content of the LIR as determined from measurements taken during the 150-day EXperiment on Internal Tide Scattering (EXITS) NSF field study. Motivated by satellite altimetry data and three-dimensional numerical model studies, the EXITS cruise sought to observe the internal tide scattering process in the ocean for the first time. The data from three moorings equipped with moored profilers, spanning total depths of 3000-5000 m is analyzed to determine the modal content of the southward propagating internal tide before and after it encounters the ridge for evidence of topographic scattering.
    Keywords: Thomas G. Thompson (Ship) Cruise TN259 ; Kilo Moana (Ship) Cruise KM1102 ; Kilo Moana (Ship) Cruise KM1115 ; Ocean waves ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2381–2406, doi:10.1175/JPO-D-14-0086.1.
    Description: While near-inertial waves are known to be generated by atmospheric storms, recent observations in the Kuroshio Front find intense near-inertial internal-wave shear along sloping isopycnals, even during calm weather. Recent literature suggests that spontaneous generation of near-inertial waves by frontal instabilities could represent a major sink for the subinertial quasigeostrophic circulation. An unforced three-dimensional 1-km-resolution model, initialized with the observed cross-Kuroshio structure, is used to explore this mechanism. After several weeks, the model exhibits growth of 10–100-km-scale frontal meanders, accompanied by O(10) mW m−2 spontaneous generation of near-inertial waves associated with readjustment of submesoscale fronts forced out of balance by mesoscale confluent flows. These waves have properties resembling those in the observations. However, they are reabsorbed into the model Kuroshio Front with no more than 15% dissipating or radiating away. Thus, spontaneous generation of near-inertial waves represents a redistribution of quasigeostrophic energy rather than a significant sink.
    Description: “The Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries (SKED)” supported by MEXT, MIT-Hayashi Seed Fund, ONR (Awards N000140910196 and N000141210101), NSF (Award OCE 0928617, 0928138) for support.
    Description: 2016-03-01
    Keywords: Circulation/ Dynamics ; Frontogenesis/frontolysis ; Fronts ; Internal waves ; Turbulence ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2014
    Description: Recent work has documented dramatic changes in the West Antarctic Ice Sheet (WAIS) over the past 30 years (e.g., mass loss, glacier acceleration, surface warming) due largely to the influence of the marine environment. WAIS is particularly vulnerable to largescale atmospheric dynamics that remotely influence the transport of marine aerosols to the ice sheet. Understanding seasonal- to decadal-scale changes in the marine influence on WAIS (particularly sea-ice concentration) is vital to our ability to predict future change. In this thesis, I develop tools that enable us to reconstruct the source and transport variability of marine aerosols to West Antarctica in the past. I validate new firn-core sea-ice proxies over the satellite era; results indicate that firn-core glaciochemical records from this dynamic region may provide a proxy for reconstructing Amundsen Sea and Pine Island Bay polynya variability prior to the satellite era. I next investigate the remote influence of tropical Pacific variability on marine aerosol transport to West Antarctica. Results illustrate that both source and transport of marine aerosols to West Antarctica are controlled by remote atmospheric forcing, linking local dynamics (e.g., katabatic winds) with large-scale teleconnections to the tropics (e.g., Rossby waves). Oxygen isotope records allow me to further investigate the relationship between West Antarctic firn-core records and temperature, precipitation origin, sea-ice variability, and large-scale atmospheric circulation. I show that the tropical Pacific remotely influences the source and transport of the isotopic signal to the coastal ice sheet. The regional firn-core array reveals a spatially varying response to remote tropical Pacific forcing. Finally, I investigate longer-term (~200 year) ocean and ice-sheet changes using the methods and results gleaned from the previous work. I utilize sea-ice proxies to reconstruct long-term changes in sea-ice and polynya variability in the Amundsen Sea, and show that the tropics remotely influence West Antarctica over decadal timescales. This thesis utilizes some of the highest-resolution, most coastal records in the region to date, and provides some of the first analyses of the seasonal- to decadal-scale controls on source and transport of marine aerosols to West Antarctica.
    Description: This research was supported by an award from the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) to ASC, a James E. and Barbara V. Moltz Research Fellowship, and by grants from the National Science Foundation Office of Polar Programs (NSF-OPP; #ANT-0632031 & #ANT-0631973), the National Science Foundation Major Research Instrumentation Program (NSF-MRI; #EAR-1126217), the NASA Cryosphere Program (#NNX10AP09G), and a WHOI Andrew W. Mellon Foundation Award for Innovative Research.
    Keywords: Ocean-atmosphere interaction ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2938–2950, doi:10.1175/JPO-D-13-0201.1.
    Description: Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a kilometer-thick layer above rough bottom topography collocated with the deep-reaching fronts of the Antarctic Circumpolar Current. Linear theory, corrected for finite-amplitude topography based on idealized, two-dimensional numerical simulations, has been recently used to estimate the global distribution of internal wave generation by oceanic currents and eddies. The global estimate shows that the topographic wave generation is a significant sink of energy for geostrophic flows and a source of energy for turbulent mixing in the deep ocean. However, comparison with recent observations from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean shows that the linear theory predictions and idealized two-dimensional simulations grossly overestimate the observed levels of turbulent energy dissipation. This study presents two- and three-dimensional, realistic topography simulations of internal lee-wave generation from a steady flow interacting with topography with parameters typical of Drake Passage. The results demonstrate that internal wave generation at three-dimensional, finite bottom topography is reduced compared to the two-dimensional case. The reduction is primarily associated with finite-amplitude bottom topography effects that suppress vertical motions and thus reduce the amplitude of the internal waves radiated from topography. The implication of these results for the global lee-wave generation is discussed.
    Description: This research was supported by the National Science Foundation under Award CMG-1024198.
    Description: 2015-05-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Mixing ; Mountain waves ; Topographic effects ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 413–426, doi:10.1175/JPO-D-13-0117.1.
    Description: Salinity and temperature profiles from drifting ice-tethered profilers in the Beaufort gyre region of the Canada Basin are used to characterize and quantify the regional near-inertial internal wave field over one year. Vertical displacements of potential density surfaces from the surface to 750-m depth are tracked from fall 2006 to fall 2007. Because of the time resolution and irregular sampling of the ice-tethered profilers, near-inertial frequency signals are marginally resolved. Complex demodulation is used to determine variations with a time scale of several days in the amplitude and phase of waves at a specified near-inertial frequency. Characteristics and variability of the wave field over the course of the year are investigated quantitatively and related to changes in surface wind forcing and sea ice cover.
    Description: The ITP program and J. Toole’s contributions were supported by the National Science Foundation Office of Polar Programs Arctic Observing Network. We acknowledge the support of the Office of Naval Research (Grant N00014-11-1-0454) for this study. Support for H. Dosser was also provided by the Natural Sciences and Engineering Research Council of Canada.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Inertia-gravity waves ; Internal waves ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1466–1492, doi:10.1175/JPO-D-12-0154.1.
    Description: Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.
    Description: The SOFine project is funded by the United Kingdom’s Natural Environmental Research Council (NERC) (Grant NE/G001510/1). SW acknowledges the support of anARCDiscovery Early CareerResearchAward (Grant DE120102927), as well as the Grantham Institute for Climate Change, Imperial College London, and the ARC Centre of Excellence for Climate System Science (Grant CE110001028). ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1).KLP acknowledges support fromWoods Hole Oceanographic Institution bridge support funds.
    Description: 2014-11-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Small scale processes ; Turbulence ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1854–1872, doi:10.1175/JPO-D-13-0104.1.
    Description: The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
    Description: This research was funded by the Climate Process Team (CPT) on internal wave–driven mixing throughNSF GrantOCE-0968721. GSC acknowledges support from NSF Grants OCE-0825266 (EXITS), OCE-1029483 (SPAM), and OCE-1029722 (MIXET). LDT and CBW acknowledge support from NSF Grant OCE-0927650. SWand ACNG acknowledge support from NERC Grant NE/G001510/1 (SOFine).
    Description: 2015-01-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1306–1328, doi:10.1175/JPO-D-12-0191.1.
    Description: The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.
    Description: Support for this study and the overall ITP program was provided by the National Science Foundation and Woods Hole Oceanographic Institution. Support for S. Cole was partially though the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-11-01
    Keywords: Geographic location/entity ; Arctic ; Sea ice ; Circulation/ Dynamics ; Ekman pumping/transport ; Internal waves ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1116–1132, doi:10.1175/JPO-D-13-0194.1.
    Description: Internal solitary waves commonly observed in the coastal ocean are often modeled by a nonlinear evolution equation of the Korteweg–de Vries type. Because these waves often propagate for long distances over several inertial periods, the effect of Earth’s background rotation is potentially significant. The relevant extension of the Kortweg–de Vries is then the Ostrovsky equation, which for internal waves does not support a steady solitary wave solution. Recent studies using a combination of asymptotic theory, numerical simulations, and laboratory experiments have shown that the long time effect of rotation is the destruction of the initial internal solitary wave by the radiation of small-amplitude inertia–gravity waves, and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. However, in the ocean, internal solitary waves are often propagating over variable topography, and this alone can cause quite dramatic deformation and transformation of an internal solitary wave. Hence, the combined effects of background rotation and variable topography are examined. Then the Ostrovsky equation is replaced by a variable coefficient Ostrovsky equation whose coefficients depend explicitly on the spatial coordinate. Some numerical simulations of this equation, together with analogous simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm), for a certain cross section of the South China Sea are presented. These demonstrate that the combined effect of shoaling and rotation is to induce a secondary trailing wave packet, induced by enhanced radiation from the leading wave.
    Description: KH was supported by Grants N00014-09-10227 and N00014-11-0701 from the Office of Naval Research.
    Description: 2014-10-01
    Keywords: Circulation/ Dynamics ; Internal waves ; Solitary waves ; Models and modeling ; Nonlinear models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2014
    Description: The ocean is a complex, constantly changing, highly dynamical system. Prediction capabilities are constantly being improved in order to better understand and forecast ocean properties for applications in science, industry, and maritime interests. Our overarching goal is to better predict the ocean environment in regions of complex topography with a continental shelf, shelfbreak, canyons and steep slopes using the MIT Multidisciplinary Simulation, Estimation and Assimilation Systems (MSEAS) primitive-equation ocean model. We did this by focusing on the complex region surrounding Taiwan, and the period of time immediately following the passage of Typhoon Morakot. This area and period were studied extensively as part of the intense observation period during August - September 2009 of the joint U.S. - Taiwan program Quantifying, Predicting, and Exploiting Uncertainty Department Research Initiative (QPE DRI). Typhoon Morakot brought an unprecedented amount of rainfall within a very short time period and in this research, we model and study the effects of this rainfall on Taiwan’s coastal oceans as a result of river discharge. We do this through the use of a river discharge model and a bulk river-ocean mixing model. We complete a sensitivity study of the primitive-equation ocean model simulations to the different parameters of these models. By varying the shape, size, and depth of the bulk mixing model footprint, and examining the resulting impacts on ocean salinity forecasts, we are able to determine an optimal combination of salinity relaxation factors for highest accuracy.
    Description: Office of Naval Research for research support under grants N00014-08-1-0586 (QPE) to the Massachusetts Institute of Technology
    Keywords: Ocean-atmosphere interaction ; Numerical weather forecasting
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 17–28, doi:10.1175/JPO-D-11-0108.1.
    Description: Observational evidence is presented for transfer of energy from the internal tide to near-inertial motions near 29°N in the Pacific Ocean. The transfer is accomplished via parametric subharmonic instability (PSI), which involves interaction between a primary wave (the internal tide in this case) and two smaller-scale waves of nearly half the frequency. The internal tide at this location is a complex superposition of a low-mode waves propagating north from Hawaii and higher-mode waves generated at local seamounts, making application of PSI theory challenging. Nevertheless, a statistically significant phase locking is documented between the internal tide and upward- and downward-propagating near-inertial waves. The phase between those three waves is consistent with that expected from PSI theory. Calculated energy transfer rates from the tide to near-inertial motions are modest, consistent with local dissipation rate estimates. The conclusion is that while PSI does befall the tide near a critical latitude of 29°N, it does not do so catastrophically.
    Description: This work was sponsored by NSF OCE 04-25283.
    Description: 2013-07-01
    Keywords: Diapycnal mixing ; Internal waves ; Nonlinear dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2013
    Description: Between 2002 and 2011 a single mooring was maintained in the core of the Pacific Water boundary current in the Alaskan Beaufort Sea near 152° W. Using velocity and hydrographic data from six year-long deployments during this time period, we examine the interannual variability of the current. It is found that the volume, heat, and freshwater transport have all decreased drastically over the decade, by more than 80%. The most striking changes have occurred during the summer months. Using a combination of weather station data, atmospheric reanalysis fields, and concurrent shipboard and mooring data from the Chukchi Sea, we investigate the physical drivers responsible for these changes. It is demonstrated that an increase in summertime easterly winds along the Beaufort slope is the primary reason for the drop in transport. The intensification of the local winds has in turn been driven by a strengthening of the summer Beaufort High in conjunction with a deepening of the summer Aleutian Low. Since the fluxes of mass, heat, and freshwater through Bering Strait have increased over the same time period, this raises the question as to the fate of the Pacific water during recent years and its impacts. We present evidence that more heat has been fluxed directly into the interior basin from Barrow Canyon rather than entering the Beaufort shelfbreak jet, and this is responsible for a significant portion of the increased ice melt in the Pacific sector of the Arctic Ocean.
    Description: The majority of the data for this project was funded by grant # ARC-0856244 from the O ce of Polar Programs of the National Science Foundation. My time at WHOI was funded by the United States Navy, the National Science Foundation Graduate Research Fellowship Program and the WHOI Academic Programs O ffice.
    Keywords: Ocean circulation ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1996
    Description: TOPEX/POSEIDON altimetry data are employed in the analysis of the global ocean response to atmospheric forcing. We use two different approaches to test the hypothesis that the global sea surface height variability can be adequately described by linear barotropic ocean models: the multichannel regression and the optimal smoothing techniques. We start with the simplest linear vorticity balance and continue by building a hierarchy of more complicated models by including effects of topography and time dependence. We use auto-regressive external (ARX) time-series models to test the hypothesis in all of the Pacific Ocean. We also test whether any significant residual regression on the atmospheric loading is left after the inverted barometer effect is corrected for. We find that no linear barotropic model is consistent with the data. We provide a check on the results of the multichannel regression by using a Kalman filter and optimal smoother. We use sequential estimation in the form of filteringsmoothing algorithm. We run the estimate for an area of 4000 km by 2000 km in the Northeast Pacific. We analyze model and data error structures by simulating the model without data assimilation. The results show that the model forecast on average explains 33% of the data variability. The Kalman filter updates the model very efficiently and produces an estimate which explains 76% of the data variance. The optimal smoother estimate is very similar to the Kalman filter estimate. Running the model in other regions of the Pacific produced worse fits of the model to the data. This supports the conclusion that the linear barotropic dynamics fails to describe the SSH variability.
    Description: This research was partially funded by a NASA Global Change Fellowship.
    Keywords: Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1997
    Description: As part of the Shallow Water Acoustics in a Random Medium (SWARM) experiment [1], a sixteen element WHOI vertical line array (WVLA) was moored in 70 meters of water off the New Jersey coast. This array was sampled at 1395 Hz or higher for the seven days it was deployed. Tomography sources with carrier frequencies of 224 and 400 Hz were moored about 32 km shoreward, such that the acoustic path was anti-parallel to the primary propagation direction for shelf generated internal wave solitons. Two models for the propagation of normal modes through a 2-D waveguide with solitary internal wave (soliton) scattering included are developed to help in understanding the very complicated mode arrivals seen at the WVLA. The simplest model uses the Preisig and Duda [2] sharp interface approximation for solitons, allowing for rapid analysis of the effects of various numbers of solitons on mode arrival statistics. The second model, using SWARM thermistor string data to simulate the actual SWARM waveguides, is more realistic, but much slower. The analysis of the actual WVLA data yields spread, bias, wander, and intensity fluctuation signals that are modulated at tidal frequencies. The signals are consistent with predicted relationships to the internal wave distributions in the waveguides.
    Description: The funds for my education were provided by the Office of Naval Research through an ONR Fellowship (MIT award 002734-001); the funds for SWARM were also provided by the Office of Naval Research through ONR Grant N00014-95-0051.
    Keywords: Solitons ; Underwater acoustics ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 259–282, doi:10.1175/JPO-D-11-0194.1.
