ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
  • 2010-2014  (164)
  • 1935-1939
Collection
Years
Year
  • 1
    Publication Date: 2021-06-25
    Description: We adopt a spectral-element method (SEM) to perform numerical simulations of the complex wavefield generated by the 6 April 2009 Mw 6.3 L’Aquila earthquake in central Italy. The mainshock is represented by a finite-fault solution obtained by inverting strong-motion and Global Positioning System data, testing both 1D and 3D wavespeed models for central Italy. Surface topography, attenuation, and the Moho discontinuity are also accommodated. Including these complexities is essential to accurately simulate seismic-wave propagation. Three-component synthetic waveforms are compared to corresponding velocimeter and strong-motion recordings. The results show a favorable match between data and synthetics up to ∼0:5 Hz in a 200 km × 200 km × 60 km model volume, capturing features mainly related to topography or low-wavespeed basins. We construct synthetic peak ground velocity maps that, for the 3D model, are in good agreement with observations, thus providing valuable information for seismic-hazard assessment. Exploiting the SEM in combination with an adjoint method, we calculate finite-frequency kernels for specific seismic arrivals. These kernels capture the volumetric sensitivity associated with the selected waveform and highlight prominent effects of topography on seismic-wave propagation in central Italy.
    Description: Published
    Description: JCR Journal
    Description: restricted
    Keywords: Wave Propagation ; Earthquake ; Ground Motion ; Basin & Site Effects ; Topographic Effects ; Numerical Modelling ; Spectral-Element Methods ; Adjoint Methods ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-03
    Description: The seismic sequence which occurred in 1998 south of the Island of Ustica (offshore North Sicily) has been interpreted in the frame of historical recent seismicity and the area’s tectonics. This seismic sequence, characterised by shallow-depth and low-magnitude earthquakes (Md max. 4.3), took place in the thick and complex stack of the Sicilian-Maghrebian fold-and-thrust belt. The spatial distribution of the epicentres recorded during the January-August 1998 shows a cluster roughly NW-SE trending. The few shocks which occurred immediately after the Md 4.1 shock of the 14th September were located south-east of Ustica with a rough NE-SW trend. The focal mechanisms of major shocks are of a thrust type with horizontal compressive axes generally N-S trending. In the kinematic evolution of the study area, alternating extensional and contractional events have been recognised as having taken place during the Plio-Pleistocene. The present day seismic activity pointing out a new contractional episode is well framed in this evolutionary trend. The occurrence of pre-existing faults and the large number of earthquakes with low-magnitude support the hypothesis that this seismicity could be related to a frictional (re)activation of faults. Active compression in offshore North Sicily probably reflects the northwards motion of Africa relative to the Eurasian plate.
    Description: Published
    Description: 103-114
    Description: 1T. Geodinamica e interno della Terra
    Description: N/A or not JCR
    Description: restricted
    Keywords: Seismicity ; Stress field ; Sicilian-Maghrebian Chain ; Offshore Norhern Sicily ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Flank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.
    Description: This work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.
    Description: Published
    Description: 4398-4409
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Volcano flank instability ; Pernicana fault ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Morphometric analyses of high resolution digital elevation models (DEM), with the support of Geographic Information Systems (GIS), have been implemented to provide a practical tool for the identification on a large scale of sites where, according to the EC8 prescriptions, a topography amplification is expected. An ad hoc procedure for the hilltop ridge detection was implemented to be used in the morphological characterization, together with the standard GIS sequence of steps. The proposed method allowed the fast classification of more than 800 seismic recording stations located on the Alps and the Apennine, according to the indications of the current European norm and the Italian seismic code. The aim is to improve the characterization of the stations of seismic archives, in the view of a potential cross-checking of observed amplification with the attributed site class category.
    Description: Published
    Description: 248-258
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: DEM ; Geographic Information system ; Ridge ; Morphometric analysis ; Seismic amplification ; Recording station ; Seismic code ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Lo scopo fondamentale di questo lavoro è l’applicazione delle tecniche di modellazione numerica per lo studio di sistemi di faglie per verificarne il loro potenziale sismogenetico. Determinare quale faglia merita più attenzione, dal punto di vista del rischio sismico, è una questione attualmente ancora dibattuta. Lo confermano, ad esempio, i terremoti di l’Aquila nel 2009 e di Sumatra nel 2004. Inoltre, secondo uno studio di Wyss et al. (2012), il numero di morti causati dai recenti terremoti è da 100 a 1000 volte più elevato rispetto ai valori predetti dalla mappa mondiale di hazard. Le problematiche riguardanti le mappe di hazard dipendono principalmente dal fatto che sono calcolate mediante cataloghi sismici e dati di tipo geologico. Questo comporta un problema dal punto di vista temporale, in quanto i cataloghi sismici registrano eventi che non coprono un intero ciclo sismico, mentre i dati geologici contengono più eventi registrati, ad esempio, dal rigetto superficiale delle faglie. La questione temporale può essere risolta mediante la modellazione numerica che permette di raccordare i dati a lungo e corto periodo. Infatti, tramite la modellazione numerica, è possibile stimare l’evoluzione di una faglia (in superficie e in profondità) nel periodo intersismico e simulare il caso cosismico. Inoltre la modellazione numerica permette di distinguere le faglie bloccate da quelle sbloccate. Questa distinzione fornisce un elemento utile per valutare la possibilità di un’eventuale rottura. Inoltre è possibile stimare lo stress, la deformazione e la velocità di ricarica di un terremoto. Ho applicato la modellazione numerica a tre aree rappresentative del territorio italiano. Partendo dal centro Italia, ho studiato la faglia a basso angolo dell’Altotiberina e la sua relazione con le faglie di Colfiorito e della Valle Umbra. Ho approfondito lo studio delle faglie a basso angolo, analizzando il caso della faglia di Messina (Sud Italia). Infine, ho studiato l’area esterna del sud Alpino (nord Italia), caratterizzata da un sistema compressivo, che comprende il thrust del Montello ed il thrust di Bassano. Ho modellato numericamente ognuna di queste faglie o sistemi di faglie utilizzando diverse condizioni al contorno e parametri reologici in accordo con l’area di studio. I risultati sono stati confrontati con dati di tipo geodetico, geologico e geofisico. E’ stato possibile verificare che, la modellazione numerica fornisce un ottimo sostegno per la modellazione analogica, contribuendo a dare maggiore completezza al risultato e a simulare alcune proprietà dei materiali con grande precisione. Il risultato di un modello numerico varia principalmente al variare delle condizioni al contorno imposte, quindi dalla geometria, dai parametri reologici, e dal tipo di meccanismo utilizzato per riprodurre la deformazione di un’area. I risultati ottenuti in questo lavoro mostrano che la faglia Altotiberina è completamente bloccata al contrario della faglia di Colfiorito e la faglia della Valle Umbra che si muovono in parte come delle faglie sbloccate. Il campo deformativo dell’area sembra essere guidato da una trazione posta alla base della litosfera. Per quanto riguarda il sistema di thrust del Montello, ho potuto verificare che la porzione bloccata del thrust di Bassano ha un grande potenziale sismogenetico rispetto al thrust del Montello e al thrust antitetico al Montello, che risultano sbloccate. Assumendo che l’ampiezza delle faglie bloccate sia proporzionale all’ampiezza del terremoto, è stato possibile stimare la magnitudo massima attesa per ogni porzione di faglia bloccata, calcolata mediante la modellazione numerica. In particolare, la faglia di Bassano e la faglia Altotiberina sembrano avere un forte potenziale sismogenetico, in quanto potrebbe avere una magnitudo massima attesa di circa 7.
    Description: Università degli studi di Urbino
    Description: Unpublished
    Description: open
    Keywords: Numerical model, faults, rheology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: On 20 May 2012, at 02:03:52 GMT, an earthquake with Mw 6.1 (RCMT, http://www.bo.ingv.it/RCMT) occurred in northern Italy striking a densely populated area. The mainshock was followed a few hours later by two severe aftershocks having the same local magnitude (Ml 5.1, 1 and 2 in Figure 1a), and by hundreds of smaller aftershocks. Nine days later, on 29 May, at 07:00:03 GMT, a second event with moment magnitude Mw 6.0 (RCMT, http://www.bo.ingv.it/RCMT) occurred to the west, on an adjacent fault segment. This event was also followed by hundreds of aftershocks, three of them having local magnitude 5.3, 5.2 and 5.1 (3, 4 and 5, respectively, in Figure 1a) (locations from Istituto Nazionale di Geofisica e Vulcanologia, hereinafter INGV, http://iside.rm.ingv.it/; Malagnini et al., 2012; Scognamiglio et al., 2012). Despite the moderate number of casualties if compared to other major events in the Italian history, the economic loss was extremely high, resulting in about EUR 5 billion (AON Benfield, 2012, http://www.aon.com/), as the majority of Italian industrial activities and infrastructures concentrate in this area, the eastern Po plain, which is the largest sedimentary basin in Italy. The mainshocks are associated to two thrust faults with an approximate E-W trend dipping to the South (Figure 1b). The majority of the faults in this region are located in the upper crust, at depths lower than 10 km. The two main shocks are among the strongest earthquakes generated by thrust faults ever recorded in Italy in the instrumental era. The Emilia sequence has been extensively recorded by several strong-motion networks, operating in the Italian territory and neighbouring countries. Some of the networks acquire continuous data streams at their national data centres, which are nodes of EIDA (European Integrated Data Archive, hhtp://eida.rm.ingv.it), a federation of several archives, so that the waveforms can be obtained immediately after the occurrence of an event. Other networks, such as the Italian accelerometric network (RAN), managed by the Italian Department of the Civil Protection (hereinafter DPC), distribute the acceleration waveforms through their web site (http://protezionecivile.gov.it). The data set explored in this study is relative to the six events of the sequence having Ml 〉 5 (Table 1) and consists in 365 accelerograms recorded within a distance of 200 km from the epicentres, that were provided by the permanent and temporary seismic networks of INGV, the Swiss Seismological Service (SED, http://www.seismo.ethz.ch/index) and the DPC.
    Description: Published
    Description: 629-644
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Strong motion ; May-June 2012 Emilia Romagna earthquake sequence ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-03
    Description: Il sistema CUMAS (Cabled Underwater Module for Acquisition of Seismological data) è un prodotto tecnologico-scientifico complesso nato con il Progetto V4 [Iannaccone et al., 2008] allo scopo di monitorare l’area vulcanica dei Campi Flegrei (fenomeno del bradisismo). Si tratta di un modulo sottomarino cablato e connesso a una boa galleggiante (meda elastica). Il sistema è in grado di acquisire e trasmettere alla sala di monitoraggio dell’OV, in continuo e in tempo reale, sia i segnali sismologici sia quelli di interesse geofisico ed oceanografico (maree, correnti marine, segnali acustici subacquei, parametri funzionali di varia natura). Il sistema è in grado di ricevere comandi da remoto per variare diversi parametri di acquisizione e di monitorare un cospicuo numero di variabili di funzionamento. Il sistema si avvale del supporto di una boa galleggiante attrezzata. La boa è installata a largo del golfo di Pozzuoli (Napoli) a circa 3 km dalla costa. Il modulo sottomarino, collegato via cavo alla parte fuori acqua della boa, è installato sul fondale marino a una profondità di circa 100 metri.
    Description: Submitted
    Description: 82-85
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: N/A or not JCR
    Description: open
    Keywords: Monitoraggio sismico; sistemi sottomarini; boa; meda elastica ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.01. Atmosphere::01.01.06. Thermodynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and composition ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous ; 01. Atmosphere::01.03. Magnetosphere::01.03.01. Interplanetary physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms ; 01. Atmosphere::01.03. Magnetosphere::01.03.03. Magnetospheric physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics ; 01. Atmosphere::01.03. Magnetosphere::01.03.05. Solar variability and solar wind ; 01. Atmosphere::01.03. Magnetosphere::01.03.06. Instruments and techniques ; 02. Cryosphere::02.01. Permafrost::02.01.99. General or miscellaneous ; 02. Cryosphere::02.01. Permafrost::02.01.01. Active layer ; 02. Cryosphere::02.01. Permafrost::02.01.02. Cryobiology ; 02. Cryosphere::02.01. Permafrost::02.01.03. Cryosol ; 02. Cryosphere::02.01. Permafrost::02.01.04. Periglacial processes ; 02. Cryosphere::02.01. Permafrost::02.01.05. Seasonally frozen ground ; 02. Cryosphere::02.01. Permafrost::02.01.06. Thermokarst ; 02. Cryosphere::02.01. Permafrost::02.01.07. Tundra ; 02. Cryosphere::02.01. Permafrost::02.01.08. Instruments and techniques ; 02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous ; 02. Cryosphere::02.02. Glaciers::02.02.01. Avalanches ; 02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction ; 02. Cryosphere::02.02. Glaciers::02.02.03. Geomorphology ; 02. Cryosphere::02.02. Glaciers::02.02.04. Ice ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance ; 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction ; 02. Cryosphere::02.02. Glaciers::02.02.08. Rock glaciers ; 02. Cryosphere::02.02. Glaciers::02.02.09. Snow ; 02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques ; 02. Cryosphere::02.03. Ice cores::02.03.99. General or miscellaneous ; 02. Cryosphere::02.03. Ice cores::02.03.01. Aerosols ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 02. Cryosphere::02.03. Ice cores::02.03.03. Climate Indicators ; 02. Cryosphere::02.03. Ice cores::02.03.04. Ice Core Air Bubbles ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 02. Cryosphere::02.03. Ice cores::02.03.06. Precipitation ; 02. Cryosphere::02.03. Ice cores::02.03.07. Teleconnection ; 02. Cryosphere::02.03. Ice cores::02.03.08. Temperature ; 02. Cryosphere::02.03. Ice cores::02.03.09. Instruments and techniques ; 02. Cryosphere::02.04. Sea ice::02.04.99. General or miscellaneous ; 02. Cryosphere::02.04. Sea ice::02.04.01. Atmosphere/sea ice/ocean interaction ; 02. Cryosphere::02.04. Sea ice::02.04.02. Leads ; 02. Cryosphere::02.04. Sea ice::02.04.03. Polynas ; 02. Cryosphere::02.04. Sea ice::02.04.04. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.99. General or miscellaneous ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.02. Equatorial and regional oceanography ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 03. Hydrosphere::03.02. Hydrology::03.02.01. Channel networks ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.99. General or miscellaneous ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.04. Upper ocean and mixed layer processes ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.01. Dynamo theory ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.02. Data dissemination::05.02.05. Collections ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.06. Methods::05.06.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2017-04-03
    Description: Several fundamental questions (conundrums) about earthquakes and rocks are inexplicable in terms of conventional sub-critical geophysics. These questions have become so familiar that they are now generally accepted as the way earthquakes and rocks behave and are not recognised as presenting conceptual difficulties. These conundrums are resolved by a new understanding of fluid-rock deformation, where fluid-saturated microcracks in almost all rocks are so closely-spaced they verge on failure and hence are highly-compliant critical-systems which impose a range of new properties on conventional sub-critical geophysics. This new understanding of fluid-rock deformation, this New Geophysics, allows earthquakes to be stress-forecast, and has implications and applications to many solid Earth developments.
    Description: Published
    Description: 501–509
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Conundrums resolved ; Monitoring stress changes ; Seismic anisotropy ; Shear-wave splitting ; Stress-accumulation ; Stress-relaxation ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-21
    Description: XXXX
    Description: Published
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: restricted
    Keywords: Seismic early warning ; Seismic Hazard ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-26
    Description: The 2009 L’Aquila earthquake sequence includes the April 6 Mw 6.3 main shock and triggered events on April 7 and 9, each recorded on a digital network having five stations on the hanging wall of the main shock fault. We describe a geometric source model drawing upon inversions by others. We describe record-specific ground motion data processing that includes the incorporation of static displacements of up to 13 cm (downdrop of hanging wall). The resulting database includes 47, 38, and 31 corrected triaxial recordings from the April 6, 7, and 9 events, respectively. We present site conditions for recording stations, including recent surface wave and borehole geophysics. We demonstrate that the high-frequency data are weaker than expected for normal fault earthquakes of these magnitudes and that the data attenuate with distance at rates generally consistent with modified next generation attenuation (NGA) equations for Italy that were available prior to the event.
    Description: Published
    Description: 317-345
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Ground motion ; L'Aquila earthquake ; Seismic engineering ; Fault plane ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-06-25
    Description: We present forward and adjoint spectral-element simulations of coupled acoustic and (an)elastic seismic wave propagation on fully unstructured hexahedral meshes. Simulations benefit from recent advances in hexahedral meshing, load balancing and software optimization. Meshing may be accomplished using a mesh generation tool kit such as CUBIT, and load balancing is facilitated by graph partitioning based on the SCOTCH library. Coupling between fluid and solid regions is incorporated in a straightforward fashion using domain decomposition. Topography, bathymetry and Moho undulations may be readily included in the mesh, and physical dispersion and attenuation associated with anelasticity are accounted for using a series of standard linear solids. Finite-frequency Fre ́chet derivatives are calculated using adjoint methods in both fluid and solid domains. The software is benchmarked for a layercake model. We present various examples of fully unstructured meshes, snapshots of wavefields and finite-frequency kernels generated by Version 2.0 ‘Sesame’ of our widely used open source spectral-element package SPECFEM3D.
