ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8,210)
  • American Meteorological Society  (8,210)
  • 2015-2019  (8,210)
  • Geosciences  (8,210)
Collection
  • Articles  (8,210)
Years
Year
Journal
Topic
  • 1
    Publication Date: 2019-01-01
    Description: We describe the historical evolution of the conceptualization, formulation, quantification, application, and utilization of “radiative forcing” (RF) of Earth’s climate. Basic theories of shortwave and longwave radiation were developed through the nineteenth and twentieth centuries and established the analytical framework for defining and quantifying the perturbations to Earth’s radiative energy balance by natural and anthropogenic influences. The insight that Earth’s climate could be radiatively forced by changes in carbon dioxide, first introduced in the nineteenth century, gained empirical support with sustained observations of the atmospheric concentrations of the gas beginning in 1957. Advances in laboratory and field measurements, theory, instrumentation, computational technology, data, and analysis of well-mixed greenhouse gases and the global climate system through the twentieth century enabled the development and formalism of RF; this allowed RF to be related to changes in global-mean surface temperature with the aid of increasingly sophisticated models. This in turn led to RF becoming firmly established as a principal concept in climate science by 1990. The linkage with surface temperature has proven to be the most important application of the RF concept, enabling a simple metric to evaluate the relative climate impacts of different agents. The late 1970s and 1980s saw accelerated developments in quantification, including the first assessment of the effect of the forcing due to the doubling of carbon dioxide on climate (the “Charney” report). The concept was subsequently extended to a wide variety of agents beyond well-mixed greenhouse gases (WMGHGs; carbon dioxide, methane, nitrous oxide, and halocarbons) to short-lived species such as ozone. The WMO and IPCC international assessments began the important sequence of periodic evaluations and quantifications of the forcings by natural (solar irradiance changes and stratospheric aerosols resulting from volcanic eruptions) and a growing set of anthropogenic agents (WMGHGs, ozone, aerosols, land surface changes, contrails). From the 1990s to the present, knowledge and scientific confidence in the radiative agents acting on the climate system have proliferated. The conceptual basis of RF has also evolved as both our understanding of the way radiative forcing drives climate change and the diversity of the forcing mechanisms have grown. This has led to the current situation where “effective radiative forcing” (ERF) is regarded as the preferred practical definition of radiative forcing in order to better capture the link between forcing and global-mean surface temperature change. The use of ERF, however, comes with its own attendant issues, including challenges in its diagnosis from climate models, its applications to small forcings, and blurring of the distinction between rapid climate adjustments (fast responses) and climate feedbacks; this will necessitate further elaboration of its utility in the future. Global climate model simulations of radiative perturbations by various agents have established how the forcings affect other climate variables besides temperature (e.g., precipitation). The forcing–response linkage as simulated by models, including the diversity in the spatial distribution of forcings by the different agents, has provided a practical demonstration of the effectiveness of agents in perturbing the radiative energy balance and causing climate changes. The significant advances over the past half century have established, with very high confidence, that the global-mean ERF due to human activity since preindustrial times is positive (the 2013 IPCC assessment gives a best estimate of 2.3 W m−2, with a range from 1.1 to 3.3 W m−2; 90% confidence interval). Further, except in the immediate aftermath of climatically significant volcanic eruptions, the net anthropogenic forcing dominates over natural radiative forcing mechanisms. Nevertheless, the substantial remaining uncertainty in the net anthropogenic ERF leads to large uncertainties in estimates of climate sensitivity from observations and in predicting future climate impacts. The uncertainty in the ERF arises principally from the incorporation of the rapid climate adjustments in the formulation, the well-recognized difficulties in characterizing the preindustrial state of the atmosphere, and the incomplete knowledge of the interactions of aerosols with clouds. This uncertainty impairs the quantitative evaluation of climate adaptation and mitigation pathways in the future. A grand challenge in Earth system science lies in continuing to sustain the relatively simple essence of the radiative forcing concept in a form similar to that originally devised, and at the same time improving the quantification of the forcing. This, in turn, demands an accurate, yet increasingly complex and comprehensive, accounting of the relevant processes in the climate system.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-01
    Description: Today’s global Earth system models began as simple regional models of tropospheric weather systems. Over the past century, the physical realism of the models has steadily increased, while the scope of the models has broadened to include the global troposphere and stratosphere, the ocean, the vegetated land surface, and terrestrial ice sheets. This chapter gives an approximately chronological account of the many and profound conceptual and technological advances that made today’s models possible. For brevity, we omit any discussion of the roles of chemistry and biogeochemistry, and terrestrial ice sheets.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-01
    Description: This chapter reviews the history of the discovery of cloud nuclei and their impacts on cloud microphysics and the climate system. Pioneers including John Aitken, Sir John Mason, Hilding Köhler, Christian Junge, Sean Twomey, and Kenneth Whitby laid the foundations of the field. Through their contributions and those of many others, rapid progress has been made in the last 100 years in understanding the sources, evolution, and composition of the atmospheric aerosol, the interactions of particles with atmospheric water vapor, and cloud microphysical processes. Major breakthroughs in measurement capabilities and in theoretical understanding have elucidated the characteristics of cloud condensation nuclei and ice nucleating particles and the role these play in shaping cloud microphysical properties and the formation of precipitation. Despite these advances, not all their impacts on cloud formation and evolution have been resolved. The resulting radiative forcing on the climate system due to aerosol–cloud interactions remains an unacceptably large uncertainty in future climate projections. Process-level understanding of aerosol–cloud interactions remains insufficient to support technological mitigation strategies such as intentional weather modification or geoengineering to accelerating Earth-system-wide changes in temperature and weather patterns.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-01
    Description: Over the past 100 years, the collaborative effort of the international science community, including government weather services and the media, along with the associated proliferation of environmental observations, improved scientific understanding, and growth of technology, has radically transformed weather forecasting into an effective global and regional environmental prediction capability. This chapter traces the evolution of forecasting, starting in 1919 [when the American Meteorological Society (AMS) was founded], over four eras separated by breakpoints at 1939, 1956, and 1985. The current state of forecasting could not have been achieved without essential collaboration within and among countries in pursuing the common weather and Earth-system prediction challenge. AMS itself has had a strong role in enabling this international collaboration.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-01
    Description: The year 1919 was important in meteorology, not only because it was the year that the American Meteorological Society was founded, but also for two other reasons. One of the foundational papers in extratropical cyclone structure by Jakob Bjerknes was published in 1919, leading to what is now known as the Norwegian cyclone model. Also that year, a series of meetings was held that led to the formation of organizations that promoted the international collaboration and scientific exchange required for extratropical cyclone research, which by necessity involves spatial scales spanning national borders. This chapter describes the history of scientific inquiry into the structure, evolution, and dynamics of extratropical cyclones, their constituent fronts, and their attendant jet streams and storm tracks. We refer to these phenomena collectively as the centerpiece of meteorology because of their central role in fostering meteorological research during this century. This extremely productive period in extratropical cyclone research has been possible because of 1) the need to address practical challenges of poor forecasts that had large socioeconomic consequences, 2) the intermingling of theory, observations, and diagnosis (including dynamical modeling) to provide improved physical understanding and conceptual models, and 3) strong international cooperation. Conceptual frameworks for cyclones arise from a desire to classify and understand cyclones; they include the Norwegian cyclone model and its sister the Shapiro–Keyser cyclone model. The challenge of understanding the dynamics of cyclones led to such theoretical frameworks as quasigeostrophy, baroclinic instability, semigeostrophy, and frontogenesis. The challenge of predicting explosive extratropical cyclones in particular led to new theoretical developments such as potential-vorticity thinking and downstream development. Deeper appreciation of the limits of predictability has resulted from an evolution from determinism to chaos. Last, observational insights led to detailed cyclone and frontal structure, storm tracks, and rainbands.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-01
    Description: Mountains significantly influence weather and climate on Earth, including disturbed surface winds; altered distribution of precipitation; gravity waves reaching the upper atmosphere; and modified global patterns of storms, fronts, jet streams, and climate. All of these impacts arise because Earth’s mountains penetrate deeply into the atmosphere. This penetration can be quantified by comparing mountain heights to several atmospheric reference heights such as density scale height, water vapor scale height, airflow blocking height, and the height of natural atmospheric layers. The geometry of Earth’s terrain can be analyzed quantitatively using statistical, matrix, and spectral methods. In this review, we summarize how our understanding of orographic effects has progressed over 100 years using the equations for atmospheric dynamics and thermodynamics, numerical modeling, and many clever in situ and remote sensing methods. We explore how mountains disturb the surface winds on our planet, including mountaintop winds, severe downslope winds, barrier jets, gap jets, wakes, thermally generated winds, and cold pools. We consider the variety of physical mechanisms by which mountains modify precipitation patterns in different climate zones. We discuss the vertical propagation of mountain waves through the troposphere into the stratosphere, mesosphere, and thermosphere. Finally, we look at how mountains distort the global-scale westerly winds that circle the poles and how varying ice sheets and mountain uplift and erosion over geologic time may have contributed to climate change.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-01
    Description: The stratosphere contains ~17% of Earth’s atmospheric mass, but its existence was unknown until 1902. In the following decades our knowledge grew gradually as more observations of the stratosphere were made. In 1913 the ozone layer, which protects life from harmful ultraviolet radiation, was discovered. From ozone and water vapor observations, a first basic idea of a stratospheric general circulation was put forward. Since the 1950s our knowledge of the stratosphere and mesosphere has expanded rapidly, and the importance of this region in the climate system has become clear. With more observations, several new stratospheric phenomena have been discovered: the quasi-biennial oscillation, sudden stratospheric warmings, the Southern Hemisphere ozone hole, and surface weather impacts of stratospheric variability. None of these phenomena were anticipated by theory. Advances in theory have more often than not been prompted by unexplained phenomena seen in new stratospheric observations. From the 1960s onward, the importance of dynamical processes and the coupled stratosphere–troposphere circulation was realized. Since approximately 2000, better representations of the stratosphere—and even the mesosphere—have been included in climate and weather forecasting models. We now know that in order to produce accurate seasonal weather forecasts, and to predict long-term changes in climate and the future evolution of the ozone layer, models with a well-resolved stratosphere with realistic dynamics and chemistry are necessary.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-01
    Description: Satellite meteorology is a relatively new branch of the atmospheric sciences. The field emerged in the late 1950s during the Cold War and built on the advances in rocketry after World War II. In less than 70 years, satellite observations have transformed the way scientists observe and study Earth. This paper discusses some of the key advances in our understanding of the energy and water cycles, weather forecasting, and atmospheric composition enabled by satellite observations. While progress truly has been an international achievement, in accord with a monograph observing the centennial of the American Meteorological Society, as well as limited space, the emphasis of this chapter is on the U.S. satellite effort.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-01
    Description: This chapter outlines the development of our understanding of several examples of mesoscale atmospheric circulations that are tied directly to surface forcings, starting from thermally driven variations over the ocean and progressing inland to man-made variations in temperature and roughness, and ending with forced boundary layer circulations. Examples include atmospheric responses to 1) overocean temperature variations, 2) coastlines (sea breezes), 3) mesoscale regions of inland water (lake-effect storms), and 4) variations in land-based surface usage (urban land cover). This chapter provides brief summaries of the historical evolution of, and tools for, understanding such mesoscale atmospheric circulations and their importance to the field, as well as physical processes responsible for initiating and determining their evolution. Some avenues of future research we see as critical are provided. The American Meteorological Society (AMS) has played a direct and important role in fostering the development of understanding mesoscale surface-forced circulations. The significance of AMS journal publications and conferences on this and interrelated atmospheric, oceanic, and hydrological fields, as well as those by sister scientific organizations, are demonstrated through extensive relevant citations.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-01-01
    Description: The history of over 100 years of observing the ocean is reviewed. The evolution of particular classes of ocean measurements (e.g., shipboard hydrography, moorings, and drifting floats) are summarized along with some of the discoveries and dynamical understanding they made possible. By the 1970s, isolated and “expedition” observational approaches were evolving into experimental campaigns that covered large ocean areas and addressed multiscale phenomena using diverse instrumental suites and associated modeling and analysis teams. The Mid-Ocean Dynamics Experiment (MODE) addressed mesoscale “eddies” and their interaction with larger-scale currents using new ocean modeling and experiment design techniques and a suite of developing observational methods. Following MODE, new instrument networks were established to study processes that dominated ocean behavior in different regions. The Tropical Ocean Global Atmosphere program gathered multiyear time series in the tropical Pacific to understand, and eventually predict, evolution of coupled ocean–atmosphere phenomena like El Niño–Southern Oscillation (ENSO). The World Ocean Circulation Experiment (WOCE) sought to quantify ocean transport throughout the global ocean using temperature, salinity, and other tracer measurements along with fewer direct velocity measurements with floats and moorings. Western and eastern boundary currents attracted comprehensive measurements, and various coastal regions, each with its unique scientific and societally important phenomena, became home to regional observing systems. Today, the trend toward networked observing arrays of many instrument types continues to be a productive way to understand and predict large-scale ocean phenomena.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-01-01
    Description: In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-01-01