    Description: This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial distribution of the observed turbulent dissipation and the derived turbulent mixing, and consider underpinning mechanisms in the context of the internal wave field and the processes governing the waves’ generation and evolution. The turbulent dissipation rate and the derived diapycnal diffusivity are highly variable with systematic depth dependence. The dissipation rate is generally enhanced in the upper 1000–1500 m of the water column, and both the dissipation rate and diapycnal diffusivity are enhanced in some places near the seafloor, commonly in regions of rough topography and in the vicinity of strong bottom flows associated with the ACC jets. Turbulent dissipation is high in regions where internal wave energy is high, consistent with the idea that interior dissipation is related to a breaking internal wave field. Elevated turbulence occurs in association with downward-propagating near-inertial waves within 1–2 km of the surface, as well as with upward-propagating, relatively high-frequency waves within 1–2 km of the seafloor. While an interpretation of these near-bottom waves as lee waves generated by ACC jets flowing over small-scale topographic roughness is supported by the qualitative match between the spatial patterns in predicted lee wave radiation and observed near-bottom dissipation, the observed dissipation is found to be only a small percentage of the energy flux predicted by theory. The mismatch suggests an alternative fate to local dissipation for a significant fraction of the radiated energy.
    Description: SW acknowledges the support of the Grantham Institute for Climate Change, Imperial College London. ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1). KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds.
    Description: 2013-08-01
    Keywords: Diapycnal mixing ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 766–789, doi:10.1175/JPO-D-12-0141.1.
    Description: Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program. Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m. The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.
    Description: This work was supported by the National Science Foundation and the Office of Naval Research.
    Description: 2013-10-01
    Keywords: Diapycnal mixing ; Energy transport ; Internal waves ; Nonlinear dynamics ; Topographic effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 602–615, doi:10.1175/JPO-D-12-055.1.
    Description: The ocean interior stratification and meridional overturning circulation are largely sustained by diapycnal mixing. The breaking of internal tides is a major source of diapycnal mixing. Many recent climate models parameterize internal-tide breaking using the scheme of St. Laurent et al. While this parameterization dynamically accounts for internal-tide generation, the vertical distribution of the resultant mixing is ad hoc, prescribing energy dissipation to decay exponentially above the ocean bottom with a fixed-length scale. Recently, Polzin formulated a dynamically based parameterization, in which the vertical profile of dissipation decays algebraically with a varying decay scale, accounting for variable stratification using Wentzel–Kramers–Brillouin (WKB) stretching. This study compares two simulations using the St. Laurent and Polzin formulations in the Climate Model, version 2G (CM2G), ocean–ice–atmosphere coupled model, with the same formulation for internal-tide energy input. Focusing mainly on the Pacific Ocean, where the deep low-frequency variability is relatively small, the authors show that the ocean state shows modest but robust and significant sensitivity to the vertical profile of internal-tide-driven mixing. Therefore, not only the energy input to the internal tides matters, but also where in the vertical it is dissipated.
    Description: This work is a component of the Internal- Wave Driven Mixing Climate Process Team funded by the National Science Foundation Grant OCE-0968721 and the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Award NA08OAR4320752.
    Description: 2013-09-01
    Keywords: Diapycnal mixing ; Internal waves ; Subgrid-scale processes ; Ocean models ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2012
    Description: Observations from a three-year field program on the inner shelf south of Martha's Vineyard, MA and a numerical model are used to describe the effect of stratification on inner shelf circulation, transport, and sediment resuspension height. Thermal stratification above the bottom mixed layer is shown to cap the height to which sediment is resuspended. Stratification increases the transport driven by cross-shelf wind stresses, and this effect is larger in the response to offshore winds than onshore winds. However, a one-dimensional view of the dynamics is not sufficient to explain the relationship between circulation and stratification. An idealized, cross-shelf transect in a numerical model (ROMS) is used to isolate the effects of stratification, wind stress magnitude, surface heat flux, cross-shelf density gradient, and wind direction on the inner shelf response to the cross-shelf component of the wind stress. In well mixed and weakly stratified conditions, the cross-shelf density gradient can be used to predict the transport efficiency of the cross-shelf wind stress. In stratified conditions, the presence of an along-shelf wind stress component makes the inner shelf response to cross-shelf wind stress strongly asymmetric.
    Description: This work was supported through National Science Foundation grant no. OCE-0548961, the WHOI Academic Programs Office, and the WHOI Coastal Ocean Institute.
    Keywords: Ocean-atmosphere interaction ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1990
    Description: An acoustic tomography experiment consisting of a source near Hawaii and seven receivers along the west coast of North America was conducted from November 1987 to May 1988 and from February 1989 to July 1989. In this thesis, the acoustic ray travel times are analyzed in order to investigate inter-annual basin-scale thermal variability. These thermal fluctuations may help detect any greenhouse warming and greater understanding of them will increase knowledge of ocean-atmosphere interactions which affect weather and climate. A discussion of the program for finding the travel times is included along with a comparison of two methods of measuring travel times.
    Keywords: Tomography ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1990
    Description: A recently developed technique for determining past sea surface temperatures (SST), based on an analysis of the unsaturation ratio of long chain C37 methyl alkenones (Uk37) produced by Prymnesiophyceae phytoplankton, has been applied to late Quaternary sediment cores. Previous studies have shown that the Uk37 ratio of these alkenones is linearly proportional to the sea-water temperature in which the plankton grow, both in culture and water column samples. Furthermore, a reasonable correlation has been found between open ocean paleo-SST estimates based on Uk37 values and those derived from δ180, for the period spanning approximately the last 100,000 years (Brassell, 1986b). These results indicate this technique has potential for determining paleo-SST from analysis of alkenones extracted from marine sediments. In order to apply the Uk37 method quantitatively, it is necessary to calibrate the method for sediment samples, and to assess how well the alkenones maintain their temperature signal under some common conditions of sediment deposition and sample handling. It is also necessary to determine the method's usefulness downcore, that is, back in time, by comparing it to established methods. This study examined the effect on Uk37 of conditions that cause dissolution of carbonates in the sediment, and methods of storage and 'sample handling. These are two problems that must be resolved before the method can be applied rigorously and quantitatively to sediments for paleotemperature estimations. A comparison of duplicate samples collected and stored frozen versus those stored at room temperature for up to four years showed no resolvable differences in Uk37. Laboratory experiments of carbonate dissolution indicated there is no effect on Uk37 values under the acidic conditions that dissolve carbonates. Initial field results support this, but indicate more studies are necessary. The Uk37 "thermometer" was calibrated by analyzing Uk37 in coretops from widely varying open ocean sites. Sediment values of Uk37 reflected overlying SST for the appropriate season of the phytoplankton bloom, which for this study was assumed to be summer in high latitudes. These results fall on the same regression line for culture and water column samples derived by Prahl and Wakeham (1987), indicating that their equation (Uk37 = 0.033 T + 0.043) is suitable for use in converting Uk37 values in sediments to overlying SST for the season of coccolith bloom. Using this calibration for sediments, the Uk37 paleotemperature method can be quantitatively applied down core to open ocean sediments. In the Equatorial Atlantic, Uk37 temperature estimates were compared to those obtained from δ18O of the planktonic foraminifer Globigerinoides sacculifer, and planktonic foraminiferal assemblages for the last glacial cycle. The alkenone method showed ~1.56°C cooling at the last glacial maximum. This is about half the decrease shown by both the isotopic method ( ~3.40°C) and foraminiferal assemblages (~3.75°C), implying that, if Uk37 estimates are correct, SST in the equatorial Atlantic was only reduced slightly in the last glaciation. In the Northeast Atlantic, Uk37 temperature estimates show a profile downcore which is similar to the estimates from foram assemblages but with a constant offset toward warmer values throughout the core. Uk37 SST estimates are substantially warmer than foraminiferal estimates at all times, which may indicate inaccuracy in Uk37 temperatures at this site. Uk37 indicates a SST of 12°C for the late glacial and 18°C for the Recent, whereas assemblages give estimates of 9°C and 13°C, respectively. At 12,700 yrs BP, the Uk37 and foram assemblage methods indicate a 2°C warming. A temperature change of 2°C can account for only 0.44°/oo of the observed 1.2°/oo δ18O signal, indicating that the additional 0.8°/oo change in δ18O must result from changes in surface salinity most likely due to a meltwater lid. Uk37 estimates show the major temperature shift from glacial to interglacial temperatures occured at about 9,000 yrs BP disagreeing with assemblage data which shows the shift to Holocene values at about 12,700 yrs BP. If Uk37 temperature estimates are accurate, this disagreement may reflect differing habitats of flora and fauna under the unusual sea surface conditions in this area during the deglaciation.
    Description: Primary financial support for this research came from the Ocean Ventures Fund (grant 25/ 85.08), without which this project would not have been possible. Funding supporting the labs of John Farrington (OCE 88-11409) and Lloyd Keigwin (OCE 83-08893 and ATM 84-14335) in which I worked also provided funding for part for this research.
    Keywords: Ocean-atmosphere interaction ; Paleothermometry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1524–1547, doi:10.1175/JPO-D-11-0117.1.
    Description: Evidence is presented for the transfer of energy from low-frequency inertial–diurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those receiving energy directly from the winds, barotropic tides, and parametric subharmonic instability, with those most directly involved in the breaking process. Transfer estimates are based on month-long records of ocean velocity and temperature obtained continuously over 80–800 m from the research platform (R/P) Floating Instrument Platform (FLIP) in the Hawaii Ocean Mixing Experiment (HOME) Nearfield (2002) and Farfield (2001) experiments, in Hawaiian waters. Triple correlations between low-frequency vertical shears and high-frequency Reynolds stresses, uiw∂Ui/∂z, are used to estimate energy transfers. These are supported by bispectral analysis, which show significant energy transfers to pairs of waves with nearly identical frequency. Wavenumber bispectra indicate that the vertical scales of the high-frequency waves are unequal, with one wave of comparable scale to that of the low-frequency parent and the other of much longer scale. The scales of the high-frequency waves contrast with the classical pictures of induced diffusion and elastic scattering interactions and violates the scale-separation assumption of eikonal models of interaction. The possibility that the observed waves are Doppler shifted from intrinsic frequencies near f or N is explored. Peak transfer rates in the Nearfield, an energetic tidal conversion site, are on the order of 2 × 10−7 W kg−1 and are of similar magnitude to estimates of turbulent dissipation that were made near the ridge during HOME. Transfer rates in the Farfield are found to be about half the Nearfield values.
    Description: This work was supported by the National Science Foundation and the Office of Naval Research.
    Description: 2013-03-01
    Keywords: Diapycnal mixing ; Energy transport ; Internal waves ; Nonlinear dynamics ; Ship observations ; Spectral analysis/models/distribution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 18, 1988
    Description: We have contrived a regional model Φ(K, ω, η, φ, λ) for the distribution of low frequency variability energy in horizontal wavenumber, frequency, vertical mode and geography. We assume horizontal isotropy, Φ(K, ω, η, φ, λ) = 2πKψ(k, l, ω, η, φ, λ), with K designating the amplitude of total horizontal wavenumber. The parameters of Φ(K, ω, η, φ, λ) can be derived from observations: (i) satellite altimetry measurements yield the surface eddy kinetic energy wavenumber and frequency spectra and the geographic distribution of surface eddy kinetic energy magnitude, (ii) XBT measurements yield the temperature wavenumber spectra, (iii) current meter and thermistor measurements yield the frequency spectra of kinetic energy and temperature, (iv) tomographic measurements yield the frequency spectra of range— and depth—averaged temperature, and (v) the combination of satellite altimetry and current meter measurements yields the vertical partitioning of kinetic energy among dynamical modes. We assume the form of the geography—independent part of our model Φ(K, ω, η) ∝Kpωq. The observed kinetic energy and temperature wavenumber spectra suggest p = 3/2 at K 〈 K0 and p = —2 at K 〉 K0 for the barotropic mode, and p = —1/2 at K 〈 K0 and p = —3 at K 〉 K0 for the baroclinic mods, where K0 is the transitional wavenumber of the wavenumber spectra. The observed frequency spectra of temperature and kinetic energy suggest that q = —1/2 for ω 〈 ω0 and q = —2 for ω 〉 ω0, where ω0 is the transitional frequency of the frequency spectra. The combination of satellite altimetry and current meter measurements suggests the vertical structure of the low frequency variability is governed by the first few modes. The geography—dependent part of our model is the energy magnitude. Although we have shown analytically that the tomographic measurements behave as a low—pass filter, it is impossible to identify this filtering effect in the real data due to the strong geographic variability of the energy magnitude and the vertical gradient of the mean temperature. The model wavenumber spectrum is appropriate only where the statistical properties are relatively homogeneous in space.
    Description: My first year in the Joint Program was supported by the National Science Foundation under grant OCE 92-16628, then were supported by the National Science Foundation under grant OCE 95-29545.
    Keywords: Internal waves ; Ocean tomography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1992
    Description: Oceanic profiles of temperature, salinity, horizontal velocity, rate of dissipation of turbulent kinetic energy (ε) and rate of dissipation of thermal variance (χ) are used to examine the parameterization of turbulent mixing in the ocean due to internal waves. Turbulent mixing is quantified through eddy diffusivity parameterizations of the mass (Kρ; Osborn, 1980) and heat fluxes (Kτ; Osborn and Cox, 1972) in turbulent production/dissipation balances. Turbulence in the ocean is generally held to result from the occurrence of shear instability in regions where the Richardson number is locally supercritical (i.e. Ri ≤ 1/4), permitting the growth of small-scale waves which break and result in turbulent mixing. The occurrence of shear instability results from the local intensification of the shear in the internal wave field. The energy dissipated in such events is provided by the energy flux to higher wavenumber due to nonlinear wave/wave interactions on scales of 10's to 100's of meters. In turn, the strength of the wave/wave interactions depends generally on the energy content of the internal wave field, which can vary considerably over even larger scales due to the presence of topography or background flows. The magnitude of turbulent mixing is linked to internal wave dynamics by equating the turbulent dissipation with the energy flux through the vertical wavenumber spectrum under the priviso that the model spectrum which forms the basis for the analysis is statistically stationary with respect to the nonlinear interactions. Dynamical models (McComas and Muller, 1981; Henyey et al., 1986) indicate that the Garrett and Munk (GM; Munk, 1981) spectrum is stationary. Observations from the far field of a seamount in a region of negligible large-scale flow were examined to address the issue of the buoyancy scaling of ε. These data exhibited large variations in background stratification with depth, but the internal wave characteristics were not substantially differentiable from the GM prescription. The magnitude of ε and its functional dependence upon internal wave energy levels (E) and buoyancy frequency (N) was best described by the dynamical model ofHenyey et al. (1986) (ε ~ E2N2). The Richardson number scaling model of Kunze et al. (1990) produced consistent estimates. A second dynamical model, McComas and Muller (1981), predicted an appropriate (E,N) scaling, but overestimated the observed dissipation rates by a factor of five. Two kinematical dissipation parameterizations (Garmett and Holloway (1984) and Munk (1981)) predicted buoyancy scalings of N3/2 which were inconsistent with the observed scaling. Data from an upper-ocean front, a warm core ring and a region of steep topography were analyzed in order to examine the parameter dependence of E in internal wave fields which exhibited potentially nonstationary characteristics. Evidence was provided which implied the internal wave field in an upper ocean front was interacting with and modified by the background flow. Inhomogeneity and anisotropy of the internal wave field were noted in that data set. The model of Gregg (1989), which in turn was based upon the model of Henyey et al., effectively collapsed the observed diffusivity estimates from the front. The warm core ring profiles were noted to be anisotropic, dominated by near-inertial frequencies and to have a peaked vertical wavenumber shear spectrum. The data from a region of steep topography were noted to have a peaked vertical wavenumber spectrum and were characterized by higher than GM frequency motions. For the latter two data sets, application of a frequency based correction to the Henyey et al. model (Henyey, 1991) reduced more than an order of magnitude scatter in the parameterized estimates of E to less than a factor of four. Of the possible non-equilibrium conditions in the internal wave field, the (E,N) scaled dissipation rates were most sensitive to deviations in wave field frequency content. On the basis of a number of theoretical Richardson number probability distributions (Ri = N2/S2, where S2 is the sum of the squared vertical derivatives of horizontal velocity), the nominal dissipation scaling of the Kunze et al. model was determined to be E2N3. This scaling is altered to the observed ε ~ E2N2 scaling by a statistical dependence between N2 and S2 which reduces the occurrence of supercritical Ri values. This statistical dependence is hypothesized to be an effect of the turbulent momentum and buoyancy fluxes on the internal wave shear and strain profiles caused by shear instability. The statistical dependence between N2 and S2 exhibited a buoyancy scaling which was interpreted as resulting from the decreasing ratio between the time scale of the shear instability mechanism [T- 2π/N] and the adiabatic time scale [T - 2π/(Nf)1/2] of the internal wave field (f is the Coriolis parameter). This phenomenology is interpreted in light of saturated spectral theories which suggest that the magnitude and shape of the vertical wavenumber spectrum is controlled by instability mechanisms at large wavenumber ( ≥ .1 cpm). We argue that saturated spectral theories are valid only in the limit where a separation exists between the two time scales, i.e. for large N, low internal wave frequency content, and small f. These results have immediate implications for oceanic mixing driven by internal wave motions. First, background diffusivities are small: at GM energy levels, Kρ - .03x10-4 m2/s (Kρ = .25ε/N2). Secondly, since Kρ is independent of N at constant E, some process or collection of processes must be responsible for heightened E values in the abyss if internal waves cause the 0(1-10x10-4 m2/s) diffusivities generally inferred from deep ocean hydrographic data. We view internal wave reflection and/or internal wave generation associated with topographic features to be likely candidates.