    Description: Published
    Description: 721-739
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Tomography ; Interferometry ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-06-21
    Description: To define reference structural actions, engineers practicing earthquake resistant design are required by codes to account for ground motion likely to threaten the site of interest and also for pertinent seismic source features. In most of the cases, while the former issue is addressed assigning a mandatory design response spectrum, the latter is left unsolved. However, in the case that the design spectrum is derived from probabilistic seismic hazard analysis, disaggregation may be helpful, allowing to identify the earthquakes having the largest contribution to the hazard for the spectral ordinates of interest. Such information may also be useful to engineers in better defining the design scenario for the structure, e.g., in record selection for nonlinear seismic structural analysis. On the other hand, disaggregation results change with the spectral ordinate and return period, and more than a single event may dominate the hazard, especially if multiple sources affect the hazard at the site. This work discusses identification of engineering design earthquakes referring, as an example, to the Italian case. The considered hazard refers to the exceedance of peak ground acceleration and 1s spectral acceleration with four return periods between 50 and 2475 year. It is discussed how, for most of the Italian sites, more than a design earthquake exists, because of the modeling of seismic sources. Furthermore, it is explained how and why these change with the limit state and the dynamic properties of the structure. Finally, it is illustrated how these concepts may be easily included in engineering practice complementing design hazard maps and effectively enhancing definition of design seismic actions with relatively small effort.
    Description: Published
    Description: 1212–1231
    Description: JCR Journal
    Description: restricted
    Keywords: Engineering design ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-03
    Description: During the last decades, the study of seismic anisotropy has provided useful information for the interpretation and evaluation of the stress field and active crustal deformation. Seismic anisotropy can yield valuable information on upper crustal structure, fracture field, and presence of fluid-saturated rocks crossed by shear waves. Several studies worldwide demonstrate that seismic anisotropy is related to stress-aligned, filled-fluid micro-cracks (EDA model, Crampin et al., 1984b; Crampin, 1993). The seismic anisotropy is an almost ubiquitous property of the Earth and the Shear Wave Splitting is the most unambiguous indicator of anisotropy, but the automatic estimation of the splitting parameters is difficult because the effect of the anisotropy on a seismogram is a second order, not easily detectable effect. Different researchers developed automated techniques aimed to study the Shear Wave Splitting: in this study, the results of different codes are compared in order to evaluate the best method for automatic anisotropy evaluation. In the last three years, an automatic analysis code, “Anisomat+”, was developed, tested and improved to calculate the anisotropic parameters: fast polarization direction () and delay time (∂t). “Anisomat+” consists of a set of MatLab scripts able to retrieve automatically crustal anisotropy parameters from three-component seismic recordings of local earthquakes. It needs waveforms and hypocentral parameters in the format routinely archived by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The code uses horizontal component cross-correlation method: a mathematical algorithm aimed to measure the similarity of the pulse shape between two shear waves. Anisomat+ has been compared to other two automatic analysis codes (SPY and SHEBA) and tested on three zones of the Apennines (Val d’Agri, Tiber Valley and L’Aquila surroundings). It was observed that, if the number of measures is large enough, at each station the average values of the parameters (fast direction and delay time) are comparable. The main goal in developing of an automatic code was to have tool able to work on a big amount of data, in a short time, by reducing the errors due to the subjectivity. These two acquirements are very useful and are the basis to develop a quasi real-time monitoring of the anisotropic parameters. The anisotropic parameters, resulting from the automatic computation, have been interpreted to determine the fracture field geometries; for each area, I defined the dominant fast direction and the intensity of the anisotropy, interpreting these results in the light of the geological and structural setting and of two anisotropic interpretative models, proposed in the literature. In the first one, proposed by Zinke and Zoback (2000), the local stress field and cracks are aligned by tectonics phases and are not necessarily related to the presently active stress field. Therefore the anisotropic parameters variations are only space-dependent. In the second, EDA model (Crampin, 1993), and its development in the APE model (Zatsepin and Crampin, 1995) fluid-filled micro-cracks are aligned or ‘opened’ by the active stress field and the variation of the stress field might be related to the evolution of the pore pressure in time; therefore in this case the variation of the anisotropic parameters are both space- and time- dependent. I recognized that the average of fast directions, in the three selected areas, are oriented NW-SE, in agreement with the orientation of the active stress field, as suggested by the EDA model, proposed by Crampin (1993), but also, by the proposed by Zinke and Zoback model; in fact, NW-SE direction corresponds also to the strike of the main fault structures in the three study regions. The mean values of the magnitude of the normalized delay time range from 0.005 s/km to 0.007 s/km and to 0.009 s/km, respectively for the L'Aquila (AQU) area, the High Tiber Valley (ATF) and the Val d'Agri (VA), suggesting a 3-4% of crustal anisotropy (Piccinini et al., 2006). In each area are also examined the spatial and temporal distribution of anisotropic parameters, which lead to some innovative observations, listed below. oThe higher values of normalized delay times have been observed in those zones where most of the seismic events occur. This aspect was further investigated, by evaluating the average seismic rate, in a time period, between years 2005 and 2010, longer than the lapse of time, analyzed in the anisotropic studies. This comparison has highlighted that the value of the normalised delay time is larger where the seismicity rate is higher. oIn the Alto Tiberina Fault area the higher values of normalised delay time are not only related to the presence of a high seismicity rate but also to the presence of a tectonically doubled carbonate succession. Therefore, also the lithology, plays a important role in hosting and preserving the micro-fracture network responsible for the anisotropic field. oThe observed temporal variations of anisotropic parameters, have been observed and related to the fluctuation of pore fluid pressure at depth possibly induced by different mechanisms in the different regions, for instance, changes in the water table level in Val D’Agri (Valoroso et al., GJI submitted), occurrence of the April 6th Mw=6.1 earthquake in L’Aquila (Lucente et al., 2010). Since these variations have been recognized, it is possible to affirm that the models that better fit my results, both in term of fast directions and of delay times, seems to be those proposed by Crampin (1993) and Zatsepin & Crampin (1995), respectively EDA and APE models.
    Description: Università degli studi di Perugia
    Description: Published
    Description: 1.11. TTC - Osservazioni e monitoraggio macrosismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.8. Geofisica per l'ambiente
    Description: open
    Keywords: seismic anisotropy ; stress and fracturing field ; fluid in the seismogenic process ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: In the last few years in Italy many ground motion prediction equations (hereinafter GMPEs) were calibrated both at national and regional scale using weak and strong motion data recorded in the last 30 years by several networks. Moreover, many of the strongest Italian earthquakes were included in global data sets in order to calibrate GMPEs suitable for the prediction of ground-motion at very large scale. In the last decade, the Sabetta and Pugliese (1996) relationships represented a reference point for ground motion predictions in Italy. At present all Italian strong-motion data, recorded from 1972 by Italian Accelerometric Network, and more recently by other regional networks (e.g., RAIS, Strong motion network of northern Italy), are collected in ITACA (ITalian ACcelerometric Archive). Considering Italian strong-motion data with Mw≥4.0 and distance (Joyner-Boore or epicentral) up to 100 km, new GMPEs were developed by Bindi et al. (2010), aimed at replacing the older Italian relationships. The occurrence of the recent December 23, 2008, Mw 5.4, Parma (northern Italy) earthquake and the April 6, 2009, Mw 6.3, L’Aquila earthquake, allowed us to upgrade the ITACA data set and gave us the possibility of validating the predictive capability of many GMPEs, developed using Italian, European and global data sets. The results are presented in terms of quality of performance (fit between recorded and predicted values) using the maximum likelihood approach as explained in Spudich et al. (1999). Considering the strong-motion data recorded during the L’Aquila sequence, the considered GMPEs on average, overestimate the observed data, showing a dependence of the residuals with distance in particular at higher frequencies. An improvement of fit is obtained comparing all Italian strong-motion data included in ITACA with the European GMPEs calibrated by Akkar and Bommer (2007a, 2007b) and the global models calibrated by Cauzzi and Faccioli (2008). In contrast, the Italian data seem to attenuate faster than the NGA models calibrated by Boore and Atkinson (2008), in particular at higher frequencies.
    Description: Published
    Description: 37-53
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: reserved
    Keywords: ground motion prediction equations, Italian strong motion data, residual evaluation, ITACA. ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: In questo lavoro viene descritto il complesso sistema di acquisizione dati della RSM [vedi D’Alema et al., 2011 - in questo volume], costituita da 58 stazioni collegate in tempo reale e 13 stazioni dial-up. I dati delle stazioni in tempo reale sono acquisiti con il programma Seiscomp31; la detezione degli eventi sismici viene eseguita con il programma Earthworm ed infine l’analisi e l’interpretazione degli eventi viene effettuata attraverso il programma SacPicker di Daniele Spallarossa [vedi Spallarossa, 2011 - in questo volume]. La parte di rete dial-up è basata sul sistema Lennartz Mars882 ed è configurata in modo autonomo dalla rete in tempo reale. I dati delle due reti vengono successivamente uniti in un unico dataset ai fini di una interpretazione interattiva congiunta.
    Description: Published
    Description: 124-127
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: rete sismica ; ancona ; acquisizione dati ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Da alcuni anni l’INGV e la Regione Marche collaborano nell’azione di monitoraggio sismico del territorio regionale. Nella sede di Ancona del CNT sono acquisiti in tempo reale i segnali sismici di circa 80 stazioni dell’Italia centro-orientale. Si è reso pertanto necessario sviluppare applicativi utili al controllo degli apparati che compongono il sistema di monitoraggio. In particolare, vengono controllati: 1) lo stato di funzionamento delle trasmissioni radio ed ethernet; 2) lo stato dell’alimentazione delle stazioni e il numero di satelliti ricevuti dagli apparati GPS; 3) la quantità di segnale sismico archiviato e i gaps del segnale continuo; 4) i livelli di rumore di fondo e la qualità del segnale sismico.
    Description: Published
    Description: 104-107
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: rete sismica ; ancona ; centro acquisizione ; telecomunicazioni ; qualità segnali ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: A Pilot Project for CO2 injection and storage was proposed for a gas storage area located at Cortemaggiore (Piacenza), in northern Italy. This project is conducted both to verify the injection techniques and to analyze the potentiality of CO2 as a cushion gas. Starting from 2004, a series of analysis has been conducted to verify suitability and feasibility of this operation. The injection phase will be preceded by a passive seismic monitoring in order to measure the background seismicity of the area. Seismic monitoring will be carried out during the 3 years of the injection phase and will continue also for a control period of 2 years, following the working phase. The Milano - Pavia Department of the Istituto Nazionale di Geofisica e Vulcanologia is in charge of the surface seismic monitoring. To study the background seismicity a microseismic network composed by 7 seismic stations has been realized. On February 2010, a first test phase has been conducted for 3 sites. The network was completed with 4 more stations on May 2010. All stations are composed by a 24-bit digital recorder (Lennartz M24/NET) with GPS time signal. The study area is characterized by a very high anthropic and industrial noise. In order to improve the quality of the seismic signals, 4 stations have been installed in a 100 m deep borehole. The seismic sensors (Lennartz LE-3D/BH for the borehole and LE-3Dlite MKI for the installation at the surface) have similar technical characteristics with 1 Hz free period, cutoff frequency at 80 Hz and dynamic range of 136 dB. In this first stage we analyzed the microseismic noise level and evaluated the detection capability of the network. Using the RMS measurements the borehole stations indicate a reduction on the noise by a factor of 2.5. A more detailed analysis, performed using the density function distribution of the power spectra, evidences a 10 dB gain for the borehole stations in the frequency band 1 - 10 Hz. Noise measurements have been used also to determine the minimum magnitude for the events detection. Using a point source model to simulate seismic events, we verified the expected detection levels by comparing the estimates obtained with the simulation and the local events recorded by the seismic network.
    Description: Published
    Description: 12
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: seismic monitoring ; gas storage ; micro-seismicity ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Nell’ambito del progetto FIRB-Airplane [“Piattaforma di ricerca multidisciplinare su terremoti e vulcani”, fondi MIUR 2007-2011 responsabili: Cocco, Amato e Stucchi1] dalla seconda metà del 2009 è stata installata una rete densa di stazioni sismiche nell’area dell’Alta Val Tiberina (AVT, Figura 1), i cui dati in continuo vengono trasmessi alla sede di Ancona del CNT attraverso una dorsale Wi-Fi HYPERLAN [Monachesi e Cattaneo, 2010]. La rete è stata progettata cercando di rispettare alcuni criteri, tra cui: controllo continuo della funzionalità delle singole stazioni, flessibilità nella scelta dei siti, riduzione del rischio di fulminazioni, possibilità di abbinare stazioni sismiche e stazioni geodetiche. A tal fine sono stati adottati strumenti a basso consumo per quel che riguarda acquisitori e sistemi di trasmissione, accompagnati dall’utilizzo di sistemi di alimentazione autonomi e sistemi di telecontrollo
    Description: Published
    Description: 91-93
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: rete sismica ; alta val tiberina ; sistemi alimentazione ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-03
    Description: In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a “silent” area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain. Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes. Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.