    Description: s The history of severe thunderstorm research and forecasting over the past century has been a remarkable story involving interactions between technological development of observational and modeling capabilities, research into physical processes, and the forecasting of phenomena with the goal of reducing loss of life and property. Perhaps more so than any other field of meteorology, the relationship between researchers and forecasters has been particularly close in the severe thunderstorm domain, with both groups depending on improved observational capabilities. The advances that have been made have depended on observing systems that did not exist 100 years ago, particularly radar and upper-air systems. They have allowed scientists to observe storm behavior and structure and the environmental setting in which storms occur. This has led to improved understanding of processes, which in turn has allowed forecasters to use those same observational systems to improve forecasts. Because of the relatively rare and small-scale nature of many severe thunderstorm events, severe thunderstorm researchers have developed mobile instrumentation capabilities that have allowed them to collect high-quality observations in the vicinity of storms. Since much of the world is subject to severe thunderstorm hazards, research has taken place around the world, with the local emphasis dependent on what threats are perceived in that area, subject to the availability of resources to study the threat. Frequently, the topics of interest depend upon a single event, or a small number of events, of a particular kind that aroused public or economic interests in that area. International cooperation has been an important contributor to collecting and disseminating knowledge. As the AMS turns 100, the range of research relating to severe thunderstorms is expanding. The time scale of forecasting or projecting is increasing, with work going on to study forecasts on the seasonal to subseasonal time scales, as well as addressing how climate change may influence severe thunderstorms. With its roots in studying weather that impacts the public, severe thunderstorm research now includes significant work from the social science community, some as standalone research and some in active collaborative efforts with physical scientists. In addition, the traditional emphases of the field continue to grow. Improved radar and numerical modeling capabilities allow meteorologists to see and model details that were unobservable and not understood a half century ago. The long tradition of collecting observations in the field has led to improved quality and quantity of observations, as well as the capability to collect them in locations that were previously inaccessible. Much of that work has been driven by the gaps in understanding identified by theoretical and operational practice.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-01-01
    Description: Remarkable progress has occurred over the last 100 years in our understanding of atmospheric chemical composition, stratospheric and tropospheric chemistry, urban air pollution, acid rain, and the formation of airborne particles from gas-phase chemistry. Much of this progress was associated with the developing understanding of the formation and role of ozone and of the oxides of nitrogen, NO and NO2, in the stratosphere and troposphere. The chemistry of the stratosphere, emerging from the pioneering work of Chapman in 1931, was followed by the discovery of catalytic ozone cycles, ozone destruction by chlorofluorocarbons, and the polar ozone holes, work honored by the 1995 Nobel Prize in Chemistry awarded to Crutzen, Rowland, and Molina. Foundations for the modern understanding of tropospheric chemistry were laid in the 1950s and 1960s, stimulated by the eye-stinging smog in Los Angeles. The importance of the hydroxyl (OH) radical and its relationship to the oxides of nitrogen (NO and NO2) emerged. The chemical processes leading to acid rain were elucidated. The atmosphere contains an immense number of gas-phase organic compounds, a result of emissions from plants and animals, natural and anthropogenic combustion processes, emissions from oceans, and from the atmospheric oxidation of organics emitted into the atmosphere. Organic atmospheric particulate matter arises largely as gas-phase organic compounds undergo oxidation to yield low-volatility products that condense into the particle phase. A hundred years ago, quantitative theories of chemical reaction rates were nonexistent. Today, comprehensive computer codes are available for performing detailed calculations of chemical reaction rates and mechanisms for atmospheric reactions. Understanding the future role of atmospheric chemistry in climate change and, in turn, the impact of climate change on atmospheric chemistry, will be critical to developing effective policies to protect the planet.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-01-01
    Description: The human population on Earth has increased by a factor of 4.6 in the last 100 years and has become more centered in urban environments. This expansion and migration pattern has resulted in stresses on the environment. Meteorological applications have helped to understand and mitigate those stresses. This chapter describes several applications that enable the population to interact with the environment in more sustainable ways. The first topic treated is urbanization itself and the types of stresses exerted by population growth and its attendant growth in urban landscapes—buildings and pavement—and how they modify airflow and create a local climate. We describe environmental impacts of these changes and implications for the future. The growing population uses increasing amounts of energy. Traditional sources of energy have taxed the environment, but the increase in renewable energy has used the atmosphere and hydrosphere as its fuel. Utilizing these variable renewable resources requires meteorological information to operate electric systems efficiently and economically while providing reliable power and minimizing environmental impacts. The growing human population also pollutes the environment. Thus, understanding and modeling the transport and dispersion of atmospheric contaminants are important steps toward regulating the pollution and mitigating impacts. This chapter describes how weather information can help to make surface transportation more safe and efficient. It is explained how these applications naturally require transdisciplinary collaboration to address these challenges caused by the expanding population.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-01-01
    Description: Applied meteorology is an important and rapidly growing field. This chapter concludes the three-chapter series of this monograph describing how meteorological information can be used to serve society’s needs while at the same time advancing our understanding of the basics of the science. This chapter continues along the lines of Part II of this series by discussing ways that meteorological and climate information can help to improve the output of the agriculture and food-security sector. It also discusses how agriculture alters climate and its long-term implications. It finally pulls together several of the applications discussed by treating the food–energy–water nexus. The remaining topics of this chapter are those that are advancing rapidly with more opportunities for observation and needs for prediction. The study of space weather is advancing our understanding of how the barrage of particles from other planetary bodies in the solar system impacts Earth’s atmosphere. Our ability to predict wildland fires by coupling atmospheric and fire-behavior models is beginning to impact decision-support systems for firefighters. Last, we examine how artificial intelligence is changing the way we predict, emulate, and optimize our meteorological variables and its potential to amplify our capabilities. Many of these advances are directly due to the rapid increase in observational data and computer power. The applications reviewed in this series of chapters are not comprehensive, but they will whet the reader’s appetite for learning more about how meteorology can make a concrete impact on the world’s population by enhancing access to resources, preserving the environment, and feeding back into a better understanding how the pieces of the environmental system interact.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-01-01
    Description: Some of the advances of the past century in our understanding of the general circulation of the atmosphere are described, starting with a brief summary of some of the key developments from the first half of the twentieth century, but with a primary focus on the period beginning with the midcentury breakthrough in baroclinic instability and quasigeostrophic dynamics. In addition to baroclinic instability, topics touched upon include the following: stationary wave theory, the role played by the two-layer model, scaling arguments for the eddy heat flux, the subtlety of large-scale eddy momentum fluxes, the Eliassen–Palm flux and the transformed Eulerian mean formulation, the structure of storm tracks, and the controls on the Hadley cell.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-01-01
    Description: Over the last 100 years, boundary layer meteorology grew from the subject of mostly near-surface observations to a field encompassing diverse atmospheric boundary layers (ABLs) around the world. From the start, researchers drew from an ever-expanding set of disciplines—thermodynamics, soil and plant studies, fluid dynamics and turbulence, cloud microphysics, and aerosol studies. Research expanded upward to include the entire ABL in response to the need to know how particles and trace gases dispersed, and later how to represent the ABL in numerical models of weather and climate (starting in the 1970s–80s); taking advantage of the opportunities afforded by the development of large-eddy simulations (1970s), direct numerical simulations (1990s), and a host of instruments to sample the boundary layer in situ and remotely from the surface, the air, and space. Near-surface flux-profile relationships were developed rapidly between the 1940s and 1970s, when rapid progress shifted to the fair-weather convective boundary layer (CBL), though tropical CBL studies date back to the 1940s. In the 1980s, ABL research began to include the interaction of the ABL with the surface and clouds, the first ABL parameterization schemes emerged; and land surface and ocean surface model development blossomed. Research in subsequent decades has focused on more complex ABLs, often identified by shortcomings or uncertainties in weather and climate models, including the stable boundary layer, the Arctic boundary layer, cloudy boundary layers, and ABLs over heterogeneous surfaces (including cities). The paper closes with a brief summary, some lessons learned, and a look to the future.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-01-01
    Description: The development of the technologies of remote sensing of the ocean was initiated in the 1970s, while the ideas of observing the ocean from space were conceived in the late 1960s. The first global view from space revealed the expanse and complexity of the state of the ocean that had perplexed and inspired oceanographers ever since. This paper presents a glimpse of the vast progress made from ocean remote sensing in the past 50 years that has a profound impact on the ways we study the ocean in relation to weather and climate. The new view from space in conjunction with the deployment of an unprecedented amount of in situ observations of the ocean has led to a revolution in physical oceanography. The highlights of the achievement include the description and understanding of the global ocean circulation, the air–sea fluxes driving the coupled ocean–atmosphere system that is most prominently illustrated in the tropical oceans. The polar oceans are most sensitive to climate change with significant consequences, but owing to remoteness they were not accessible until the space age. Fundamental discoveries have been made on the evolution of the state of sea ice as well as the circulation of the ice-covered ocean. Many surprises emerged from the extraordinary accuracy and expanse of the space observations. Notable examples include the determination of the global mean sea level rise as well as the role of the deep ocean in tidal mixing and dissipation.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-30
    Description: This article describes one of the first successful examples of multisensor, multivariate land data assimilation, encompassing a large suite of soil moisture, snow depth, snow cover, and irrigation intensity environmental data records (EDRs) from the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), Advanced Scatterometer (ASCAT), Moderate-Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2), Soil Moisture Ocean Salinity (SMOS) mission, and Soil Moisture Active Passive (SMAP) mission. The analysis is performed using the NASA Land Information System (LIS) as an enabling tool for the U.S. National Climate Assessment (NCA). The performance of the NCA Land Data Assimilation System (NCA-LDAS) is evaluated by comparing it to a number of hydrological reference data products. Results indicate that multivariate assimilation provides systematic improvements in simulated soil moisture and snow depth, with marginal effects on the accuracy of simulated streamflow and evapotranspiration. An important conclusion is that across all evaluated variables, assimilation of data from increasingly more modern sensors (e.g., SMOS, SMAP, AMSR2, ASCAT) produces more skillful results than assimilation of data from older sensors (e.g., SMMR, SSM/I, AMSR-E). The evaluation also indicates the high skill of NCA-LDAS when compared with other LSM products. Further, drought indicators based on NCA-LDAS output suggest a trend of longer and more severe droughts over parts of the western United States during 1979–2015, particularly in the southwestern United States, consistent with the trends from the U.S. Drought Monitor, albeit for a shorter 2000–15 time period.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-02-01
    Description: The dynamics of a stratified oceanic bottom boundary layer (BBL) over an insulating, sloping surface depend critically on the intersection of density surfaces with the bottom. For an imposed along-slope flow, the cross-slope Ekman transport advects density surfaces and generates a near-bottom geostrophic thermal wind shear that opposes the background flow. A limiting case occurs when a momentum balance is achieved between the Coriolis force and a restoring buoyancy force in response to the displacement of stratified fluid over the slope: this is known as Ekman arrest. However, the turbulent characteristics that accompany this adjustment have received less attention. We present two estimates to characterize the state of the BBL based on the mixed layer thickness: Ha and HL. The former characterizes the steady Ekman arrested state, and the latter characterizes a relaminarized state. The derivation of HL makes use of a newly defined slope Obukhov length Ls that characterizes the relative importance of shear production and cross-slope buoyancy advection. The value of Ha can be combined with the temporally evolving depth of the mixed layer H to form a nondimensional variable H/Ha that provides a similarity prediction of the BBL evolution across different turbulent regimes. The length scale Ls can also be used to obtain an expression for the wall stress when the BBL relaminarizes. We validate these relationships using output from a suite of three-dimensional large-eddy simulations. We conclude that the BBL reaches the relaminarized state before the steady Ekman arrested state. Calculating H/Ha and H/HL from measurements will provide information on the stage of oceanic BBL development being observed. These diagnostics may also help to improve numerical parameterizations of stratified BBL dynamics over sloping topography.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-02-01
    Description: The Lagrangian motion in the eddy field produced from an unstable retrograde jet along the shelf break is studied from idealized numerical experiments with a primitive equation model. The jet is initially in thermal wind balance with a cross-isobath density gradient and is not subjected to any atmospheric forcing. Over the course of the model integration, the jet becomes unstable and produces a quasi-stationary eddy field over a 2-month period. During this period, the cross-slope flow at the shelf break is characterized by along-slope correlation scales of O(10) km and temporal correlation scales of a few days. The relative dispersion of parcels across isobaths is found to increase with time as tb, where 1 〈 b 〈 2. This mixed diffusive–ballistic regime appears to reflect the combined effects of (i) the short length scales of velocity correlation at the shelf break and (ii) the seaward excursion of monopolar and dipolar vortices. Cross-slope dispersion is greater offshore of the front than inshore of the front, as offshore parcels are both subducted onshore below density surfaces and translated offshore with eddies. Nonetheless, the exchange of parcels across the jet remains very limited on the monthly time scale. Particles originating from the bottom experience upward displacements of a few tens of meters and seaward displacements of O(100) km, suggesting that the eddy activity engendered by an unstable along-slope jet provides another mechanism for bottom boundary layer detachment near the shelf edge.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-02-01
    Description: Relationships between the Madden–Julian oscillation (MJO) and the extratropical circulation have been studied extensively and applied in operational settings to improve subseasonal prediction. However, in certain situations, tropical cyclones (TCs), which often coincide with enhanced MJO activity, can interfere with MJO organization and common pathways through which the extratropics respond to the MJO, yielding unexpected extratropical circulation outcomes. A statistical experiment is developed to assess the extent to which the presence of west Pacific TCs in different parts of the basin during a given MJO phase are related to subsequent remote extratropical circulation outcomes and whether these outcomes can be explained by random chance. Results demonstrate that significant, high-amplitude remote circulation anomalies that align with or differ from those expected to lag a given MJO phase tend to develop in association with TCs that cluster in specific parts of the basin and at specific leads—in some cases, more than 2 weeks before a pattern emerges. These spatial and temporal clusters vary between MJO phases. Next, composite patterns of anomalous 200-hPa geopotential height associated with a set of nonrecurving TCs transiting the South China Sea during real-time multivariate MJO (RMM) phase 5 are examined relative to their full RMM phase-5 reference patterns. While both sets of patterns exhibit high correlation at early time lags, they quickly evolve out of phase with one another. It is suggested that the TCs featured in the TC-based composite contribute to this observed phase shift by modulating the RMM phase-5 extratropical response pathway.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-03-01
    Description: Measurements of vertical profiles of areal-mean mass divergence, vorticity, and vertical velocity, based on dropsondes distributed over an area of 25 000 km2, are presented. The dropsondes were released with high frequency along circular flight patterns during an airborne field campaign taking place over the tropical Atlantic near Barbados. Vertical profiles of the area-averaged mass divergence and vorticity were computed from the horizontal wind profiles, and the area-averaged vertical velocity was then inferred from the divergence. The consistency of measurements over pairs of circles flown within the same air mass demonstrated the reproducibility of the measurements, and showed that they characterize the environmental conditions on the scale of the measurement, rather than being dominated by measurement error or small-scale wind variability. The estimates from dropsondes were found to be consistent with the observed cloud field, with Lagrangian estimates of the mean vertical velocity inferred from the free-tropospheric humidity field, and with the mean vertical velocity derived from simulations using an atmospheric model representing kilometer-scale motions and initialized with meteorological analyses. In trade wind–like conditions, the divergence and vorticity profiles exhibit a rich vertical structure and a significant variability in space and time. Yet a few features appear to be robust, such as the presence of layers of mass convergence at the top of moist layers, extrema of the area-averaged vertical velocity at the top of the subcloud layer and in the midtroposphere, and minima around the trade inversion near 2 km. The analysis of spatial and temporal autocorrelation scales suggests that the divergent mass field measured from dropsondes is representative of the environment of shallow clouds.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-03-01