    Keywords: Turbulence ; Internal waves ; Wave functions ; Endeavor (Ship: 1976-) Cruise EN141
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1989
    Description: Given well known environmental conditions, matched field processing has been shown to be a promising signal processing technique for the localization of acoustic sources. However, when environmental data are incomplete or inaccurate, a 'mismatch' occurs between the measured field and model field which can lead to a severe degradation of the localization estimator. We investigate the possible mismatch effects of surface and internal waves on matched field processing in a shallow water waveguide. We utilize a modified ray theory, based on the work of Tindle, to calculate the acoustic pressure field. This allows us to simply incorporate range dependent environmental conditions as well as to generalize our work to deeper waveguides. In general, the conventional (Bartlett) matched field beamformer does not provide sufficient resolution to unambiguously locate a source, even in a perfectly matched environment. The maximum likelihood method (MLM) matched field beamformer has much better resolution but is extremely susceptible to mismatch. The mismatch due to surface roughness can result in a large reduction of the estimator peak. Part, but not all, of the peak can be regained by 1)using a model which includes incomplete reflection at the surface based on actual sea surface statistics and 2) short time averaging of the measured signal, with times on the order of the period of the surface waves. Mismatch due to internal waves can also result in a large degradation of the estimator. Averaging over the same time period as surface waves provides little improvement and leads one to surmise that internal waves may be a limiting constraint on matched field processing. Finally, we combine the surface and internal wave fields with a slowly moving source. This example highlights the necessity for the development of a beamformer which has a broader mainlobe while maintaining adequate sidelobe suppression, and we address this issue by looking at two such beamformers.
    Keywords: Internal waves ; Surface waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1981–2000, doi:10.1175/JPO-D-12-028.1.
    Description: Packets of nonlinear internal waves (NLIWs) in a small area of the Mid-Atlantic Bight were 10 times more energetic during a local neap tide than during the preceding spring tide. This counterintuitive result cannot be explained if the waves are generated near the shelf break by the local barotropic tide since changes in shelfbreak stratification explain only a small fraction of the variability in barotropic to baroclinic conversion. Instead, this study suggests that the occurrence of strong NLIWs was caused by the shoaling of distantly generated internal tides with amplitudes that are uncorrelated with the local spring-neap cycle. An extensive set of moored observations show that NLIWs are correlated with the internal tide but uncorrelated with barotropic tide. Using harmonic analysis of a 40-day record, this study associates steady-phase motions at the shelf break with waves generated by the local barotropic tide and variable-phase motions with the shoaling of distantly generated internal tides. The dual sources of internal tide energy (local or remote) mean that shelf internal tides and NLIWs will be predictable with a local model only if the locally generated internal tides are significantly stronger than shoaling internal tides. Since the depth-integrated internal tide energy in the open ocean can greatly exceed that on the shelf, it is likely that shoaling internal tides control the energetics on shelves that are directly exposed to the open ocean.
    Description: This research was supported by ONR Grants N00014-05-1-0271, N00014-08-1-0991, N00014-04- 1-0146, and N00014-11-1-0194.
    Description: 2013-05-01
    Keywords: Internal waves ; Nonlinear dynamics ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1996
    Description: A field experiment was undertaken during July and August of 1995 aimed at understanding the interaction of acoustic signals with the internal wave field off the coast of New Jersey. As part of SWARM (Shallow Water Acoustics in a Random Medium), physical data were collected in 75 m of water near 39°15.34'N, 72°56.59'W with three thermistor strings, a bottom-mounted ADCP, and yo-yo CTDs. These data spanned a two-week period of the month-long study. With the exception of a time following a storm event, during which the generation mechanism near the shelf break was effectively switched off, large-amplitude (up to 20 meters), rank-ordered groups of internal solitons were observed traveling through the region approximately every 12.4 hours. These groups of solitons progressed across the shelf with phase speeds of 61.8 ± 14.9 cm/s with a heading of 280 ± 31° T. Two-layer finite-depth theory was tested on this data and shown to consistently overpredict the phase speed of the internal solitons within each group. Predictions of horizontal scale, particle velocities, and displacements were in qualitative agreement with two-layer finite-depth dynamics.
    Description: Support for this work was provided by a National Science Foundation grant OCE-9313670.
    Keywords: Internal waves ; Solitons ; Oceanus (Ship : 1975-) Cruise OC271
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2012
    Description: The purpose of this study is to understand the interactions of tropical cyclones with ocean eddies. In particular we examine the influence of a cold-core eddy on the cold wake formed during the passage of Typhoon Fanapi (2010). The three-dimensional version of the numerical Price–Weller–Pinkel (PWP) vertical mixing model has previously been used to simulate and study the cold wakes of Atlantic hurricanes. The model has not been used in comparison with observations of typhoons in the Western Pacific Ocean. In 2010 several typhoons were studied during the Impact of Typhoons on the Ocean in the Pacific (ITOP) field campaign and Fanapi was particularly well observed. We use these observations and the 3DPWP to understand the ocean cold wake generated by Fanapi. The cold wake of Fanapi was advected by a cyclonic eddy that was south of the typhoon track. The 3DPWP model outputs with and without an eddy are compared with observations made during the field campaign. These observations are compared to model outputs with eddies in a series of positions right and left of the storm track in order to study effects of mesoscale eddies on ocean vertical mixing in the cold wake of typhoons.
    Keywords: Ocean-atmosphere interaction ; Oceanic mixing ; Roger Revelle (Ship) Cruise RR0912
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Ocean Engineer at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1993
    Description: Travel time perturbations of adiabatic normal modes due to an internal tide and internal mode field in the Barents Sea are examined. A formalism for the travel time perturbation due to a change in sound speed is presented. Internal tide and internal wave amplitude spectra are calculated from Brancker temperature loggers which were deployed on moorings in the Barents Sea during the August 1992 Barents Sea Polar Front Experiment. In particular, the first three internal wave mode amplitudes are estimated from the four Brancker temperature loggers on the southwest mooring of the array. Modal perturbations in acoustic pulse travel time and the travel time covariance are calculated and compared for consistency to a simple ray model. These perturbations are small for the modal arrivals that the vertical acoustic array which was deployed is expected to resolve. The third internal wave mode has the largest impact on the acoustic arrivals, per unit amplitude, but the first internal wave mode dominates the scattering due to having a much larger amplitude overall.
    Keywords: Internal waves ; Ocean circulation ; Acoustic surface waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2012
    Description: This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO2 concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of δ18O and δ13C compiled byMarchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein successfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic δ18O and δ13C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
    Description: Primary support was provided by a National Defense Science and Engineering Graduate Fellowship and two National Science Foundation awards: Award #OCE-0645936: “Beyond the Instrumental Record: the Case of Circulation at the Last Glacial Maximum” and Award #OCE-1060735: “Collaborative Research: Beyond the Instrumental Record - the Ocean Circulation at the Last Glacial Maximum and the de-Glacial Sequence”. Important secondary support came from the National Ocean Partnership Program and the National Aeronautics and Space Administration via the ECCO effort at MIT.
    Keywords: Ocean-atmosphere interaction ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2223–2241, doi:10.1175/2011JPO4344.1.
    Description: Results are presented from an observational study of stratified, turbulent flow in the bottom boundary layer on the outer southeast Florida shelf. Measurements of momentum and heat fluxes were made using an array of acoustic Doppler velocimeters and fast-response temperature sensors in the bottom 3 m over a rough reef slope. Direct estimates of flux Richardson number Rf confirm previous laboratory, numerical, and observational work, which find mixing efficiency not to be a constant but rather to vary with Frt, Reb, and Rig. These results depart from previous observations in that the highest levels of mixing efficiency occur for Frt 〈 1, suggesting that efficient mixing can also happen in regions of buoyancy-controlled turbulence. Generally, the authors find that turbulence in the reef bottom boundary layer is highly variable in time and modified by near-bed flow, shear, and stratification driven by shoaling internal waves.
    Description: Funding was provided by grants from the National Oceanic and Atmospheric Administration’s National Undersea Research Program, National Science Foundation Grants OCE-0622967 and OCE- 0824972 to SGM, and the Singapore Stanford Program. Kristen Davis was supported by a National Defense Science and Engineering Graduate Fellowship and an ARCS Foundation Fellowship.
    Keywords: Boundary layer ; Turbulence ; Bottom currents ; Mixing ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1993
    Description: The dynamical aspects involved in the assimilation of altimeter data in a numerical ocean model have been investigated. The model used for this study is a quasi-geostrophic model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height which have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. We have analyzed the mechanisms of the model adjustment, and the final statistical equilibrium characteristics of the model simulation when the surface data are assimilated. Since the surface data are the superposition of a mean component and an eddy component, in order to understand the relative role of these two components in determining the characteristics of the final st atistical steady state, we have considered two different experiments: in the first experiment only the climatological mean field is assimilated, while in the second experiment the total surface streamfunction field (mean + eddies) has been used. We have found that the mean component of the surface data determines, to a large extent, the structure of the flow field in the subsurface layers, while the eddy field, as well as the inflow/outflow conditions at the open boundaries, affect its intensity. In particular, if surface eddies are not assimilated only a weak flow develops in the two deeper model layers where no inflow/ outflow is prescribed at the boundaries. Comparisons of the assimilation results with available in situ observations show a considerable improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. In particular, the possibility of building into the model more realistic eddy characteristics, through the assimilation of the surface eddy field, proves very successful in driving components of the mean model circulation that are in good agreement with the available observations.
    Description: This research was carried out with the support of the National Aeronaut ics Space Administration, through a contract to MIT from the Jet Propulsion Laboratory, # 958208, as a part of the TOPEX-Poseidon investigation.
    Keywords: Ocean-atmosphere interaction ; Ocean currents ; Ocean temperature
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution November 1992
    Description: Cosmogeruc P-32 (14.28 days) and P-33 (25.3 days) are powerful tracers of upper ocean P cycling, when coupled with time-series of the atmospheric sources. A method was developed to determine the low-level beta activities in rainwater and plankton. The wet deposition rates of P-32 and P-33 were determined during 12 months at a marine site, at Bermuda, coinciding with measurements of the activities and activity ratio P-33/P-32 in suspended particles and plankton tows at BATS station. The in situ production rates of radiophosphorus in the upper ocean were estimated by measuring the activities induced in Cl, K and S targets by cosmic rays. Knowledge of all the sources of radiophosphorus to the Sargasso Sea allowed the cycling of P-32 and P-33 in suspended particles and macrozooplankton to be studied. The study was based on the determination of the activity ratio P-33/P-32 in different particulate pools. The activity ratio was higher in particle collections dominated by higher levels in the food web. The increase in the ratio in plankton relative to rain allowed the determination of the turnover times of P in plankton and in situ grazing rates.
    Description: Funding for this research was provided by NSF (grants OCE-8800957. OCE- 8817836 and OCE-902284), DOE (grant DE-FG02-88ER60681), Woods Hole Oceanographic Institution, Ocean Venture Funding of Woods Hole Oceanographic Institution and Scurlock Funds of Mr Arch Scurlock to MIT/WHOI Joint Program.
    Keywords: Phosphorus ; Radioisotopes in oceanography ; Chemical oceanography ; Oceanic mixing ; Ocean-atmosphere interaction ; Weatherbird II (Ship) Cruise ; Endeavor (Ship: 1976-) Cruise EN235
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: Efforts to monitor the ocean for signs of climate change are hampered by ever-present noise, in the form of stochastic ocean variability, and detailed knowledge of the character of this noise is necessary for estimating the significance of apparent trends. Typically, uncertainty estimates are made by a variety of ad hoc methods, often based on numerical model results or the variability of the data set being analyzed. We provide a systematic approach based on the four-dimensional frequency-wavenumber spectrum of low-frequency ocean variability. This thesis presents an empirical model of the spectrum of ocean variability for periods between about 20 days and 15 years and wavelengths of about 200{10,000 km, and describes applications to ocean circulation trend detection, observing system design, and satellite data processing. The horizontal wavenumber-frequency part of the model spectrum is based on satellite altimetry, current meter data, moored temperature records, and shipboard ADCP data. The spectrum is dominated by motions along a "nondispersive line". The observations considered are consistent with a universal ω-2 power law at the high end of the frequency range, but inconsistent with a universal wavenumber power law. The model spectrum is globally varying and accounts for changes in dominant phase speed, period, and wavelength with location. The vertical structure of the model spectrum is based on numerical model results, current meter data, and theoretical considerations. We find that the vertical structure of kinetic energy is surface intensified relative to the simplest theoretical predictions. We present a theory for the interaction of linear Rossby waves with rough topography; rough topography can explain both the observed phase speeds and vertical structure of variability. The improved description of low-frequency ocean variability presented here will serve as a useful tool for future oceanographic studies.
    Description: This research was supported by NASA under grants NNG06GC28G and NNX08AR33G.
    Keywords: Ocean-atmosphere interaction ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1997
    Description: The unusual twice-yearly cycle of mixed layer deepening and cooling driven by the monsoon is analyzed using a recently collected (1994-95) dataset of concurrent local air-sea fluxes and upper ocean dynamics from the Arabian Sea. The winter northeast monsoon has moderate wind forcing and a strongly destabilizing surface buoyancy flux, driven by large radiative and latent heat losses at the sea surface. Convective entrainment is the primary local mechanism driving the observed mixed layer cooling and deepening, although horizontal advection of thermocline depth variations affect the depth which the mixed layer attains. Modifications of a one-dimensional mixed layer model and heat balance show that the primary nonlocal forcing of the upper ocean is the horizontal advection of temperature gradients below the mixed layer base. The summer southwest monsoon has strong wind stresses and a neutral to stabilizing surface buoyancy flux, limited by the extreme humidity of the atmosphere, which suppresses both the radiative and latent heat losses at the surface. Wind-driven shear instabilities at the base of the mixed layer, which entrain cooler and fresher water primarily produces the observed mixed layer cooling and deepening. Horizontal advection of cooler water within the mixed layer influences the local heat balance at the mooring site. Ekman pumping velocities play only a small role in the upper ocean evolution during both monsoon seasons.
    Description: This research was funded by ONR grant N00014-94- 1-0161, and I was supported during this time by a generous NDSEG fellowship.
    Keywords: Ocean-atmosphere interaction ; Monsoons
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1992
    Description: A basin-scale acoustic tomography experiment was conducted in the northeast Pacific from May 1987 to September 1987. In this thesis, the stability of the forward model is analyzed. There are large non-linearities in the changes in travel time between ray paths for the four seasons . I constructed a model in which the change in warming in the upper 100 m of the ocean was due only to changes in surface solar irradiance. The value of the surface solar irradiance anomalies necessary to cause the tomography results for warming (Spiesberger and Metzger, 1991) was computed. This value was larger than the actual value of surface solar irradiance anomaly which was computed using inputs measured by satellite (Chertock, 1989).
    Keywords: Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1995
    Description: This thesis investigates the amplitude fluctuation effects in acoustic scattering due to shallow water internal waves. Theoretically, it uses the adiabatic approximation and perturbation methods to statistically evaluate acoustic transmission fluctuations caused by internal waves in the ocean; it also investigates acoustic mode coupling effect due to internal waves. Numerically, this thesis simulates the shallow water internal wave (IW) field using the Garrett-Munk internal wave spectrum model and then evaluates acoustic transmission in the simulated internal wave field with the Kraken normal mode program. Theoretical calculations are also performed using the theory developed in this thesis. Comparisons are made between theory and numerical calculations. The results presented and discussed in this thesis are related to the following issues: coherent and incoherent intensity fluctuations for adiabatic approximation, acoustic mode coupling due to IW's, transmission loss difference between adiabatic and coupled mode methods, and their dependence on range, IW amplitude and frequency.