    Description: Published
    Description: 37-48
    Description: JCR Journal
    Description: restricted
    Keywords: seismicity ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-03
    Description: Questa ricerca si propone come spunto per approfondire la conoscenza delle caratteristiche del noise sismico ambientale attraverso osservazioni di dati sperimentali. L’utilizzo di registrazioni di noise sismico ambientale è funzionale alla conoscenza del segnale che si sta trattando e alla strumentazione impiegata. Le prime informazioni per quanto riguarda l’analisi del noise riguardano la sua origine e la sua natura. Inoltre il segnale sismico ambientale riguarda un’ampia banda di frequenze, la quale potrebbe non essere intercettata completamente da un sensore sismico oppure con ampiezze così ridotte da non essere riprodotte dal sistema di registrazione (per limiti di fabbricazione dello strumento). Quindi prima di effettuare una qualsiasi indagine di noise sismico ambientale è necessario saper scegliere la giusta strumentazione. Lo strumento deve poter rappresentare le frequenze volute e restituire il segnale. Ad oggi gli strumenti hanno un elevato livello tecnologico tale da poter registrare il segnale generato da un sensore sollecitato dal moto del terreno. Alle registrazioni dei terremoti si sovrappongono registrazioni di altri segnali che hanno differenti origine e che degradano la qualità della traccia sismica. Questo tipo di segnale che interferisce con la registrazione di un terremoto è definito rumore: ‘noise’. Recentemente, per alcune applicazioni sismologiche si è preferito utilizzare rumore sismico ambientale rispetto a registrazioni di terremoti. Il noise è generato da sorgenti che immettono energia nel terreno che tende a propagarsi sotto forma di onde. Il noise generalmente produce vibrazioni continue del terreno dette microtremori (Okada, 2003). In zone urbanizzate le sorgenti del noise possono essere un qualsiasi strumento meccanico che interagisce col terreno. Questo noise è definito antropico, cioè causato dall’attività dell’uomo, ed ha contenuto in frequenza a partire da circa 1 Hz. Il noise ambientale, invece, non viene percepito dall’uomo ed è prodotto da sorgenti naturali a frequenze più basse (0.1-1 Hz). I microtremori sono utilizzati comunemente in sismologia in quanto lo studio dell’origine e sulla natura del rumore sismico sono stati approfonditi. Quindi il noise sismico viene ricercato ed utilizzato per molti studi; esso è composto da diversi tipi di onde elastiche: onde di Rayleigh e Love, che forniscono informazioni anche di tipo geologico sul sottosuolo. La situazione più semplice che permette lo studio delle onde è 1D, in questo caso la velocità delle onde di taglio è un parametro fondamentale (Vs). questo parametro può essere individuato attraverso metodi come SASW (Spectral Analysis of Superficial Waves), processi di inversione permettono di ricavare profili di velocità. Utilizzando le tecniche dei rapporti spettrali, è possibile determinare l’amplificazione delle ordinate spettrali del moto orizzontale di un sito rispetto ad uno di riferimento (SSR, Standard Spectral Ratio: Borcherdt, 1970), oppure è possibile calcolare la funzione di trasferimento attraverso il rapporto tra lo spettro della componente orizzontale del moto rispetto a quella verticale (HVSR, Horizontal to Vertical Spectral Ratio: Lermo and Chavez-Garcia, 1993). Tali tecniche necessitano di un buon rapporto segnale/disturbo in modo da rappresentare le proprietà medie del mezzo di propagazione. Lo studio delle strutture geologiche locali e superficiali è legato al fatto che esse siano la causa determinante degli ‘effetti di sito’ generati dalla propagazione delle onde di un terremoto in prossimità della superficie terrestre. Studi di forti terremoti hanno evidenziato nel tempo come le caratteristiche geologiche superficiali possono determinare amplificazioni e prolungamento della sollecitazione del moto sismico del terreno. L’entità dei danni subiti in alcune aree poste all’interno di bacini sedimentari ha dato un forte impulso agli studi di microzonazione con lo scopo di ridurre e mitigare il rischio sismico. Gli effetti di sito sono legati alla topografia superficiale del substrato affiorante o sommerso, presenza di sedimenti soffici e presenza di forti discontinuità laterali. Le maggiori amplificazioni sono state osservate su stratificazioni sedimentarie tipo bacini lacustri o valli riempite di sedimenti alluvionali (Bindi et al., 2001, Shapiro et al. 2001; Boore, 2004). L’applicazione di tecniche per ottenere informazioni sulle caratteristiche geologiche e geotecniche, utili per gli effetti di sito, incontra problemi pratici quando gli esperimenti vengono effettuati in zone altamente urbanizzate. Queste difficoltà pratiche sono state superate utilizzando metodi basati sullo studio dei microtremori, i quali sempre presenti in ogni momento, hanno un ampio contenuto in frequenza e sono composti principalmente da onde superficiali. Con i microtremori è possibile ottenere informazioni sui periodi dei picchi di amplificazione (tecnica dei rapporti spettrali di Nakamaura: Nakamura, 1989), mentre attraverso tecniche in array vengono ricavate le curve di dispersione per ottenere profili di velocità degli strati geologici superficiali. La raccolta dei dati utilizzati in questa ricerca è stata svolta in questi tre anni di lavoro. I dati sono stati reperiti attraverso campagne sismiche di misura con lo scopo di apprendere le modalità di acquisizione del dato direttamente sul campo. Le campagne di misure sono state eseguite a seguito del terremoto de L’Aquila del 6 Aprile 2009. Questo tipo di attività è stato eseguito con l’ausilio di stazioni sismiche velocimetriche ed accelerometriche disponibili della Sezione di Milano dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV-MI) nell’ambito dell’attività di microzonazione svolta con il Dipartimento di Protezione Civile (DPC). In particolare sempre a causa del terremoto del 6 Aprile uno studio particolare è stato richiesto per il paese di Castelvecchio Subequo. Questo centro abitato sorge a 40 km di distanza della zona epicentrale ma ha riscontrato un elevato livello di danno ritenuto elevato per la distanza del centro dall’epicentro del terremoto. Il paese come molti altri vicini ha subito un differente livello di danno tra la zona centrale, nonché parte più storica del paese e la zona relativamente più moderna. Una caratteristica specifica di questo centro è inoltre la conformazione geologica e morfologica del rilievo sul quale è costruito. Infatti, la litologia è caratterizzata da un diverso grado di fratturazione lungo la sua dorsale. A questo scopo due diverse campagne di misura per registrare il noise sismico sono state eseguite. La prima ha interessato la parte abitata del paese con maggior attenzione per la parte storica e la seconda uno studio più approfondito delle caratteristiche geologiche della formazione rocciosa e la relativa risposta sismica. La prima parte ha portato ad eseguire misure nella parte centrale e sul lato orientale ed occidentale del paese. Questo ha permesso di verificare la diversa amplificazione nelle varie parti del paese. Inoltre alcune misure sono state svolte anche in rilievi di interessi pubblico, come ad esempio la scuola elementare e vicino alla Chiesa. La seconda parte ha permesso di caratterizzare i pinnacoli che si trovano alla fine del paese e che coincidono con la parte finale del centro storico. Su queste strutture sono state eseguite misure di noise sismico alla base e in sommità. Queste misure hanno mostrato che queste strutture non hanno nessun tipo di amplificazione e che quindi i danni all’interno del paese sono dati da una concomitanza di caratteristiche geologiche e morfologiche insieme. Visto la particolare posizione del paese si è anche installata una rete di monitoraggio composta da tre stazioni: una sulle pendici del Monte Urano, una alla base e una installata su roccia nella parte finale del centro storico. Il M. Urano si trova vicino all’abitato di Castelvecchio Subequo. Questa attività di monitoraggio ha permesso di verificare il diverso grado di amplificazione. È risultata maggiormente amplificata la componente orizzontale registrata nel centro storico. Un’attività parallela, ma sempre riguardante campagne di misure sismica, si è svolta nella conca Subequana. Lo scopo di questa attività è stato quello di ricostruire attraverso osservazioni geologiche, del gruppo geologico che stava studiando l’area, e analisi di registrazioni sismiche l’ipotetico andamento in profondità del substrato roccioso. Le osservazioni geologiche hanno evidenziato diverse litologie per l’area e un graduale passaggio da una formazione rocciosa a sedimenti proprio nella zona della conca. Il passaggio dalla formazione rocciosa ai sedimenti sarebbe poi marcato da un segmento della faglia della conca Subequana. Le indagini geofisiche e geologiche si sono ritrovate concordi sui relativi risultati e hanno permesso di ipotizzare l’approfondimento della valle. In questa attività di campagna i dati sono stati reperiti direttamente sul terreno ed in seguito sono stati analizzati con la tecnica Horizontal to Vertical Spectra Ratio (HVSR), utilizzata sia per quanto riguarda il noise che per le registrazioni dei terremoti della rete temporanea di monitoraggio. L’analisi del dato, il suo processamento ha interessato maggiormente la seconda fase del lavoro. In questa fase il reperimento di dati è stato eseguito direttamente presso la sede di Ancona del Centro Nazionale Terremoti (CNT). I dati in questo caso sono stati analizzati a partire dal loro formato originale, in questo caso MSEED, fino alla trasformazione nel formato richiesto per eseguire le analisi. In particolare ci si è interessati dell’area dell’Alto Val Tiberina una zona a confine tra Umbria-Marche. Quest’area, ritenuta sede ci continua attività sismica, è monitorata da una rete di monitoraggio che permette di raccogliere i dati in continuo. Questi dati possono essere reperiti presso la Sede di Ancona, dove vengono archiviati e una parte di questi viene inviata al centro acquisizione di Roma del CNT. Questi dati sono stati processati attraverso il calcolo delle cross-correlazioni utilizzando la tecnica Multi Window Cross-Spectrum (MWCS) per la prima volta eseguita da Poupinet et al. (1984). L’utilizzo di questa tecnica ha permesso di ottenere variazioni di velocità dell’area interessata confrontando i dati con l’attività sismica della zone e la possibile influenza di microsismi nelle variazioni riscontrate. Quindi una parte importante e considerevole di questo lavoro è stata l’esperienza acquisita durante l’attività di campo per l’installazione delle stazioni sismiche, la loro manutenzione e la consistente attività di processamento con l’applicazione di procedure di conversione dai dati originali in dati utili per le analisi.
    Description: Università degli Studi di Genova
    Description: Published
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: seismic noise ; site effects ; cross-correlation ; velocity variations ; seismic monitoring ; microseisms ; Alto Tiberina Fault ; Pietralunga sequence ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Earthquakes deliver in few seconds the elastic energy accumulated in hundreds of years. Where and when will be the next earthquake remains a difficult task due to the chaotic behaviour of seismicity and the present lack of available tools to measure the threshold of the crustal strength. However, the analysis of the background strain rate in Italy and the comparison with seismicity shows that larger earthquakes occur with higher probability in areas of lower strain rate. We present a statistical study in which a relationship linking the earthquake size (magnitude) and the total strain rate (SR) is found. We combine the information provided by the Gutenberg–Richter law (GR) of earthquake occurrence and the probability density distribution of SR in the Italian area. Following a Bayesian approach, we found a simple family of exponential decrease curves describing the probability that an event of a given size occurs within a given class of SR. This approach relies on the evidence that elastic energy accumulates in those areas where faults are locked and the SR is lower. Therefore, in tectonically active areas, SR lows are more prone to release larger amount of energy with respect to adjacent zones characterised by higher strain rates. The SR map of Italy, compared with 5 years seismicity supports this result and may become a powerful tool for identifying the areas more prone to the next earthquakes.
    Description: Published
    Description: 67-75
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Strain rate ; Magnitude ; Gutenberg–Richter law ; Bayesian analysis ; Seismic hazard ; Italian area ; L’ Aquila Emilia earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publication Date: 2017-04-04
    Description: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Description: Published
    Description: 170-186
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: The Holocene is the most recent geological epoch spanning from about 11700 years ago to the present day. The most important human civilizations appeared during the Holocene. From the Holocene onwards, environmental changes, and the hazards associated with them, became extremely important for their impact on historical events, in some cases blending with humanity’s vicissitudes and influencing the rise and decline of civilizations. This paper summarises the geological and climatic conditions of Northern Europe during the Holocene and tries to determine whether or not they support the hypothesis formulated by Felice Vinci (Vinci, 2003) about the migration of Baltic populations towards the Mediterranean in the Bronze Age at the end of the “climatic optimum” (Houghton et al., 1990; Rohling & De Rijk, 1999). This study presents data on glacio-eustatic changes and on isostatic uplift together with information on probable tsunamis that occurred in the North Atlantic, North Sea, Scandinavia and the Baltic Sea. Moreover, some data on catastrophic events that affected the Mediterranean region are reported, because these catastrophes could have favoured the settlement of “people coming from the sea” that took advantage of the demographic and socio-economic weakening of indigenous populations (Driessen, 2002). The paper aims to provide geological and palaeogeographic constraints to the hypotheses formulated by Felice Vinci on the migration of Scandinavians towards the Mediterranean. The data analysed have been collected from the available scientific literature (see references). The amount of information available for each geological phenomenon is vast and sometimes theories developed from the same data are in conflict. The comparison between the Mediterranean and the Baltic areas (one of which could have been the theatre of the Homeric events) will be useful to find evidence of geological phenomena within the Homeric texts, giving useful indications to better understand where the poems are set or at least to provide interesting discussion points related to Felice Vinci’s hypothesis (Vinci 2003).
    Description: Published
    Description: 179-197
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: open
    Keywords: Geology ; Holocene ; Northern Europe ; Mediterranean ; Earthquakes ; Volcanoes ; Ice age ; Tides ; Tsunami ; Glacio-eustatism ; Seismicity ; Uplift ; Submarine landslides ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: In this study, we investigate the rupture history of the April 6th 2009 (Mw 6.1) L’Aquila normal faulting earthquake by using a nonlinear inversion of strong motion, GPS and DInSAR data. Both the separate and joint inversion solutions reveal a complex rupture process and a heterogeneous slip distribution. Slip is concentrated in two main asperities: a smaller shallow patch of slip located up-dip from the hypocenter and a second deeper and larger asperity located southeastward along strike direction. The key feature of the source process emerging from our inverted models concerns the rupture history, which is characterized by two distinct stages. The first stage begins with rupture nucleation and with up-dip propagation at relatively high (∼ 4.0 km/s), but still sub-shear, rupture velocity. The second stage starts nearly 2.0÷2.5 seconds after nucleation and it is characterized by the along strike rupture propagation. The largest and deeper asperity fails during this stage of the rupture process. The rupture velocity is larger in the up-dip than in the along-strike direction. The up-dip and along-strike rupture propagation are separated in time and associated with a Mode II and a Mode III crack, respectively. The comparison between the source models inferred in this study with the Poisson ratio anomalies in the crustal volume containing the fault plane (Di Stefano et al., 2011) allows the interpretation of the delay in along-strike rupture propagation in terms of a structural control of the rupture history. Our results show that the L’Aquila earthquake featured a very complex rupture, with strong spatial and temporal heterogeneities suggesting a strong frictional and/or structural control of the rupture process.
    Description: Published
    Description: 607-621
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Inverse theory;Earthquake dynamics;Earthquake ground motions;Earthquake source observations;Body waves;Rheology and friction of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f^0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.
    Description: Published
    Description: 717-739
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Generalized Inversion Technique ; 2009 L'Aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Prattes et al. (2011) report ULF magnetic anomalous signals claiming them to be possibly precursor of the 6 April 2009 MW6.3 L’Aquila earthquake. This comment casts doubts on the possibility that the observed magnetic signatures could have a seismogenic origin by showing that these pre-earthquake signals are actually part of normal global geomagnetic activity.
    Description: Published
    Description: 1717–1719
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: Geomagnetic field ; Earthquake precursors ; Magnetic anomalies ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: We re-evaluate the 1984 Abruzzo-Lazio Earthquake on the basis of original seismological data discussed in light of previous interpretations from other authors. This sequence, characterized by two distinct mainshocks (Ms=5.8 and Ms=5.2; NEIS) having low spatial and temporal separation, developed at the border between Central and Southern Apennines. The sequence originated in a narrow area, adjacent to the main NW–SE structures belonging to the Apenninic Chain, crossed by fault segments with different orientation. The spatiotemporal evolution of the seismicity, the focal mechanisms of some aftershocks, never obtained before, and waveform analysis suggest that the sequence developed in several stages. The beginning of the two main stages was marked by two events (Ms=5.8 and Ms=5.2), and the entire sequence was strongly controlled by the structural heterogeneity in the medium involved in the stress release process. The ruptures nucleated on a ENE–WSW striking fault segment belonging to the NNE-striking Ortona-Roccamonfina tectonic line and propagated towards ENE. The presence of the NW–SE structures belonging to the Apennine Chain and their geometry acted as a barrier to the spread of the aftershocks northeastward. As a consequence, a local concentration of static stress in the area enclosed between the northern edge of the rupture segment of the first mainshock and the NW-striking structures triggered the Ms=5.2 event on a W–E pre-existing fault segment. In turn, the static stress changes due to the second mainshock activated adjacent NE–SW and NW– SE fault segments. The NW-striking structures belonging to the Apennines acted as a structural barrier, halting the propagation of the ruptures nucleating on a fault segment that belongs to the NNE-striking Ortona- Roccamonfina tectonic line.
    Description: Published
    Description: 92-104
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic sequence ; Focal mechanisms ; Central–Southern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2017-04-03
    Description: his study examines the seismicity of Vesuvius in the decades leading up to the great eruption of 16th December 1631. The period 1600–1631 is analyzed with the aims to point out any long-term seismic precursor of the eruption. The historical research has focused on contemporary Neapolitan memoirs and a large screening of diplomatic correspondence from the main Italian courts of the age (Florence, Mantua, Parma, Venice and the Vatican). Information was gathered on 18 earthquakes that were felt in Naples between 1601 and 1630. These data were listed with the sequence of 34 shocks that took place in November and December 1631, that preceded the beginning of the eruption. The 52 seismic events that have been highlighted overall are unknown in the parametric catalogues of Italian historical seismicity and 17 are unknown even in the scientific literature. The authors' view is that it makes little sense to talk of one single previous seismic precursor in this case, given the frequent seismic sequences and tremors noted by contemporaries from January 1616 onwards. The present state of knowledge suggests that seismic activity is a strong, early and persistent warning sign of an eruption of Vesuvius, of the same type as that of December 1631.
    Description: Published
    Description: 267-272
    Description: JCR Journal
    Description: restricted
    Keywords: Vesuvius ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: The Mw 6.3 2009 L’Aquila earthquake produced an impressive number of rotational effects on vertically organized objects such as chimneys, pillars, capitals and gravestones. The complete dataset of such effects consists of 120 observations at 39 different sites and represents a compendium of earthquake-induced istances of rotational effects that is unprecedented in recent times. In this work we focus on 49 objects that rest directly on the ground and are not affected by rotational modes of the underlying structure, and can be more reliably considered as representative of pure rotational ground motion. We look for possible relationships between the distribution of the observed rotations and the macroseismic effects of the earthquake, and try to recognize and evaluate which geological and seismological parameters can be significant contributors to local rotations.
    Description: Unpublished
    Description: San Diego CA
    Description: 1.11. TTC - Osservazioni e monitoraggio macrosismico del territorio nazionale
    Description: open
    Keywords: earthquake ; L'Aquila ; rotation ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: INGV
    Description: Published
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: open
    Keywords: Alto-Lazio, Tolfa-Ceriti, Receiver functions, microsismicità ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: In this paper we introduce a simple procedure to identify clusters of multivariate waveforms based on a simultaneous assignation and alignment procedure. This approach is aimed at the identification of clusters of earthquakes,assuming that similarities between seismic events with respect to hypocentral parameters and focal mechanism correspond to similarities between waveforms of events. Therefore we define a distance measure between seismic curve, in order to interpret and better understand the main features of the generating seismic process.
    Description: Published
    Description: 60-69
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Waveforms clustering, multiplets, Ocean Bottom Seismometer ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information froma large collection of data. Finding useful similar trends inmultivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of researchwhere different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.
    Description: Thisworkwas partially funded by INGV and the DPC-INGV project “Flank”.
    Description: Published
    Description: 65-74
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: data mining ; features extraction ; time series clustering ; self organizing maps ; Etna ; summit and flank eruptions ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-02-24
    Description: The aim of this study is to test the stability of moment tensor solutions for crustal earthquakes in the Calabro-Peloritan area (southern Italy). We used waveforms recorded by the Italian National Seismic Network managed by the Istituto Nazionale di Geofisica e Vulcanologia and the CAT-SCAN (Calabria Apennine Tyrrhenian - Subduction Collision Accretion Network) project. We computed the moment tensor solutions using the Cut And Paste (CAP) method. The technique allows the determination of the source depth, moment magnitude and focal mechanisms using a grid search technique. For the earthquakes investigated, we tried different station distributions and different velocity models. Results were also checked by computing the moment tensor solutions using the SLUMT grid-search method. Both methods (CAP and SLUMT) allow time shifts between synthetic and observed data in order to reduce the dependence of the solution on the assumed velocity model and on earthquake location errors. Comparisons have been made with the available published solutions. The final focal mechanisms were robustly determined. We show that the application of the CAP and SLUMT methods can provide good-quality solutions in a magnitude range not properly represented in the Italian national earthquake catalogues, and where the solutions estimated from Ponset polarities are often poorly constrained.