    Description: Entrainment is critical to the development of the atmospheric convective boundary layer (CBL), but little is known about how entrainment is impacted by the aerosol radiative effect. An aerosol radiation transfer model is used in conjunction with large-eddy simulation (LES) to quantify the impact of aerosol shortwave radiative heating on entrainment and thermodynamics of an idealized dry CBL under aerosol-loading conditions. An entrainment equation is derived within the framework of a zero-order model (ZOM) with the aerosol radiative heating effect included; the equation is then examined against the LES outputs for varying aerosol optical depths (AODs) and free-atmosphere stratification scenarios. The results show that the heat flux profiles become more nonlinear in shape as compared to the case of the clean (no aerosol pollution) CBL, with the degree of nonlinearity being highly dependent on the AOD of the layer for the given type of radiation-absorbing aerosols. As AOD increases, less solar radiation reaches the surface and thus the surface heat flux becomes smaller, and both actual (LES) and ZOM-derived entrainment flux ratios decrease. This trend is opposite to the clean CBL where the LES-predicted flux ratios show an increasing trend with diminishing surface heat flux, while the ZOM-calculated flux ratio remains constant. The modified dimensionless entrainment rate closely follows the −1 power law with a modified Richardson number. The study suggests that including the aerosol radiative effect may improve numerical air quality predictions for heavy-air-pollution events.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-01-31
    Description: This article presents a decadal transition from a decreasing trend to an increasing trend in the late 1990s for autumn rainfall in central China. The atmospheric and oceanic background underlying this regime shift is also addressed. Accompanying the above decadal transition, the moisture convergence and ascending motion averaged in central China both switch from a weakening trend to a strengthening trend. Meanwhile, after the late 1990s, the declining of the Asian sea level pressure (SLP) and the deepening of the Lake Balkhash trough may induce more cold air from high latitudes to break out southward. The strengthening of the low-level southerly in East Asia could transport more moisture northward from low latitudes. More cold air and more warm-moist airflow encountering in the targeted region contribute to the increasing trend of local rainfall. The situation before the late 1990s is generally reversed, which accounts for the decreasing trend of autumn rainfall. The movement of the East Asian jet (EAJ) from southward to northward also has a contribution via its influence on dynamic condition. Additionally, changes in the sea surface temperatures (SSTs) in the western Indian and Atlantic Oceans from a cooling trend to a warming trend in the late 1990s play significant roles through their modulations on moisture transport and cold-air activities.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-02-08
    Description: Recent concurrent shifts of the East Asian polar-front jet (EAPJ) and the East Asian subtropical jet (EASJ) in the boreal winter have raised concerns, since they could result in severe weather events over East Asia. However, the possible mechanisms are not fully understood. In this study, the roles of the interdecadal Pacific oscillation (IPO) and the Atlantic multidecadal oscillation (AMO) are investigated by analyzing reanalysis data and model simulations. Results show that combinations of opposite phases of the IPO and AMO can result in significant shifts of the two jets during 1920–2014. This relationship is particularly evident during 1999–2014 and 1979–98 in the reanalysis data. A combination of a negative phase of the IPO (−IPO) and a positive phase of the AMO (+AMO) since the late 1990s has enhanced the meridional temperature gradient and the Eady growth rate and thus westerlies over the region between the two jets, but weakened them to the south and north of the region, thereby contributing to the equatorward and poleward shifts of the EAPJ and EASJ, respectively. Atmospheric model simulations are further used to investigate the relative contribution of −IPO and +AMO to the jet shifts. The model simulations show that the combination of −IPO and +AMO favors the recent jet changes more than the individual −IPO or +AMO. Under a concurrent −IPO and +AMO, the meridional eddy transport of zonal momentum and sensitive heat strengthens, and more mean available potential energy converts to the eddy available potential energy over the region between the two jets, which enhances westerly winds there.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-03-20
    Description: Various forcing and feedback processes coexist in the tropical Pacific, which can modulate El Niño–Southern Oscillation (ENSO). In particular, large covariabilities in chlorophyll (Chl) and freshwater flux (FWF) at the sea surface are observed during ENSO cycles, acting to execute feedbacks on ENSO through the related ocean-biology-induced heating (OBH) and FWF forcing, respectively. At present, the related effects and underlying mechanism are strongly model dependent and are still not well understood. Here, a new hybrid coupled model (HCM), developed to represent interactions between the atmosphere and ocean physics–biology (AOPB) in the tropical Pacific, is used to examine the extent to which ENSO can be modulated by interannually covarying anomalies of FWF and Chl. HCM AOPB–based sensitivity experiments indicate that individually the FWF forcing tends to amplify ENSO via its influence on the stratification and vertical mixing in the upper ocean, whereas the OBH feedback tends to damp it. While the FWF- and OBH-related individual effects tend to counteract each other, their combined effects give rise to unexpected situations. For example, an increase in the FWF forcing intensity actually acts to decrease the ENSO amplitude when the OBH feedback effects coexist at a certain intensity. The nonlinear modulation of the ENSO amplitude can happen when the FWF-related amplifying effects on ENSO are compensated for by OBH-related damping effects. The results offer insight into modulating effects on ENSO, which are evident in nature and different climate models.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-04-22
    Description: The relative roles of buoy and Argo observations in two sea surface temperature (SST) analyses are studied in the global ocean and tropical Pacific Ocean over 2000–16 using monthly Extended Reconstructed SST version 5 (ERSSTv5) and Daily Optimum Interpolation SST version 2 (DOISST). Experiments show an overall higher impact by buoys than Argo floats over the global oceans and an increasing impact by Argo floats. The impact by Argo floats is generally larger in the Southern Hemisphere than in the Northern Hemisphere. The impact on trends and anomalies of globally averaged SST by either one is small when the other is used. The warming trend over 2000–16 remains significant by including either buoys or Argo floats or both. In the tropical Pacific, the impact by buoys was large over 2000–05 when the number of Argo floats was low, and became smaller over 2010–16 when the number and area coverage of Argo floats increased. The magnitude of El Niño and La Niña events decreases when the observations from buoys, Argo floats, or both are excluded. The impact by the Tropical Atmosphere Ocean (TAO) and Triangle Trans-Ocean Buoy Network (TRITON) is small in normal years and during El Niño events. The impact by TAO/TRITON buoys on La Niña events is small when Argo floats are included in the analysis systems, and large when Argo floats are not included. The reason for the different impact on El Niño and La Niña events is that the drifting buoys are more dispersed from the equatorial Pacific region by stronger trade winds during La Niña events.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-02-06
    Description: Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-01-23
    Description: Storm-centered IR brightness temperature imagery was used to create 6-h IR brightness temperature difference fields for all Atlantic basin tropical cyclones from 1982 to 2017. Pulses of colder cloud tops were defined objectively by determining critical thresholds for the magnitude of the IR differences, areal coverage of cold-cloud tops, and longevity. Long-lived cooling pulses (≥9 h) were present on 45% of days overall, occurring on 80% of major hurricane days, 64% of minor hurricane days, 46% of tropical storm days, and 24% of tropical depression days. These cooling pulses propagated outward between 8 and 14 m s−1. Short-lived cooling pulses (3–6 h) were found 26.4% of the time. Some days without cooling pulses had events of the opposite sign, which were labeled warming pulses. Long-lived warming pulses occurred 8.5% of the time and propagated outward at the same speed as their cooling pulse counterparts. Only 12.2% of days had no pulses that met the criteria, indicating that pulsing is nearly ubiquitous in tropical cyclones. The environment prior to outward propagation of cooling pulses differed from warming pulse and no pulse days by having more favorable conditions between 0000 and 0300 LT for enhanced inner-core convection: higher SST and ocean heat content, more moisture throughout the troposphere, and stronger low-level vorticity and upper-level divergence.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-02-04
    Description: The sharp decline of Arctic sea ice in recent decades has captured the attention of the climate science community. A majority of climate analyses performed to date have used monthly or seasonal data. Here, however, we analyze daily sea ice data for 1979–2016 using the self-organizing map (SOM) method to further examine and quantify the contributions of atmospheric circulation changes to the melt-season Arctic sea ice variability. Our results reveal two main variability modes: the Pacific sector mode and the Barents and Kara Seas mode, which together explain about two-thirds of the melt-season Arctic sea ice variability and more than 40% of its trend for the study period. The change in the frequencies of the two modes appears to be associated with the phase shift of the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO). The PDO and AMO trigger anomalous atmospheric circulations, in particular, the Greenland high and the North Atlantic Oscillation and anomalous warm and cold air advections into the Arctic Ocean. The changes in surface air temperature, lower-atmosphere moisture, and downwelling longwave radiation associated with the advection are consistent with the melt-season sea ice anomalies observed in various regions of the Arctic Ocean. These results help better understand the predictability of Arctic sea ice on multiple (synoptic, intraseasonal, and interannual) time scales.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-02-01
    Description: The rapidly warming Arctic is experiencing permafrost degradation and shrub expansion. Future climate projections show a clear increase in mean annual temperature and increasing precipitation in the Arctic; however, the impact of these changes on hydrological cycling in Arctic headwater basins is poorly understood. This study investigates the impact of climate change, as represented by simulations using a high-resolution atmospheric model under a pseudo-global-warming configuration, and projected changes in vegetation, using a spatially distributed and physically based Arctic hydrological model, on a small headwater basin at the tundra–taiga transition in northwestern Canada. Climate projections under the RCP8.5 emission scenario show a 6.1°C warming, a 38% increase in annual precipitation, and a 19 W m−2 increase in all-wave annual irradiance over the twenty-first century. Hydrological modeling results suggest a shift in hydrological processes with maximum peak snow accumulation increasing by 70%, snow-cover duration shortening by 26 days, active layer deepening by 0.25 m, evapotranspiration increasing by 18%, and sublimation decreasing by 9%. This results in an intensification of the hydrological regime by doubling discharge volume, a 130% increase in spring runoff, and earlier and larger peak streamflow. Most hydrological changes were found to be driven by climate change; however, increasing vegetation cover and density reduced blowing snow redistribution and sublimation, and increased evaporation from intercepted rainfall. This study provides the first detailed investigation of projected changes in climate and vegetation on the hydrology of an Arctic headwater basin, and so it is expected to help inform larger-scale climate impact studies in the Arctic.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-03-01
    Description: The detection and attribution of changes in precipitation characteristics relies on dense networks of rain gauges. In the United States, the COOP network is widely used for such studies even though there are reported inconsistencies due to changes in instruments and location, inadequate maintenance, dissimilar observation time, and the fact that measurements are made by a group of dedicated volunteers. Alternately, the Long-Term Agroecosystem Research (LTAR) network has been consistently and professionally measuring precipitation since the early 1930s. The purpose of this study is to compare changes in extreme daily precipitation characteristics during the warm season using paired rain gauges from the LTAR and COOP networks. The comparison, done at 12 LTAR sites located across the United States, shows underestimation and overestimation of daily precipitation totals at the COOP sites compared to the reference LTAR observations. However, the magnitude and direction of the differences are not linked to the underlying precipitation climatology of the sites. Precipitation indices that focus on extreme precipitation characteristics match closely between the two networks at most of the sites. Our results show consistency between the COOP and LTAR networks with precipitation extremes. It also indicates that despite the discrepancies at the daily time steps, the extreme precipitation observed by COOP rain gauges can be reliably used to characterize changes in the hydrologic cycle due to natural and human causes.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-02-01
    Description: A simple multilayer zonally symmetric model, using a multicloud convective parameterization and coupled to a dynamical bulk atmospheric boundary layer, is used here to simulate boreal summer intraseasonal oscillations (BSISO) in the summer monsoon trough and elucidate the underlying main physical mechanisms responsible for their initiation, propagation, and termination. Northward-moving precipitating events initiated near the equator propagate northward at roughly 1° day−1 and terminate near 20°N. Unlike earlier findings, the northward propagation of precipitation anomalies in this model is due to the propagation of positive moisture anomalies in the northward direction, resulting from an asymmetry in the meridional velocity induced by the beta effect. From a moisture-budget perspective, advection constitutes a biased intrusion of dry air into the convection center, forcing new convection events to form north of the wave disturbance, while moisture convergence supplies the precipitation sink. The BSISO events are initiated near the equator when the competing effects between first-baroclinic divergence and second-baroclinic convergence, induced by the descending branch of the Hadley cell and in situ congestus heating, respectively, become favorable to convective intensification. The termination often near 20°N and halfway stalling of these precipitating events occur when the asymmetry in the first-baroclinic meridional winds weakens and when the negative moisture gradient to the north of the convection center becomes too strong as the anomaly exits the imposed warm pool domain.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-01-01
    Description: This study examines the primary atmospheric controls over winter precipitation variability in the Great Lakes basin and the potential for seasonal prediction. We employ partial least squares (PLS) regression to identify the primary modes of joint variability between winter precipitation over each of the Great Lakes and concurrent anomalies in midlevel atmospheric flow. We find that the first identified pattern (PLS1) is related to El Niño–Southern Oscillation (ENSO), while the other patterns represent unique anomalies in atmospheric flow that govern precipitation gradients over the basin, with limited seasonal predictability. Nonlinearities are found in the relationship between a sea surface temperature (SST)-based index for ENSO and PLS1 with respect to the phase, strength, and type of ENSO event. An examination of the ENSO-related propagating wave train that drives variability of PLS1 precipitation reveals that seasonally lagged tropical Pacific convection, as measured by remotely sensed outgoing longwave radiation (OLR), is more strongly and linearly related to Great Lakes winter precipitation than SST-based ENSO indices. Cross-validated linear regressions based on October OLR signals explain 20%–32% of the out-of-sample precipitation variability in the Great Lakes basin. We conclude with a deeper assessment of the underlying relationship between patterns of OLR anomalies in the western equatorial Pacific and Great Lakes winter precipitation. Results show that precipitation response to El Niño is similar regardless of OLR intensity in the tropical Pacific, but for La Niña events, the precipitation response is stronger under weak tropical OLR anomalies. The potential for further improvements in ENSO-based seasonal forecasts are discussed.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-02-01