    Keywords: Internal waves ; Acoustic surface waves ; Coupled mode theory
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1995
    Description: Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional heat and freshwater budgets and are used to examine the sensitivity of the global circulation, both inter and intra-basin exchange rates, to a variety of external constraints provided by estimates of Ekman, boundary current and throughflow transports. A solution is found which is consistent with both the model physics and the global data set, despite a twenty five year time span and a lack of seasonal consistency among the data. The overall pattern of the global circulation suggested by the models is similar to that proposed in previously published local studies and regional reviews. However, significant qualitative and quantitative differences exist. These differences are due both to the model definition and to the global nature of the data set. The picture of the global circulation which emerges from the models IS a complex, turbulent flow. When integrated across ocean basins not one, but two major cells emerge. The first connects an Atlantic overturning cell (estimated at 18± 4x 109 kg s- 1) to the Southern Ocean where the Antarctic Circumpolar Current carries lower deep waters to the Indian and Pacific basins where they are converted to upper deep and intermediate waters before returning to the Atlantic. The second cell connects the Pacific and Indian Basins to the north and south of Australia. In t his cell deep waters pass into the Pacific and return within the Indian Basin as intermediate waters after passing through the Indonesian Passages. The two cells are found to be independent of one another, i.e. within the models, the Indonesian Passages do not represent a significant element in a net global circulation. While there is ample evidence of westward flow around the southern tip of South Africa which would support a "warm" water path scenario, the variability of flow in this region, rich with eddies makes hydrography a poor estimator of the relative strengths of the controversial "warm" and "cold" water paths. All existing estimates of Indonesian Passage throughflow, including the smallest (O x 106 m3 s-1) and the largest (20 x 106 m3 s-1), are consistent with the model constraints. When the Pacific- Indian throughflow is not constrained, the model produces an estimate of 11 ± 14x 109 kg s-1. The model heat flux estimates are both significantly different from zero and quite robust to changes in initial assumptions, with the exception of the choice of wind field. Although in this work it was not possible to compute freshwater fluxes which were significantly different from zero, future inclusion of salinity anomaly constraints along with terms describing vertical diffusion may yet make it possible to compute significant freshwater :flux estimates from hydrography.
    Description: This research was partially funded by a NASA Global Change Fellowship and was also supported by NASA under contract NAGW-1048 and NSF under contract OCE-9205942.
    Keywords: Ocean circulation ; Atmospheric circulation ; Ocean-atmosphere interaction ; Thomas G. Thompson (Ship) Cruise ; Moana Wave (Ship) Cruise ; Atlantis II (Ship : 1963-) Cruise AII109 ; Atlantis II (Ship : 1963-) Cruise AII93 ; Charles Darwin (Ship) Cruise ; Oceanus (Ship : 1975-) Cruise OC133 ; Oceanus (Ship : 1975-) Cruise OC338 ; Knorr (Ship : 1970-) Cruise ; Melville (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1991
    Description: This thesis reviews observational and theoretical work on the equatorial deep jets and work related to the study of the role of the horizontal Coriolis parameter. Most existing analytical models interpret the equatorial deep jets as either low frequency, long Rossby waves or stationary,long Kelvin waves generated at or near the ocean surface. These models are unable to answer the question of how wind generated energy propagates down through the equatorial undercurrent and thermocline into the deep ocean. Existing numerical models do not display deep jet features due mainly to their in low vertical resolution and the high eddy viscosity associated with these models. These numerical models also suggest that very tittle energy is able to get into the deep ocean. A natural question is raised: can the equatorial deep jets possibly be interpreted as free, steady inertial motion below the thermocline? We develop a simple model for the deep jets as a free, stationary inertial motion. After scaling the fluid dynamical equations in the appropriate regime, it is found that neither the advective nonlinearity nor the horizontal Coriolis parameter can be neglected. An important conservation equation, the so called potential zonal vorticity conservation equation which governs the equatorial steady and zonal independent equatorial flow is derived. From this conservation principle, an inertial equatorial deep jets model is developed which captures some important features of the deep jets. The horizontal Coriolis parameter is important in this inertial model. The role of the horizontal Coriolis parameter has long been controversial in the literature. We discuss this role for several equatorial flow systems. It is found that the horizontal Coriolis parameter is not significant for inviscid linear equatorial waves due to the presence of stratification in the real ocean. However, when the ratio of momentum eddy viscosity to the density dissipation coefficient becomes small enough, the effect of the horizontal Coriolis parameter becomes more important in a simple viscous model. Some general aspects of this parameter have also been discussed in terms of angular momentum conservation and energy conservation principles. It is suggested that for the ocean circulation of large vertical excursion of the fluid particle, the horizontal Coriolis parameter effect may not be small and should be included in future numerical models.
    Keywords: Ocean-atmosphere interaction ; Coriolis force
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1991
    Description: In this thesis, I study the time-varying behavior of a ventila ted thermocline with basin scales at annual and decadal time scales. The variability is forced by three external forcings: the wind stress (chapter 3), the surface heat flux (chapter 4) and the upwelling along the eastern boundary (chapter 5). It is found that the thermocline variability is forced mainly by wind in a shadow zone while m~inly by surface buoyancy flux in a ventilated zone. A two-layer planetary geostrophic model is developed (chapter 2) to simulate a thermocline. The model includes some novel physical mechanisms. Most importantly, it captures the essential feature of subduction; it also is able to account for a time-varying surface temperature. The equation for the interface is a quasi-linear equation, which can be solved analytically by the method of characteristics. The effect of a varying Ekman pumping is investigated. In a shadow zone, it is found that the driving due to the Ekman pumping is mainly balanced by the propagation of planetary waves. However, in a ventilated zone, the cold advection of subducted water plays the essential role in opposing the Ekman pumping. The different dynamics also results in different thermocline variability between the two zones. After a change of Ekman pumping, in the shadow zone, since the baroclinic Ross by wave responds to a changing Ekman pumping slowly (in years to decades), an imbalance arises between the Rossby wave and the Ekman pumping, which then excites thermocline variability. However, in the ventilated zone, both the advection and the Ekman pumping vary rapidly after a barotropic process (about one week) to reach a new steady balance, leaving little thermocline variability. In addition, the evolution of the thermocline and circulation are also discussed. Furthermore, with a periodic Ekman pumping, it is found that linear solutions are approximate the fully nonlinear solution well, particularly for annual forcings. However, the linear disturbance is strongly affected by the basic thermocline structure and circulation. The divergent group velocity field, which is mainly caused by the divergent Sverdrup flow field, produces a decay effect on disturbances. The mean thermocline structure also strongly affects the relative importance of the local Ekman pumping and remote Rossby waves. As a result, in a shadow zone, local response dominates for a shallow interface while the remote Rossby wave dominates for a deep interface. With a strong decadal forcing, the nonlinearity becomes important in the shadow zone, particularly in the western part. The time-mean thermocline which results, becomes shallower than the steady thermocline under the mean Ekman pumping. Then, we investigate the effect on the permanent thermocline by a moving outcrop line, which simulates the effect of a varying surface heat flux. The two layer model is modified by adding an (essentially passive) mixed layer atop. The outcrop line and the mixed layer depth are specified. It is found that, opposite to a surface wind stress, a surface buoyancy flux causes strong variability in the ventilated zone through subducted water while it affects the shadow zone very little. Furthermore, two regimes of buoyancy-forced solution are found. When the outcrop line moves slowly, the solutions are non-entrainment solutions. For these solutions, the surface heat flux is mainly balanced by the horizontal advection. The mixed layer is never entrained. The time-mean thermocline is close to the steady thermocline with the time-mean outcrop line. When the outcrop line moves southward rapidly during the cooling season, the solutions become entrainment solutions. Now, deep vertical convection must occur, because the horizontal advection in the permanent thermocline is no longer strong enough to balance the surface cooling. The mixed layer penetrates rapidly such that water mass is entrained into the mixed layer through the bottom. The time-mean thermocline resembles the steady thermocline with the early spring mixed layer, as suggested by Stommel (1979). The local variability in the permanent thermocline is most efficiently produced by decadal forcings. Finally, two issues about the waves radiating from the eastern boundary are discussed. The first is the penetration of planetary waves across the southern boundary of a subtropical gyre. We find that the wave penetration across the southern boundary is substantially changed by the zonal variation of the thermocline structure. The zonal variation alters both the effective β and the wave front orientation. As a result, the wave penetration differs for interfaces at different depths. For an interface near the surface, part of the waves penetrate into the equatorial region. For middle depths, most waves will be trapped within the subtropical gyre. In contrast, for deep depths, all waves penetrate southward. The second issue of the eastern boundary waves mainly concerns with the breaking of planetary waves in the presence of an Ekman pumping and the associated two-dimensional mean flow. It is found that the breaking is affected significantly by an Ekman pumping and the associated mean flow. With an Ekman pumping, downwelling breaking is suppressed and the breaking time is delayed; upwelling breaking is enhanced and their times are shortened. The breaking times and positions are mainly determined by the maximum vertical perturbation speed while the intensity of the breaking front mainly depends on the amplitude of the perturbation. The intensity of a breaking front increases with the amplitude of the forcing, but decreases with the distance from the eastern boundary. The orientation of a breaking front is overall in northeast-southwest (x ~ -1/f2).
    Description: This thesis is supported by National Science Foundation, Division of Atmospheric Sciences.
    Keywords: Thermoclines ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1998
    Description: This thesis presents an investigation of the influence of surface waves on momentum exchange. A quantitative comparison of direct covariance friction velocity measurements to bulk aerodynamic and inertial dissipation estimates indicates that both indirect methods systematically underestimate the momentum flux into developing seas. To account for wave-induced processes and yield improved flux estimates, modifications to the traditional flux parameterizations are explored. Modification to the bulk aerodynamic method involves incorporating sea state dependence into the roughness length calculation. For the inertial dissipation method, a new parameterization for the dimensionless dissipation rate is proposed. The modifications lead to improved momentum flux estimates for both methods.
    Description: This project was funded by the Oceanographer of the Navy.
    Keywords: Oceanic mixing ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2605–2623, doi:10.1175/2010JPO4132.1.
    Description: Steady scale-invariant solutions of a kinetic equation describing the statistics of oceanic internal gravity waves based on wave turbulence theory are investigated. It is shown in the nonrotating scale-invariant limit that the collision integral in the kinetic equation diverges for almost all spectral power-law exponents. These divergences come from resonant interactions with the smallest horizontal wavenumbers and/or the largest horizontal wavenumbers with extreme scale separations. A small domain is identified in which the scale-invariant collision integral converges and numerically find a convergent power-law solution. This numerical solution is close to the Garrett–Munk spectrum. Power-law exponents that potentially permit a balance between the infrared and ultraviolet divergences are investigated. The balanced exponents are generalizations of an exact solution of the scale-invariant kinetic equation, the Pelinovsky–Raevsky spectrum. A small but finite Coriolis parameter representing the effects of rotation is introduced into the kinetic equation to determine solutions over the divergent part of the domain using rigorous asymptotic arguments. This gives rise to the induced diffusion regime. The derivation of the kinetic equation is based on an assumption of weak nonlinearity. Dominance of the nonlocal interactions puts the self-consistency of the kinetic equation at risk. However, these weakly nonlinear stationary states are consistent with much of the observational evidence.
    Description: This research is supported by NSF CMG Grants 0417724, 0417732 and 0417466. YL is also supported by NSF DMS Grant 0807871 and ONR Award N00014-09-1-0515.
    Keywords: Waves ; Oceanic ; Internal waves ; Spectral analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1997
    Description: In order to constrain the processes controlling the cycles of biogeochemically important gases such as 02 and C02, and thereby infer rates of biological activity in the upper ocean or the uptake of radiatively important "greenhouse" gases, the noble gases are used to characterize and quantify the physical processes affecting the dissolved gases in aquatic environments. The processes of vertical mixing, gas exchange, air injection, and radiative heating are investigated using a 2 year time-series of the noble gases, temperature, and meteorological data from Station S near Bermuda, coupled with a 1- dimensional upper ocean mixing model to simulate the physical processes in the upper ocean. The rate of vertical mixing that best simulates the thermal cycle is 1.1±0.1 x104 m The gas exchange rate required to simulate the data is consistent with the formulation of Wanninkhof (1992) to ± 40%, while the formulation of Liss and Merlivat 1986 must be increased by a factor of 1.7± 0.6. The air injection rate is consistent with the formulation of Monahan and Torgersen (1991) using an air entrainment velocity of 3±1 cm s1. Gas flux from bubbles is dominated on yearly time-scales by larger bubbles that do not dissolve completely, while the bubble flux is dominated by complete dissolution of bubbles in the winter at Bermuda. In order to obtain a high-frequency time-series of the noble gases to better parameterize the gas flux from bubbles, a moorable, sequential noble gas sampler was developed. Preliminary results indicate that the sampler is capable of obtaining the necessary data. Dissolved gas concentrations can be significantly modified by ice formation and melting, and due to the solubility of He and Ne in ice, the noble gases are shown to be unique tracers of these interactions. A three-phase equilibrium partitioning model was constructed to quantify these interactions in perennially ice-covered Lake Fryxell, and this work was extended to oceanic environments. Preliminary surveys indicate that the noble gases may provide useful and unique information about interactions between water and ice.
    Description: This work has been supported by the National Science Foundation - OCE 9302812 and DPP 9118363, the Ocean Ventures Fund Ditty Bag Fund and Westcott Fund and the WHOI Education Office.
    Keywords: Ocean-atmosphere interaction ; Gases
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2011
    Description: Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the pressure gradient through the Tokar Gap on the Sudanese coast, at about 18°N, during the summer monsoon season. It disturbs the prevailing along-sea (southeastward) winds with strong cross-sea (northeastward) winds that can last from days to weeks and reach amplitudes of 20-25 m/s. By comparing scatterometer winds with along-track and gridded sea level anomaly observations, it is shown that an intense dipolar eddy spins up in less than seven days in response to the wind jet. The eddy pair has a horizontal scale of 140 km. Maximum ocean surface velocities can reach 1 m/s and eddy currents extend at least 200 m into the water column. The eddy currents appear to cover the width of the sea, providing a pathway for rapid transport of marine organisms and other drifting material from one coast to the other. Interannual variability in the strength of the dipole is closely matched with variability in the strength of the wind jet. The dipole is observed to be quasi-stationary, although there is some evidence for slow eastward propagation—simulation of the dipole in an idealized high-resolution numerical model suggests that this is the result of self-advection. These and other recent in situ observations in the Red Sea show that the upper ocean currents are dominated by mesoscale eddies rather than by a slow overturning circulation.
    Description: This work is supported by Award Nos. USA 00002, KSA 00011 and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST).
    Keywords: Ocean-atmosphere interaction ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1988
    Description: Analysis of vertical profiles of absolute horizontal velocity collected in January 1981, February 1982 and April 1982 in the central equatorial Pacific as part of the Pacific Equatorial Ocean Dynamics (PEQUOD) program, revealed two significant narrow band spectral peaks in the zonal velocity records, centered at vertical wavelengths of 560 and 350 stretched meters (sm). Both signals were present in all three cruises, but the 350 sm peak showed a more steady character in amplitude and a higher signal-to-noise ratio. In addition, its vertical scales corresponded to the scales of the conspicuous alternating flows generically called the equatorial deep jets in the past (the same terminology will be used here). Meridional velocity and vertical displacement spectra did not show any such energetic features. Energy in the 560 sm band roughly doubled between January 1981 and April 1982. Time lagged coherence results suggested upward phase propagation at time scales of about 4 years. East-west phase lines computed from zonally lagged coherences, tilted downward towards the west, implying westward phase propagation. Estimates of zonal wavelength (on the order of 10000 km) and period based on these coherence calculations, and the observed energy meridional structure at this vertical wavenumber band, seem consistent, within experimental errors, with the presence of a first meridional mode long Rossby wave packet, weakly modulated in the zonal direction. The equatorial deep jets, identified with the peak centered at 350 sm, are best defined as a finite narrow band process in vertical wavenumber (311-400 sm), accounting for only 20% of the total variance present in the broad band energetic background. At the jets wavenumber band, latitudinal energy scaling compared well with Kelvin wave theoretical values and a general tilt of phase lines downward towards the east yielded estimates of 10000-16000 km for the zonal wavelengths. Time-lagged coherence calculations revealed evidence for vertical shifting of the jets on interannual time scales. Interpretation of results in terms of single frequency linear wave processes led to inconsistencies, but finite bandwidth (in frequency and wavenumber) Kelvin wave processes of periods on the order of three to five years could account for the observations. Thus, the records do not preclude equatorial waves as a reasonable kinematic description of the jets.
    Description: This research was supported by grant OCE-8600052 from the National Science Foundation, through the Woods Hole Oceanographic Institution.