    Description: Published
    Description: 283-298
    Description: JCR Journal
    Description: open
    Keywords: moment tensor ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-02-24
    Description: Active faults in the upper crust can either slide steadily by aseismic creep, or abruptly causing earthquakes. Creep relaxes the stress and prevents large earthquakes from occurring. Identifying the mechanisms controlling creep, and their evolution with time and depth, represents a major challenge for predicting the behavior of active faults. Based on microstructural studies of rock samples collected from the San Andreas Fault Observatory at Depth (California), we propose that pressure solution creep, a pervasive deformation mechanism, can account for aseismic creep. Experimental data on minerals such as quartz and calcite are used to demonstrate that such creep mechanism can accommodate the documented 20 mm/yr aseismic displacement rate of the San Andreas fault creeping zone. We show how the interaction between fracturing and sealing controls the pressure solution rate, and discuss how such a stress-driven mass transfer process is localized along some segments of the fault.
    Description: Published
    Description: 1131-1134
    Description: JCR Journal
    Description: restricted
    Keywords: Faults ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-02-24
    Description: Using finite element models (FEMs), we examine the sensitivity of surface displacements to the location of fault slip, topography, and three‐dimensional variations in elastic moduli in the context of a 2‐D infinite thrust fault. We then evaluate the impact of these factors and fault geometry on surface displacements and estimates of the distribution of coseismic slip associated with the 2005 Mw 8.7 Nias‐Simeulue, Sumatra earthquake. Topographic effects can be significant near the trench, where bathymetric gradients are highest and the fault is closest to the free surface. Variations in Young’s modulus can significantly alter predicted deformation. Surface displacements are relatively insensitive to perturbations in Poisson’s ratio for shear sources, but may play a stronger role when the source has a dilatational component. If we generate synthetic displacements using a heterogeneous elastic model and then use an elastic half‐space or layered earth model to estimate the slip distribution and fault geometry, we find systematic residuals of surface displacements and different slip patterns compared to the input fault slip model. The coseismic slip distributions of the 2005 earthquake derived from the same fault geometry and different material models show that the rupture areas are narrower in all tested heterogeneous elastic models compared to that obtained using half‐space models. This difference can be understood by the tendency to infer additional sources in elastic half‐space models to account for effects that are intrinsically due to the presence of rheological gradients. Although the fit to surface observations in our preferred 3‐D FEM model is similar to that from a simple half‐space model, the resulting slip distribution may be a more accurate reflection the true fault slip behavior.
    Description: Published
    Description: Q07013
    Description: JCR Journal
    Description: restricted
    Keywords: Green's functions ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-02-24
    Description: Large earthquakes that have occurred in recent years in densely populated areas of the world (e.g. Izmit, Turkey, 17 August 1999; Duzce, Turkey, 12 November 1999; Chi-Chi, Taiwan 20 September 1999, Bhuj, India, 26 January 2001; Sumatra 26 December 2004; Wenchuan, China, May 12, 2008; L’Aquila, Italy, April 6, 2009; Haiti, January 2010 Turkey 2011) have dramatically highlighted the inadequacy of a massive portion of the buildings erected in and around the epicentral areas. For example, the Izmit event was particularly destructive because a large number of buildings were unable to withstand even moderate levels of ground shaking, demonstrating poor construction criteria and, more generally, the inadequacy of the application of building codes for the region. During the L’Aquila earthquake (April, 06, 2009; Mw=6.3) about 300 persons were killed and over 65,000 were left homeless (Akinci and Malagnini, 2009). It was the deadliest Italian earthquake since the 1980, Irpinia earthquake, and initial estimates place the total economic loss at over several billion Euros. Many studies have already been carried out describing the rupture process and the characteristics of local site effects for this earthquake (e.g. D’Amico et al., 2010a; Akinci et al., 2010). It has been observed that many houses were unable to withstand the ground shaking. Building earthquake-resistant structures and retrofitting old buildings on a national scale may be extremely costly and may represent an economic challenge even for developed western countries, but it is still a very important issue (Rapolla et al., 2008). Planning and design should be based on available national hazard maps, which, in turn, must be produced after a careful calibration of ground motion predictive relationships (Kramer, 1996) for the region. Consequently, the assessment of seismic hazard is probably the most important contribution of seismology to society. The prediction of the earthquake ground motion has always been of primary interest for seismologists and structural engineers. For engineering purposes it is necessary to describe the ground motion according to certain number of ground motion parameters such as: amplitude, frequency content and duration of the motion. However it is necessary to use more than one of these parameters to adequately characterize a particular ground motion. Updating existing hazard maps represents one of the highest priorities for seismologists, who contribute by recomputing the ground motion and reducing the related uncertainties. The quantitative estimate of the ground motion is usually obtained through the use of the so-called predictive relationships (Kramer, 1996), which allow the computation of specific ground-motion parameter as a function of magnitude, distance from the source, and frequency and they should be calibrated in the region of interest. However this is only possible if seismic records of large earthquakes are available for the specific region in order to derive a valid attenuation relationship regressing a large number of strong-motion data (e.g. Campbell and Bozorgnia, 1994; Boore et al., 1993; Ambraseys et al., 1996, Ambraseys and Simpson, 1996; Sabetta and Pugliese, 1987, 1996; Akkar and Bommer 2010). For the Italian region the most used attenuation relationships are those obtained by Sabetta and Pugliese (1987, 1996) regressing a few data recorded for earthquakes in different tectonic and geological environments. It has been shown in several cases that it is often not adequate to reproduce the ground motion in each region of the country using a single model. Furthermore the different crustal properties from region to region play a key role in this kind of studies. However, the attenuation properties of the crust can be evaluated using the background seismicity as suggested by Chouet et al. (1978) and later demonstrated by Raoff et al. (1999) and Malagnini et al (2000a, 2007). In other words, it becomes possible to develop regionallycalibrated attenuation relationships even where strong-motion data are not available. One of the purposes of this work is to describe quantitatively the regional attenuation and source characteristics for constraining the amplitude of strong motion expected from future earthquakes in the area. In this work we describe how to use the background seismicity to perform the analysis (details in Malagnini et. 2000a, 2007). In particular, this chapter describes the procedures and techniques to study the ground motion and will focus on describing both strong motion attenuation relationships and the techniques used to derive the ground motion parameters even when strong ground motion data are not available. We will present the results obtained for different regions of the Italian peninsula, showing that the attenuation property of the crust and of the source can significantly influence the ground motion. In addition, we will show that stochastic finite-fault modeling based on a dynamic frequency approach, coupled with field investigations, confirms to be a reliable and practical method to simulate ground motion records of moderate and large earthquakes especially in regions prone to widespread structural damage.
    Description: Published
    Description: 69-85
    Description: open
    Keywords: ground motions ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-02-24
    Description: A key aspect of ground-shaking map calculation is represented by ground-motion predictive equations (GMPEs). In fact, ground-shaking maps obtained soon after an earthquake are calculated by integrating observed data and ground-motion estimates from GMPEs for those areas not covered by seismic stations. Empirical ground-motion models that are used to obtain these estimates refer primarily to strong ground-motion due to large earthquakes and cannot be properly used to estimate the effects of small magnitude seismic events. In this paper we calibrated GMPEs for low-magnitude earthquakes from data recorded at the seismographic stations of the Irpinia Seismic Network, in the Campania–Lucania region, Southern Italy. In particular, the available dataset is formed by peak ground acceleration (PGA) and velocity (PGV) parameters coming from 123 earthquakes (local magnitudes ranging between 1.5 and 3.2) recorded at 21 stations of the ISNet network at hypocentral distances from 3 km to about 100 km. The total number of peaks measurements is 875. This study is part of a research project, in collaboration with the Italian Department of Civil Protection and National Institute of Geophysics and Volcanology, aimed at producing ground-motion shaking maps.
    Description: Published
    Description: 46
    Description: JCR Journal
    Description: restricted
    Keywords: Instrumentation and measurement ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-02-24
    Description: We present a new 3D, P-wave velocity model of the crust and upper lithosphere for the Calabrian Arc region. The model results from integration of different types of seismic velocity data available in the literature, following a method conceptually similar to one that has been successfully applied in the Alpine region. The model obtained, clearly shows the first-order structural features of the area, in agreement with the complex puzzle of lithospheric units. It also has the advantage of representing the simplest velocity structure that is consistent with all published data. We then employed this “apriori” velocity model as starting model for a local earthquake tomography. The velocity pattern obtained furnishes new information on the relationships between deep dynamics related to the Ionian subduction system and processes occurring at crustal depths. In addition, also the low RMS values coming from hypocenter locations indicate an improvement with respect to 3D models already available and to tomographic results obtained by testing different starting velocity models.
    Description: Published
    Description: 625-638
    Description: JCR Journal
    Description: restricted
    Keywords: Calabrian Arc region ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: In this paper, we adopt three ground‐motion simulation techniques (EXSIM, Motazedian and Atkinson, 2005, DSM, Pacor et al., 2005 and HIC, Gallovič and Brokešová, 2007), with the aim of investigating the different performances in near‐fault strong‐motion modeling and prediction from past and future events. The test case is the 1980, M 6.9, Irpinia earthquake, the strongest event recorded in Italy. First, we simulate the recorded strong‐motion data and validate the model parameters by computing spectral acceleration and peak amplitudes residual distributions. The validated model is then used to investigate the influence of site effects and to compute synthetic ground motions around the fault. Afterward, we simulate the expected ground motions from scenario events on the Irpinia fault, varying the hypocenters, the rupture velocities and the slip distributions. We compare the median ground motions and related standard deviations from all scenario events with empirical ground motion prediction equations (GMPEs). The synthetic median values are included in the median ± one standard deviation of the considered GMPEs. Synthetic peak ground accelerations show median values smaller and with a faster decay with distance than the empirical ones. The synthetics total standard deviation is of the same order or smaller than the empirical one and it shows considerable differences from one simulation technique to another. We decomposed the total standard deviation into its between‐scenario and within‐scenario components. The larger contribution to the total sigma comes from the latter while the former is found to be smaller and in good agreement with empirical inter‐event variability.
    Description: Published
    Description: 1136-1151
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: ground-motion simulation ; 1980 Irpinia earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-03
    Description: This contribution gives information on the European project UPStrat-MAFA “Urban disaster Prevention Strategies using MAcroseismic fields and FAult sources” as presented during the “Joint kick-off meeting for the representatives of all the projects selected in 2011 call for proposals C49”, in Brussels on 6 February 2012, at the European Commission - DG ECHO Unit A5 - 5, avenue de Beaulieu (Room C), 1060 Brussels – Belgium.
    Description: Unpublished
    Description: EUROPEAN COMMISSION DIRECTORATE - GENERAL HUMANITARIAN AID AND CIVIL PROTECTION Directorate A - Strategy, Policy and International Co-operation - Unit A.5 – Civil Protection Policy, Prevention, Preparedness and Disaster Risk Reduction Venue: Brussels, Avenue Beaulieu 5, Room C at BU-5
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: Probabilistic hazard and seimic risk ; Urban risk assessment ; Urban prevention strategies ; Volcanic and tectonic areas ; Mt. Etna, Vesuvius and Campi Flegrei (Italy) ; Azores Islands (Portugal) ; South Iceland Seismic Zone (Iceland) ; Lower Tagus Valley and Algarve (Portugal) ; Alicante-Murcia region (Spain) ; Civil protection financial instrument ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-03
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.9. Formazione e informazione
    Description: open
    Keywords: Expanding Earth ; Global Geodynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-03
    Description: The seismic sequence that occurred in the Abruzzo Apennines near L’Aquila (Italy) in April 2009 caused extensive damage and a large number of casual- ties (more than 300). The earthquake struck an area in the Italian Apennines chain where several faults, belonging to adjacent seismotectonic domains, create a complex tectonic regime resulting from the interaction among regional stress buildup, local stress changes caused by individual earthquakes, and viscous-elastic stress relaxation. Understanding such complex interaction in the Apennines can lead to a large step for- ward in the seismic risk mitigation in Italy. The Abruzzo earthquake has been very well recorded by interferometric synthetic aperture radar (InSAR) data, much better than the first Italian earthquake ever recorded by satellites, namely, the 1997 Umbria–Marche earthquake. ENVISAT (ENVIronmental SATellite) data for the Abruzzo earthquake are, in fact, very clear and allow an accurate reconstruction of the faulting mechanism. We present here an accurate inversion of vertical deformation data obtained by ENVISAT images, aimed to give a detailed reconstruction of the fault geometry and slip distribu- tion. The resulting fault models are then used to compute, by a suitable theoretical model based on the elastic dislocation theory, the stress changes induced on the neigh- boring faults. The correlation of the subsequent mainshocks and aftershocks of the Abruzzo sequence with the volumes undergoing increasing Coulomb stress clearly evidence the triggering effect of coseismic stress changes on further seismicity. More- over, this analysis put in evidence which seismotectonic domains have been more heav- ily charged by stress released by the Abruzzo mainshocks. The most important faults significantly charged by the Abruzzo sequence belong to the Sulmona and Avezzano tectonic domains. Taking into account the average regional stress buildup in the area, the positive Coulomb stress changes caused by this earthquake can be seen as antici- pating the next earthquakes in the neighboring domains of 15–20 yr.
    Description: Published
    Description: 2340-2354
    Description: JCR Journal
    Description: restricted
    Keywords: Aquila Earthquakes of April 2009 ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: Thin (0.5e2 mm thick) pseudotachylyte veins occur within muscovite-bearing (w10% volume), amphibolite-facies quartzites of the Schneeberg Normal Fault Zone (Austroalpine, Southern Tyrol, Italy). Pseudotachylytes are associated with precursor localized plastic microshear zones (50e150 mm thick) developed sub-parallel to the host-rock foliation and with conjugate sets oriented at a high angle to the foliation. Such microshear zones are characterized by recrystallization to ultrafine-grained (1e2 mm grain size) mosaic aggregates of quartz showing a transition from a host-controlled to a random crystallo- graphic preferred orientation towards the shear zone interior. Subsequent coseismic slip mainly exploited these microshear zones. Microstructural analysis provides evidence of extensive friction- induced melting of the muscovite-bearing quartzite, producing a bimodal melt composition. First, the host-rock muscovite was completely melted and subsequently crystallized, mainly as K-feldspar. Then, about 60% volume of the ultrafine-grained quartz underwent melting and crystallized as spherulitic rims (mostly consisting of quartz ` Ti ` Fe) around melt-corroded quartz clasts. The two melts show immiscibility structures in the major injection veins exploiting microshear zones at high angles to the quartzite foliation. In contrast, they were mechanically mixed during flow along the main fault veins.
    Description: Published
    Description: 169-186
    Description: JCR Journal
    Description: restricted
    Keywords: Quartz ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: Hirano and Hattori (2011), hereafter cited as H&H, report the observation of anomalous increases in the ULF geomagnetic field spectral density ratio which the authors claim to be possible precursors of the 2008 Iwate–Miyagi Nairiku earthquake. Here the results of H&H are reviewed taking into account the global geomagnetic activity level by means ofPKp index. This paper cast serious doubts on the seismogenic origin of the magnetic signatures documented by H&H showing that the anomalous signals are normal ULF magnetic variations induced by solar–terrestrial interaction. In summary, H&H’s claims that magnetic field disturbances about a month before the Mw 6.9 Iwate–Miyagi Nairiku earthquake on June 13, 2008 are precursors to the earthquake are unlikely to be correct.
    Description: Published
    Description: 258-262
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Geomagnetic field ; Magnetic anomalies ; Earthquake precursors ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: open
    Keywords: marcatempo ; stazioni VBB ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: In this work we propose a high performance parallelization of the software package COMPSYN, devoted to the production of syntethic seismograms, on a cluster of multicore processors with multiple GPUs. To design and implement the proposed high performance version, we started from a na¨ıve parallel version of COMPSYN. The na¨ıve version consists in a simple parallelization on both device side, obtained by exploiting CUDA, and host side, obtained by exploiting the MPI paradigm and OpenMP API. The proposed high performance version implements several practical techniques of CUDA programming and deeply exploits the GPU architecture, thus achieving a much better performance with respect to the na¨ıve version. We compare the performance of the proposed high performance version and that of the na¨ıve one with the performance of the version running on the cluster of multicore processors without invoking the GPUs. We obtain for the high performance GPU version a speedup of 25x over the version running on the cluster of multicore processors without GPUs against the 10x of the na¨ıve version. Regarding the sequential version, we estimate about 380x the speedup of the high performance GPU version against the about 140x of the na¨ıve version.
    Description: Collaboration Agreement between Dept. of Computer Science, Sapienza University of Rome and Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, 2011. Project n. C26G074ABJ, 2007, Cluster of multicore processor for advanced computation, Sapienza University of Rome.