    Description: The passage of the Madden–Julian oscillation (MJO) over the Indian Ocean and the Maritime Continent is investigated during the episode of 23–30 November 2011. A Meso-NH convection-permitting simulation with a horizontal grid spacing of 4 km is examined. The simulation reproduces the MJO signal correctly, showing the eastward propagation of the primary rain activity. The atmospheric overturning is analyzed using the isentropic method, which separates the ascending air with high equivalent potential temperature from the subsiding air with low equivalent potential temperature. Three key circulations are found. The first two circulations are a tropospheric deep circulation spanning from the surface to an altitude of 14 km and an overshoot circulation within the tropical tropopause layer. As expected for circulations associated with deep convection, their intensities, as well as their diabatic tendencies, increase during the active phase of the MJO, while their entrainment rates decrease. The third circulation is characterized by a rising of air with low equivalent potential temperature in the lower free troposphere. The intensity of the circulation, as well as its depth, varies with the MJO activity. During the suppressed phase, this circulation is associated with a dry air intrusion from the subtropical region into the tropical band and shows a strong drying of the lower to middle troposphere.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-02-07
    Description: We assess the vertical distribution of radiative heating rates (RHRs) in climate models using a multimodel experiment and A-Train satellite observations, for the first time. As RHRs rely on the representation of cloud amount and properties, we first compare the modeled vertical distribution of clouds directly against lidar–radar combined cloud observations (i.e., without simulators). On a near-global scale (50°S–50°N), two systematic differences arise: an excess of high-level clouds around 200 hPa in the tropics, and a general lack of mid- and low-level clouds compared to the observations. Then, using RHR profiles calculated with constraints from A-Train and reanalysis data, along with their associated maximum uncertainty estimates, we show that the excess clouds and ice water content in the upper troposphere result in excess infrared heating in the vicinity of and below the clouds as well as a lack of solar heating below the clouds. In the lower troposphere, the smaller cloud amount and the underestimation of cloud-top height is coincident with a shift of the infrared cooling to lower levels, substantially reducing the greenhouse effect, which is slightly compensated by an erroneous excess absorption of solar radiation. Clear-sky RHR differences between the observations and the models mitigate cloudy RHR biases in the low levels while they enhance them in the high levels. Finally, our results indicate that a better agreement between observed and modeled cloud profiles could substantially improve the RHR profiles. However, more work is needed to precisely quantify modeled cloud errors and their subsequent effect on RHRs.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-03-01
    Description: Forecast uncertainty associated with the prediction of snowfall amounts is a complex superposition of the uncertainty about precipitation amounts and the uncertainty about weather variables like temperature that influence the snow-forming process. In situations with heavy precipitation, parametric, regression-based postprocessing approaches often perform very well since they can extrapolate relations between forecast and observed precipitation amounts established with data from more common events. The complexity of the relation between temperature and snowfall amounts, on the other hand, makes nonparametric techniques like the analog method an attractive choice. In this article we show how these two different methodologies can be combined in a way that leverages the respective advantages. Predictive distributions of precipitation amounts are obtained using a heteroscedastic regression approach based on censored, shifted gamma distributions, and quantile forecasts derived from them are used together with ensemble forecasts of temperature to find analog dates where both quantities were similar. The observed snowfall amounts on these dates are then used to compose an ensemble that represents the uncertainty about future snowfall. We demonstrate this approach with reforecast data from the Global Ensemble Forecast System (GEFS) and snowfall analyses from the National Operational Hydrologic Remote Sensing Center (NOHRSC) over an area within the northeastern United States and an area within the U.S. mountain states.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-02-05
    Description: Low-latitude rainfall variability on the daily to intraseasonal time scale is often related to tropical waves, including convectively coupled equatorial waves, the Madden–Julian oscillation (MJO), and tropical disturbances (TDs). Despite the importance of rainfall variability for vulnerable societies in tropical Africa, the relative influence of tropical waves for this region is largely unknown. This article presents the first systematic comparison of the impact of six wave types on precipitation over northern tropical Africa during the transition and full monsoon seasons, using two satellite products and a dense rain gauge network. Composites of rainfall anomalies in the different datasets show comparable modulation intensities in the West Sahel and at the Guinea Coast, varying from less than 2 to above 7 mm day−1 depending on the wave type. African easterly waves (AEWs) and Kelvin waves dominate the 3-hourly to daily time scale and explain 10%–30% locally. On longer time scales (7–20 days), only the MJO and equatorial Rossby (ER) waves remain as modulating factors and explain about up to one-third of rainfall variability. Eastward inertio-gravity waves and mixed Rossby–gravity (MRG) waves are comparatively unimportant. An analysis of wave superposition shows that low-frequency waves (MJO, ER) in their wet phase amplify the activity of high-frequency waves (TD, MRG) and suppress them in the dry phase. The results stress that more attention should be paid to tropical waves when forecasting rainfall over northern tropical Africa.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-02-01
    Description: Shallow convection is a subgrid process in cloud-resolving models for which their grid box is larger than the size of small cumulus clouds (Cu). At the same time such Cu substantially affect radiation properties and thermodynamic parameters of the low atmosphere. The main microphysical parameters used for calculation of radiative properties of Cu in cloud-resolving models are liquid water content (LWC), effective droplet radius, and cloud fraction (CF). In this study, these parameters of fields of small, warm Cu are calculated using large-eddy simulations (LESs) performed using the System for Atmospheric Modeling (SAM) with spectral bin microphysics. Despite the complexity of microphysical processes, several fundamental properties of Cu were found. First, despite the high variability of LWC and droplet concentration within clouds and between different clouds, the volume mean and effective radii per specific level vary only slightly. Second, the values of effective radius are close to those forming during adiabatic ascent of air parcels from cloud base. These findings allow for characterization of a cloud field by specific vertical profiles of effective radius and of mean liquid water content, which can be calculated using the theoretical profile of adiabatic liquid water content and the droplet concentration at cloud base. Using the results of these LESs, a simple parameterization of cloud-field-averaged vertical profiles of effective radius and of liquid water content is proposed for different aerosol and thermodynamic conditions. These profiles can be used for calculation of radiation properties of Cu fields in large-scale models. The role of adiabatic processes in the formation of microstructure of Cu is discussed.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-01-30
    Description: An objective mapping exercise simulating observations of temperature in the North Atlantic Ocean was used to assess the resolution capabilities of ocean acoustic tomography in combination with Argo floats. A set of basis functions for a basinwide area was obtained from a singular value decomposition of a covariance derived from an ocean state estimate. As demonstrated by the formal uncertainty estimates from the objective maps, Argo and tomography are complementary measurements. In several examples, each separately obtained uncertainty for determining large-scale monthly average temperature of about 50% of prior (resolved 75% of variance), while when both data were employed, uncertainties were reduced to about 25% of prior (resolved 94% of variance). Possible tomography configurations range from arrays that span specific regions to line arrays that supplement existing observations to arrays that span the Atlantic basin. A basinwide array consisting of two acoustic sources and seven receivers can be used to significantly reduce the uncertainties of estimated broad-scale temperature. An optimal observing system study would comprise simulated measurements in combination with data assimilation techniques and numerical ocean modeling. This objective map study, however, showed that the addition of tomography to the existing observing system could substantially reduce the uncertainties for estimated large-scale temperature. To the extent that tomography offers a 50% reduction in uncertainty at a fraction of the cost of the Argo program, it is a cost-effective contribution to the ocean observing system.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-01-01
    Description: A network of automated weather stations (AWS) with ceilometers can be used to detect sky conditions, aerosol dispersion, and mixing layer heights, in addition to the routine surface meteorological parameters (temperature, pressure, humidity, etc.). Currently, a dense network of AWSs that observe all of these parameters does not exist in the United States even though networks of them with ceilometers exist. These networks normally use ceilometers for determining only sky conditions. Updating AWS networks to obtain those nonstandard observations with ceilometers, especially mixing layer height, across the United States would provide valuable information for validating and improving weather/climate forecast models. In this respect, an aerosol-based mixing layer height detection method, called the combined-hybrid method, is developed and evaluated for its uncertainty characteristics for application in the United States. Four years of ceilometer data from the National Weather Service Ceilometer Proof of Concept Project taken in temperate, maritime polar, and hot/arid climate regimes are utilized in this evaluation. Overall, the method proved to be a strong candidate for estimating mixing layer heights with ceilometer data, with averaged uncertainties of 237 ± 398 m in all tested climate regimes and 69 ± 250 m when excluding the hot/arid climate regime.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-02-01
    Description: Data assimilation has been successfully used for meteorology for many years and is now used more and more for atmospheric composition issues (air quality analysis and forecast). The data assimilation of pollutants remains difficult and its deployment is currently in progress. It is thus difficult to have quantitative knowledge of what we can expect as the maximum benefit. In this study we propose a simple framework to make this quantification. In this first part, the gain of data assimilation is quantified using academic but realistic test cases over an urbanized polluted area and during a summertime period favorable to ozone formation. Different data assimilation configurations are tested, corresponding to different amounts of data available for assimilation. For ozone (O3) and nitrogen dioxide (NO2), it is shown that the benefit resulting from data assimilation lasts from a few hours to a possible maximum of 60 and 21 h, respectively. Maps of the number of hours are presented, spatializing the benefit of data assimilation.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-01-01
    Description: The stability and accuracy of weather radar reflectivity calibration are imperative for quantitative applications, such as rainfall estimation, severe weather monitoring and nowcasting, and assimilation in numerical weather prediction models. Various radar calibration and monitoring techniques have been developed, but only recently have integrated approaches been proposed, that is, using different calibration techniques in combination. In this paper the following three techniques are used: 1) ground clutter monitoring, 2) comparisons with spaceborne radars, and 3) the self-consistency of polarimetric variables. These techniques are applied to a C-band polarimetric radar (CPOL) located in the Australian tropics since 1998. The ground clutter monitoring technique is applied to each radar volumetric scan and provides a means to reliably detect changes in calibration, relative to a baseline. It is remarkably stable to within a standard deviation of 0.1 dB. To obtain an absolute calibration value, CPOL observations are compared to spaceborne radars on board TRMM and GPM using a volume-matching technique. Using an iterative procedure and stable calibration periods identified by the ground echoes technique, we improve the accuracy of this technique to about 1 dB. Finally, we review the self-consistency technique and constrain its assumptions using results from the hybrid TRMM–GPM and ground echo technique. Small changes in the self-consistency parameterization can lead to 5 dB of variation in the reflectivity calibration. We find that the drop-shape model of Brandes et al. with a standard deviation of the canting angle of 12° best matches our dataset.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-01-01
    Description: Strong in-cloud electric fields align ice particles that can be observed with polarization diversity radars. Radar data collected in the simultaneous transmission mode, wherein horizontally and vertically polarized waves are simultaneously transmitted and received (SHV), and in a mode whereby a single-polarization wave is transmitted and dual (orthogonal)-polarization waves are received simultaneously [linear depolarization (LDR) mode] are analyzed. The necessary time delay between the SHV and LDR modes for our radar was about 1–4 min. The data show that the areas of canted crystals from the LDR mode are larger than those from the SHV mode, thereby indicating that the LDR mode is more sensitive to canted ice cloud particles than the SHV mode. The data also demonstrate that the differential phase and correlation coefficient in the LDR mode are indicative of canted cloud crystals and that these variables often are more sensitive to canted crystals than the linear depolarization ratio studied earlier. Rapidly scanning radars such as those with a phased array antenna could operate sequentially in the SHV and LDR modes and thus better detect cloud volumes characterized by enhanced electric fields.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-01-01
    Description: Artificial neural networks (ANNs) applied to nonlinear wave ensemble averaging are developed and studied for Gulf of Mexico simulations. It is an approach that expands the conservative arithmetic ensemble mean (EM) from the NCEP Global Wave Ensemble Forecast System (GWES) to a nonlinear mapping that better captures the differences among the ensemble members and reduces the systematic and scatter errors of the forecasts. The ANNs have the 20 members of the GWES as input, and outputs are trained using observations from six buoys. The variables selected for the study are the 10-m wind speed (U10), significant wave height (Hs), and peak period (Tp) for the year of 2016. ANNs were built with one hidden layer using a hyperbolic tangent basis function. Several architectures with 12 different combinations of neurons, eight different filtering windows (time domain), and 100 seeds for the random initialization were studied and constructed for specific forecast days from 0 to 10. The results show that a small number of neurons are sufficient to reduce the bias, while 35–50 neurons produce the greatest reduction in both the scatter and systematic errors. The main advantage of the methodology using ANNs is not on short-range forecasts but at longer forecast ranges beyond 4 days. The nonlinear ensemble averaging using ANNs was able to improve the correlation coefficient on forecast day 10 from 0.39 to 0.61 for U10, from 0.50 to 0.76 for Hs, and from 0.38 to 0.63 for Tp, representing a gain of five forecast days when compared to the EM currently implemented.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-01-01
    Description: A nonlinear empirical method, called the generalized regression neural network with the fruit fly optimization algorithm (FOAGRNN), is proposed to estimate subsurface salinity profiles from sea surface parameters in the Pacific Ocean. The purpose is to evaluate the ability of the FOAGRNN methodology and satellite salinity data to reconstruct salinity profiles. Compared with linear methodology, the estimated salinity profiles from the FOAGRNN method are in better agreement with the measured profiles at the halocline. Sensitivity studies of the FOAGRNN estimation model shows that, when applied to various types of sea surface parameters, latitude is the most significant variable in estimating salinity profiles in the tropical Pacific Ocean (correlation coefficient R greater than 0.9). In comparison, sea surface temperature (SST) and height (SSH) have minimal effects on the model. Based on FOAGRNN modeling, Pacific Ocean three-dimensional salinity fields are estimated for the year 2014 from remote sensing sea surface salinity (SSS) data. The performance of the satellite-based salinity field results and possible sources of error associated with the estimation methodology are briefly discussed. These results suggest a potential new approach for salinity profile estimation derived from sea surface data. In addition, the potential utilization of satellite SSS data is discussed.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-01-29
    Description: The Wire Flyer towed vehicle is a new platform able to collect high-resolution water column sections. The vehicle is motivated by a desire to effectively capture spatial structures at the submesoscale. The vehicle fills a niche that is not achieved by other existing towed and repeat profiling systems. The Wire Flyer profiles up and down along a ship-towed cable autonomously using controllable wings for propulsion. At ship speeds between 2 and 5 kt (1.02–2.55 m s−1), the vehicle is able to profile over prescribed depth bands down to 1000 m. The vehicle carries sensors for conductivity, temperature, depth, oxygen, turbidity, chlorophyll, pH, and oxidation reduction potential. During normal operations the vehicle is typically commanded to cover vertical regions between 300 and 400 m in height with profiles that repeat at kilometer spacing. The vertical profiling speed can be user specified up to 150 m min−1. The high-density sampling capability at depths below the upper few hundred meters makes the vehicle distinct from other systems. During operations an acoustic modem is used to communicate with the vehicle to provide status information, data samples, and the ability to modify the sampling pattern. This paper provides an overview of the vehicle system, describes its operation, and presents results from several cruises.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-01-01