    Keywords: Ocean currents ; Ocean-atmosphere interaction ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1998
    Description: The evolution of a coastal ocean undergoing uniform surface heat loss is examined. The dynamics of this ocean are initially modulated by the intense vertical mixing driven by surface cooling. The strong vertical mixing prevents the formation of geostrophic flows and inhibits the cross-shelf flux of heat. The vertical mixing is eventually suppressed by the advective transport of cold, dense water offshore. Once this happens, alongshore geostrophic flows form, and become baroclinically unstable. The surface heat flux is then balanced by a cross-shelf eddy heat flux. Scales are found for the cross-shelf density gradient which results from this balance. Solutions for linear internal waves are found for a wedge-shaped bathymetry with bottom friction. Bottom friction is capable of entirely dissipating the waves before they reach the coast, and waves traveling obliquely offshore are reflected back to the coast from a caustic. The internal wave climate near two moorings of the Coastal Ocean Dynamics Experiment observation program is analyzed. The high frequency internal wave energy levels were elevated above the Garrett and Munk spectrum, and the spectrum becomes less red as one moves to the shore. The wave field is dominated by vertical-mode one waves, and internal wave energy propagates shoreward.
    Description: This work was funded by an Office of Naval Research fellowship and and Office of Naval Research AASERT fellowship, N00014-95:-1-0746.
    Keywords: Internal waves ; Oceanic mixing ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2011
    Description: This thesis describes the physics of fully three-dimensional low frequency acoustic interaction with internal waves, bottom sediment waves and surface swell waves that are often observed in shallow waters and on continental slopes. A simple idealized model of the ocean waveguide is used to analytically study the properties of acoustic normal modes and their perturbations due to waves of each type. The combined approach of a semi-quantitative study based on the geometrical acoustics approximation and on fully three-dimensional coupled mode numerical modeling is used to examine the azimuthal dependence of sound wave horizontal reflection from, transmission through and ducting between straight parallel waves of each type. The impact of the natural crossings of nonlinear internal waves on horizontally ducted sound energy is studied theoretically and modeled numerically using a three-dimensional parabolic equation acoustic propagation code. A realistic sea surface elevation is synthesized from the directional spectrum of long swells and used for three-dimensional numerical modeling of acoustic propagation. As a result, considerable normal mode amplitude scintillations were observed and shown to be strongly dependent on horizontal azimuth, range and mode number. Full field numerical modeling of low frequency sound propagation through large sand waves located on a sloped bottom was performed using the high resolution bathymetry of the mouth of San Francisco Bay. Very strong acoustic ducting is shown to steer acoustic energy beams along the sand wave’s curved crests.
    Description: Office of Naval Research for the financial support of this work.
    Keywords: Acoustic models ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2011
    Description: Throughout this thesis we will discuss the theoretical background and empirical observation of a swell band shore normal flux divergence reversal. Specifically, we will demonstrate the existence and persistence of the energy flux divergence reversal in the nearshore region of Atchafalaya Bay, Gulf of Mexico, across storms during the March through April 2010 deployment. We will show that the swell band offshore component of energy flux is rather insignificant during the periods of interest, and as such we will neglect it during the ensuing analysis. The data presented will verify that the greatest flux divergence reversal is seen with winds from the East to Southeast, which is consistent with theories which suggest shoreward energy flux as well as estuarine sediment transport and resuspension prior to passage of a cold front. Employing the results of theoretical calculations and numerical modeling we will confirm that a plausible explanation for this phenomena can be found in situations where temporally varying wind input may locally balance or overpower bottom induced dissipation, which may also contravene the hypothesis that dissipation need increase shoreward due to nonlinear wave-wave interactions and maturation of the spectrum. Lastly, we will verify that the data presented is consistent with other measures collected during the same deployment in the Atchafalaya Bay during March - April 2010.
    Keywords: Ocean-atmosphere interaction ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1998
    Description: Efforts to understand the Arctic system have recently focused on the role in local and global circulation of waters from the Arctic shelf seas. In this study, steady-state exchanges between the Arctic shelves and the central basins are estimated using an inverse box model. The model accounts for data uncertainty in the estimates, and quantifies the solution uncertainty. Other features include resolution of the two-basin Arctic hydrographic structure two-way shelf-basin exchange in the surface mixed layer, the capacity for shelfbreak upwelling, and recognition that most inflows enter the Arctic via the shelves. Aggregate estimates of all fluxes across the Arctic boundary, with their uncertainties, are generated from flux estimates published between 1975 and 1997. From the aggregate estimates, mass-, heat-, and salt-conserving boundary flux estimates are derived, which imply a net flux of water from the shelves to the basins of 1.2±0.4 Sv. Due primarily to boundary flux data uncertainty, constraints of mass, heat, and salt conservation alone cannot determine how much shelf-basin exchange occurs via dense overflows, and how much via the surface mixed layer. Adding δ180 constraints, however, greatly reduces the uncertainty. Dense water flux from the shelves to the basins is necessary for maintaining steady state, but shelfbreak upwelling is not required. Proper representation of external sources feeding the shelves, rather than the basins, is important to obtain the full range of plausible steady solutions. Implications of the results for the study of Arctic change are discussed.
    Description: This work was supported by National Science Foundation grant OPP-9422292 as part of the Arctic System Science ARCSS program, administered by the Office of Polar Programs.
    Keywords: Oceanic mixing ; Ocean-atmosphere interaction ; Sediments ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1999
    Description: A state-of-the-art, high-resolution ocean general circulation model is used to estimate the time-dependent global ocean heat transport and investigate its dynamics. The north-south heat transport is the prime manifestation of the ocean’s role in global climate, but understanding of its variability has been fragmentary owing to uncertainties in observational analyses, limitations in models, and the lack of a convincing mechanism. These issues are addressed in this thesis. Technical problems associated with the forcing and sampling of the model, and the impact of high-frequency motions are discussed. Numerical schemes are suggested to remove the inertial energy to prevent aliasing when the model fields are stored for later analysis. Globally, the cross-equatorial, seasonal heat transport fluctuations are close to +4.5 x 1015 watts, the same amplitude as the seasonal, cross-equatorial atmospheric energy transport. The variability is concentrated within 200 of the equator and dominated by the annual cycle. The majority of it is due to wind-induced current fluctuations in which the time-varying wind drives Ekman layer mass transports that are compensated by depth-independent return flows. The temperature difference between the mass transports gives rise to the time-dependent heat transport. The rectified eddy heat transport is calculated from the model. It is weak in the central gyres, and strong in the western boundary currents, the Antarctic Circumpolar Current, and the equatorial region. It is largely confined to the upper 1000 meters of the ocean. The rotational component of the eddy heat transport is strong in the oceanic jets, while the divergent component is strongest in the equatorial region and Antarctic Circumpolar Current. The method of estimating the eddy heat transport from an eddy diffusivity derived from mixing length arguments and altimetry data, and the climatological temperature field, is tested and shown not to reproduce the model’s directly evaluated eddy heat transport. Possible reasons for the discrepancy are explored.
    Description: Funding for this research came from the Department of Defense under a National Defense Science and Engineering Graduate Fellowship. Financial support was also contributed by the National Science Foundation through grants #OCE-9617570 and #OCE-9730071, and the Tokyo Electric Power Company through the TEPCO/MIT Environmental Research Program. The author received partial support from an MIT Climate Modeling Fellowship, made possible by a gift from the American Automobile Manufacturers Association.
    Keywords: Ocean-atmosphere interaction ; Heat budget ; Ocean circulation ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April 2000
    Description: A simple quasi-two dimensional dynamical model of Thermohaline circulation (THC) is developed, assuming that the mixing only occurs near western and eastern boundary layers. When the surface density is prescribed, the climatically important quantities, such as the strength of overturning and meridional heat transport, are related to the zonal integral over the vigorously mixing regions and scaled as (KvΔx )2/3. The numerical results suggest that the density difference between eastern and western boundaries play an important role in the meridional overturning. The eastern boundary is characterized by the upwelling on top of downwelling. The western boundary layer is featured by the universal upwelling. The inefficiency of diffusion heat transport accounts for the narrowness of sinking region and shallowness of overturning cell in one-hemisphere. The experiments with other surface boundary conditions are also explored. The circulation patterns obtained are similar under various surface temperature distributions, suggesting these are very robust features of THC. The role of boundary mixing is further explored in global ocean. The 2 1/2 dynamical model is extended to two-hemisphere ocean. Additional dynamics such as Rayleigh friction and abyssal water properties are taken into account. A set of complicated governing equations are derived and numerically solved to obtain steady state solution. The basic circulation features are revealed in our dynamical model. An equtorially asymmetric meridional circulation is observed due to small perturbation at the surface temperature in the high latitude. The density differences between eastern and western boundaries are distinct in both hemispheres. This is achieved during the spin-up process. Although the dynamical model results agree well with OGCM results in one-hemisphere, several important dynamics are lacking and exposed in two-hemisphere experiments. We need to consider horizontal advection terms which will effectively advect positive density anomalies across the equator and form the deep water for the entire system.
    Keywords: Ocean circulation ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1999
    Description: Climate simulation with numerical oceanic models requires a proper parameterization scheme in order to represent the effects of unresolved mesoscale eddies. Even though a munber of schemes have been proposed and some have led to improvements in the simulation of the bulk climatological properties, the success of the parameterizations in representing the mesoscale eddies has not been investigated in detail. This thesis examines the role of eddies in a 105-years long basin scale eddy resolving simulation with the MIT General Circulation Model (GCM) forced by idealized wind stress and relaxation to prescribed meridional temperature; this thesis also evaluates the Fickian diffusive, the diabatic Green-Stone (GS) and the quasi-adiabatic Gent-McWilliams (GM) parameterizations in a diagnostic study and a series of coarse resolution experiments with the same model in the same configuration. The mesoscale eddies in the reference experiment provide a significant contribution to the thermal balance in limited areas of the domain associated with the upper 1000M of the boundary regions. Specifically designed diagnostic tests of the schemes show that the horizontal and vertical components of the parameterized flux are not simultaneously downgradient to the eddy heat flux. The transfer vectors are more closely aligned with the isopycnal surfaces for deeper layers, thus demonstrating the adiabatic nature of the eddy heat flux for deeper layers. The magnitude of the coefficients is estimated to be consistent with traditionally used values. However, the transfer of heat associated with timedependent motions is identified as a complicated process that cannot be fully explained with any of the local parameterization schemes considered. The eddy parameterization schemes are implemented in the coarse resolution configuration with the same model. A series of experiments exploring the schemes' parameter space demonstrate that Fickian diffusion has the least skill in the climatological simulations because it overestimates the temperature of the deep ocean and underestimates the total heat transport. The GS and GM schemes perform better in the simulation of the bulk climatological properties of the reference solution, although the GM scheme in particular produces an ocean that is consistently colder than the reference state. Comparison of the eddy heat flux divergence with the parameterized divergences for typical parameter values demonstrates that the success of the schemes in the climatological simulation is not related to the representation of the eddy heat flux but to the representation of the overall internal mixing processes.
    Description: The financial support for this research was provided by ONR grant number NOOOl4- 98-1-0881, Alliance for Global Sustainability and American Automobile Manufactures Association.
    Keywords: Ocean-atmosphere interaction ; Eddy flux ; Eddies ; Heat
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1987
    Description: Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a rigid insulating basin. In addition to the traditional eddy viscosity and diffusivity, turbulent processes are also included by a convective overturning adjustment at locations where the local density field is unstable. Two classes of problems are treated. The first is the large scale meridional pattern of a fluid in an annulus. The detailed treatment is carried out in two steps. In the beginning (chapter 2) it is assumed that the fluid is very diffusive, hence, to first approximation no flow field is present. It is found that the convective overturning adjustment changes the character of the stratification in all the regions that are cooled from the top, resulting in a temperature field that is nearly depth independent in the northernmost latitudes. The response to a seasonal cycle in the forcing, and the differences between averaging the results from the end of each season compared to driving the fluid by a mean forcing are analyzed. In particular, the resulting sea surface temperature is warmer in the former procedure. This observation is important in models where the heat flux is sensitive to the gradient of air to sea surface temperatures. The analysis of the problem continues in chapter 5 where the contribution of the flow field is included in the same configuration. The dimensionless parameter controlling the circulation is now the Rayleigh number, which is a measure of the relative importance of gravitational and viscous forces. The effects of the convective overturning adjustment is investigated at different Rayleigh numbers. It is shown that not only is the stratification now always stable, but also that the vigorous vertical mixing reduces the effective Rayleigh number; thereby the flow field is more moderate, the thermocline deepens, and the horizontal surface temperature gradients are weaker. The interior of the fluid is colder compared to cases without convective overturning, and, because the amount of heat in the system is assumed to be fixed, the surface temperature is warmer. The fluid is not only forced by a mean heat flux, or a seasonally varying one, but its behavior under permanent winter and summer conditions is also investigated. A steady state for the experiments where the net heat flux does not vanish is defined as that state where the flow field and temperature structure are not changing with time except for an almost uniform temperature decrease or increase everywhere. It is found that when winter conditions prevail the circulation is very strong, while it is rather weak for continuous summer forcing. In contrast to those results, if a yearly cycle is imposed, the circulation tends to reach a minimum in the winter time and a maximum in the summer. This suggests that, depending on the Rayleigh number, there is a phase leg of several months between the response of the ocean and the imposed forcing. Differences between the two averaging procedures mentioned before are also observed when the flow field is present, especially for large Rayleigh numbers. The circulation is found to be weaker and the sea surface temperature colder in the mean of the seasonal realizations compared to the steady state derived by the mean forcing. As an extension to the numerical results, an analytic model is presented in chapter 4 for a similar annular configuration. The assumed dynamics is a bit different, with a mixed layer on top of a potential vorticity conserving interior. It is demonstrated that the addition of the thermal wind balance to the conservation of potential vorticity in the axially symmetric problem leads to the result that typical fluid trajectories in the interior are straight lines pointing downward going north to south. The passage of information in the system is surprisingly in the opposite sense to the clockwise direction of the flow. A model for water mass formation by buoyancy loss in the absence of a flow field is introduced in chapter 3. The idea behind it is to use the turbulent mixing parameterization to generate chimney-like structures in open water, followed by along-isopycnal advection and diffusion. This model can be applied to many observations of mode water. In particular, in this work it is related to the chimneys observed by the MEDOC Group (1970), and the Levantine Intermediate Water in the Eastern Mediterranean Basin. An analytic prediction of the depth of the water mass is derived and depends on the forcing and initial stratification. It suggests that the depth of shallow mode water like the 18°C water or the Levantine Intermediate Water would not be very sensitive to reasonable changes in atmospheric forcing. Similar conclusions were also reached by Warren (1972) by assuming that the temperature in the thermocline decreases linearly with depth, and by approximating the energy balance in a water column by a Newtonian cooling law.
    Keywords: Ocean-atmosphere interaction ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2010
    Description: Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of near-inertial motions observed with a moored profiler is described. Observed wintertime enhancement and surface intensification of near-inertial kinetic energy support previous work suggesting that near-inertial motions are predominantly driven by surface forcing. The wind energy input into surface ocean near-inertial motions is estimated using the Price-Weller- Pinkel (PWP) one-dimensional mixed layer model. A localized depth-integrated model consisting of a wind forcing term and a dissipation parameterization is developed and shown to have skill capturing the seasonal cycle and order of magnitude of the near-inertial kinetic energy. Focusing in on wintertime storm passage, velocity and density records from drifting profiling floats (EM-APEX) and a meteorological spar buoy/tethered profiler system (ASIS/FILIS) deployed in the Gulf Stream in February 2007 as part of the CLIvar MOde water Dynamics Experiment (CLIMODE) were analyzed. Despite large surface heat loss during cold air outbreaks and the drifting nature of the instruments, changes in the upper ocean heat content were found in a mixed layer heat balance to be controlled primarily by the relative advection of temperature associated with the strong vertical shear of the Gulf Stream. Velocity records from the Gulf Stream exhibited energetic near-inertial oscillations with frequency that was shifted below the local resting inertial frequency. This depression of frequency was linked to the presence of the negative vorticity of the background horizontal current shear, implying the potential for near-inertial wave trapping in the Gulf Stream region through the mechanism described by Kunze and Sanford (1984). Three-dimensional PWP model simulations show evidence of near-inertial wave trapping in the Gulf Stream jet, and are used to quantify the resulting mixing and the effect on the stratification in the Eighteen Degree Water formation region.
    Description: This work was supported by National Science Foundation grants OCE-0241354 and OCE-0424865, as well as the Woods Hole Oceanographic Institution's Ocean and Cli- mate Change Institute. Funding to initiate the McLane Moored Pro ler observations at Line W were provided by grants from the G. Unger Vetlesen Foundation and the Comer Charitable Fund to the Woods Hole Oceanographic Institutions Ocean and Climate Change Institute.