    Description: Published
    Description: 966-975
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: restricted
    Keywords: GPU ; CUDA ; synthetic seismogram ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: In the framework of EU research project “Urban Disaster Prevention Strategies Using MAcroseismic Fields and FAult Sources” (Grant Agreement n. 230301/2011/613486/SUB/A5) innovative approaches are proposed to improve critical points in the procedures for assessing probabilistic hazard and seismic risk; they are tested in particular locations – Mt. Etna, Vesuvius and Campi Flegrei areas (Italy), Azores Islands and areas hit by offshore activity (Portugal), Alicante-Murcia area (Spain) and South Iceland including Reykjavik surrounding urban area (Iceland). A unique probabilistic procedure has been used for seismic hazard evaluation processing both macroseismic fields and characteristics of fault sources. The direct application of probabilistic methodologies to observed and/or synthetic macroseismic fields allows us to carry out a more complete treatment of the uncertainties in the case of both point-wise and linear properties of a fault. An improvement of the urban scale vulnerability information on building and network systems (typologies, schools, strategic buildings, lifelines, and so on) has been introduced to use the new concept of global Disruption Index, with the objective to provide a systematic way to measure the earthquake impact in urbanized areas considered as a complex network. These measures have been then used to identify which nodes are likely to introduce major disruption in the whole urban system, and also which one of them suggests greater risk reduction if intervention takes place. Besides the disaster prevention strategies based on the level of risk, another effective component of disaster-risk reduction is given by long-term activities using educational information systems. To reduce the absence of risk perception in the community some actions have been performed, such as the development of educational materials and the design of a mobile earthquake interactive experience with interactive panels for children and adults, and a central platform for the simulation of an earthquake.
    Description: Co-financed by the EU - Civil Protection Financial Instrument, in the framework the European project ”Urban disaster Prevention Strategies using MAcroseismic Fields and FAult Sources” (UPStrat-MAFA - Num. 230301/2011/613486/SUB/A5), DG ECHO Unit A5. http://ec.europa.eu/echo/funding/cp_projects2011_en.htm
    Description: Unpublished
    Description: 19-24 August 2012 in Moscow, Russia.
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: Probabilistic hazard ; Seismic risk ; Urban disaster prevention strategies ; European project UPStrat-MAFA ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: A seguito di eventi sismici significativi, l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) attiva il coordinamento delle attività di Pronto Intervento Sismico per integrare la Rete Sismica Nazionale [RSN, Delladio, 2011] aumentando il numero delle stazioni sismiche per il rilevamento della sismicità allo scopo di infittire il monitoraggio dell’area epicentrale e migliorare la qualità dei dati [Govoni et al., 2008; Moretti e Govoni, 2011]. Il funzionamento e l’efficienza del Pronto Intervento Sismico è frutto delle esercitazioni svolte periodicamente dall’INGV, come l’ultima svolta a fine settembre 2011 nel Comune di Santa Sofia in provincia di Forlì- Cesena, organizzata dall’INGV e dall’Agenzia di Protezione Civile della Regione Emilia Romagna, in regime di convenzione fra i due enti. A tale evento hanno partecipato varie sedi INGV coinvolte nel monitoraggio sismico del territorio nazionale (Ancona, Arezzo, Bologna Irpinia, Milano, Pisa, Roma). Successivamente a questa esperienza, è stato avviato un processo di coordinamento delle attività (denominato Sismiko) in modo da istituire delle procedure comuni alle quali attenersi in caso di intervento in emergenza sismica; il coordinamento Sismiko rientra nelle attività del progetto europeo “Network of European Research Infrastructure for earthquake Risk Assessment and Mitigation” (NERA), in cui è in atto il tentativo di coordinare una rete di Pronto Intervento Sismico europea [Margheriti et al., 2011; Moretti et al., 2012a; Moretti et al., 2012b]. I vari gruppi delle sedi INGV coinvolti, sono esperti nella gestione di reti sismiche temporanee in area epicentrale [Abruzzese et al., 2011; La Rocca et al., 2011; Margheriti et al., 2011; Moretti e Govoni, 2011; Zuccarello et al, 2011; accel.mi.ingv.it/statiche/VARIE/REMOMI.pdf]. Inoltre, tra le attività di Pronto Intervento Sismico è previsto l’insediamento di un Centro Operativo di Emergenza Sismica [COES, Moretti et al., 2010a] da cui è possibile coordinare e appoggiare le operazioni sul campo. Come successo nelle recenti emergenze sismiche [L'Aquila 2009; Frusinate 2009; Fermano 2010; Montefeltro 2011] anche in occasione dell’emergenza sismica iniziata il 20 maggio 2012 a seguito del terremoto delle ore 02:03 UTC di magnitudo (ML) 5.9 in Emilia Romagna, sono state impiegate diverse unità di personale per installare stazioni sismiche temporanee in area epicentrale. In particolare, in questa occasione, sono state installate complessivamente 44 stazioni di cui: 4 trasmesse in real-time via telemetria satellitare [Re.Mo.Tel., CNT sede Irpinia, Abruzzese et al., 2011], 7 stazioni in real-time via telefonia mobile (Sezione di Milano-Pavia e CNT sede di Ancona), 12 stand-alone [Re.Mo., CNT sede di Roma, Moretti et al., 2010b]; oltre a queste sono state installate 22 stazioni stand-alone per studi di effetti di sito [EMERSITO, Bordoni et al., 2012]. Inoltre la Sezione INGV di Bologna ha collaborato con tutti gli altri gruppi nella fase di ricerca siti ed installazione degli apparati, alla manutenzione delle stazioni e al download dei dati. La mole di personale e di strumentazione coinvolta nel pronto intervento ha permesso di reperire dati di alta qualità che rappresentano un patrimonio unico dell’intera comunità scientifica [Moretti et al., 2012a; 2012b]. Nell’intervento sono stati utilizzati strumenti con caratteristiche differenti, tra cui velocimetri e accelerometri; inoltre, i dati sono stati trasmessi in tempo reale con differenti vettori (radio e satellite) e protocolli, in modo da garantire una ridondanza della rete sismica mobile in caso di problemi ad alcuni sistemi di telecomunicazione. In Figura 1 è descritto il complesso flusso dei dati che permette al dato sismico di essere trasmesso dalla zona epicentrale verso i diversi centri di acquisizione sparsi sul territorio nazionale e di essere convogliato, soprattutto via vettore ethernet dedicato, alla sala di sorveglianza sismica della sede di Roma. In questo rapporto vengono descritte le attività sperimentate dalla sede di Ancona a supporto del Pronto Intervento Sismico dell’INGV finalizzate all’ archiviazione ed all’organizzazione dei dati utili alla rapida valutazione delle performance della rete sismica temporanea real-time, della qualità del dato ricevuto e dei parametri degli eventi della sequenza in oggetto.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: open
    Keywords: emergenza sismica emilia 2012 ; monitoraggio sismico ; pronto intervento ingv ; reti mobili ; livelli rumore ; rilocalizzazioni ; procedure automatiche ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: The Educational & Outreach Group (EOG) of the Istituto Nazionale di Geofisica & Vulcanologia created a portable museum to provide educational opportunities in volcanology, volcanic risk and Earth science for students and visitors. The EOG developed this project for the "Festival della Scienza", organized in Genoa, Italy, in October - November, 2007, which was a parade of over 200 events, including scientific and technological exhibitions, workshops, meetings, lectures, books and video presentations. In this museum visitors can successively see many posters and movies and play with interactive exhibits. A little 3D-movie shows the Big Bang, the formation of Solar System and, in particular the formation of the Earth. Many interactive exhibits illustrate why, where and when earthquakes and volcanic eruptions occur around the world and allow to introduce the visitor to the plate tectonics theory. A 3D magnetic plate tectonic puzzle can be put down and reconstructed by visitors to understand the Earth’s surface configuration. Then two other 3D Earth models show what drives the plates and the inner Earth structure. An interactive program illustrates where and when earthquakes and volcanic eruptions occur in accelerated time on maps of various areas around the world. Playing with a block diagram it is possible to produce an earthquake along a 1 meter long strike slip fault in a destroying all the man-made constructions close to it. A little movie introduces to volcanoes’ world. Two small interactive exhibits allow visitors to understand the mechanism for the explosive and the effusive eruptions. Two other exciting interactive exhibits allow visitors to “create” two different eruptions: the explosive and the effusive ones. It is possible to get inside a volcano (a 2 meter high interactive exhibit) to attend an eruption from the magmatic chamber to the Earth surface. A big hall is completed dedicated to Italian volcanoes (Vesuvio, Campi Flegrei, Etna, Stromboli, Vulcano, Colli Albani); some of them are reproduced with 3D models or described by short movies. The museum finishes with the visit of the volcanic survey hall of Stromboli, seeing - in real time - seismic data, three different webcams, geochemical and strain data. The INGV Museum had remarkably successful, reaching more than 7,500 children and adults yet in 13 days, also thanks to 30 volcanologists as very special guides. The Educational & Outreach Group: M. Pignone, A. Tertulliani, M. De Lucia, M. Di Vito, P. Landi, P. Madonia, M. Martini, R. Nave, M. Neri, P. Scarlato, J. Taddeucci, R. Moschillo, S. Tarquini, G. Vilardo, A. Bonforte, L. Calderone, F. Cannavò, W. De Cesare, P. Ficeli, S. Inguaggiato, M. Mattia, G. Puglisi, S. Morici, D. Reitano, D. Richichi, G. Scarpato, B. Angioni, F. Di Laura, S. Palone, D. Riposati
    Description: Published
    Description: EGU General Assembly 2009, held 19-24 April, 2009 in Vienna, Austria http://meetings.copernicus.org/egu2009
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: Festival della Scienza ; museum ; 3D-movie shows the Big Bang ; Solar System ; volcanic survey of Stromboli ; real time seismic data ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: Rapid evaluation of strong ground-shaking maps after moderate-to-large earthquakes is crucial to recognizing those areas where the largest damage and losses are expected. These maps play a fundamental role for emergency management. This is particularly important for areas having high seismic risk potential and covered by dense seismic networks. In near-real-time applications, ground-shaking maps are produced by integrating recorded data and estimates obtained by using ground-motion predictive equations, which assume point-source models. However, particularly for large earthquakes, improvements in the predictions of the peak ground motion can be obtained when fault extension and orientation are available. In fact, detailed source information allows one to use a more robust source-to-site distance metric compared with hypocentral distance. In this paper, a technique for estimating both fault extent (in terms of its surface projection) and dominant rupture direction is presented. This technique can be used in near-real-time ground-motion map calculation codes with the aim of improving ground-motion estimates with respect to a point-source model. The model parameters are estimated by maximizing a probability density function based on the residuals between observed and predicted peak-ground-motion quantities, the latter obtained by using predictive equations. The model space to be investigated is defined through a Bayesian approach, and it is explored by a grid-searching technique. The effectiveness of the proposed technique is demonstrated by offline numerical tests using data from three earthquakes occurring in different seismotectonic environments. The selected earthquakes are the 17 August 1999 Mw 7.5 Kocaeli (Turkey) earthquake, the 6 April 2009 Mw 6.3 L’Aquila (Italy) earthquake, and the 17 January 1994 Mw 6.7 Northridge (California) earthquake. The obtained results show that the proposed technique allows for fast and first order estimates of the fault extent and dominant rupture direction, which could be used to improve ground-shaking map calculations.
    Description: Published
    Description: 661-679
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Source directivity ; ShakeMap ; L'Aquila earthquake ; Northridge earthquake ; Kocaeli earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: XXXXXX
    Description: Published
    Description: 117-155
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: restricted
    Keywords: Effetto di sito ; Appennino Capano-Lucano ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: L’area veneta delle Alpi orientali è caratterizzata da una debole sismicità di background. In particolare, l’attività sismica registrata negli ultimi 30 anni [Castello et al., 2006; Bollettino Sismico INGV1] mostra eventi di bassa energia (ML〈3) lungo l’arco alpino in corrispondenza dell’anticlinale del Montello (situato a NW di Treviso). Sono noti però alcuni eventi di magnitudo medio-alta che hanno storicamente interessato la regione: l’episodio più significativo è il terremoto di Asolo del 1695 (Imax 10 e MaW 6.61), affiancato da tre ulteriori eventi sismici di intensità Imax≥VIII (magnitudo equivalente 6.0) avvenuti nel 778, 1286 e 1836 [CPTI Working group 2004] (Figura 1). Il Montello è catalogato tra i segmenti sismogeneticamente attivi del fronte alpino [Valensise and Pantosti, 2001; Galadini et al., 2005; Poli et al., 2008], originato dall’uplift di una struttura di thrust S-vergente, con slip rate di deformazione stimato tra 1.5 mm/yr [Burrato et al., 2009] e 1.8-2.0 mm/yr [Benedetti et al., 2000]. Scopo del progetto OMBRA è quello di studiare alcune questioni ancora aperte e scientificamente controverse. Ci si chiede come questi eventi storici forti possano integrarsi nel contesto della debole sismicità di fondo osservata recentemente. Inoltre è interessante capire come una velocità di placca relativamente alta possa accomodarsi nel pattern regionale e inoltre quali strutture tra l’anticlinale e il fronte alpino possano essere potenzialmente attive.
    Description: Published
    Description: 65-67
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: temporary network ; seismotectonics ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: We analyse the spatial distribution of the intensity data points surveyed after the Mw 6.3, 2009 L’Aquila (central Italy) earthquake, with the aim to recognize and quantify finite-fault and directivity effects. The study is based on the analysis of the residuals, evaluated with respect to attenuation-with-distance models, calibrated for L’Aquila earthquake. We apply a non-parametric approach considering both the epicentral and the rupture distance, which accounts for the finite extension of the source. Then, starting from a simplified kinematic rupture model of the L’Aquila fault, we compute four directivity predictors proposed in literature, and assess their correlation with intensity residuals. We derive a so-called Intensity Directivity Factor by the correlation between theoretical predictors and observed residuals that allows us to identify and quantify the intensity data points affected by forward and backward directivity during L’Aquila earthquake. We find that the effects are more pronounced in the forward directivity direction and increments up to 1 MCS intensity unit are expected. Moreover, the directivity predictor that accounts for radiation pattern poorly correlates with residuals. These results show that the spatial distribution of the L’Aquila macroseismic field is affected by source effects and in particular that directivity-induced amplification effects can be recognized. We show that the quasi-unilateral rupture propagation along the fault can explain the high-intensity patterns observed along specific direction at relatively large distance from the instrumental epicentre, in accordance with the seismological source models derived from the analysis of instrumental observations.
    Description: Published
    Description: 837–851
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: 2009 L'Aquila earthquake ; macroseismic intensity ; finite-fault effects ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
    Publication Date: 2017-04-04
    Description: The Mw 6.3 2009 L’Aquila (Central Italy) earthquake produced more than one hundred rotational effects on chimneys, pillars, capitals and gravestones. In this paper we focus on the 37 objects that can be more reliably considered as representative of pure rotational ground motion, and find a relation between the distribution of the observed rotations, the epicentral distance, the macroseismic intensities and the directivity effects that characterize the L’Aquila event. We also find sound relationships between the type of observed rotations and the geophysical, geotechnical and geomorphological characteristics of the site of observation. In downtown L’Aquila we find 1) a remarkable convergence between distribution of the rotations and of the damage; 2) 100% of the rotations occurred at sites characterized by high factors of amplification and poor geological setting; 3) the ground rotations are not strongly dependent on topographic effects. Finally, from quantitative analyses of GPS data we find that the effect of the seismic arrival on an individual vertical object retrieved rotated is an overall rotation with a substantially unpredictable direction
    Description: Published
    Description: 299-312
    Description: 1.11. TTC - Osservazioni e monitoraggio macrosismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: rotational seismology ; earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2–3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.
    Description: Published
    Description: 2712-2725
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: reserved
    Keywords: macroseismic data ; uncertainty ; earthquake parameters ; macroseismic magnitude ; macroseismic location ; bootstrap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-03
    Description: The 2009 Mw 6.3 L’Aquila earthquake produced an impressive number of rotational effects on vertically organized objects such as chimneys, pillars, capitals, and gravestones. We present a dataset of such effects that consists of 105 observations at 37 different sites and represents a compendium of earthquake-induced instances of rotational effects that is unprecedented in recent times. We find that the absolute majority of the reported effects were observed in the epicentral zone and that most of the observations are located where the Mercalli–Cancani–Sieberg intensity is between 7 and 8–9. The evident asymmetry in the distribution of the rotational effects resembles the southeastward directivity of the macroseismic effects and highlights a significant convergence between rotations and damage. Finally, we perform some qualitative analyses to recognize and evaluate which geological and seismological parameters can be significant contributors to local rotations. We find that surface geology and amplification of the seismic motion at each reported location strongly influence the occurrence and the nature of the earthquake-induced rotational effects. Conversely, the contribution of the pattern of slip distribution on the fault plane plays only a secondary role in enhancing the rotational motion at each site.