    Description: Atmospheric gravity waves are a kind of mesoscale disturbance, commonly found in the atmospheric system, that plays a key role in a series of mesospheric dynamic processes. When propagating to the upper atmosphere, the gravity waves will disturb the local temperature and density, and then modulate the intensity of the surrounding airglow radiation. As a result, the presence of gravity waves on a moonless night can usually cause the airglow to reveal ripple features in low-light images. In this paper we have applied a two-dimensional Stockwell transform technique (2DST) to airglow measurements from nighttime low-light images of the day–night band on the Suomi National Polar-Orbiting Partnership. To our knowledge this study is the first to measure localized mesospheric gravity wave brightness amplitudes, horizontal wavelengths, and propagation directions using such a method and data. We find that the method can characterize the general shape and amplitude of concentric gravity wave patterns, capturing the dominant features and directions with a good degree of accuracy. The key strength of our 2DST application is that our approach could be tuned and then automated in the future to process tens of thousands of low-light images, globally characterizing gravity wave parameters in this historically poorly studied layer of the atmosphere.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-01-01
    Description: Instantaneous liquid-equivalent snowfall rates S retrieved from CloudSat W-band cloud radar reflectivity Ze measurements are compared to estimates of S from operational Weather Surveillance Radar-1988 Doppler (WSR-88D) systems when the CloudSat satellite overflew the ground-based radar sites during spatially extensive nimbostratus snowfall events. For these comparisons, the ground-based radar measurements are interpolated to closely match in space and time spaceborne radar resolution volumes above ground clutter, thus avoiding uncertainties in deriving near-surface snowfall rates from measurements aloft by both radar types. Although typical uncertainties of both ground-based and spaceborne snowfall-rate retrieval approaches are quite high, the results from the standard optimal estimation CloudSat 2C-SNOW-PROFILE algorithm are on average in good agreement with the WSR-88D default snowfall algorithm results with correlation coefficients being around 0.8–0.85. The CloudSat standard optimal estimation snowfall-rate products are also shown to be in satisfactory agreement with retrievals from several simple W-band Ze–S relations suggested earlier. The snowfall rate and snow/ice water content (IWC) parameters from the CloudSat 2C-SNOW-PROFILE algorithm are highly interdependent. A tight relation between S and IWC is apparently introduced through the ice particle fall velocity assumption that is made in the reflectivity-based snowfall retrieval algorithm. This suggests that ice sedimentation rate estimates can also be deduced from applications of numerous empirical IWC–reflectivity relations derived previously for different cloud conditions when appropriate assumptions about fall velocities are made. Intercomparisons between different CloudSat snow/ice water content products indicated significant discrepancies in IWC values from different standard CloudSat retrieval algorithms.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-02-01
    Description: The ability to quickly and accurately model actual atmospheric conditions is essential to remote sensing analyses. Clouds present a particularly complex challenge, as they cover up to 70% of Earth’s surface, and their highly variable and diverse nature necessitates physics-based modeling. The Laser Environmental Effects Definition and Reference (LEEDR) is a verified and validated atmospheric propagation and radiative transfer code that creates physically realizable vertical and horizontal profiles of meteorological data. Coupled with numerical weather prediction (NWP) model output, LEEDR enables analysis, nowcasts, and forecasts for radiative effects expected for real-world scenarios. A recent development is the inclusion of the U.S. Air Force’s World-Wide Merged Cloud Analysis (WWMCA) cloud data in a new tool set that enables radiance calculations through clouds from UV to radio frequency (RF) wavelengths. This effort details the creation of near-real-time profiles of atmospheric and cloud conditions and the resulting radiative transfer analysis for virtually any wavelength(s) of interest. Calendar year 2015 data are analyzed to establish climatological limits for diffuse transmission in the 300–1300-nm band, and the impacts of various geometry, cloud microphysical, and atmospheric conditions are examined. The results show that 80% of diffuse band transmissions are estimated to fall between 0.248 and 0.889 under the assumptions of cloud homogeneity and maximum overlap and are sufficient for establishing diffuse transmission percentiles. The demonstrated capability provides an efficient way to extend optical wavelength cloud parameters across the spectrum for physics-based multiple-scattering effects modeling through cloudy and clear atmospheres, providing an improvement to atmospheric correction for remote sensing and cloud effects on system performance metrics.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-01-01
    Description: Doppler sodar is a technology used for acoustic-based remote sensing of the lower planetary boundary layer. Sodars are often used to measure wind profiles; however, they suffer from problems caused by noise (both acoustic and electrical) and echoes from fixed objects, which can bias radial velocity estimates. An experimental bistatic sodar was developed with 64 independent channels. The device enables flexible beamforming; beams can be tilted at the same angle irrelevant of frequency, a limitation in most commercial devices. This paper presents an alternative sodar signal-processing algorithm for wind profiling using a multifrequency stepped-chirp pulse. A noncoherent matched filter was used to analyze returned signals. The noncoherent matched filter combines radial velocity estimates from multiple frequencies into a single optimization. To identify and separate sources of backscatter, noise, and fixed echoes, a stochastic pattern-recognition technique, Gaussian mixture modeling, was used to postprocess the noncoherent matched filter data. This method allowed the identification and separation of different stochastic processes. After identification, noise and fixed echo components were removed and a clean wind profile was produced. This technique was compared with traditional spectrum-based radial velocity estimation methods, and an improvement in the rejection of fixed echo components was demonstrated; this is one of the major limitations of sodar performance when located in complex terrain and urban environments.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-01-01
    Description: We developed an approach for estimating river discharge and water depth from measurements of surface velocity and water surface elevation, based on analytical velocity–depth and velocity–slope relationships derived from the steady gravity–friction momentum balance and mass conservation. A key component in this approach is specifying the influence of bottom friction on the modeled depth-averaged flow. Accordingly, we considered two commonly used bottom friction parameterizations—a depth-independent Darcy friction coefficient and a depth-dependent friction coefficient based on the Manning’s roughness parameter. Assuming that the bottom friction coefficient is known, the unknown discharge was determined by minimizing the difference between the measured total head profile and the one determined from the velocity–slope relationship. The model performance and its sensitivity to key assumptions were evaluated using existing bathymetry data, and surface velocity and elevation observations obtained during field experiments on the Kootenai River near Bonners Ferry, Idaho, and the Hanford reach of the Columbia River. We found that the Manning’s friction parameterization provided superior depth and discharge estimates, compared to the Darcy friction law. For both steady and moderately unsteady flow, inversions based on the Manning’s friction provided discharge and thalweg depth estimates with relative errors not exceeding 5% and 12%, respectively.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-02-06
    Description: Because of the perceived weather sensitivity of park visitation in Ontario, Canada, several previous assessments have examined the impact of climate change. However, these assessments have predominantly been based on modeling approaches (regression analysis). The current study uses a multiyear temporal climate-analog approach to reassess the impact of climate change on visitation to Pinery Provincial Park in southwestern Ontario based on the observed effects of historical climatic anomalies on park visitation from 2000 to 2016. Consideration was also given to major events such as the North American terror attacks on 11 September 2001 and the confounding effect that events such as this may have had on the results. There were no statistically significant relationships (at the 95% confidence level) between seasonal climatic anomalies and park visitation in Ontario during the winter or spring seasons. There was a weak statistical relationship between anomalously warm summer seasons and park visitation, when compared to summer seasons with climatically normal temperatures; however, the presence of nonclimatic variables may have confounded these results, producing a false positive. Autumn-season park visitation was most sensitive to climatic anomalies, with the warmest temperatures causing visitation to increase by 37%, the wettest conditions causing visitation to decrease by 11%, and the driest conditions resulting in a 24% increase. These observed seasonal temperature anomalies represent temporal climate analogs for projected climate change across the span of the twenty-first century. Thus, the results of this study suggest that previous assessments may have overestimated the positive impacts of projected climate change on park visitation in this region.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-01-01
    Description: In 2016, an exceptional drought and subsequent wildfires devastated the southeastern United States. Western North Carolina (WNC), a socioeconomically growing region that is dependent on revenue from tourism and agriculture, was particularly impacted by the events. The Southeast is not typically considered to be water vulnerable, and few studies have explored drought and wildfire in WNC. However, the region is projected to experience elevated water vulnerability as a result of rapid population growth and increased climatic variability. The recent events highlight the need for better understanding of water-related experiences and perceptions to inform proactive policies for risk mitigation in WNC. To evaluate stakeholder experiences and perceptions relating to the events in 2016, the authors conducted telephone interviews with key informants from a variety of sectors in two counties (Buncombe and Watauga) and then subjected their responses to content analysis. Informants frequently discussed themes relating to the “Natural Resources and Environment” code group, with responses revealing concerns about the health effects of smoke exposure, as well as water quantity. Other common topics of discussion for informants include water management, public awareness, and disaster severity. The prevalence of other themes varied by county, demonstrating the importance of local context. Surprisingly, informants rarely discussed risk in the context of increasing population and development, suggesting that current policies may inadequately address future risks. Stakeholders across all sectors placed substantial emphasis on information dissemination both within agencies and to the public. With a better understanding of key-informant experiences and perceptions, policymakers will be better equipped to address policy shortcomings as well as to prepare for future hazards.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-01-25
    Description: We summarize the potential nature and scope of economic effects of climate change in Alaska that have already occurred and are likely to become manifest over the next 30–50 years. We classified potential effects discussed in the literature into categories according to climate driver, type of environmental service affected, certainty and timing of the effects, and potential magnitude of economic consequences. We then described the nature of important economic effects and provided estimates of larger, more certain effects for which data were available. Largest economic effects were associated with costs to prevent damage, relocate, and replace infrastructure threatened by permafrost thaw, sea level rise, and coastal erosion. The costs to infrastructure were offset by a large projected reduction in space heating costs attributable to milder winters. Overall, we estimated that five relatively certain, large effects that could be readily quantified would impose an annual net cost of $340–$700 million, or 0.6%–1.3% of Alaska’s GDP. This significant, but relatively modest, net economic effect for Alaska as a whole obscures large regional disparities, as rural communities face large projected costs while more southerly urban residents experience net gains.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-01-01
    Description: Hurricane Irma was one of the strongest Atlantic hurricanes in history before landfall and caused a large evacuation. A total of 155 evacuees at interstate rest areas were asked to rank their concern about damage at their residence for six different geophysical hurricane hazards. Additionally, they were asked about their perceived maximum wind speeds (PMWS) and the wind speeds at which they thought damage would occur (DW) at their residence. These wind speeds were then compared to the actual peak wind gusts (APG) nearest to each resident’s location. Results show a significantly greater concern for wind and storm size, compared to other hazards (tornadoes, rainfall/flooding, storm surge, falling trees). The mean PMWS of evacuees was greater than the mean APG, suggesting widespread misperception of wind speeds. Furthermore, the mean APG was less than the mean DW, and the mean PMWS was also higher than the DW. Additional tests found no significant differences in wind perception between residents with previous storm experiences and no experience, and no significant differences between those who resided in mandatory evacuation zip codes and those who did not. These results suggest that wind speed risk is poorly understood, even though it is a high concern for evacuees from hurricanes. The communication of wind speed risk in forecasts should possibly be modified by placing greater emphasis on postlandfall impacts, wind speed decay after landfall, and wind speeds that cause damage to different types of residences.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-01-01
    Description: We investigate the role of moisture transport and recycling in characterizing two recent drought events in Texas (2011) and the Upper Midwest (2012) by analyzing the precipitation, evapotranspiration, precipitable water, and soil moisture data from the Climate Forecast System version 2 (CFSv2) analysis. Next, we evaluate the CFSv2 forecasts in terms of their ability to capture different drought signals as reflected in the analysis data. Precipitation from both sources is partitioned into recycled and advected components using a moisture accounting–based precipitation recycling model. All four variables reflected drought signals through their anomalously low values, while precipitation and evapotranspiration had the strongest signals. Drought in Texas was dominated by the differences in moisture transport, whereas in the Upper Midwest, the absence of strong precipitation-generating mechanisms was a crucial factor. Reduced advection from the tropical and midlatitude Atlantic contributed to the drought in Texas. The Upper Midwest experienced reduced contributions from recycling, terrestrial sources, the midlatitude Pacific, and the tropical Atlantic. In both cases, long-range moisture transport from oceanic sources was reduced during the corresponding drought years. June and August in Texas and July and August in the Upper Midwest were the driest months, and in both cases, drought was alleviated by the end of August. Moisture from terrestrial sources most likely contributed to alleviating drought intensity in such conditions, even with negative anomalies. The forecasts showed noticeable differences as compared to the analysis for multiple variables in both regions, which could be attributed to several factors as discussed in this paper.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-02-01
    Description: In this study, near-surface snow and graupel dynamics from formation to deposition are analyzed using WRF in a large-eddy configuration. The results reveal that a horizontal grid spacing of ≤50 m is required to resolve local orographic precipitation enhancement, leeside flow separation, and thereby preferential deposition. At this resolution, precipitation patterns across mountain ridges show a high temporal and spatial variability. Simulated and observed event-mean snow precipitation across three mountain ridges in the upper Dischma valley (Davos, Switzerland) for two precipitation events show distinct patterns, which are in agreement with theoretical concepts, such as small-scale orographic precipitation enhancement or preferential deposition. We found for our case study that overall terrain–flow–precipitation interactions increase snow accumulation on the leeward side of mountain ridges by approximately 26%–28% with respect to snow accumulation on the windward side of the ridge. Cloud dynamics and mean advection may locally increase precipitation on the leeward side of the ridge by up to about 20% with respect to event-mean precipitation across a mountain ridge. Analogously, near-surface particle–flow interactions, that is, preferential deposition, may locally enhance leeward snow precipitation on the order of 10%. We further found that overall effect and relative importance of terrain–flow–precipitation interactions are strongly dependent on atmospheric humidity and stability. Weak dynamic stability is important for graupel production, which is an essential component of solid winter precipitation. A comparison to smoothed measurements of snow depth change reveals a certain agreement with simulated precipitation across mountain ridges.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-01-01