    Keywords: Ocean-atmosphere interaction ; Temperature measurements
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 789-801, doi:10.1175/2009JPO4039.1.
    Description: The issue of internal wave–mesoscale eddy interactions is revisited. Previous observational work identified the mesoscale eddy field as a possible source of internal wave energy. Characterization of the coupling as a viscous process provides a smaller horizontal transfer coefficient than previously obtained, with vh 50 m2 s−1 in contrast to νh 200–400 m2 s−1, and a vertical transfer coefficient bounded away from zero, with νυ + (f2/N2)Kh 2.5 ± 0.3 × 10−3 m2 s−1 in contrast to νυ + (f2/N2)Kh = 0 ± 2 × 10−2 m2 s−1. Current meter data from the Local Dynamics Experiment of the PolyMode field program indicate mesoscale eddy–internal wave coupling through horizontal interactions (i) is a significant sink of eddy energy and (ii) plays an O(1) role in the energy budget of the internal wave field.
    Keywords: Eddies ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2556-2574, doi:10.1175/2008JPO3666.1.
    Description: Vertical profiles of horizontal velocity obtained during the Mid-Ocean Dynamics Experiment (MODE) provided the first published estimates of the high vertical wavenumber structure of horizontal velocity. The data were interpreted as being representative of the background internal wave field, and thus, despite some evidence of excess downward energy propagation associated with coherent near-inertial features that was interpreted in terms of atmospheric generation, these data provided the basis for a revision to the Garrett and Munk spectral model. These data are reinterpreted through the lens of 30 years of research. Rather than representing the background wave field, atmospheric generation, or even near-inertial wave trapping, the coherent high wavenumber features are characteristic of internal wave capture in a mesoscale strain field. Wave capture represents a generalization of critical layer events for flows lacking the spatial symmetry inherent in a parallel shear flow or isolated vortex.
    Description: Salary support for this analysis was provided by Woods Hole Oceanographic Institution bridge support funds.
    Keywords: Eddies ; Ocean dynamics ; Internal waves ; Ocean variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2000
    Description: The thesis develops and demonstrates methods of classifying ocean processes using an underwater moving platform such as an Autonomous Underwater Vehicle (AUV). The "mingled spectrum principle" is established which concisely relates observations from a moving platform to the frequency-wavenumber spectrum of the ocean process. It clearly reveals the role of the AUV speed in mingling temporal and spatial information. For classifying different processes, an AUV is not only able to jointly utilize the time-space information, but also at a tunable proportion by adjusting its cruise speed. In this respect, AUVs are advantageous compared with traditional oceanographic platforms. Based on the mingled spectrum principle, a parametric tool for designing an AUVbased spectral classifier is developed. An AUV's controllable speed tunes the separability between the mingled spectra of different processes. This property is the key to optimizing the classifier's performance. As a case study, AUV-based classification is applied to distinguish ocean convection from internal waves. The mingled spectrum templates are derived from the MIT Ocean Convection Model and the Garrett-Munk internal wave spectrum model. To allow for mismatch between modeled templates and real measurements, the AUVbased classifier is designed to be robust to parameter uncertainties. By simulation tests on the classifier, it is demonstrated that at a higher AUV speed, convection's distinct spatial feature is highlighted to the advantage of classification. Experimental data are used to test the AUV-based classifier. An AUV-borne flow measurement system is designed and built, using an Acoustic Doppler Velocimeter (ADV). The system is calibrated in a high-precision tow tank. In February 1998, the AUV acquired field data of flow velocity in the Labrador Sea Convection Experiment. The Earth-referenced vertical flow velocity is extracted from the raw measurements. The classification test result detects convection's occurrence, a finding supported by more traditional oceanographic analyses and observations. The thesis work provides an important foundation for future work in autonomous detection and sampling of oceanographic processes.
    Description: This thesis research has been funded by the Office of Naval Research (ONR) under Grants NOOOl4-95-1-1316, NOO0l4-97-1-0470, and by the MIT Sea Grant College Program under Grant NA46RG0434.
    Keywords: Convection ; Internal waves ; Power spectra ; Remote submersibles ; Oceanographic submersibles
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1984
    Description: Intermittent, shoreward propagating packets of high frequency first mode internal waves are common on the continental shelf when the water column is stratified and may induce large fluctuations in near bottom velocity. Simple theoretical considerations here lead to an approximate method for estimating those quantities of most interest for the bottom boundary layer interaction problem. Examination of data from the pilot Coastal Ocean Dynamics Experiment (CODE I) shows that near bottom velocity fluctuations in the high frequency internal wave band were dominated by shoreward propagating, intermittent mode 1 internal events. Predictions of CODE I internal wave characteristics using the above approximate method are shown to be good. A boundary layer model is developed, which allows for the nonlinear interaction of surface waves, internal waves, and a steady current over a rough bottom. Modeling results suggest that internal waves will significantly enhance the stress felt by the steady current, and can increase the variability and decrease the reliability of boundary layer measurements by the "log profile" technique, when the waves are present. Theoretical dissipation of internal wave energy in the bottom boundary layer is found to be significantly enhanced in the presence of surface waves and currents, and may be important to the overall internal wave energy balance on the shelf.
    Description: My doctoral work was supported for the first three years by an NSF Graduate Fellowship and has been supported since under NSF grant OCE-8014938.
    Keywords: Internal waves ; Ocean bottom ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2000
    Description: Estimation of the upper ocean heat budget from one year of observations at a moored array in the north central Arabian Sea shows a rough balance between the horizontal advection and time change in heat when the one-dimensional balance between the surface heat flux and oceanic heat content breaks down. The two major episodes of horizontal advection, during the early northeast (NE) and late southwest (SW) monsoon seasons, are both associated with the propagation of mesoscale eddies. During the NE monsoon, the heat fluxes within the mixed layer are not significantly different from zero, and the large heat flux comes from advected changes in the thermocline depth. During the SW monsoon a coastal filament exports recently upwelled water from the Omani coast to the site of the array, 600 km offshore. Altimetry shows mildly elevated levels of surface eddy kinetic energy along the Arabian coast during the SW monsoon, suggesting that such offshore transport may be an important component of the Arabian Sea heat budget. The sea surface temperature (SST) and mixed layer depth are observed to respond to high frequency (HF, diurnal to atmospheric synoptic time scales) variability in the surface heat flux and wind stress. The rectified effect of this HF forcing is investigated in a three-dimensional reduced gravity thermodynamic model of the Arabian Sea and Indian Ocean. Both the HF heat and wind forcing act locally to increase vertical mixing in the model, reducing the SST. Interactions between the local response to the surface forcing, Ekman divergences, and remotely propagated signals in the model can reverse this, generating greater SSTs under HF forcing, particularly at low latitudes. The annual mean SST, however, is lowered under HF forcing, changing the balance between the net surface heat flux (which is dependent on the SST) and the meridional heat flux in the model. A suite of experiments with one-dimensional upper ocean models with different representations of vertical mixing processes suggests that the rectified effect of the diurnal heating cycle is dependent on the model, and overstated in the formulation used in the three-dimensional model.
    Description: Funded by the Office of Naval Research (ONR), grant NOOO14-94-1-0161 and National Defense Science and Engineering Graduate Fellowship and by ONR grant NOOO14-99-1-0090.
    Keywords: Monsoons ; Ocean temperature ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 380-399, doi:10.1175/2007JPO3728.1.
    Description: Barotropic to baroclinic conversion and attendant phenomena were recently examined at the Kaena Ridge as an aspect of the Hawaii Ocean Mixing Experiment. Two distinct mixing processes appear to be at work in the waters above the 1100-m-deep ridge crest. At middepths, above 400 m, mixing events resemble their open-ocean counterparts. There is no apparent modulation of mixing rates with the fortnightly cycle, and they are well modeled by standard open-ocean parameterizations. Nearer to the topography, there is quasi-deterministic breaking associated with each baroclinic crest passage. Large-amplitude, small-scale internal waves are triggered by tidal forcing, consistent with lee-wave formation at the ridge break. These waves have vertical wavelengths on the order of 400 m. During spring tides, the waves are nonlinear and exhibit convective instabilities on their leading edge. Dissipation rates exceed those predicted by the open-ocean parameterizations by up to a factor of 100, with the disparity increasing as the seafloor is approached. These observations are based on a set of repeated CTD and microconductivity profiles obtained from the research platform (R/P) Floating Instrument Platform (FLIP), which was trimoored over the southern edge of the ridge crest. Ocean velocity and shear were resolved to a 4-m vertical scale by a suspended Doppler sonar. Dissipation was estimated both by measuring overturn displacements and from microconductivity wavenumber spectra. The methods agreed in water deeper than 200 m, where sensor resolution limitations do not limit the turbulence estimates. At intense mixing sites new phenomena await discovery, and existing parameterizations cannot be expected to apply.
    Description: This work was funded by the National Science Foundation as a component of the Hawaii Ocean Mixing Program. Added support for FLIP was provided by the Office of Naval Research.
    Keywords: Pacific Ocean ; Topographic effects ; Internal waves ; Barotropic flows ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 686-701, doi:10.1175/2007JPO3826.1.
    Description: The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostatic two-layer theory that includes rotation. In the hydrostatic limit, the governing equations have periodic, nonlinear inertia–gravity solutions that are explored as models of the nonlinear internal tide. These long waves are shown to be robust to weak nonhydrostatic effects. Numerical solutions show that the disintegration of an initial sinusoidal linear internal tide is closely linked to the presence of these nonlinear waves. The initial tide steepens due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted as the longwave part of the solution settles onto a state close to one of the nonlinear hydrostatic solutions, with the short solitary waves superimposed. The degree of disintegration is a function of initial amplitude of the tide and the properties of the underlying nonlinear hydrostatic solutions, which, depending on stratification and tidal frequency, exist only for a finite range of amplitudes (or energies). There is a lower threshold below which no short solitary waves are produced. However, for initial amplitudes above another threshold, given approximately by the energy of the limiting nonlinear hydrostatic inertia–gravity wave, most of the initial tidal energy goes into solitary waves. Recent observations in the South China Sea are briefly discussed.
    Description: KRH was supported by a Woods Hole Oceanographic Institution Mellon Independent Study Award and ONR Grant N000140610798.
    Keywords: Tides ; Internal waves ; Solitary waves ; Inertia–gravity waves ; Rotation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2010
    Description: Wind waves in the ocean are a product of complex interaction of turbulent air flow with gravity driven water surface. The coupling is strong and the waves are non-stationary, irregular and highly nonlinear, which restricts the ability of traditional phase averaged models to simulate their complex dynamics. We develop a novel phase resolving model for direct simulation of nonlinear broadband wind waves based on the High Order Spectral (HOS) method (Dommermuth and Yue 1987). The original HOS method, which is a nonlinear pseudo-spectral numerical technique for phase resolving simulation of free regular waves, is extended to simulation of wind forced irregular broadband wave fields. Wind forcing is modeled phenomenologically in a linearized framework of weakly interacting spectral components of the wave field. The mechanism of wind forcing is assumed to be primarily form drag acting on the surface through wave-induced distribution of normal stress. The mechanism is parameterized in terms of wave age and its magnitude is adjusted by the observed growth rates. Linear formulation of the forcing is adopted and applied directly to the nonlinear evolution equations. Development of realistic nonlinear wind wave simulation with HOS method required its extension to broadband irregular wave fields. Another challenge was application of the conservative HOS technique to the intermittent non-conservative dynamics of wind waves. These challenges encountered the fundamental limitations of the original method. Apparent deterioration of wind forced simulations and their inevitable crash raised concerns regarding the validity of the proposed modeling approach. The major question involved application of the original HOS low-pass filtering technique to account for the effect of wave breaking. It was found that growing wind waves break more frequently and violently than free waves. Stronger filtering was required for stabilization of wind wave simulations for duration on the time scale of observed ocean evolution. Successful simulations were produced only after significant sacrifice of resolution bandwidth. Despite the difficulties our modeling approach appears to suffice for reproduction of the essential physics of nonlinear wind waves. Phase resolving simulations are shown to capture both - the characteristic irregularity and the observed similarity that emerges from the chaotic motions. Energy growth and frequency downshift satisfy duration limited evolution parameterizations and asymptote Toba similarity law. Our simulations resolve the detailed kinematics and the nonlinear energetics of swell, windsea and their fast transition under wind forcing. We explain the difference between measurements of initial growth driven by a linear instability mechanism and the balanced nonlinear growth. The simulations validate Toba hypothesis of wind-wave nonlinear quasi-equilibrium and confirm its function as a universal bound on combined windsea and swell evolution under steady wind.
    Keywords: Ocean-atmosphere interaction ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1035-1049, doi:10.1175/2008JPO3920.1.
    Description: Seasonal variability of near-inertial horizontal kinetic energy is examined using observations from a series of McLane Moored Profiler moorings located at 39°N, 69°W in the western North Atlantic Ocean in combination with a one-dimensional, depth-integrated kinetic energy model. The time-mean kinetic energy and shear vertical wavenumber spectra of the high-frequency motions at the mooring site are in reasonable agreement with the Garrett–Munk internal wave description. Time series of depth-dependent and depth-integrated near-inertial kinetic energy are calculated from available mooring data after filtering to isolate near-inertial-frequency motions. These data document a pronounced seasonal cycle featuring a wintertime maximum in the depth-integrated near-inertial kinetic energy deriving chiefly from the variability in the upper 500 m of the water column. The seasonal signal in the near-inertial kinetic energy is most prominent for motions with vertical wavelengths greater than 100 m but observable wintertime enhancement is seen down to wavelengths of the order of 10 m. Rotary vertical wavenumber spectra exhibit a dominance of clockwise-with-depth energy, indicative of downward energy propagation and implying a surface energy source. A simple depth-integrated near-inertial kinetic energy model consisting of a wind forcing term and a dissipation term captures the order of magnitude of the observed near-inertial kinetic energy as well as its seasonal cycle.
    Description: Funding to initiate the McLane Moored Profiler observations at Line W were provided by grants from the G. Unger Vetlesen Foundation and the Comer Charitable Fund to the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute. Ongoing moored observations at Line W are supported by the National Science Foundation (NSF Grant OCE-0241354).
    Keywords: Kinetic energy ; Internal waves ; Intraseasonal variability ; North Atlantic Ocean ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 2000
    Description: The plausibility of local baroclinic instability as a generation mechanism for midocean mesoscale eddies is examined with a two-layer, quasi-geostrophic (QG) model forced by an imposed, horizontally homogeneous, vertically sheared mean flow and dissipated through bottom Ekman friction, Explanations are sought for two observed features of mid-ocean eddies: 1) substantial energy is retained in the baroclinic mode and in the associated deformation radius (Rd) scale, and 2) the ratio of eddy to mean kinetic energy is much larger than one, The tendency of QG to cascade energy into the barotropic mode and into scales larger than Rd can be counteracted when stratification is surface-trapped, for then the baroclinic mode is weakly damped, and hence enhanced, Numerical experiments are performed with both surface-trapped and uniform stratification to quantify this, Experiments with equal Ekman frictions in the two layers are also performed for purposes of contrast, Interpretation is aided with an inequality derived from the energy and enstrophy equations, The inequality forbids the simultaneous retention of substantial energy in the baroclinic mode and in scales near Rd when Ekman friction is symmetric, but points towards surface-trapped stratification and bottomtrapped friction as an environment in which both of these can be achieved, The dissertation also contains a systematic study of geostrophic turbulence forced by nonzonal flows, Narrow zonal jets emerge when shear-induced mean potential vorticity (PV) gradients are small compared to the planetary gradient (β), and energy is a strong function of the angle shear presents to the east-west direction, When shear-induced PV gradients are comparable to β, and the mean shear has a westward component, fields of monopolar vortices form and persist, Energy is asymmetric between fields of cyclones and anticyclones, Such asymmetry was commonly thought not to occur in QG, but is shown here to be introduced by the nonzonal basic state, In both jet and vortex regimes, eddy energy can be much larger than mean kinetic energy, contrary to the expectation that β stabilizes weak shear flows,
    Description: My first three years here were funded by an Office of Naval Research/National Defense Science and Engineering Graduate Fellowship administered by Jeff Jarocz at the American Society for Engineering Education. During the last three years, most of my support has come the National Science Foundation via grant OCE-9617848, with some additional support coming from the Office of Naval Research via grant N00014-95-1-0824.