    Description: Published
    Description: 1109-1120
    Description: JCR Journal
    Description: restricted
    Keywords: L’Aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-03
    Description: Basaltic volcanoes, though fed with low-viscosity magma, occasionally produce sudden paroxysmal explosions that are unforecasted and whose triggering mechanism remains poorly elucidated. Here we report on the first detection of seismic signals precursory to such an explosion on 5 April 2003, at Stromboli volcano (Italy). This strongest event in the past 73 years was preceded by ∼25 h of seismic tremor variation, broadly coincident with strong geochemical anomalies in crater plume emissions, followed by ∼15 h of tilt-related long-period inflation pulses of increasing amplitude. These precursory signals are best explained by accelerating growth and leakage of a bubble melt “foam” layer formed at ∼10 km depth, whose collapse triggered the fast ascent of CO2-rich gas slugs and then the explosion. Our results open new perspectives for the forecasting of such paroxysmal explosions and associated hazards.
    Description: Published
    Description: B02312
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic precursors ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-03
    Description: Two critical items in the energetic budget of a seismic province are the strain rate, which is measured geodetically on the Earth's surface, and the yearly number of earthquakes exceeding a given magnitude. Our study is based on one of the most complete and recent seismic catalogs of Italian earthquakes and on the strain rate map implied by a multiyear velocity solution for permanent GPS stations. For each of 36 homogeneous seismic zones we use the appropriate Gutenberg-Richter relation, which is based on the seismicity catalog, to estimate a seismic strain rate, which is the strain rate associated with the mechanical work due to a coseismic displacement. We show that for each seismic zone, the volume storing most of the elastic energy associated with the long-term deformation, and hence the seismic strain rate, is inversely proportional to the static stress drop. The GPS-derived strain rate for each seismic zone limits the corresponding seismic strain rate, and an upper bound for the average stress drop is estimated. We show that the implied regional static stress drop varies from 0.1 to 5.7 MPa for catalog earthquakes in the moment magnitude range [4.5–7.3]. The stress drop results are independent of the regional a and b parameters and heat flow but are very sensitive to the assumed maximum magnitude of a seismic province. The data do not rule out the hypothesis that the stress drop positively correlates with the time elapsed after the largest earthquake recorded in each seismic zone.
    Description: Published
    Description: B02410
    Description: JCR Journal
    Description: restricted
    Keywords: static stress drop ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-03
    Description: In this paper, we analyse the distributions of number of events (N) and seismic energy (E) on the Earth's surface and along its radius as obtained from the global declustered catalogue of large independent events (M≥7.0), dissipating about 95% of the Earth's elastic budget. The latitude distribution of the seismic event density is almost symmetric with respect to the equator and the seismic energy flux distribution is bimodal; both have their medians near the equator so that they are equally distributed in the two hemispheres. This symmetry with respect to the equator suggests that the Earth's rotational dynamics contributes to modulate the long-term tectonic processes. The distributions of number and energy of earthquakes versus depth are not uniform aswell: 76% of the total earthquakes dissipates about 60% of the total energy in the first ~50 km; only 6% of events dissipates about 20% of the total amount of energy in a narrow depth interval, at the lower boundary of the upper mantle (550–680 km). Therefore, only the remaining 20% of energy is released along most of the depth extent of subduction zones (50–550 km). Since the energetic release along slabs is a minor fraction of the total seismic budget, the role of the slab pull appears as ancillary, if any, in driving plate tectonics. Moreover the concentration of seismic release in the not yet subducted lithosphere suggests that the force moving the plates acts on the uppermost lithosphere and contemporaneously all over the Earth's outer shell, again supporting a rotational/tidal modulation.
    Description: Published
    Description: 80-86
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Global seismicity ; Declustered catalogue ; Earthquake energy distribution ; Plate tectonics ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-03
    Description: This paper reports the analyses of ULF (Ultra-Low-Frequency) geomagnetic field observations coming from the Geomagnetic Observatory of L'Aquila during the period 2008–2009. This period includes the L'Aquila 2009 seismic sequence, where the main shock of 6 April heavily damaged the medieval centre of the town and its surrounding area, causing 308 deaths, more than 1000 injuries and about 60,000 displaced people. Recently, several publications have documented the observation of precursory signals which occurred before the 6 April earthquake (e.g. Eftaxias et al., 2009, 2010), while others do not find any pre-earthquake anomaly (e.g. Villante et al., 2010; Di Lorenzo et al., 2011). In light of this, the goal of this study is to carry out further retrospective investigations. ULF magnetic field data are investigated by means of conventional analyses of magnetic polarization ratio, improved magnetic polarization ratio, and fractal analysis. In addition, total geomagnetic field data coming from the INGV Central Italy tectonomagnetic network have also been investigated, using the simple inter-station differentiation method. Within the limits of these methods, no magnetic anomalous signal which may be reasonably characterized as a precursor of the L'Aquila earthquakes has been found.
    Description: Published
    Description: 310–317
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Geomagnetic field ; Magnetic anomalies ; Earthquake precursors ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: The problem of identifying precursory signals of earthquakes in the hope of mitigate the seismic hazard is a very important topic, but inaccurate documentations of precursory signatures decrease the credibility of this field of research. The statistical analysis by Kon et al. (2011) shows that there is tendency of positive total electron content (TEC) anomalies to occur 1–5 days before 52 M 〉 6 earthquakes which struck Japan during 1998–2010. Kon et al. (2011) also report in detail three selected case studies claiming the occurrence of TEC anomalies possibly related to large and destructive earthquakes. This paper casts doubts on the possibility that in the three cases the TEC disturbances were caused by seismic events suggesting that these TEC changes could be induced by normal variations of the global geomagnetic activity. As a consequence, also the results of the Superimposed Epoch Analysis performed by Kon et al. (2011) could be seriously influenced by global magnetospheric signals.
    Description: Published
    Description: 1-5
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Ionospheric anomalies ; Total electron content ; Earthquake-related ionospheric anomalies ; Short-term earthquake prediction ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Takla, E.M., Yumoto, K., Sutcliffe, P.R., Nikiforovd, V.M., Marshalle, R., 2011. Possible association between anomalous geomagnetic variations and the Molise Earthquakes at Central Italy during 2002. Physics of the Earth and Planetary Interiors 185, 29–35. doi:10.1016/j.pepi.2010.12.003.
    Publication Date: 2017-04-04
    Description: Takla et al. (2011) documented the observation of seismogenic precursory signals in the geomagnetic field components of L’Aquila station (LAQ) which occurred before the 2002 Molise earthquakes. Here, these claims are reviewed taking into account the geomagnetic index ΣKp time-series and by means of data coming from the Geomagnetic Observatory of L’Aquila where the LAQ station is located. This review shows that before the Molise earthquakes the anomalous behaviour of LAQ geomagnetic field components was actually caused by a possible thermal drift of the instrumentation. In conclusion there is no firm relation between the earthquakes occurrence and the observed magnetic anomalous signatures documented by Takla et al. (2011).
    Description: Published
    Description: 92-94
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Geomagnetic field ; Magnetic anomalies ; Earthquake precursors ; Short-term earthquake prediction ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: In widely used -2 source models the characteristics of high frequency radiation are described as being flat for frequencies between the source corner frequency and an upper limiting frequency fmax. Deviations from this behavior are described in a parameter which is understood as a general measure of the changes the signal undergoes on its way from the source to the receiver. In this study, we calculated  in Southeastern Sicily by using microearthquakes belonging to three different seismic sequences occurring in the area in 1990, 1999-2001, and 2002. The selected events form four different clusters whose seismic sources are located within a 2 km radius. Although the source-to-station paths are approximately the same inside a given cluster, the values of  change considerably at the same recording site from one event to another, also in the case of events having the same magnitude. We parameterized  in terms of event (E), and path (P and Diff) contributions. The term P represents the contribution on total  of both the whole source-to- station path and the near-surface geology, while Diff models the possible spatial variation in the parameter measured with respect to a reference source-station direction. Results show that the source contribution is not negligible and that there is a positive correlation with source size exists. Moreover, the hypothesis of a laterally homogeneous crustal structure within the area in question is not appropriate and significant variation in attenuating properties of the medium may occur in a very small distance range (also in the order of a few tens of meters). Our analysis suggests that the origin of the above mentioned variability is located near the recording site. Synthetic spectra are also computed in order to verify the actual significance of the parameterization employed and its capacity to separate the source and the path contribution to . We describe our spectra as a product of a Brune-type source spectrum and an exponential shaping term accounting for propagation effects. The seismic moments range between 3.8 ×1011 and 5.2 ×1013 N·m, the source radii range between 176 and 669 m, while the stress drop varies from 0.01 to 0.67 MPa.
    Description: Published
    Description: 1796-1809
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: High-frequency spectral decay in P-wave acceleration ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: The calibration of input parameters is an important task for stochastic finite-fault simulation in volcanic areas, and we manage this in the framework of the European project UPStrat-MaFa. The stochastic simulation method requires the knowledge of fault geometry, source, crust properties of the region, and local site effects. At first, we focused the present study in the pilot test areas: Mt Vesuvius, Campi Flegrei and Mt Etna. Later, we performed two applications for a large magnitude event in the Azores Islands and the South Iceland regions. A general preliminary database of ground-motion records was collected in the test areas, to set up the empirical laws of the ground-motion parameters. The results of the simulations have been compared with observed waveforms and response spectra, to determine the suitability of the parameters used. The results show good agreement between the observed and simulated time histories and response spectra, thus encouraging further efforts towards quantitative high resolution studies on input parameters.
    Description: Co-financed by the EU - Civil Protection Financial Instrument, in the framework the European project ”Urban disaster Prevention Strategies using MAcroseismic Fields and FAult Sources (Acronym: UPStrat-MAFA, Grant Agreement N. 23031/2011/613486/SUB/A5). http://ec.europa.eu/echo/funding/cp_projects2011_en.htm
    Description: Published
    Description: Lisbon - Portugal
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: stochastic simulation ; calibration ; volcanic areas ; UPStrat-MAFA ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: The recent Mw 6.3 destructive L’Aquila earthquake has further stimulated the improvement of the Italian operational earthquake forecasting capability at different time intervals. Here, we describe a medium-term (10-year) forecast model for Mw ≥5:5 earthquakes in Italy that aims at opening new possibilities for risk mitigation purposes. While a longer forecast yielded by the national seismic-hazard map is the primary component in establishing the building code, a medium-term earthquake forecast model may be useful to prioritize additional risk mitigation strategies such as the retrofitting of vulnerable structures. In particular, we have developed an earthquake occurrence model for a 10-year forecast that consists of a weighted average of time-independent and different types of available time-dependent models, based on seismotectonic zonations and regular grids. The inclusion of time-dependent models marks a difference with the earthquake occurrence model of the national seismic-hazard map, and it is motivated by the fact that, at the 10-year scale, the contribution of time-dependency in the earthquake occurrence process may play a major role. The models are assembled through a simple averaging scheme whereby each model is weighted through the results of a retrospective testing phase similar to the ones carried out in the framework of the Collaboratory for the Study of Earthquake Predictability. In this way, the most hazardous Italian areas in the next ten years will arise from a combination of distinct models that place more emphasis on different aspects of the earthquake occurrence process, such as earthquake clustering, historical seismic rate, and the presence of delayed faults capable of large events. Finally, we report new challenges and possible developments for future updating of the model.
    Description: Published
    Description: 1195-1213
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake occurrence ; time-dependent and independent earthquake occurrence models ; csep testing ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: The MW 6.13 L’Aquila earthquake ruptured the Paganica fault on 2009/04/06 at 01:32 UTC, and started a strong sequence of aftershocks. For the first four days, the region north of the hypocenter of the main quake was shaken by three large events (MW 5.0) that ruptured different patches of the Monti della Laga fault (hereafter “Campotosto”). In our hypothesis, these aftershocks were induced by a dramatic reduction in the fault’s shear strength due to a pulse of pore fluid pressure released after the L’Aquila main earthquake. Here we model the time evolution of the pore fluid pressure northward from the main hypocenter. We show that, during the sequence, the Campotosto fault failed in multiple episodes, when the specific patches/asperities underwent fluid pressure-related strength reductions of 7–10 MPa. Although such drops in strength are very large in amplitude, the contribution of other weakening mechanisms (perturbations of the Coulomb shear stress, and/or dynamic stresses induced by passing seismic waves) cannot be ruled out by our observations. However, the Coulomb shear stress variations either had negative amplitudes down to 0.2 MPa (i.e., tended to inhibit further seismic activity), or had very small positive amplitudes (〈0.05 MPa). Paleoseismological evidence supports the hypothesis that larger events (MW 6.5–7) have occurred on the Paganica fault [EMERGEO Working Group, 2009], whereas Lucente et al. [2010] concluded that an important migration of pore fluids characterized the preparatory phase of the L’Aquila main shock. Consequently, the MW 6.13 L’Aquila earthquake may be analogous, at a larger scale, to one of the three Campotosto largest aftershocks. The complex behavior observed for the L’Aquila-Campotosto fault system seems to be common to other seismogenic structures in the Central Apennines (e.g., the Umbria-Marche fault system), and need to be taken into consideration for the assessment of seismic hazard.
    Description: Published
    Description: B05302
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: 2009 La'Aquila sequence ; pore fluid pressure diffusion ; seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: During the last twenty years many researchers investigated ULF (Ultra-Low- Frequency) magnetic data in the hope of finding seismogenic signals. After the report of Fraser- Smith et al. (1990) several ULF stations were installed and many papers documented the observations of pre-earthquake magnetic anomalies. These claims motivate the belief that one day short-term earthquake prediction based on magnetic data may become a routine technique. Shortterm earthquake prediction has been the topic of several scientific debates but at present the entire subject remains still controversial. In order to be useful, short-term prediction requires reproducible earthquake precursors which provide information regarding intensity, location and time of the predicted earthquake together with error estimates for each parameter. Thus, a serious problem concerns the identification of reliable earthquake precursors. Recently, some researchers have given rise to a re-examination process of dubious earthquake precursors and published their findings. For example Masci (2010, 2011a), by means of global geomagnetic Kp index time-series, demonstrated that many presumed magnetic seismogenic signatures are not related to the subsequent earthquakes but are normal variations driven by the geomagnetic activity level. More precisely, as pointed out by Masci (2011a, 2012a), since the Kp index is representative of the geomagnetic field average disturbances over planetary scale, we should not expect that a good correlation between an ULF parameter of the geomagnetic field and Kp will always and everywhere exist during a long-time range. On the contrary, if a close correspondence between these changes of an ULF geomagnetic field parameter and Kp exists during a period of time, this indicates that the changes are part of normal global geomagnetic field variations driven by solar-terrestrial interactions and cannot be described as earthquake-related signals. Here, some examples of questioned earthquake precursors are reported hoping to shed light on the usefulness of the ULF magnetic measurements to study the occurrence of pre-earthquake seismogenic signals. In addition, the results of the analysis of magnetic data from the Geomagnetic Observatory of L’Aquila during the period of the 2009 L’Aquila seismic sequence are reported as well.
    Description: Published
    Description: Potenza, 20-22 novenber 2012
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: open
    Keywords: Geomagnetic field ; Magnetic anomalies ; Earthquake precursors ; Short-term earthquake prediction ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-02-24
    Description: We have acquired and processed an ∼2 km long high-resolution seismic reflection profile across a segment of the Northern Apennine mountain front (Italy), west of the city of Bologna. The profile, constrained by several wells, targets a long-postulated shallow blind or emergent thrust called the Pede-Apenninic Thrust Fault. Despite decades of reflection seismology in this part of the Apennines, a shallow or emergent structure consistent with the surface geology has yet to be definitively identified, a problem likely caused by the topography of the Apennine front and the traditional focus on deep hydrocarbon targets where the first 0.5 km of strata is poorly imaged. Our seismic data show an ∼300 m deep high-resolution picture of the Po foreland as it meets the Apennine mountain front. All imaged reflectors are continuous at the mountain front and are foreland-dipping, showing clear growth relationships; higher-angle reflectors are interpreted as faults. Our interpretation includes a possible hinterland-dipping blind thrust and surface normal faults, which offset late Pleistocene-Holocene deposits as much as 60 m (long-term slip rates of 0.1–0.25 mm/yr) that disrupt, but do not conceal, the growth strata relationships. Vp tomographic imaging also suggests coseismic surface-faulting in Holocene colluvium. These results have implications relevant for the effective data collection and processing techniques for these kinds of shallow active structures as well as a re-evaluation of the seismogenic potential of densely populated cities like Bologna along the Apennine mountain front.
    Description: Published
    Description: L16302
    Description: JCR Journal
    Description: restricted
    Keywords: Northern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS
    Publication Date: 2020-02-24
    Description: The 28th National Congress of the Gruppo Nazionale di Geofisica della Terra Solida held in Trieste in November 2009, hosted a special session dedicated to the earthquake that only six months before devastated L’Aquila and many ancient villages spread along the Aterno Valley (Abruzzo, central Italy). We resume here the main geophysical characteristics of that long seismic sequence, before introducing in brief the contents of eight papers that we have solicited amongst the thirty-seven presented in Trieste, plus other three coming from other sessions, all of them dealing with the L’Aquila earthquake.