    Description: Of the boundary conditions that affect the simulation of convective precipitation, soil moisture is one of the most important. In this study, we explore the impact of the soil moisture on convective precipitation, and factors affecting it, through an extensive numerical experiment based on four convective precipitation events that caused moderate to severe flooding in the Gard region of southern France. High-spatial-resolution (1 km) weather simulations were performed using the integrated atmospheric model Regional Atmospheric Modeling System/Integrated Community Limited Area Modeling System (RAMS/ICLAMS). The experimental framework included comparative analysis of five simulation scenarios for each event, in which we varied the magnitude and spatial distribution of the initial volumetric water content using realistic soil moisture fields with different spatial resolution. We used precipitation and surface soil moisture from radar and satellite sensors as references for the comparison of the sensitivity tests. Our results elucidate the complexity of the relationship between soil moisture and convective precipitation, showing that the control of soil water content on partitioning land surface heat fluxes has significant impacts on convective precipitation. Additionally, it is shown how different soil moisture conditions affect the modeled microphysical structure of the clouds, which translates into further changes in the magnitude and distribution of precipitation.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-01-01
    Description: Spatial coherency in atmospheric water vapor and rainfall and their association have been studied over the Indian subcontinent utilizing high spatiotemporal resolution data. Total column water vapor (TCWV) values derived from the Indian National Satellite (INSAT) system series (INSAT-3D) are first evaluated against data from an International GNSS Service (IGS) GPS receiver at Bangalore and the Global Precipitation Measurement Microwave Imager (GMI). The bias, correlation coefficient, and RMSE of TCWV between INSAT-3D and GMI show that, except for the south Bay of Bengal, the datasets compare well. The seasonal mean TCWV shows large values with lower standard deviation during the southwest monsoon (SWM) than in the northeast monsoon (NEM). Different temporal scales that contribute to the TCWV variance at a given point are quantified, and the variability due to 30–60-day oscillations is found to be dominant during both the monsoon seasons. TCWV and rainfall show good correspondence over the whole Indian subcontinent during both monsoon seasons except over the Arabian Sea and southern Myanmar regions, where large TCWV values show less rainfall during the SWM. On the whole, the spatial homogeneity and intergrid correlations in TCWV and rainfall are higher in NEM than in SWM. The decorrelation distance d0 for TCWV is found to be 10 times larger than that for rainfall, indicating that the rainfall homogeneity is generally limited to smaller areas. The large d0 values of TCWV are mainly due to the occurrence of source and sink processes at large spatial scales over those regions.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-03-01
    Description: This study presents a gridded meteorology intercomparison using the State of Hawaii as a testbed. This is motivated by the goal to provide the broad user community with knowledge of interproduct differences and the reasons differences exist. More generally, the challenge of generating station-based gridded meteorological surfaces and the difficulties in attributing interproduct differences to specific methodological decisions are demonstrated. Hawaii is a useful testbed because it is traditionally underserved, yet meteorologically interesting and complex. In addition, several climatological and daily gridded meteorology datasets are now available, which are used extensively by the applications modeling community, thus an intercomparison enhances Hawaiian specific capabilities. We compare PRISM climatology and three daily datasets: new datasets from the University of Hawai‘i and the National Center for Atmospheric Research, and Daymet version 3 for precipitation and temperature variables only. General conclusions that have emerged are 1) differences in input station data significantly influence the product differences, 2) explicit prediction of precipitation occurrence is crucial across multiple metrics, and 3) attribution of differences to specific methodological choices is difficult and limits the usefulness of intercomparisons. Because generating gridded meteorological fields is an elaborate process with many methodological choices interacting in complex ways, future work should 1) develop modular frameworks that allows users to easily examine the breadth of methodological choices, 2) collate available nontraditional high-quality observational datasets for true out-of-sample validation and make them publicly available, and 3) define benchmarks of acceptable performance for methodological components and products.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-01-01
    Description: The public debate around climate change is increasingly polarized. At the same time, the scientific consensus about the causes and consequences of climate change is strong. This inconsistency poses challenges for mitigation and adaptation efforts. The translation of uncertain numerical climate projections into simpler but ambiguous verbal frames may contribute to this polarization. In two experimental studies, we investigated 1) how “communicators” verbally frame a confidence interval regarding projected change in winter precipitation due to climate change (N = 512) and 2) how “listeners” interpret these verbal frames (N = 385). Both studies were preregistered at the Open Science Framework. Communicators who perceived the change as more severe chose a concerned rather than an unconcerned verbal frame. Furthermore, communicators’ verbal frames were associated with their more general beliefs, like political affiliation and environmental values. Listeners exposed to the concerned frame perceived climate change–induced precipitation change to be more severe than those receiving the unconcerned frame. These results are in line with two pilot studies (N = 298 and N = 393, respectively). Underlying general beliefs about climate and the environment likely shape public communication about climate in subtle ways, and thus verbal framing by the media, policymakers, and peers may contribute to public polarization on climate change.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-02-01
    Description: In the past few decades, there have been more extreme climate events occurring worldwide, including Canada, which has also suffered from many extreme precipitation events. In this paper, trend analysis, probability distribution functions, principal component analysis, and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation events of Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data (1950–2012) from 164 Canadian gauging stations. Several large-scale climate patterns such as El Niño–Southern Oscillation (ENSO), Pacific decadal oscillation (PDO), Pacific–North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective available potential energy (CAPE), specific humidity, and surface temperature were employed to investigate potential causes of trends in extreme precipitation. The results reveal statistically significant positive trends for most extreme precipitation indices, which means that extreme precipitation of Canada has generally become more severe since the mid-twentieth century. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominated the central Canadian Prairies. In addition, strong teleconnections are found between extreme precipitation and climate indices, but the effects of climate patterns differ from region to region. Furthermore, complex interactions of climate patterns with synoptic atmospheric circulations can also affect precipitation variability, and changes to the summer and winter extreme precipitation could be explained more by the thermodynamic impact and the combined thermodynamic and dynamic effects, respectively. The seasonal CAPE, specific humidity, and temperature are correlated to Canadian extreme precipitation, but the correlations are season dependent, which could be positive or negative.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-01-01
    Description: Data assimilation (DA) techniques have been widely applied to assimilate satellite-based soil moisture (SM) measurements into hydrologic models to improve streamflow simulations. However, past studies have reached mixed conclusions regarding the degree of runoff improvement achieved via SM state updating. In this study, a synthetic diagnostic framework is designed to 1) decompose the random error components in a hydrologic simulation, 2) quantify the error terms that originate from SM states, and 3) assess the effectiveness of SM DA to correct these random errors. The general framework is illustrated through a case study in which surface Soil Moisture Active Passive (SMAP) data are assimilated into a large-scale land surface model in the Arkansas–Red River basin. The case study includes systematic error in the simulated streamflow that imposes a first-order limit on DA performance. In addition, about 60% of the random runoff error originates directly from rainfall and cannot be corrected by SM DA. In particular, fast-response runoff dominates in much of the basin but is relatively unresponsive to state updating. Slow-response runoff is strongly controlled by the bottom-layer SM and therefore only modestly improved via the assimilation of surface measurements. Combined, the total runoff improvement in the synthetic analysis is small (
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-03-01
    Description: This article analyzes SST remote forcing on the interannual variability of Sahel summer (June–September) moderate (below 75th percentile) and heavy (above 75th percentile) daily precipitation events during the period 1981–2016. Evidence is given that interannual variability of these events is markedly different. The occurrence of moderate daily rainfall events appears to be enhanced by positive SST anomalies over the tropical North Atlantic and Mediterranean, which act to increase low-level moisture advection toward the Sahel from the equatorial and north tropical Atlantic (the opposite holds for negative SSTs anomalies). In contrast, heavy and extreme daily rainfall events seem to be linked to El Niño–Southern Oscillation (ENSO) and Mediterranean variability. Under La Niña conditions and a warmer Mediterranean, vertical atmospheric instability is increased over the Sahel and low-level moisture supply from the equatorial Atlantic is enhanced over the area (the reverse is found for opposite-sign SST anomalies). Further evidence suggests that interannual variability of Sahel rainfall is mainly dominated by the extreme events. These results have implications for seasonal forecasting of Sahel moderate and heavy precipitation events based on SST predictors, as significant predictability is found from 1 to 4 months in advance.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-01-01
    Description: Hydrological forecasts with a high temporal and spatial resolution are required to provide the level of information needed by end users. So far high-resolution multimodel seasonal hydrological forecasts have been unavailable due to 1) lack of availability of high-resolution meteorological seasonal forecasts, requiring temporal and spatial downscaling; 2) a mismatch between the provided seasonal forecast information and the user needs; and 3) lack of consistency between the hydrological model outputs to generate multimodel seasonal hydrological forecasts. As part of the End-to-End Demonstrator for Improved Decision Making in the Water Sector in Europe (EDgE) project commissioned by the Copernicus Climate Change Service (ECMWF), this study provides a unique dataset of seasonal hydrological forecasts derived from four general circulation models [CanCM4, GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 (GFDL-FLOR), ECMWF Season Forecast System 4 (ECMWF-S4), and Météo-France LFPW] in combination with four hydrological models [mesoscale hydrologic model (mHM), Noah-MP, PCRaster Global Water Balance (PCR-GLOBWB), and VIC]. The forecasts are provided at daily resolution, 6-month lead time, and 5-km spatial resolution over the historical period from 1993 to 2012. Consistency in hydrological model parameterization ensures an increased consistency in the hydrological forecasts. Results show that skillful discharge forecasts can be made throughout Europe up to 3 months in advance, with predictability up to 6 months for northern Europe resulting from the improved predictability of the spring snowmelt. The new system provides an unprecedented ensemble of seasonal hydrological forecasts with significant skill over Europe to support water management. This study highlights the potential advantages of multimodel based forecasting system in providing skillful hydrological forecasts.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-01-01
    Description: Meteorological and hydrological droughts can bring different socioeconomic impacts. In this study, we investigated meteorological and hydrological drought characteristics and propagation using the standardized precipitation index (SPI) and standardized streamflow index (SSI), over the upstream and midstream of the Heihe River basin (UHRB and MHRB, respectively). The correlation analysis and cross-wavelet transform were adopted to explore the relationship between meteorological and hydrological droughts in the basin. Three modeling experiments were performed to quantitatively understand how climate change and human activities influence hydrological drought and propagation. Results showed that meteorological drought characteristics presented little difference between UHRB and MHRB, while hydrological drought events are more frequent in the MHRB. In the UHRB, there were positive relationships between meteorological and hydrological droughts, whereas drought events became less frequent but longer when meteorological drought propagated into hydrological drought. Human activities have obviously changed the positive correlation to negative in the MHRB, especially during warm and irrigation seasons. The propagation time varied with seasonal climate characteristics and human activities, showing shorter values due to higher evapotranspiration, reservoir filling, and irrigation. Quantitative evaluation showed that climate change was inclined to increase streamflow and propagation time, contributing from −57% to 63%. However, more hydrological droughts and shorter propagation time were detected in the MHRB because human activities play a dominant role in water consumption with contribution rate greater than (−)89%. This study provides a basis for understanding the mechanism of hydrological drought and for the development of improved hydrological drought warning and forecasting system in the HRB.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-01-01
    Description: The 2009 Atlanta flood was a historic event that resulted in catastrophic damage throughout the metropolitan area. The flood was the product of several hydrometeorological processes, including moist antecedent conditions, ample atmospheric moisture, and mesoscale training. Additionally, previous studies hypothesized that the urban environment of Atlanta altered the location and/or overall quantities of precipitation and runoff that ultimately produced the flood. This hypothesis was quantitatively evaluated by conducting a modeling case study that utilized the Weather Research and Forecasting Model. Two model runs were performed: 1) an urban run designed to accurately depict the flood event and 2) a nonurban simulation where the urban footprint of Atlanta was replaced with natural vegetation. Comparing the output from the two simulations revealed that interactions with the urban environment enhanced the precipitation and runoff associated with the flood. Specifically, the nonurban model underestimated the cumulative precipitation by approximately 100 mm in the area downwind of Atlanta where urban rainfall enhancement was hypothesized. This notable difference was due to the increased surface convergence observed in the urban simulation, which was likely attributable to the enhanced surface roughness and thermal properties of the urban environment. The findings expand upon previous research focused on urban rainfall effects since they demonstrate that urban interactions can influence mesoscale hydrometeorological characteristics during events with prominent synoptic-scale forcing. Finally, from an urban planning perspective, the results highlight a potential two-pronged vulnerability of urban environments to extreme rainfall, as they may enhance both the initial precipitation and subsequent runoff.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-04-01
    Description: Landslide event inventories are a vital resource for landslide susceptibility and forecasting applications. However, landslide inventories can vary in accuracy, availability, and timeliness as a result of varying detection methods, reporting, and data availability. This study presents an approach to use publicly available satellite data and open-source software to automate a landslide detection process called the Sudden Landslide Identification Product (SLIP). SLIP utilizes optical data from the Landsat-8 Operational Land Imager sensor, elevation data from the Shuttle Radar Topography Mission, and precipitation data from the Global Precipitation Measurement mission to create a reproducible and spatially customizable landslide identification product. The SLIP software applies change-detection algorithms to identify areas of new bare-earth exposures that may be landslide events. The study also presents a precipitation monitoring tool that runs alongside SLIP called the Detecting Real-Time Increased Precipitation (DRIP) model that helps to identify the timing of potential landslide events detected by SLIP. Using SLIP and DRIP together, landslide detection is improved by reducing problems related to accuracy, availability, and timeliness that are prevalent in the state of the art for landslide detection. A case study and validation exercise in Nepal were performed for images acquired between 2014 and 2015. Preliminary validation results suggest 56% model accuracy, with errors of commission often resulting from newly cleared agricultural areas. These results suggest that SLIP is an important first attempt in an automated framework that can be used for medium-resolution regional landslide detection, although it requires refinement before being fully realized as an operational tool.