    Keywords: Eddies ; Vortex-motion ; Baroclinicity ; Ocean-atmosphere interaction ; Dynamic meteorology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1987
    Description: Garrett and Munk use linear dynamics to synthesize frequency-wavenumber energy spectra for internal waves (GM72, GM75, GM79). The GM internal wave models are horizontally isotropic, vertically symmetric, purely propagating, and universal in both time and space. This set of properties effectively eliminates all the interesting physics, since such models do not allow localized sources and sinks of energy. Thus an important step in understanding internal wave dynamics is to make measurements of deviations from the simple GM models. This thesis continues the search for deviations from the GM models. It has three advantages over earlier work: extensive data from an equatorial region, long time series (2 years), and relatively sophisticated linear internal wave models. Since the GM models are based on mid-latitude data, having data from an equatorial region which has a strong mean current system offers an opportunity to examine a region with a distinctly different basic state. The longer time series mean there is a larger statistical ensemble of realizations, making it possible to detect smaller internal wave signals. The internal wave models include several important extensions to the GM models: horizontal anisotropy and vertical asymmetry, resolution between standing modes and propagating waves, general vertical structure, and kinematic effects of mean shear flow. Also investigated are the effects of scattering on internal waves, effects that are especially strong on the equator because the buoyancy frequency variability is a factor of ten higher than at mid-latitudes. In the high frequency internal wave field considered (frequencies between .125 cph and .458 cph), several features are found that are not included in the GM models. Both the kinematic effects of a mean shear flow and the phase-locking that distinguishes standing modes from propagating waves are observed. There is a seasonal dependence in energy level of roughly 10% of the mean level. At times the wave field is zonally and vertically asymmetric, with resulting energy fluxes that are a small (4% to 10%) fraction of the maximum energy flux the internal wave field could support. The fluxes are, however, as big as many of the postulated sources of energy for the internal wave field.
    Description: This work has been supported under grants from the National Science Foundation and the Office of Naval Research, grants numbered NSF-89076, ONR-88914, NSF-9l002, NSF-94971, and NSF-93661.
    Keywords: Internal waves ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2381-2400, doi:10.1175/2010JPO4403.1.
    Description: Langmuir circulation (LC) is a turbulent upper-ocean process driven by wind and surface waves that contributes significantly to the transport of momentum, heat, and mass in the oceanic surface layer. The authors have previously performed a direct comparison of large-eddy simulations and observations of the upper-ocean response to a wind event with rapid mixed layer deepening. The evolution of simulated crosswind velocity variance and spatial scales, as well as mixed layer deepening, was only consistent with observations if LC effects are included in the model. Based on an analysis of these validated simulations, in this study the fundamental differences in mixing between purely shear-driven turbulence and turbulence with LC are identified. In the former case, turbulent kinetic energy (TKE) production due to shear instabilities is largest near the surface, gradually decreasing to zero near the base of the mixed layer. This stands in contrast to the LC case in which at middepth range TKE production can be dominated by Stokes drift shear. Furthermore, the Eulerian mean vertical shear peaks near the base of the mixed layer so that TKE production by mean shear flow is elevated there. LC transports horizontal momentum efficiently downward leading to an along-wind velocity jet below LC downwelling regions at the base of the mixed layer. Locally enhanced vertical shear instabilities as a result of this jet efficiently erode the thermocline. In turn, enhanced breaking internal waves inject cold deep water into the mixed layer, where LC currents transport temperature perturbation advectively. Thus, LC and locally generated shear instabilities work intimately together to facilitate strongly the mixed layer deepening process.
    Description: This research was supported by the Office of Naval Research through Grants N00014-09-M-0112 (TK) and N00014-06-1-0178 (AP, JT). Author TK also received support from a Woods Hole Oceanographic Institution Cooperative Institute for Climate and Ocean Research Postdoctoral Scholarship.
    Keywords: Mixed layer ; Shear structure/flows ; Wind effects ; Turbulence ; Thermocline ; Internal waves ; Advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 26 (2009): 2228-2242, doi:10.1175/2009JTECHO652.1.
    Description: The performance of pressure sensor–equipped inverted echo sounders for monitoring nonlinear internal waves is examined. The inverted echo sounder measures the round-trip acoustic travel time from the sea floor to the sea surface and thus acquires vertically integrated information on the thermal structure, from which the first baroclinic mode of thermocline motion may be inferred. This application of the technology differs from previous uses in that the wave period (30 min) is short, requiring a more rapid transmission rate and a different approach to the analysis. Sources of error affecting instrument performance include tidal effects, barotropic adjustment to internal waves, ambient acoustic noise, and sea surface roughness. The latter two effects are explored with a simulation that includes surface wave reconstruction, acoustic scattering based on the Kirchhoff approximation, wind-generated noise, sound propagation, and the instrument’s signal processing circuitry. Bias is introduced as a function of wind speed, but the simulation provides a basis for bias correction. The assumption that the waves do not significantly affect the mean stratification allows for a focus on the dynamic response. Model calculations are compared with observations in the South China Sea by using nearby temperature measurements to provide a test of instrument performance. After applying corrections for ambient noise and surface roughness effects, the inverted echo sounder exhibits an RMS variability of approximately 4 m in the estimated depth of the eigenfunction maximum in the wind speed range 0 ≤ U10 ≤ 10 m s−1. This uncertainty may be compared with isopycnal excursions for nonlinear internal waves of 100 m, showing that the observational approach is effective for measurements of nonlinear internal waves in this environment.
    Description: This project was supported by the ONR Nonlinear Wave Program under Contract N0014-05-1-0286.
    Keywords: Acoustic measurements/effects ; Internal waves ; Instrumentation/sensors ; Temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009
    Description: Observations and inverse models suggest that small-scale turbulent mixing is enhanced in the Southern Ocean in regions above rough topography. The enhancement extends 1 km above the topography suggesting that mixing is supported by breaking of gravity waves radiated from the ocean bottom. In other regions, gravity wave radiation by bottom topography has been primarily associated with the barotropic tide. In this study, we explore the alternative hypothesis that the enhanced mixing in the Southern Ocean is sustained by internal waves generated by geostrophic motions flowing over bottom topography. Weakly-nonlinear theory is used to describe the internal wave generation and the feedback of the waves on the zonally averaged flow. A major finding is that the waves generated at the ocean bottom at finite inverse Froude numbers drive vigorous inertial oscillations. The wave radiation and dissipation at equilibrium is therefore the result of both geostrophic flow and inertial oscillations and differs substantially from the classical lee wave problem. The theoretical predictions are tested versus two-dimensional and three-dimensional high resolution numerical simulations with parameters representative of the Drake Passage region. Theory and fully nonlinear numerical simulations are used to estimate internal wave radiation from LADCP, CTD and topography data from two regions in the Southern Ocean: Drake Passage and the Southeast Pacific. The results show that radiation and dissipation of internal waves generated by geostrophic motions reproduce the magnitude and distribution of dissipation measured in the region.
    Keywords: Internal waves ; Oceanic mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2009
    Description: Estimates of natural climate variability during the past millennium provide a frame of reference in which to assess the significance of recent changes. This thesis investigates new methods of reconstructing low-latitude sea surface temperature (SST) and hydrography, and combines these methods with traditional techniques to improve the present understanding of western North Atlantic climate variability. A new strontium/calcium (Sr/Ca) - SST calibration is derived for Atlantic Montastrea corals. This calibration shows that Montastrea Sr/Ca is a promising SST proxy if the effect of coral growth is considered. Further analyses of coral growth using Computed Axial Tomography (CAT) imaging indicate growth in Siderastrea corals varies inversely with SST on interannual timescales. A 440-year reconstruction of low-latitude western North Atlantic SST based on this relationship suggests the largest cooling of the last few centuries occurred from ~1650-1730 A.D., and was ~1ºC cooler than today. Sporadic multidecadal variability in this record is inconsistent with evidence for a persistent 65-80 year North Atlantic SST oscillation. Volcanic and anthropogenic radiative forcing are identified as important sources of externally-forced SST variability, with the latter accounting for most of the 20th century warming trend. An 1800-year reconstruction of SST and hydrography near the Gulf Stream also suggests SSTs remained within about 1ºC of modern values. This cooling is small relative to other regional proxy records and may reflect the influence of internal oceanic and atmospheric circulation. Simulations with an atmospheric general circulation model (AGCM) indicate that the magnitude of cooling estimated by proxy records is consistent with tropical hydrologic proxy records.
    Description: Funding for this research was provided by a National Science Foundation Graduate Student Fellowship, National Science Foundation grants OCE-0402728, OCE-0623364, ATM-033746, the WHOI Ocean and Climate Change Institute, the WHOI Ocean Ventures Fund, the WHOI Ocean Life Institute, the MIT Student Assistance Fund, award number USA-0002, made by King Abdullah University of Science and Technology (KAUST), and the Inter-American Institute for Global Change Research.
    Keywords: Ocean-atmosphere interaction ; Climatic changes
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1982
    Description: The development of nonlinear surface and internal wave groups is investigated. Surface wave evolution was observed in an unusually long wave channel as a function of steepness and group length. Dissipation and frequency downshifting were important characteristics of the long-time evolution. The amplitude and phase modulations were obtained using the Hilbert transform and specified as an initial condition to the cubic nonlinear Schrodinger equation, which was solved numerically. This equation is known to govern the slowly varying complex modulation envelope of gravity waves on deep water. When dissipation was included, the model compared quite well with the observations. Phase modulation was used to interpret the long-time behavior, using the phase evolution of exact asymptotic solutions as a guide. The wave groups exhibited a long-time coherence but not the recurrence predicted by the inviscid theory. An oceanic field study of the generation of groups of large amplitude internal waves by stratified tidal flow over a submarine ridge indicates that the large amplitude and asymmetry of the topography are critical in determining the type of flow response. The calculated Froude numbers response length scale and duration differ markedly between the two phases of the tide due to the asymmetry.
    Description: Research assistantship provided by the Office of Naval Research contract no. N00014-80-C-0273
    Keywords: Surface waves ; Internal waves ; Ocean waves ; Nonlinear theories
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2007.
    Description: The water circulation and evolution of water temperature over the inner continental shelf are investigated using observations of water velocity, temperature, density, and bottom pressure; surface gravity waves; wind stress; and heat flux between the ocean and atmosphere during 2001-2007. When waves are small, cross-shelf wind stress is the dominant mechanism driving cross-shelf circulation. The along-shelf wind stress does not drive a substantial cross-shelf circulation. The response to a given wind stress is stronger in summer than winter. The cross-shelf transport in the surface layer during winter agrees with a two-dimensional, unstratified model. During large waves and onshore winds the cross-shelf velocity is nearly vertically uniform, because the wind- and wave-driven shears cancel. During large waves and offshore winds the velocity is strongly vertically sheared because the wind- and wave-driven shears have the same sign. The subtidal, depth-average cross-shelf momentum balance is a combination of geostrophic balance and a coastal set-up and set-down balance driven by the cross-shelf wind stress. The estimated wave radiation stress gradient is also large. The dominant along-shelf momentum balance is between the wind stress and pressure gradient, but the bottom stress, acceleration, Coriolis, Hasselmann wave stress, and nonlinear advection are not negligible. The fluctuating along-shelf pressure gradient is a local sea level response to wind forcing, not a remotely generated pressure gradient. In summer, the water is persistently cooled due to a mean upwelling circulation. The cross-shelf heat flux nearly balances the strong surface heating throughout midsummer, so the water temperature is almost constant. The along-shelf heat flux divergence is apparently small. In winter, the change in water temperature is closer to that expected due to the surface cooling. Heat transport due to surface gravity waves is substantial.
    Description: My last three years of thesis work were supported by National Aeronautics and Space Administration Headquarters under the Earth System Science Fellowship Grant NNG04GQ14H, and by WHOI Academic Programs Fellowship Funds. I also benefited from the freedom of a Clare Boothe Luce Fellowship during my first year in the Joint Program, which allowed me more time than is usual to explore different research topics before choosing an advisor. This research was also funded by the National Aeronautics and Space Administration under grant NNG04GL03G and the Ocean Sciences Division of the National Science Foundation under grants OCE-0241292 and OCE-0548961. The Martha's Vineyard Coastal Observatory is partly funded by the Woods Hole Oceanographic Institution and the Jewett/EDUC/Harrison Foundation. The ADCP deployments at CBLAST site F were funded by National Science Foundation Small Grant for Exploratory Research OCE-0337892. Ship time for deployment and recovery of the F ADCP was provided by Robert Weller through Office of Naval Research contracts N00014-01-1-0029 and N00014-05-10090 for the Low-Wind Component of the Coupled Boundary Layers Air-Sea Transfer Experiment.
    Keywords: Ocean circulation ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2003
    Description: In this thesis I have endeavored to determine the factors and physical processes that controlled SST and thermocline depth at 10°N, 125°W during the Pan American Climate Study (PACS) field program. Analysis based on the PACS data set, TOPEX/Poseidon sea surface height data, European Remote Sensing satellite wind data, and model simulations and experiments reveals that the dominant mechanisms affecting the thermocline depth and SST at the mooring site during the measurement period were local surface fluxes, Ekman pumping, and vertical mixing associated with enhancement of the vertical shear by strong near-inertial waves in the upper ocean superimposed upon intra-seasonal baroclinic Rossby waves and the large scale zonal flow.
    Description: This work was funded under NOAA Grant NA17RJ1223 and I also gratefully acknowledge receipt of an MIT Presidential Fellowship in 2000-2001.
    Keywords: Thermoclines ; Ocean-atmosphere interaction ; Roger Revelle (Ship) Cruise Genesis 4 ; Thomas G. Thompson (Ship) Cruise TN73 ; Melville (Ship) Cruise PACS03MV
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2003
    Description: Inertial terms dominate the single-gyre ocean model and prevent western-intensification when the viscosity is small. This occurs long before the oceanically-appropriate parameter range. It is demonstrated here that the circulation is controlled if a mechanism for ultimate removal of vorticity exists, even if it is active only in a narrow region near the boundary. Vorticity removal is modeled here as a viscosity enhanced very near the solid boundaries to roughly parameterize missing boundary physics like topographic interaction and three dimensional turbulence over the shelf. This boundary-enhanced viscosity allows western-intensified mean flows even when the inertial boundary width, is much wider than the frictional region because eddies flux vorticity from within the interior streamlines to the frictional region for removal. Using boundary-enhanced viscosity, western-intensified calculations are possible with lower interior viscosity than in previous studies. Interesting behaviors result: a boundary-layer balance novel to the model, calculations with promise for eddy parameterization, eddy-driven gyres rotating opposite the wind, and temporal complexity including basin resonances. I also demonstrate that multiple-gyre calculations have weaker mean circulation than single-gyres with the same viscosity and subtropical forcing. Despite traditional understanding, almost no inter-gyre flux occurs if no-slip boundary conditions are used. The inter-gyre eddy flux is in control only with exactly symmetric gyres and free slip boundaries. Even without the inter-gyre flux, the multiple-gyre circulation is weak because of sinuous instabilities on the jet which are not present in the single-gyre model. These modes efficiently flux vorticity to the boundary and reduce the circulation without an inter-gyre flux, postponing inertial domination to much smaller viscosities. Then sinuous modes in combination with boundary-enhanced viscosity can control the circulation.
    Keywords: Eddies ; Turbulent boundary layer ; Ocean-atmosphere interaction ; Mathematical models
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2008
    Description: The work was motivated by studies of Austin and Lentz (2002) and Pedlosky (2007). The above mentioned works considered two different responses of the stratified flow to a downwelling favorable wind forcing. The first study investigated a time dependent flow with a formation of a constantly expanding relatively well mixed region near the shore and the second considered a steady flow that arises when an offshore varying wind is applied. In my thesis I use ROMS to determine which type of response will take place based on the wind amplitude near the coast. It was demonstrated that if the value of the wind is much smaller than the critical value (determined by the stratification, the rotation rate and the horizontal diffusivity) then the flow is steady (the bbl case) and similar to the one investigated by Pedlosky. If the wind is of the order, or larger than, the critical value then the response is time dependent (the pool case) and similar to the one described by Austin and Lentz. The resulting flow structure of each response was also investigated. I examined the sensitivity of the bbl response to variations in the background vertical diffusivity, the initial stratification and the bottom slope. It was shown that a higher background vertical diffusivity, a higher stratification and a shallower bottom slope correspond to thinner (vertically) and narrower (horizontally) bbl. For the pool case the time dependent structure was also examined, using a number of idealized models. It was shown that the rate of the pool region expansion is a complex function of the local wind stress amplitude and the local depth.