    Description: Published
    Description: 357-365
    Description: JCR Journal
    Description: restricted
    Keywords: L’Aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
    Publication Date: 2017-04-04
    Description: To understand the source complexity of the April 6, 2009 L’Aquila earthquake (MW = 6.3), a quick seismological analysis is done on the waveforms of the mainshock and the larger aftershock that occurred on April 7, 2009. We prove that a simple waveform analysis gives useful insights into the source complexity, as soon as the seismograms are available after the earthquake occurrence, whereas the reconstruction of the rupture dynamics through the application of sophisticated techniques requires a definitely longer time. We analyzed the seismograms recorded at broadband and strong motion stations and provided firm constraints on rupture kinematics, slip distribution, and static surface deformation, also discriminating the actual fault plane. We found that two distinct rupture patches associated with different fracture propagation directions and possibly occurring on distinct rupture planes, characterized the source kinematics of the April 6 events. An initial updip propagation successively proceeds toward SE, possibly on a different plane. We also show that the same processing, applied to the April 7, 2009 aftershock (MW = 5.6), allows us to obtain useful information also in the case of lower magnitude events. Smaller events with similar location and source mechanism as the mainshock, to be used as Green’s empirical function, occur in the days before or within tens of minutes to a few hours after the mainshock. These quick, preliminary analyses can provide useful constraints for more refined studies, such as inversion of data for imaging the rupture evolution and the slip distribution on the fault plane. We suggest implementing these analyses for real, automatic or semi-automatic, investigations.
    Description: Published
    Description: 389-406
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: L'Aquila 2009 earthquake ; directivity ; seismic source ; seismogram analysis ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-24
    Description: In the present work the seismic site response of Narni ridge (Central Italy) is evaluated by comparing experimental results and numerical simulations. The inhabited village of Narni is located in central Apennines at the top of a steep massive limestone ridge. From March to September 2009 the site was instrumented with 10 weak-motion stations, 3 of which located at the base of the ridge and 7 at the top. The velocimetric network recorded 642 events of ML up to 5.3 and hypocentral distance up to about 100 km. The great amount of data are related to the April 2009 L’Aquila sequence. The site response was analyzed using both reference (standard spectral ratio, SSR) and non reference spectral techniques (horizontal to vertical spectral ratio, HVSR). Moreover directional analyses were performed in order to evaluate the influence of the ridge orientation with respect to the selected sourcesite paths. In general the experimental results show amplification factors for frequencies between 4 and 5Hz for almost all stations installed along the crest. The SSR technique provides amplification factors up to 4.5 in a direction perpendicular to the main elongation of the ridge. The results obtained from the data analyses were used as a target for bidimensional and tridimensional numerical simulations, performed using a hybrid finite-boundary element method and a boundary element method for 2D and 3D modelling, respectively. In general, the results obtained through numerical simulation fit well the experimental data in terms of range of amplified frequencies, but they underestimate by a factor of about 2 the observed amplifications.
    Description: Published
    Description: 1987-2005
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Topographical effects · Spectral analyses · Direction analyses · Vertical amplification · Numerical modelling ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-24
    Description: Series of multiple main shocks that develop on adjacent faults is a typical way in which active extension is accommodated in the Apennines of Italy. This behaviour is explained by fault interaction that occurs at a scale ranging from seconds to days, yielding a space–time clustering of earthquakes, termed as earthquake storms. We show that the seismic energy released by historical earthquakes in central Apennines is clustered into two main small time periods, around 600 and 300 years ago, during which a great portion of the normal faulting belt failed. We favour the hypothesis that clustering results from sudden input of deep fluids into the brittle upper crust. The roughly 300 years periodicity and the 3–4 mm year−1 of tectonic extension suggest that earthquake storms need to be taken into account in seismic hazard scenarios.
    Description: Published
    Description: 300–306
    Description: JCR Journal
    Description: restricted
    Keywords: Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-06-09
    Description: Experimental data and numerical modelling were used to study the effect of local geology on the seismic response of the Catania area. The town extends on a marly clays bedrock and terraced deposits made up by coastal sands and alluvial conglomerates. This sedimentary substratum is deeply entrenched by paleo-valleys filled by lava flows and pyroclastics. Available borehole data and elastic parameters were used to reconstruct a geotechnical model in order to perfome 1D numerical modeling. Seismic urban scenarios were simulated considering destructive (M w = 7.0), strong (M w = 6.2) and moderate (M w = 5.7) earthquakes to assess the shaking level of the different outcropping formations. For each scenario seven real accelerograms were selected from the European Strong Motion Database to assess the expected seismic input at the bedrock. PGA and spectral acceleration at different periods were obtained in the urban area through the equivalent linear numerical code EERA, and contour maps of different levels of shaking were drawn. Standard and horizontal-to-vertical spectral ratios were achieved making use of a dataset of 172 seismic events recorded at ten sites located on the main outcropping lithotypes. Spectral ratios inferred from earthquake data were compared with theoretical transfer functions. Both experimental and numerical results confirm the role of the geological and morphologic setting of Catania. Amplification of seismic motion mainly occurs in three different stratigraphic conditions: (a) sedimentary deposits mainly diffused in the south of the study area; (b) spots of soft sediments surrounded by lava flows; (c) intensely fractured and scoriaceous basaltic lavas.
    Description: Published
    Description: 411-439
    Description: JCR Journal
    Description: restricted
    Keywords: Scenario Earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-05-09
    Description: In this paper, we propose a new model of the crustal structure and seismotectonics for central Sicily (southern Italy) through the analysis of the depth distribution and kinematics of the instrumental seismicity, occurring during the period from 1983 to 2010, and its comparison with individual geological structures that may be active in the area. The analysed data set consists of 392 earthquakes with local magnitudes ranging from 1.0 to 4.7. We defined a new, detailed 1-D velocity model to relocate the earthquakes that occurred in central Sicily, and we calculated a Moho depth of 37 km and a mean VP/VS ratio of 1.73. The relocated seismic events are clustered mainly in the area north of Caltanissetta (e.g. Mainland Sicily) and in the northeastern sector (Madonie Mountains) of the study area; only minor and greatly dispersed seismicity is located in the western sector, near Belice, and along the southern coast, between Gela and Sciacca. The relocated hypocentral distribution depicts a bimodal pattern: 50 per cent of the events occur within the upper crust at depths less than ~16 km, 40 per cent of the events occur within the middle and depth crust, at depths between 16 and 32 km, and the remaining 10 per cent occur at subcrustal depths. The energy release pattern shows a similar depth distribution. On the basis of the kinematic analysis of 38 newly computed focal plane solutions, two major geographically distinct seismotectonic domains are distinguished: the Madonie Mountain domain, with prevalent extensional and extensional-oblique kinematics associated with upper crust Late Pliocene–Quaternary faulting, and the Mainland Sicily domain, with prevalent compressional and compressional-oblique kinematics associated with thrust faulting, at mid to deep crust depth, along the north-dipping Sicilian Basal Thrust (SBT). The stress inversion of the Mainland Sicily focal solutions integrated with neighbouring mechanisms available in the literature highlights a regional homogeneous compressional tensor, with a subhorizontal NNW–SSE-striking σ1 axis. In addition, on the basis of geodetic data, the Mainland Sicily domain may be attributed to the SSE-ward thrusting of the Mainland Sicily block along the SBT plane. Seismogenic shearing along the SBT at mid-crustal depths was responsible for the unexpected Belice 1968 earthquake (Mw 6.1), with evident implications in terms of hazard assessment.
    Description: Published
    Description: 1237-2252
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismicity and tectonics ; Continental tectonics: compressional ; Dynamics: seismotectonics ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-03-01
    Description: In this work we aim at two objects: quantifying, by a binomial-beta probabilistic model, the uncertainty involved in the assessment of the intensity decay, an ordinal quantity often incorrectly treated as real variable, and, given the finite dimension of the fault, modelling non-symmetric decays but exploiting information collected from previous studies on symmetric cases. To this end we transform the plane so that the ellipse having the fault length as maximum axis is changed into a circle with fixed diameter. We start from an explorative analysis of a set of macroseismic fields representative of the Italian seismicity among which we identify three different decay trends by applying a hierarchical clustering method. Then we focus on the exam of the seismogenic area of Etna volcano where some fault structures are well recognizable as well as the anisotropic trend of the attenuation. As in volcanic zones the seismic attenuation is much quicker than in other zones, we first shrink and then transform the plane so that the decay becomes again symmetric. Following the Bayesian paradigm we update the model parameters and associate the estimated values of the intensity at site with the corresponding locations in the original plane. Backward validation and comparison with the deterministic law are also presented.
    Description: This work was funded by the Italian Dipartimento della Protezione Civile in the frame of the 2007-2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Project V4 FLANK Volcanology.
    Description: Published
    Description: Universidad Carlos III de Madrid, Colmenarejo Campus, on July 5th-8th, 2010
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: anisotropy ; Bayesian inference ; seismic attenuation ; Etna volcano ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-11-18
    Description: This Addendum Report is given as documentation and guidelines for the use of the software implemented to simulate intensity shake maps given the parameters on the location and the intensity of an earthquake for the Etna volcano area. The software is delivered as executable codes (compiled in FORTRAN) for PC environment with some examples for training in the use. The software has to be intended as a research tool and used by expert users. There are two modules to accomplish the chain of the computation. For the presentation of final refined maps GIS tools have to be used.
    Description: This work was funded by the Italian Dipartimento della Protezione Civile in the frame of the 2007-2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Project V4 FLANK Volcanology.
    Description: Unpublished
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: anisotropy ; PRObabilistic damage SCENario ; intensity shake maps ; Etna volcano area ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2012-02-03
    Description: A station (FAGN) installed on a segment of the fault system that generated the April 2009 L’Aquila earthquakes shows larger ground motions compared to nearby stations. Spectral ratios using 304 earthquakes result in a station amplification significantly varying event by event in the frequency band 1–8 Hz. The resulting pattern of amplitude dependence on causative earthquake location reveals that the strongest (up to a factor of 10) amplifications occur for tightly clustered aftershocks aligned with the fault dip beneath FAGN thus indicating a fault‐guided effect. Fault models are investigated in a grid‐search approach by varying velocity, Q, width and depth of the fault zone. Although the problem solution is not unique and there are strong trade‐offs among the model parameters, constraints from observations yield a deep trapping structure model where the most likely values of velocity reduction, Q and damage zone width are 25%, 20, and 280 m, respectively.
    Description: Published
    Description: L24305
    Description: 3.1. Fisica dei terremoti
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: L'Aquila earthquake ; fault zone ; trapped waves ; site amplification ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: Receiver functions (RFs) analyzed at two permanent broadband seismic stations operating in the epicentral area of theMw 6.3, 2009 L’Aquila earthquake (central Italy) yield insight on crustal structure along the fault rupture. The harmonic decomposition of RFs highlights a subsurface structure in which both isotropic and anisotropic features are present. We model the waveforms using recently developed Monte Carlo methods. The retrieved models display a common depth structure, between 10 and 40 km depth, consistent with the under‐thrusting of the Adria lithosphere underneath the Apennines belt. Along the fault, in the uppermost crust, the S wave velocity structure is laterally heterogeneous. Right above the hypocenter, we find a 4–6 km thick, very high S wave velocity body (Vs as high as 4.2 km/s) that is absent in the SE portion of the fault, where the earthquake propagated. The high‐Vs body is coincident with the area of fewer aftershocks and is anticorrelated with the maximum slip patches of the earthquake, as modeled by differential interferometric synthetic aperture radar (DInSAR) and strong motion data. We interpret this high‐Vs body as a high‐strength barrier responsible for the high peak ground motion in the near field, observed in the L’Aquila city and surroundings, and for the complexity in the rupture evolution. The retrieved seismic S wave velocity of this body far exceeds common Vs values in the upper crust and it is more compatible with values observed in mafic basement rocks.
    Description: Published
    Description: B12326
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: L'Aquila earthquake ; receiver function ; S-velocity model ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. Both radon and thoron anomalies were located in areas affected by relatively deep (5e10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquakes depth and intensity can give some hints on the source of gas and/or on fault dynamics.
    Description: Published
    Description: 863-870
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: radon ; fault ; seismic hazard ; Etna ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-04
    Description: This study is focused on amplification effects observed at an on-fault station, FAGN, near L’Aquila. The difference in amplitude, compared to nearby stations, is extremely large for some particular events and neigligible for others of the same seismic sequence. FAGN is located on the S. Demetrio fault (Vezzani and Ghisetti, 1998) and the presence of the fault zone beneath the station could play a role on the observed amplifications (Davis et al., 2000; Cultrera et al., 2003; Karabulut and Bouchon, 2007). The fault-guided propagation effect is investigated through numerical modeling and analytical solutions by Ben-Zion and Aki (1990) and Ben-Zion (1998).
    Description: Published
    Description: San Francisco
    Description: 3.1. Fisica dei terremoti
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: L'Aquila earthquakes ; seismic trapped waves ; fault zone properties ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: This study focuses on a large amplification observed at the on-fault station FAGN and the modeling of the fault-guided propagation effect. FAGN is located on the S. Demetrio fault (Vezzani and Ghisetti, 1998) and the presence of the fault zone beneath the station could play a role on the observed amplifications (Davis et al., 2000; Cultrera et al., 2003; Karabulut and Bouchon, 2007). The difference in amplitude, compared to nearby stations, is extremely large for some particular events and neigligible for others of the same seismic sequence.
    Description: Published
    Description: Prato
    Description: 3.1. Fisica dei terremoti
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: L'Aquila earthquakes ; seismic trapped waves ; fault zone properties ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: In this paper, we adopt three ground-motion simulation techniques (EXSIM, Motazedian and Atkinson, 2005, DSM, Pacor et al., 2005 and HIC, Gallovič and Brokešová, 2007), with the aim of investigating the different performances in near-fault strong-motion modeling and prediction from past and future events. The test case is the 1980, M 6.9, Irpinia earthquake, the strongest event recorded in Italy. First, we simulate the recorded strong-motion data and validate the model parameters by computing spectral acceleration and peak amplitudes residual distributions. The validated model is then used to investigate the influence of site effects and to compute synthetic ground motions around the fault. Afterward, we simulate the expected ground motions from scenario events on the Irpinia fault, varying the hypocenters, the rupture velocities and the slip distributions. We compare the median ground motions and related standard deviations from all scenario events with empirical ground motion prediction equations (GMPEs). The synthetic median values are included in the median ± one standard deviation of the considered GMPEs. Synthetic peak ground accelerations show median values smaller and with a faster decay with distance than the empirical ones. The synthetics total standard deviation is of the same order or smaller than the empirical one and it shows considerable differences from one simulation technique to another. We decomposed the total standard deviation into its between-scenario and within-scenario components. The larger contribution to the total sigma comes from the latter while the former is found to be smaller and in good agreement with empirical inter-event variability.
    Description: In press
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Irpinia 1980 earthquake ; ground-motion simulation ; ground-motion variability ; scenario events ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: In questo lavoro presentiamo alcune caratteristiche della sismicità italiana degli ultimi anni. In particolare dal 2008 si è intrapreso un lavoro di raccolta analitica dei dati sismici prodotti dalla Rete Sismica Nazionale dell’Istituto Nazionale di Geofisica e Vulcanologia ed una analisi dettagliata di alcuni aspetti della sismicità emersa.
    Description: Published
    Description: Trieste
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: open
    Keywords: bollettino ; sismico ; Italia ; italian ; seismic ; bulletin ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: Reply to a Comment to a paper by Pino et al. (2009)
    Description: This is a rather unusual comment that focuses on how a specific figure was constructed rather than on actual scientific results. The figure in question (Figure 9 from Pino et al. 2009) does not even show new data or results, but is simply a summary of slip models that have been proposed in the literature for the 1908 earthquake. All models describe slip distributions from coseis- mic elevation changes except for one, derived by Pino et al. (2000) based on waveform modeling of historical seismograms.
    Description: Published
    Description: 229-231
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: 1908 earthquake ; Messina Straits ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: The representation of crustal structure in 3D numerical models often poses particular problems that are difficult to overcome. Practical implementations of an improved crustal model into efficient tools for seismic wave propagation modeling often fail to honor the strongly varying depth of the Moho discontinuity. The widely used Spectral Element Method (SEM) using hexahedral elements follows the compromise to approximate this undulating discontinuity with polynomials inside the elements. This solution is satisfactory when modeling seismic wave propagation on the global scale and limitedly to rather low frequencies, but may induce inaccuracies or artifacts when working at the continental scale, where propagation distances are in the order of a few hundred or thousand kilometers and frequencies of interest are up to 0.1 Hz. An alternative modeling tool for seismic wave propagation simulations is the Discontinuous Galerkin Finite Element Method (ADER-DG) that achieves high-order accuracy in space and time using fully unstructured tetrahedral meshes. With this approach strong and undulating discontinuities can be considered more easily by the mesh and modifications of the geometrical properties can be carried out rapidly due to an external mesh generation process. Therefore, we implement more realistic models for the European crust -- based on a new, comprehensive compilation of currently available information from diverse sources, ranging from seismic prospection to receiver functions studies -- in both, the SEM and ADER-DG codes, to study the effects of the numerical representation of crustal structures on seismic wave propagation modeling. We compare the results of the different methods and implementation strategies with respect to accuracy and performance. Clearly, an improved knowledge and detailed representation of the structure of the Earth's crust is a key requisite for better imaging of the mantle structure.