    Electronic ISSN: 1087-3562
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-02-01
    Description: Changes in vegetation are known to have an impact on climate via biogeophysical effects such as changes in albedo and heat fluxes. Here, the effects of maximum afforestation and deforestation are studied over Europe. This is done by comparing three regional climate model simulations—one with present-day vegetation, one with maximum afforestation, and one with maximum deforestation. In general, afforestation leads to more evapotranspiration (ET), which leads to decreased near-surface temperature, whereas deforestation leads to less ET, which leads to increased temperature. There are exceptions, mainly in regions with little water available for ET. In such regions, changes in albedo are relatively more important for temperature. The simulated biogeophysical effect on seasonal mean temperature varies between 0.5° and 3°C across Europe. The effect on minimum and maximum temperature is larger than that on mean temperature. Increased (decreased) mean temperature is associated with an even larger increase (decrease) in maximum summer (minimum winter) temperature. The effect on precipitation is found to be small. Two additional simulations in which vegetation is changed in only one-half of the domain were also performed. These simulations show that the climatic effects from changed vegetation in Europe are local. The results imply that vegetation changes have had, and will have, a significant impact on local climate in Europe; the climatic response is comparable to climate change under RCP2.6. Therefore, effects from vegetation change should be taken into account when simulating past, present, and future climate for this region. The results also imply that vegetation changes could be used to mitigate local climate change.
    Electronic ISSN: 1087-3562
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-01-28
    Description: Persistent Lagrangian transport patterns at the ocean surface are revealed from climatological Lagrangian coherent structures (cLCSs) computed from daily climatological surface current velocities in the northwestern Gulf of Mexico (NWGoM). The climatological currents are computed from daily velocities produced by an 18-yr-long free-running submesoscale-permitting Nucleus for European Modelling of the Ocean (NEMO) simulation of the Gulf of Mexico. Despite the intense submesoscale variability produced by the model along the shelf break, which is found to be consistent with observations and previous studies, a persistent mesoscale attracting barrier between the NWGoM shelf and the deep ocean is effectively identified by a hook-like pattern associated with persistent strongly attracting cLCSs. Simulated tracer and satellite-tracked drifters originating over the shelf tend to be trapped there by the hook-like pattern as they spread cyclonically. Tracers and drifters originating beyond the shelf tend to be initially attracted to the hook-like pattern as they spread anticyclonically and eventually over the deep ocean. The findings have important implications for the mitigation of contaminant accidents such as oil spills.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-02-01
    Description: Turbulent processes in the ocean surface boundary layer (OSBL) play a key role in weather and climate systems. This study explores a Lagrangian analysis of wave-driven OSBL turbulence, based on a large-eddy simulation (LES) model coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) is captured by Craik–Leibovich wave forcing that generates LT through the Craik–Leibovich type 2 (CL2) mechanism. Breaking wave (BW) effects are modeled by a surface turbulent kinetic energy flux that is constrained by wind energy input to surface waves. Unresolved LES subgrid-scale (SGS) motions are simulated with the LSM to be energetically consistent with the SGS model of the LES. With LT, Lagrangian autocorrelations of velocities reveal three distinct turbulent time scales: an integral, a dispersive mixing, and a coherent structure time. Coherent structures due to LT result in relatively narrow peaks of Lagrangian frequency velocity spectra. With and without waves, the high-frequency spectral tail is consistent with expectations for the inertial subrange, but BWs substantially increase spectral levels at high frequencies. Consistently, over short times, particle-pair dispersion results agree with the Richardson–Obukhov law, and near-surface dispersion is significantly enhanced because of BWs. Over longer times, our dispersion results are consistent with Taylor dispersion. In this case, turbulent diffusivities are substantially larger with LT in the crosswind direction, but reduced in the along-wind direction because of enhanced turbulent transport by LT that reduces mean Eulerian shear. Our results indicate that the Lagrangian analysis framework is effective and physically intuitive to characterize OSBL turbulence.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-02-01
    Description: The observation-based source terms available in the third-generation wave model WAVEWATCH III (i.e., the ST6 package for parameterizations of wind input, wave breaking, and swell dissipation terms) are recalibrated and verified against a series of academic and realistic simulations, including the fetch/duration-limited test, a Lake Michigan hindcast, and a 1-yr global hindcast. The updated ST6 not only performs well in predicting commonly used bulk wave parameters (e.g., significant wave height and wave period) but also yields a clearly improved estimation of high-frequency energy level (in terms of saturation spectrum and mean square slope). In the duration-limited test, we investigate the modeled wave spectrum in a detailed way by introducing spectral metrics for the tail and the peak of the omnidirectional wave spectrum and for the directionality of the two-dimensional frequency–direction spectrum. The omnidirectional frequency spectrum E(f) from the recalibrated ST6 shows a clear transition behavior from a power law of approximately f−4 to a power law of about f−5, comparable to previous field studies. Different solvers for nonlinear wave interactions are applied with ST6, including the Discrete Interaction Approximation (DIA), the more expensive Generalized Multiple DIA (GMD), and the very expensive exact solutions [using the Webb–Resio–Tracy method (WRT)]. The GMD-simulated E(f) is in excellent agreement with that from WRT. Nonetheless, we find the peak of E(f) modeled by the GMD and WRT appears too narrow. It is also shown that in the 1-yr global hindcast, the DIA-based model overestimates the low-frequency wave energy (wave period T 〉 16 s) by 90%. Such model errors are reduced significantly by the GMD to ~20%.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-03-01
    Description: We investigate the linear stability of intense baroclinic anticyclones, with a particular focus on the centrifugal (inertial) instability. Various vertical and radial velocity profiles are studied. The vertical profiles are such that the velocity is maximum at the surface. These profiles correspond to oceanic eddies such as submesoscale mixed-layer eddies or intense mesoscale eddies in the upper thermocline. The results show that the main characteristics of the centrifugal instability (growth rate, vertical wavelength) depend weakly on the baroclinic structure of the anticyclone. The dominant azimuthal wavenumber is for small Burger number (Bu) and for higher Bu, where Bu is the square root of the ratio of the deformation radius over the characteristic eddy radius where the velocity is maximum. The marginal stability limits of the centrifugal instability for the different velocity profiles collapse approximately on a single curve in the parameter space (Ro, Bu), where is the Rossby number, with being the maximum velocity. By means of an asymptotic analysis for short vertical wavelength, an explicit prediction for the marginal stability limit is derived for a wide range of velocity profiles. We then suggest to use, for most of oceanic anticyclones, the instability criterion valid for a Gaussian eddy: where is the Ekman number, H is the eddy depth, and ν is the turbulent viscosity at the ocean surface. Some baroclinic anticyclones can remain stable even if they have a core region of negative absolute vorticity provided that they are small enough. This formula explains the few observations of intense anticyclonic eddies having a negative core vorticity around .
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-01-01
    Description: Using trajectories from acoustically tracked (RAFOS) floats in the Gulf of Mexico, we construct a geography of its Lagrangian circulation within the 1500–2500-m layer. This is done by building a Markov-chain representation of the Lagrangian dynamics. The geography is composed of weakly interacting provinces that constrain the connectivity at depth. The main geography includes two provinces of near-equal areas separated by a roughly meridional boundary. The residence time is about 4.5 (3.5) years in the western (eastern) province. The exchange between these provinces is effected through a slow cyclonic circulation, which is well constrained in the western basin by preservation of f/H, where f is the Coriolis parameter and H is depth. Secondary provinces of varied shapes covering smaller areas are identified with residence times ranging from about 0.4 to 1.2 years or so. Except for the main provinces, the deep Lagrangian geography does not resemble the surface Lagrangian geography recently inferred from satellite-tracked drifter trajectories. This implies disparate connectivity characteristics with potential implications for pollutant (e.g., oil) dispersal at the surface and at depth. Support for our results is provided by a Markov-chain analysis of satellite-tracked profiling (Argo) floats, which, while forming a smaller dataset and having seemingly different water-following characteristics than the RAFOS floats, replicate the main aspects of the Lagrangian geography. Our results find further validation in independent results from a chemical tracer release experiment.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-01-01
    Description: The diffusive layering (DL) form of double-diffusive convection cools the Atlantic Water (AW) as it circulates around the Arctic Ocean. Large DL steps, with heights of homogeneous layers often greater than 10 m, have been found above the AW core in the Eurasian Basin (EB) of the eastern Arctic. Within these DL staircases, heat and salt fluxes are determined by the mechanisms for vertical transport through the high-gradient regions (HGRs) between the homogeneous layers. These HGRs can be thick (up to 5 m and more) and are frequently complex, being composed of multiple small steps or continuous stratification. Microstructure data collected in the EB in 2007 and 2008 are used to estimate heat fluxes through large steps in three ways: using the measured dissipation rate in the large homogeneous layers; utilizing empirical flux laws based on the density ratio and temperature step across HGRs after scaling to account for the presence of multiple small DL interfaces within each HGR; and averaging estimates of heat fluxes computed separately for individual small interfaces (as laminar conductive fluxes), small convective layers (via dissipation rates within small DL layers), and turbulent patches (using dissipation rate and buoyancy) within each HGR. Diapycnal heat fluxes through HGRs evaluated by each method agree with each other and range from ~2 to ~8 W m−2, with an average flux of ~3–4 W m−2. These large fluxes confirm a critical role for the DL instability in cooling and thickening the AW layer as it circulates around the eastern Arctic Ocean.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-01-01
    Description: Large-amplitude mode-2 nonlinear internal waves were observed in 250-m-deep water on the Australian North West shelf. Wave amplitudes were derived from temperature measurements using three through-the-water-column moorings spaced 600 m apart in a triangular configuration. The moorings were deployed for 2 months during the transition period between the tropical monsoon and the dry season. The site had a 25–30-m-amplitude mode-1 internal tide that essentially followed the spring–neap tidal cycle. Regular mode-2 nonlinear wave trains with amplitudes exceeding 25 m, with the largest event exceeding 50 m, were also observed at the site. Overturning was observed during several mode-2 events, and the relatively high wave Froude number and steepness (0.15) suggested kinematic (convective) instability was likely to be the driving mechanism. The presence of the mode-2 waves was not correlated with the tidal forcing but rather occurred when the nonlinear steepening length scale was smaller than the distance from the generation region to the observation site. This steepening length scale is inversely proportional to the nonlinear parameter in the Korteweg–de Vries equation, and it varied by at least one order of magnitude under the evolving background thermal stratification over the observation period. Despite the complexity of the internal waves in the region, the nonlinear steepening length was shown to be a reliable indicator for the formation of large-amplitude mode-2 waves and the rarer occurrence of mode-1 large-amplitude waves. A local mode-2 generation mechanism caused by a beam interacting with a pycnocline is demonstrated using a fully nonlinear numerical solution.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-02-01
    Description: The complex structure of the vertical velocity field inside an anticyclonic eddy located just south of the Canary Islands is analyzed through a high-resolution ocean model. Based on the flow divergence, vertical velocity is decomposed into various forcing components. The analysis reveals that advection and stretching of vorticity are the most important forcing contributions to the vertical velocity within the eddy. In the mixed layer, a small-scale multipolar vertical velocity pattern dominates. This is the result of vertical mixing effects that enhance the surface vertical velocity by increasing the ageostrophic velocity profile. As a result, an ageostrophic secondary circulation arises that acts to restore thermal-wind balance, inducing strong vertical motions. Nonlinear Ekman pumping/suction patterns resemble the small-scale vertical velocity field, suggesting that nonlinear Ekman effects are important in explaining the complex vertical velocity, despite an overestimate of its magnitude. In the eddy thermocline, the vertical velocity is characterized by a dipolar pattern, which experiences changes in intensity and axisymmetrization with time. The dipolar vertical velocity distribution arises from the imbalance between the advection and stretching of the vorticity forcing terms. A vertical velocity dipole is also obtained by solving a generalized omega equation from density and horizontal velocity fields, which also shows a preponderance of the ageostrophic term. The ubiquity of dipolar vertical velocity distributions inside isolated anticyclones is supported by recent observational findings in the same oceanic region.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-02-01
    Description: The stability of a horizontally and vertically sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth that are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow antiparallel to topographic wave propagation) and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer. A ridge with a 1-km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echo sounding reveal that such heights are common beneath the Kuroshio, the Antarctic Circumpolar Current, and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus, lateral instability may be more common than previously thought, owing to topography hindering vertical energy transfer.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-01-01
    Description: High-frequency radio Doppler surface current observations off the south shore of Oahu, Hawaii, are used to calculate the vorticity equation at a ~2-km spatial resolution in terms of a time-dependent and time-mean surface balance. First-order terms are mean advection of mean vorticity, vortex stretching, and a residual, which is treated as unquantified terms such as wind stress curl, bottom pressure torque, and noise. The most striking feature in the 2-yr time-mean vorticity balance is the anticorrelation between advection of vorticity and vortex stretching implying that potential vorticity (PV) advection is the most dominant mechanism in the area. Several terms in the depth-integrated vorticity balance were also estimated. The bottom pressure torque acts as a first-order term only in areas of shallow topography. A PV analysis resulted in the 50-m Penguin Bank steering the westward Hawaiian Lee Current.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-01-28
    Description: Based on analysis of observational data it has been suggested that a negative feedback of ice–ocean stress coupling may limit freshwater accumulation in the Beaufort Gyre (BG). In this paper we explore how this feedback can significantly contribute to BG stabilization in an anticyclonic wind regime. We use an ice–ocean model and turn on and off the feedback in simulations to elucidate the role of the feedback. When a persistent anticyclonic wind anomaly is applied over the BG, liquid freshwater content (FWC) increases because of enhanced Ekman downwelling. As a consequence, ocean surface geostrophic currents speed up. However, the spinup of sea ice is weaker than the acceleration of surface geostrophic currents during wintertime, because of strong sea ice internal stress when ice concentration is high and ice is thick. This leads to cyclonic anomalies in the ice–ocean relative velocity and stress over the BG. The resultant seasonal Ekman upwelling anomaly reduces freshwater accumulation by about 1/4 as compared to a simulation with the negative feedback turned off in a control experiment, with a reduction range of 1/10–1/3 in all experiments conducted. We show that the feedback is more effective when the model’s mesoscale eddy diffusivity is smaller or when sea ice internal stress is stronger. Finally, we argue that the ice–ocean stress feedback may become less significant as the Arctic warms and sea ice declines.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-02-20