    Keywords: Ocean-atmosphere interaction ; Submarine topography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2008
    Description: Coupled ocean/atmosphere simulations exhibit systematicwarm biases over the SouthWest African (SWA) coastal region. Recent investigations indicate that coastal ocean dynamics may play an important role in determining the SST patterns, but none of them provide a detailed analysis. In this study, I analyze simulations produced both by coupled models and by idealized models. Then results are interpreted on the basis of a theoretical framework. Finally the conclusion is reached that the insufficient resolution of the ocean component in the coupled model is responsible for the warm biases over the SWA coastal region. The coarse resolution used in the ocean model has an artificially stretched coastal side-wall boundary layer, which induces a smaller upwelling velocity in the boundary layer. The vertical heat transport decreases even when the volume transport is unchanged because of its nonlinear relationship with the magnitude of the upwelling velocity. Based on the scaling of the idealized model simulations, a simplified calculation shows that the vertical heat transport is inversely proportional to the zonal resolution over the coastal region. Therefore, increasing the horizontal resolution can considerably improve the coastal SST simulation, and better resolve the coastal dynamics.
    Keywords: Ocean-atmosphere interaction ; Computer simulation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1980
    Description: Observational evidence of seasonal variability below the main thermocline in the eastern North Atlantic is described, and a theoretical model of oceanic response to seasonally varying windstress forcing is constructed to assist in the interpretation of the observations. The observations are historical conductivity-temperature-depth data from the Bay of Biscay region (2° to 20°W, 42° to 52°N), a series of eleven cruises over the three years 1972 through 1974, spaced approximately three months apart. The analysis of the observations utilizes a new technique for identifying the adiabatically leveled density field corresponding to the observed density field. The distribution of salinity anomaly along the leveled surfaces is examined, as are the vertical displacements of observed density surfaces from the leveled reference surfaces, and the available potential energy. Seasonal variations in salinity anomaly and vertical displacement occur as westward propagating disturbances with zonal wavelength 390 (±50) km, phase 71 (±30) days from 1 January, and maximum amplitudes of ±30 ppm and ±20 db respectively. The leveled density field varies seasonally with an amplitude corresponding to a thermocline displacement of ±15 db. The observations are consistent with the predictions of a model in which an ocean of variable stratification with a surface mixed layer and an eastern boundary is forced by seasonal changes in a sinusoidal windstress pattern, when windstress parameters calculated from the observations of Bunker and Worthington (1976) are applied.
    Description: This work was supported by the Office of Naval Research under contract N00014~76-C-197, NR 083-400.
    Keywords: Oceanography ; Ocean-atmosphere interaction ; Ocean circulation ; Energy budget (Geophysics)
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1982
    Description: Four different problems concerning Gulf Stream Rings are considered. The first deals with the particle trajectories of, and advection-diffusion by, a dynamic model of a Ring. It is found that the streaklines computed from the assumptions that the Ring is a steadily propagating and permanent form structure accurately describe its Lagrangian trajectories. The dispersion field of the Ring produces east-west asymmetries in the streaklines, not contained in earlier kinematic studies, which are consistent with observed surface patterns. In the second problem, we compute the core mixed layer evolution of both warm and cold Rings, and compare them to the background SST, in an effort to explain observed SST cycles of Rings. We demonstrate that warm Rings retain their anomalous surface identity, while cold Rings do not, because of differences in both the local atmospheric states of the Sargasso and the Slope and the typical mixed layer structures appropriate to each. The third and fourth problems concern the forced evolution of Gulf Stream Rings as effected by atmospheric interactions. First, we compute the forced spin down of a Gulf Stream Ring. The variations in surface stress across the Ring necessary to spin it down are caused by the variations in relative air-sea velocity, of which the stress is a quadratric function. From numerical simulations, we find the forced decay rates are comparable to those inferred from Ring observations. In the final problem, it is suggested that a substantial fraction of meridional Ring migration is a forced response, caused by Ring SST and the temperature dependence of stress. The warm central waters of anticyclonic Rings are regions of enhanced stress, producing upwelling to the north, and downwelling to the south, which shifts the Ring to the south. A similar, southward shift is computed for cyclonic Rings with cold centers, which tends to reconcile their numerically computed propagation with observations.
    Description: The present research has been conducted under NOAA contract # NA80AA-D-0057 and NSF contract II OCE-8240455
    Keywords: Ocean-atmosphere interaction ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1982
    Description: Velocity and temperature time series from Hudson Submarine Canyon and hydrographic surveys of seven canyons of the Middle Atlantic Bight indicate that the effects of storms, tides, and incoming internal waves are intensified in submarine canyons. Storms with strong eastward and westward wind stress were found to cause strong upwelling and downwelling through the upper layers of Hudson Canyon. Storm-forced upwelling also caused strong down-canyon flows at the canyon floor. Internal waves were found to be concentrated in the canyon head and near the floor, in agreement with theoretical predictions. Slope water apparently circulates slowly through the outer part of the canyon and is mixed in near-floor layers which could be caused by breaking internal waves. Internal tides are generated at the floor in the central part of the canyon. Oscillations at tidal frequencies dominate the near-floor velocity field below the thermocline, and are accompanied by high-frequency spikes that may be nonlinear interface waves propagating on the top of the bottom mixed layer. A numerical model was used to calculate mixing in the canyon's bottom boundary layer caused by an unstable density gradient during flood tide. Energetic internal wave activity is apparently responsible for sediment sorting in the canyon head; the internal waves become more energetic as the sediment grain size increases. Below the thermocline, the tidal oscillations vary in amplitude with the phases of the moon; the observed deposition of mud can easily occur during weeks of low velocity.
    Description: Foundation graduate fellowship and by the Office of Naval Research under Contracts N00014-75-C-029l and N00014-80-C-0273.
    Keywords: Ocean circulation ; Submarine valleys ; Internal waves ; Sediment transport ; Oceanus (Ship : 1975-) Cruise OC34
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2007
    Description: Observations of current velocity, temperature, salinity and pressure from a 2-year moored array deployment and four hydrographic cruises conducted by the United States Southern Ocean GLOBEC program on the western Antarctic Peninsula continental shelf are used to characterize the ocean circulation and its connection to fresh water and heat fluxes on the shelf. Mean velocities on the shelf are of the order of 5 cm/s or less. Tidal motions are dominated by the M2 and S2 semi-diurnal tides and the O1 and K1 diurnal tides, although the tidal velocities are typically less than 2 cm/s. Near-inertial motions are relatively large, with current velocities as high as 26 cm/s. It is shown that Marguerite Trough, a large bathymetric feature connecting the shelf-break to Marguerite Bay, plays a critical role in determining the circulation. The mean flow is strongly steered in the along-slope direction, and the tidal currents also show increasing current polarization at depth in Marguerite Trough. At timescales of 5 to 20 days, the observations show bottom-intensified motion in Marguerite Trough consistent with bottom-trapped topographic Rossby waves. The subtidal circulation in the trough has a significant wind-driven component in Marguerite Trough, with downwelling-favorable winds forcing cross-shelf flow on the northern side of the trough and along the shore on the outer shelf. Upwelling-favorable winds force roughly the opposite circulation. The cyclonic circulation on the trough helps advect blobs of salty, warm and nutrient-rich water across the shelf. These intrusions are small (≈4 km) and frequent (4 events/month). Also, the Antarctic Peninsula Coastal Current (APCC), a coastal buoyant current which is described for the first time here. The APCC is a seasonal current which is only present during the ice-free season and is forced by freshwater fluxes associated with large glacier melt and precipitation rates in the region.
    Description: Thanks goes to the agencies who made this thesis possible: the National Science Foundation Office of Polar programs through U.S. Southern Ocean GLOBEC grants OPP 99-10092 and 06-23223, the Chilean government through its Presidential Fellowship program and the Coastal Ocean Institute and the Cooperative Institute for Climate and Ocean Research.
    Keywords: Ocean circulation ; Ocean-atmosphere interaction ; Laurence M. Gould (Ship) Cruise LMG01-03 ; Laurence M. Gould (Ship) Cruise LMG02-1A ; Laurence M. Gould (Ship) Cruise LMG03-02 ; Nathaniel B. Palmer (Ship) Cruise NBP01-03 ; Nathaniel B. Palmer (Ship) Cruise NBP01-04 ; Nathaniel B. Palmer (Ship) Cruise NBP02-02 ; Nathaniel B. Palmer (Ship) Cruise NBP02-04
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008
    Description: This study presents observations of turbulence dynamics made during the low winds portion of the Coupled Boundary Layers and Air-Sea Transfer experiment (CBLAST-Low). Observations were made of turbulent fluxes, turbulent kinetic energy, and the length scales of flux-carrying and energy-containing eddies in the ocean surface boundary layer. A new technique was developed to separate wave and turbulent motions spectrally, using ideas for turbulence spectra that were developed in the study of the bottom boundary layer of the atmosphere. The observations of turbulent fluxes allowed the closing of heat and momentum budgets across the air-sea interface. The observations also show that flux-carrying eddies are similar in size to those expected in rigid-boundary turbulence, but that energy-containing eddies are smaller than those in rigid-boundary turbulence. This suggests that the relationship between turbulent kinetic energy, depth, and turbulent diffusivity are different in the ocean surface boundary layer than in rigid-boundary turbulence. The observations confirm previous speculation that surface wave breaking provides a surface source of turbulent kinetic energy that is transported to depth where it dissipates. A model that includes the effects of shear production, wave breaking and dissipation is able to reproduce the enhancement of turbulent kinetic energy near the wavy ocean surface. However, because of the different length scale relations in the ocean surface boundary layer, the empirical constants in the energy model are different from the values that are used to model rigid-boundary turbulence. The ocean surface boundary layer is observed to have small but finite temperature gradients that are related to the boundary fluxes of heat and momentum, as assumed by closure models. However, the turbulent diffusivity of heat in the surface boundary layer is larger than predicted by rigid-boundary closure models. Including the combined effects of wave breaking, stress, and buoyancy forcing allows a closure model to predict the turbulent diffusivity for heat in the ocean surface boundary layer.
    Description: This work was supported by Office of Naval Research grants N00014-00-1-0409, N00014-01-1-0029, and N00014-03-1-0681, the Woods Hole Oceanographic Institution Academic Programs Office, and National Aeronautics and Space Administration grant NAG5-11933.
    Keywords: Ocean-atmosphere interaction ; Oceanic mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1996. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 99 (1996): 822-830, doi:10.1121/1.414563.
    Description: In a recent paper, Lynch et al. used modal and ray based perturbation techniques to compare predicted variances of acoustic travel times due to internal waves to measured variances in the Barents Sea Polar Front experiment [Lynch et al., J. Acoust. Soc. Am. 99, 803–821 (1996)]. One of the interesting results of this work is that the modal and ray travel-time variances are substantially different for rays and modes with the same grazing angle. Specifically, the maximum modal travel-time variance shows a resonant effect in which the variance increases with increasing frequency. Unlike the modal solution, the ray travel-time variance has a geometrically constrained maximum, independent of frequency. In this paper, the linear first-order solutions for the ray and modal variances due to the internal waves are reviewed, and in an Appendix the effects of the linearizing assumptions are examined. The ray and mode solutions are then shown to be consistent by considering a truncated sum of modes that constructively interfere along a geometric ray path. By defining the travel-time perturbation due to a truncated sum of modes, the travel-time variance of the modal sum is derived. With increasing frequency the maximum value of this variance converges to a frequency-independent result with a similar magnitude to the ray maximum variance.
    Keywords: Internal waves ; Oceanography ; Sound waves ; Travelling waves ; Underwater ; Wave propagation ; Barents Sea ; Ray trajectories ; Shallow–water equations ; Travel time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2004
    Description: The uncertainty in the determination of the momentum and scalar fluxes remains one of the main obstacles to accurate numerical forecasts in low to moderate wind conditions. For example, latent heat fluxes computed from data using direct covariance and bulk aerodynamic methods show that there is good agreement in unstable conditions when the latent heat flux values are generally positive. However, the agreement is relatively poor in stable conditions, particularly when the moisture flux is directed downward. If the direct covariance measurements are indeed accurate, then they clearly indicate that the bulk aerodynamic formula overestimate the downward moisture flux in stable conditions. As a result, comparisons of the Dalton number for unstable and stable conditions indicate a marked difference in value between the two stability regimes. Investigations done for this thesis used data taken primarily at the Air-Sea Interaction Tower (ASIT) during the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment 2003 from the 20-27 August 2003. Other data from the shore based Martha's Vineyard Coastal Observatory (MVCO) and moored buoys in the vicinity of the ASIT were also incorporated. During this eight day period, the boundary layer was often characterized by light winds, a stably stratified surface layer and a swell dominated wave field. Additionally, the advection of warm moist air over cooler water resulted in fog formation and a downward flux of moisture on at least three occasions. Therefore, a primary objective of this thesis is to present a case study to investigate the cause of this shortcoming in the bulk formula under these conditions by examining the physical processes that are unique to these boundary layers. Particular attention will be paid to the behavior of the Dalton number in a stable marine atmospheric boundary layer under foggy conditions using insights derived from the study of fog formation and current flux parameterization methods.
    Keywords: Ocean-atmosphere interaction ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Ocean Sciences at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: This thesis introduces an algorithm for inverting for the geoacoustic properties of the seafloor in shallow water. The input data required by the algorithm are estimates of the amplitudes of the normal modes excited by a low-frequency pure-tone sound source, and estimates of the water column sound speed profiles at the source and receiver positions. The algorithm makes use of perturbation results, and computes the small correction to an estimated background profile that is necessary to reproduce the measured mode amplitudes. Range-dependent waveguide properties can be inverted for so long as they vary slowly enough in range that the adiabatic approximation is valid. The thesis also presents an estimator which can be used to obtain the input data for the inversion algorithm from pressure measurements made on a vertical line array (VLA). The estimator is an Extended Kalman Filter (EKF), which treats the mode amplitudes and eigenvalues as state variables. Numerous synthetic and real-data examples of both the inversion algorithm and the EKF estimator are provided. The inversion algorithm is similar to eigenvalue perturbation methods, and the thesis also presents a combination mode amplitude/eigenvalue inversion algorithm, which combines the advantages of the two techniques.
    Description: The funding that made this research possible came from the Office of Naval Research, and the WHOI Academic Programs Office.
    Keywords: Underwater acoustics ; Ocean-atmosphere interaction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 2005
    Description: Minor and trace element records from planktic and benthic foraminifera from Atlantic sediment cores, as well as outputfrom a coupled OA·GCM, were used to investigate the magnitude and distribution of the oceanic response to abrupt Climate events.of the past 20,000 years. The study addressed three major questions: 1) What is the magnitude of high-latitude sea surface temperature and salinity variability during abrupt climate events? 2) Does intermediate depth ventilation change in conjunction with high-latitude climate variability? 3) Are the paleoclimate data consistent with the response of a coupled OAGCM to a freshwater perturbation? To address these questions, analytical methods were implemented for the simultaneous measurement of Mg/Ca, Zn/Ca, Cd/Ca, Mn/Ca and All Ca in foraminiferal samples using inductively-coupled plasma mass spectrometry. Paired records of planktic foraminiferal ()IRO and Mg/Ca from the subpolar North Atlantic reveal trends of increasing temperatures (-3°C) and salinities over the course of the Holocene. The records provide the first evidence of open':'ocean cooling (nearly 2°C) and freshening during the 8.2 kyr event, and suggest similar conditions at 9.3 ka. Benthic foraminiferal Cd/Ca results from an intermediate depth, western South Atlantic core (l,268 ni) are consistent with reduced export into the South Atlantic of North Atlantic Intermediate Water during the Younger Dryas. Paired records. of benthic foraminiferal Mg/Ca and bIRO from two intermediate depth low latitude western Atlantic sites - one from the Florida Current (751 m) and one from the Little Bahama Bank (l,057 m) - provicie insights into the spatial distribution of intermediate depth temperature and sii!.inity variability during" the Younger Dryas. The intermediate depth paleoceanographic temperature and salinity data are consistent with the results of a GFDL R30 freshwater forced model simulation, suggesting that freshwater forcing is a possible driver or amplifier for B011ing-Aller0d to Younger Dryas climate variability. Benthic foraminiferal Cd/Ca results from an intermediate depth Florida Current core (751 m) are consistent with a decrease in the northward penetration of southern source waters within the return flow of the Atlantic meridional overturning circulation (MOC) and an increase in the influence of intermediate depth northern source waters during the Younger Dryas.
    Description: This work was funded by a John Lyons Fellowship and a WHOI Ocean and Climate Change Institute Fellowship. Analyses were funded by the Ocean and Climate Change Institute and the following grants from the National Science Foundation: OCE98-86748, OCE02- 20776, OCE96-33499,ATM05-01391, and OCE04-02565.
    Keywords: Ocean-atmosphere interaction ; Climatic changes
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...