    Description: Published
    Description: San Francisco, California, USA
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: crust ; wave propagation ; ADER-DG ; SEM method ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: We investigate wave motion through numerical simulations that take into account primarily the ground acceleration in response to a given earthquake rupture that radiates seismic waves. The shaking that potential sources might cause is plotted on maps that provide a general overview of the hazard over a large area, and that can be used as the starting point for further detailed investigations. Here, we establish a procedure to compute ground motion that spans the entire frequency range of engineering interest (i.e., broad-band), and we derive the maximum shaking that is caused by expected earthquakes throughout Italy (i.e. the maximum observable shaking; MOS). Our approaches merge updated knowledge of the Italian regional tectonic setting and of source-zone definitions (Valensise and Pantosti, 2001; Basili et al., 2008) and scenario-like calculations of the expected MOS in any given area.
    Description: Agreement INGV-DPC 2007-2009 - Project S 1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard
    Description: Unpublished
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: seismogenic source ; DISS ; Maximum Observable Shaking (MOS) ; ground shaking ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: This study presents the innovative concept of maximum observable shaking (MOS) maps. Our approach makes use of the improved understanding of the Italian regional tectonic setting and uses composite seismic sources (CSS) taken from an Italian database of individual seismic sources. The CSS are merged with high-frequency scenario calculations of expected maximum shaking in a given area. For a given CSS, we consider the associated typical fault, and compute the ground shaking for a rupture model derived from its associated maximum credible earthquake. As the maximum credible earthquake and typical fault ‘float’along the CSS (i.e. the computational fault plane takes on different spatial positions), the high-frequency ground motion is computed at each point surrounding the given fault, and the maximum from the observable shaking according to that scenario is plotted on the MOS map.
    Description: Agreement INGV-DPC 2007-2009 - Project S 1: Analysis of the seismic potential in Italy for evaluation of the seismic hazard
    Description: Unpublished
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: seimogenic source ; DISS ; High-Frequency ; Maximum Observable Shaking Map (MOS) ; ground shaking ; seismic hazard ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: We examine possibilities to delineate the boundaries between near-field and far-field radiation of seismic waves. Near-field (NF), intermediate-field (IF) and far-field (FF) terms represent different properties of the seismic wave-field: the near-source motions are sensitive to the spatio-temporal details of the rupture process, while far-field terms tend to carry the overall signature of the rupture. Due to the longer propagation path of far-field waves through complex Earth structure, their waveform properties also depend more strongly on media properties (scattering; intrinsic attenuation), than it is the case for the NF-wavefield.
    Description: Agreement INGV-DPC 2007-2009 - Project S 1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard
    Description: Unpublished
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: seismogenic source ; DISS ; Near-fields boundaries ; ground motion ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-04-04
    Description: This paper describes the damage survey in the city of L’Aquila after the 6 April 2009 earthquake. The earthquake, whose magnitude and intensity reached Mw=6.3 and Imax=9–10 MCS, struck the Abruzzi region of Central Italy producing severe damage in L’Aquila and in many villages along theMiddle Aterno River valley. After the event, a building- to-building survey was performed in L’Aquila downtown aiming to collect data in order to perform a strict evaluation of the damage. The survey was carried out under the European Macroseismic Scale (EMS98) to evaluate the local macroseismic intensity. This damage survey represents the most complex application of the EMS98 in Italy since it became effective. More than 1,700 buildings (99% of the building stock) were taken into account during the survey at L’Aquila downtown, highlighting the difficult application of the macroseismic scale in a large urban context. The EMS98 revealed itself to be the best tool to perform such kind of analysis in urban settings. The complete survey displayed evidence of peculiar features in the damage distribution. Results revealed that the highest rate of collapses occurred within a delimited area of the historical centre and along the SW border of the fluvial terrace on which the city is settled. Intensity assessed for L’Aquila downtown was 8–9 EMS.
    Description: Published
    Description: 67-80
    Description: 1.11. TTC - Osservazioni e monitoraggio macrosismico del territorio nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Macroseismic intensity ; EMS98 ; Damage survey ; L’Aquila ; 6 April 2009 earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: Following the paper by Fraser-Smith et al. (1990), many scientists have focused their research on the ULF geomagnetic field pulsations in the hope of finding possible anomalous signals caused by the seismic activity. Thereafter, many papers have reported ULF geomagnetic field polarization ratio increases which have been claimed to be related to the occurrence of moderate and strong earthquakes. Even if there is no firm evidence of correlation between the polarization ratio increase and seismic events, these publications maintain that these ‘‘anomalous’’ increases are without doubt precursors of pending earthquakes. Furthermore, several researchers suggest that these seismogenic signals may be considered a promising approach towards the possibility of developing short-term earthquake prediction capabilities based on electromagnetic precursory signatures. On the contrary, a part of the scientific community emphasizes the lack of validation of claimed seismogenic anomalies and doubt their association with the seismic activity. Since earthquake prediction is a very important topic of social importance, the authenticity of earthquake precursors needs to be carefully checked. The aim of this paper is to investigate the reliability of the ULF magnetic polarization ratio changes as an earthquakes’ precursor. Several polarization ratio increases of the geomagnetic field, which previous researchers have claimed to have a seismogenic origin, are put into question by a qualitative investigation. The analysis takes into account both the temporal evolution of the geomagnetic field polarization ratio reported in previous papers, and the global geomagnetic activity behaviour. Running averages of the geomagnetic index Kp are plotted onto the original figures from previous publications. Moreover, further quantitative analyses are also reported. Here, nine cases are investigated which include 17 earthquakes. In seven cases it is shown that the suggested association between the geomagnetic field polarization ratio increases and the earthquake preparation process seems to be rather doubtful. More precisely, the claimed seismogenic polarization ratio increases are actually closely related to decreases in the geomagnetic activity level. Furthermore, the last two investigated cases seem to be doubtful as well, although a close correspondence between polarization ratio and geomagnetic activity cannot be unambiguously demonstrated.
    Description: Published
    Description: 19-32
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake precursors ; Short-term earthquake prediction ; Geomagnetic field ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-12-13
    Description: On April 6th 2009 an Mw 6.3 earthquake hit the historical city of L’Aquila (Central Italy) causing about 300 causalities, more than 39000 homeless and strong damage in the city and in the surrounding villages. L’Aquila downtown suffered Mercalli-Cancani-Sieberg (MCS; Sieberg 1930) intensity 〉 VIII. Heavy damage and collapses were concentrated in the unreinforced masonry buildings including historical churches. Starting from June 2009, the Italian Civil Defense Department promoted a microzoning study of the epicentral area, aimed at identifying, at a detailed scale, areas were local seismic amplification could occur due to the characteristics of surface geology. L’Aquila is founded on a terrace that slopes down moving in the southwest direction, and raises about 50 meters above the Aterno river bed. The terrace is formed by alluvial Quaternary breccias consisting of limestone clasts in a marly matrix. In the northern part of the city the terrace is in contact with outcropping limestone, while moving toward south, breccias are over imposed to lacustrine sediments formed mainly of silty and sandy layers and minor gravel beds. As found by boreholes, the thickness of the breccias formation ranges from tenths of meters at north to just few meters at south. The uppermost weathered part of breccias outcrops at south and is indicated as “limi rossi”. The presence of breccias and “limi rossi” in the northern and southern part of the city respectively, is well identified by collected geotechnical data. Shear wave velocity (Vs) are quite high in the northern sector and can reach values of about 1000 m/s, whereas in the southernmost part the Vs of “limi rossi” drops down to 300-400 m/s. The microzoning studies at L’Aquila evidenced the presence of low-frequency (about 0.6 Hz) amplification diffused in the historical center with high amplification factors in the southern area of the city were “limi rossi” outcrops. We here present the results of multichannel surface waves analysis (MASW) based on active and passive sources. Active methods consist of 1D linear arrays of 4.5 Hz-vertical geophones using a minigun as source. Passive methods consist of 2D arrays of seismic three-component sensors. In order to investigate the low-frequency amplification, the geometry of 2D arrays was accordingly designed, using 16 seismic stations with maximum aperture of 1 km that recorded many hours of ambient seismic noise. We deployed three 2D arrays, one in the northern part and two in the southern part of the city. The 1D linear array was dedicated to characterize the shallower part of “limi rossi”. With the aim to derive the shear wave velocity profiles, the apparent phase velocity estimated through arrays technique has been inverted through a neighborhood algorithm.
    Description: Published
    Description: Vienna
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: surface waves, array methods, L'Aquila ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-04-04
    Description: ShakeMap package uses empirical ground motion prediction equations (GM PEs) to estimate the ground motion where recorded data are not available. Recorded and estimated values are then interpolated in order to produce a shaking map associated to the considered event. Anyway GMPEs account only for average characteristics of source and wave propagation processes. Within the framework of the DPC-INGV S3 project (2007-09), we evaluate whether the inclusion of directivity effects in GMPEs (companion paper Spagnuolo et al., 2010) or the use of synthetic seismograms from finite-fault rupture models may improve the ShakeMap evaluation. An advantage of using simulated motions from kinematic rupture models is that source effects, as rupture directivity, are directly included in the synthetics. This is particularly interesting in Italy where the regional GMPEs, based on a few number of near-source records for moderate-to-large earthquakes, are not reliable for estimating ground motion in the vicinity of the source. In this work we investigated how and if the synthetic seismograms generated with finite-fault models can be used in place of (or in addition to) GMPEs within the ShakeMap methodology. We assumed a description of the rupture model with gradually increasing details, from a simple point source to a kinematic rupture history obtained from inversion of strong-motion data. According to the available information synthetic seismograms are calculated with methods that account for the different degree of approximation in source properties. We chose the M w 6.9 2008 Iwate-M iyagi (Japan) earthquake as a case study. This earthquake has been recorded by a very large number of stations and the corresponding ShakeMap relies almost totally on the recorded ground motions. Starting from this ideal case, we removed a number of stations in order to evaluate the deviations from the reference map and the sensitivity of the map to the number of stations used. The removed data are then substituted with synthetic values calculated assuming different source approximations, and the resulting maps are compared to the original ones (containing observed data only). The use of synthetic seismograms computed for finite-fault rupture models produces, in general, an improvement of the calculated ShakeMaps, especially when synthetics are used to integrate real data. When real data are not available and ShakeMap is estimated using GMPEs only, the improvement adding simulated values depends on the considered strong-motion parameters.
    Description: Published
    Description: Montpellier , France
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: Shakemaps ; synthetic seismograms ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-04-04
    Description: We review the instrumental seismicity at the boundary between the Southern and Central Apennines with the aim of detecting the active structures...
    Description: Published
    Description: 129-142
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; Southern and Central Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-04
    Description: Implementation of crustal structure challenges accuracy and efficiency of practical numerical solutions of the seismic wave equation. Extremely varying thickness of sedimentary layers and depth of Moho discontinuity create the need for finding viable compromises between speed and precision. We present a study of the influence of different numerical representations of crustal structure on synthetic seismograms. We focus our attention on the European continental scale and consider realistic models for the crust based on a new, comprehensive compilation of currently available information from diverse sources, ranging from seismic prospection to receiver function studies. We investigate different renditions of the Earth structure comparing two approaches: (i) computational meshes honoring the (laterally-varying) geometry of interfaces for a layered crust, and (ii) meshes smoothing out discontinuities of the crustal model within computational elements. The second approach results in computationally more efficient meshes, at the expense of some accuracy in the delineation of the structure, that is however known with some approximation. We compare seismograms, computed using different model discretization accuracies along 2D cross sections, to reference solutions derived from the most accurate structural representation. For the required seismic wave propagation simulations we use the Discontinuous Galerkin Finite Element Method (ADER-DG) providing high-order accuracy in space and time on unstructured meshes. With this approach strong and undulating discontinuities can be considered by the element interfaces and modifications of the geometrical properties can be carried out rapidly due to an external mesh generation process. We analyze the results of the different meshing strategies with respect to accuracy and computational effort. The analysis is based on time-frequency error measures of amplitude and phase misfits and aims at a clear definition of limits in the discretization approach of the crustal structure at the continental scale. Our results are crucial for the creation of computationally more demanding 3D tetrahedral meshes of the model of the European crust in order to understand how much structural detail has actually to be resolved to get sufficiently accurate synthetic data sets in a desired frequency band as this is essential to validate crustal models by comparisons to real seismic observations.
    Description: Published
    Description: Vienna, Austria
    Description: 3.1. Fisica dei terremoti
    Description: restricted
    Keywords: crust ; wave propagation ; ADER-DG ; misfit ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-04-04
    Description: The Fucino basin (Central Italy) is one of the largest intermountain alluvial plain in the Appennines range. It has a tectonic origin related to the presence of important systems of faults located in its northern and eastern edges. Some of these faults are still active and capable of generating strong seismic events. Site effects related to the soft soils filling the basin can be very important and efforts to model the local seismic response of the basin have been performed in the past. In this paper we show the preliminary results of a seismic network installed in the Fucino area in order to collect information about site amplification effects and geometry of the basin. We analyze ambient seismic vibrations and recordings of about 150 local earthquakes mainly related to the seismic sequence of the April 6th 2009 Mw 6.3 L’Aquila event. Moreover the strongest events of L’Aquila sequence were analyzed at the three strong-motion permanent stations operating in the area. Using standard spectral techniques we investigate the variation of resonance frequencies within the basin. The ground motion recorded in the Fucino plain is mainly characterized by strong energy at low-frequencies (f 〈 1 Hz) affecting both horizontal and vertical components. This is particularly evident for stations deployed in correspondence of very thick deposits of sedimentary filling, where a significant increase of ground-motion amplitude and duration is caused by locally generated surface waves. The amplification at low-frequencies (〈 1 Hz) on the horizontal components can reach up a factor of 10 in comparison to nearby stiff sites. However, we found evidences of seismic amplification phenomena also for stiff sites surrounding the basin, including stations of the Italian strong motion network. The independent geological information, the shallow shear-velocity profiles available for the basin can be combined with resonance frequencies of the sites for deriving representative geological sections to be used as base for future numerical 2D-3D modeling of the basin.
    Description: Published
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Fucino Basin ; Resonance frequency ; Site amplification ; Seismic monitoring ; Strong motion stations ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-04
    Description: Hayakawa et al. (2009) and Hayakawa (2011) have recently reviewed some “anomalous” ULF signatures in the geomagnetic field which previous publications have claimed to be earthquake precursors. The motivation of this review is “to offer a further support to the definite presence of those anomalies”. Here, these ULF precursors are reviewed once again. This brief communication shows that the reviewed anomalies do not “increase the credibility on the presence of electromagnetic phenomena associated with an earthquake” since these anomalous signals are actually caused by normal geomagnetic activity. Furthermore, some of these ULF precursors have just been rebutted by previous publications.
    Description: Published
    Description: 2193-2198
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: Earthquake precursors ; Short-term earthquake prediction ; Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-04
    Description: Natural radioactivity measurements represent an interesting tool to study geodynamical events or soil geophysical characteristics. In this direction we carried out, in the last years, several radionuclide monitoring both in the volcanic and tectonic areas of the oriental Sicily. In particular we report in-soil Radon investigations, in a tectonic area, including both laboratory and in-site measurements, applying three different methodologies, based on both active and passive detection systems. The active detection devices consisted of solid-state silicon detectors equipped in portable systems for short-time measurements and for long-time monitoring. The passive technique consisted of solid-state nuclear track detectors (SSNTD), CR-39 type, and allowed integrated measurements. The performances of the three methodologies were compared according to different kinds of monitoring. In general the results obtained with the three methodologies seem in agreement with each other and reflect the tectonic settings of the investigated area.
    Description: Published
    Description: 911-914
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Radionuclides ; Radon detection ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-02-25
    Description: We present rupture details of the Mw 6.3 April 6, 2009 L’Aquila earthquake derived by back‐projecting teleseismic P waves. This technique has previously been applied to large magnitude earthquakes, but this is the first application to a moderate size event. We processed vertical‐component seismograms for 60 broadband stations obtained from the Incorporated Research Institutions for Seismology (IRIS) data center. The traces were aligned and normalized using a multi‐channel cross‐correlation algorithm and 4th root stacking was used to image the rupture. We found that the L’Aquila earthquake ruptured towards the south and that a second discrete pulse of energy occurred 20–25 km east of the epicenter about 17–18 s after the nominal origin time. The spatial extent of the rupture image correlates well with a post‐seismic survey of damage in the region. Because the technique is potentially very fast (images can be produced within 20–30 minutes of the origin time), it may be useful to governmental agencies tasked with emergency response and rescue.
    Description: Published
    Description: L03301
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: L'AQUILA EARTHQUAKE ; BACK_PROJECTION ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-04
    Description: The Abruzzo earthquake on April 6 this year was surprising for several reasons. Although the historical record shows that the city of L’Aquila has suffered intensity IX or higher several times, this earthquake caused stronger shaking than any other in the area for the past 300 years. In addition, the mechanism displays clear extensional stresses in a region characterized by shortening during the Miocene and the mainshock was heralded by a foreshock swarm.
    Description: Published
    Description: 1
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: N/A or not JCR
    Description: open
    Keywords: ABRUZZO ; L'AQUILA EARTHQUAKE ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...