    Description: A California Undercurrent eddy (Cuddy) was repeatedly surveyed using multiple Seagliders for over three months. Found and tracked off of the Washington–Vancouver Island coasts, this Cuddy traveled over 400 km, remaining between the 1000- and 2000-m isobaths, as it was swept along in poleward flow of the California Current System. Three Seagliders made repeat bisecting transects of the Cuddy core capturing its detailed three-dimensional structure in time. Its evolution was analyzed through comparison of 11 independent Cuddy “snapshots.” A two dimensional Gaussian model fit to the geopotential anomaly field for each snapshot allowed computation of dynamic fields inaccessible in Seaglider profiles alone. Results indicate that the Cuddy decayed as its core waters became less isolated over time: Cuddy total mechanical energy (kinetic + potential), salt content, and the magnitude of the core potential vorticity anomaly decreased. Core spice and dissolved oxygen variance increased tenfold, and thermohaline fine structure, suggestive of lateral intrusions, was observed progressively closer to the eddy core. The estimated gradient-wind balanced velocity field similarly weakened as the Rossby number decreased to 0.32 from an initial value of 0.48. The observed changes in eddy properties occurred as the Cuddy was exposed to changes in the background stratification and Coriolis parameter as it translated alongshore. Idealized modeling of eddy adjustment indicates that both erosion and changing background conditions are required to explain the observed eddy changes. Adjustment in response to both effects simultaneously leads to changes in eddy properties qualitatively consistent with those observed.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-01-29
    Description: In the decade or so below the Ozmidov wavenumber (N3/ε)1/2, that is, on scales between those attributed to internal gravity waves and isotropic turbulence, ocean and atmosphere measurements consistently find k1/3 horizontal wavenumber spectra for horizontal shear uh and horizontal temperature gradient Th and m−1 vertical wavenumber spectra for vertical shear uz and strain ξz. Dimensional scaling is used to construct model spectra below as well as above the Ozmidov wavenumber that reproduces observed spectral slopes and levels in these two bands in both vertical and horizontal wavenumber. Aspect ratios become increasingly anisotropic below the Ozmidov wavenumber until reaching ~O(f/N), where horizontal shear uh ~ f. The forward energy cascade below the Ozmidov wavenumber found in observations and numerical simulations suggests that anisotropic and isotropic turbulence are manifestations of the same nonlinear downscale energy cascade to dissipation, and that this turbulent cascade originates from anisotropic instability of finescale internal waves at horizontal wavenumbers far below the Ozmidov wavenumber. Isotropic turbulence emerges as the cascade proceeds through the Ozmidov wavenumber where shears become strong enough to overcome stratification. This contrasts with the present paradigm that geophysical isotropic turbulence arises directly from breaking internal waves. This new interpretation of the observations calls for new approaches to understand anisotropic generation of geophysical turbulence patches.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-01-28
    Description: Near-inertial oscillations (NIOs) on the inner Scotian shelf are studied using observations, a simple slab model, and two operational shelf circulation models. High-frequency radar and ADCP observations from December 2015 to February 2016 show that individual NIO events forced by time-varying wind stress typically lasted for three to four inertial periods. NIOs with speeds exceeding 0.25 m s−1 were observed in the offshore part of the study region, but their amplitudes decreased shoreward within ~40 km of the coast. The NIOs had spatial scales of ~80 and ~40 km in the alongshore and cross-shore directions, respectively. The NIO phases varied moving from west to east, consistent with the typical movement of winter storms across the study region. Evolving rotary spectral analysis reveals that the peak frequency fp of the NIOs varied with time by ~7% of the local inertial frequency. The variation in fp can be explained in part by local wind forcing as demonstrated by the slab model. The remaining variation in fp can be explained in part by variations in the background vorticity associated with changes in the strength and position of the Nova Scotia Current, an unstable baroclinic boundary current that runs along the coast to the southwest. Two operational shelf circulation models are used to examine the abovementioned features in the high-frequency-radar and ADCP observations. The models reproduce the spatial structure of the NIOs and, in a qualitative sense, the temporal variations of fp.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-04-01
    Description: A new approach to parameterizing subgrid-scale processes is proposed: The impact of the unresolved dynamics on the resolved dynamics (i.e., the eddy forcing) is represented by a series expansion in dynamical spatial modes that stem from the energy budget of the resolved dynamics. It is demonstrated that the convergence in these so-called energy modes is faster by orders of magnitude than the convergence in Fourier-type modes. Moreover, a novel way to test parameterizations in models is explored. The resolved dynamics and the corresponding instantaneous eddy forcing are defined via spatial filtering that accounts for the representation error of the equations of motion on the low-resolution model grid. In this way, closures can be tested within the high-resolution model, and the effects of different parameterizations related to different energy pathways can be isolated. In this study, the focus is on parameterizations of the baroclinic energy pathway. The corresponding standard closure in ocean models, the Gent–McWilliams (GM) parameterization, is also tested, and it is found that the GM field acts like a stabilizing direction in phase space. The GM field does not project well on the eddy forcing and hence fails to excite the model’s intrinsic low-frequency variability, but it is able to stabilize the model.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-01-01
    Description: Mixed triad wave–wave interactions between Rossby and gravity waves are analytically derived using the kinetic equation for models of different complexity. Two examples are considered: initially vanishing linear gravity wave energy in the presence of a fully developed Rossby wave field and the reversed case of initially vanishing linear Rossby wave energy in the presence of a realistic gravity wave field. The kinetic equation in both cases is numerically evaluated, for which energy is conserved within numerical precision. The results are validated by a corresponding ensemble of numerical model simulations supporting the validity of the weak-interaction assumption necessary to derive the kinetic equation. Since they are generated by nonresonant interactions only, the energy transfers toward the respective linear wave mode with vanishing energy are small in both cases. The total generation of energy of the linear gravity wave mode in the first case scales to leading order as the square of the Rossby number in agreement with independent estimates from laboratory experiments, although a part of the linear gravity wave mode is slaved to the Rossby wave mode without wavelike temporal behavior.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-01-01
    Description: Energy conversion routes are investigated in the western Mediterranean Sea from the eddy–mean flow interactions. The sources of eddy kinetic energy are analyzed by applying a regional formulation of the Lorenz energy cycle to 18 years of numerical simulation at eddy-resolving resolution (3.5 km), which allows for identifying whether the energy exchange between the mean and eddy flow is local or nonlocal. The patterns of energy conversion between the mean and eddy kinetic and potential energy are estimated in three subregions of the domain: the Alboran Sea, the Algerian Basin, and the northern basin. The spatial characterization of the energy routes hints at the physical mechanisms involved in maintaining the balance, suggesting that flow–topography interaction is strongly linked to eddy growth in most of the domain.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-01-31
    Description: Precipitation changes in a warming climate have been examined with a focus on either mean precipitation or precipitation extremes, but changes in the full probability distribution of precipitation have not been well studied. This paper develops a methodology for the quantile-conditional column moisture budget of the atmosphere for the full probability distribution of precipitation. Analysis is performed on idealized aquaplanet model simulations under 3-K uniform SST warming across different horizontal resolutions. Because the covariance of specific humidity and horizontal mass convergence is much reduced when conditioned onto a given precipitation percentile range, their conditional averages yield a clear separation between the moisture (thermodynamic) and circulation (dynamic) effects of vertical moisture transport on precipitation. The thermodynamic response to idealized climate warming can be understood as a generalized “wet get wetter” mechanism, in which the heaviest precipitation of the probability distribution is enhanced most from increased gross moisture stratification, at a rate controlled by the change in lower-tropospheric moisture rather than column moisture. The dynamic effect, in contrast, can be interpreted by shifts in large-scale atmospheric circulations such as the Hadley cell circulation or midlatitude storm tracks. Furthermore, horizontal moisture advection, albeit of secondary role, is important for regional precipitation change. Although similar mechanisms are at play for changes in both mean precipitation and precipitation extremes, the thermodynamic contributions of moisture transport to increases in high percentiles of precipitation tend to be more widespread across a wide range of latitudes than increases in the mean, especially in the subtropics.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-02-01
    Description: Research on the mesoscale kinetic energy spectrum over the past few decades has focused on finding a dynamical mechanism that gives rise to a universal spectral slope. Here we investigate the variability of the spectrum using 3 years of kilometer-resolution analyses from COSMO configured for Germany (COSMO-DE). It is shown that the mesoscale kinetic energy spectrum is highly variable in time but that a minimum in variability is found on scales around 100 km. The high variability found on the small-scale end of the spectrum (around 10 km) is positively correlated with the precipitation rate where convection is a strong source of variance. On the other hand, variability on the large-scale end (around 1000 km) is correlated with the potential vorticity, as expected for geostrophically balanced flows. Accordingly, precipitation at small scales is more highly correlated with divergent kinetic energy, and potential vorticity at large scales is more highly correlated with rotational kinetic energy. The presented findings suggest that the spectral slope and amplitude on the mesoscale range are governed by an ever-changing combination of the upscale and downscale impacts of these large- and small-scale dynamical processes rather than by a universal, intrinsically mesoscale dynamical mechanism.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-01-22
    Description: This work examines the impacts of the diurnal radiation contrast on the contraction rate of the radius of maximum wind (RMW) during intensification of Hurricane Edouard (2014) through convection-permitting simulations. Rapid contraction of RMW occurs both in the low and midlevels for the control run and the sensitivity run without solar insolation, while the tropical cyclone contracts more slowly in the low levels and later in the midlevels and thereafter fails to intensify continuously in the absence of the night phase, under weak vertical wind shear (~4 m s−1). The clouds at the top of the boundary layer absorb solar shortwave heating during the daytime, which enhanced the temperature inversion there and increased the convective inhibition, while nighttime destabilization and moistening in low levels through radiative cooling decrease convective inhibition and favor more convection inside the RMW than in the daytime phase. The budget analysis of the tangential wind tendency reveals that the greater positive radial vorticity flux inside of the RMW is the key RMW contraction mechanism in the boundary layer at night because of the enhanced convection. However, the greater positive vertical advection of tangential wind inside of the RMW dominates the RMW contraction in the midlevels.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-01-01
    Description: Aerosol samples were collected over Beijing, China, during several flights in November 2011. Aerosol composition of nonrefractory submicron particles (NR-PM1) was measured by an Aerodyne compact time-of-flight aerosol mass spectrometer (C-ToF-AMS). This measurement on the aircraft provided vertical distribution of aerosol species over Beijing, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Chl), and organic aerosols [OA; hydrocarbon-like OA (HOA) and oxygenated OA (OOA)]. The observations showed that aerosol compositions varied drastically with altitude, especially near the top of the planetary boundary layer (PBL). On average, organics (34%) and nitrate (32%) were dominant components in the PBL, followed by ammonium (15%), sulfate (14%), and chloride (4%); in the free troposphere (FT), sulfate (34%) and organics (28%) were dominant components, followed by ammonium (20%), nitrate (19%), and chloride (1%). The dominant OA species was primarily HOA in the PBL but changed to OOA in the FT. For sulfate, nitrate, and ammonium, the sulfate mass fraction increased from the PBL to the FT, nitrate mass fraction decreased, and ammonium remained relatively constant. Analysis of the sulfate-to-nitrate molar ratio further indicated that this ratio was usually less than one in the FT but larger than one in the PBL. Further analysis revealed that the vertical aerosol composition profiles were influenced by complex processes, including PBL structure, regional transportation, emission variation, and the aging process of aerosols and gaseous precursors during vertical diffusion.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-01-01
    Description: The orientation of falling ice particles directly influences estimates of microphysical and radiative bulk quantities as well as in situ retrievals of size, shape, and mass. However, retrieval efforts and bulk calculations often incorporate very basic orientations or ignore these effects altogether. To address this deficiency, this study develops a general method for projecting bulk distributions of particle shape for arbitrary orientations. The Amoroso distribution provides the most general bulk aspect ratio distribution for gamma-distributed particle axis lengths. The parameters that govern the behavior of this aspect ratio distribution depend on the assumed relationship between mass, maximum dimension, and aspect ratio. Individual spheroidal geometry allows for eccentricity quantities to linearly map onto ellipse analogs, whereas aspect ratio quantities map nonlinearly. For particles viewed from their side, this analytic distinction leads to substantially larger errors in projected aspect ratio than for projected eccentricity. Distribution transformations using these mapping equations and numerical integration of projection kernels show that both truncation of size distributions and changes in Gaussian dispersion can alter the modality and shape of projection distributions. As a result, the projection process can more than triple the relative entropy between the spheroidal and projection distributions for commonly assumed model and orientation parameters. This shape uncertainty is maximized for distributions of highly eccentric particles and for particles like aggregates that are thought to fall with large canting-angle deviations. As a result, the methods used to report projected aspect ratios and the corresponding values should be questioned.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-01-21
    Description: A new parameterization of the accretion of cloud water by graupel for use in bulk microphysics schemes is derived by analytically integrating the stochastic collection equation (SCE). In this parameterization, the collection efficiency between graupel particles and cloud droplets is expressed in a functional form using the data obtained from a particle trajectory model by a previous study. The new accretion parameterization is evaluated through box model simulations in comparison with a bin-based direct SCE solver and two previously developed accretion parameterizations that employ the continuous collection equation and a simplified SCE, respectively. Changes in cloud water and graupel mass contents via the accretion process predicted by the new parameterization are closest to those predicted by the direct SCE solver. Furthermore, the new parameterization predicts a decrease in the cloud droplet number concentration that is smaller than the decreases predicted by the other accretion parameterizations, consistent with the direct SCE solver. The new and the other accretion parameterizations are implemented into a cloud-resolving model. Idealized deep convective cloud simulations show that among the accretion parameterizations, the new parameterization predicts the largest rate of accretion by graupel and the smallest rate of accretion by snow, which overall enhances rainfall through the largest rate of melting of graupel. Real-case simulations for a precipitation event over the southern Korean Peninsula show that among the examined accretion parameterizations, the new parameterization simulates precipitation closest to observations. Compared to the other accretion parameterizations, the new parameterization decreases the fractions of light and moderate precipitation amounts and increases the fraction of heavy precipitation amount.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-03-01
    Description: Global model simulations together with a stochastic convection scheme are used to assess the intrinsic limit of predictability that originates from convection up to planetary scales. The stochastic convection scheme has been shown to introduce an appropriate amount of variability onto the model grid without the need to resolve the convection explicitly. This largely reduces computational costs and enables a set of 12 cases equally distributed over 1 year with five ensemble members for each case, generated by the stochastic convection scheme. As a metric, difference kinetic energy at 300 hPa over the midlatitudes, both north and south, is used. With this metric the intrinsic limit is estimated to be about 17 days when a threshold of 80% of the saturation level is applied. The error level at 3.5 days roughly compares to the initial-condition uncertainty of the current ECMWF data assimilation system, which suggests a potential improvement of 3.5 forecast days through perfecting the initial conditions. Error-growth experiments that use a deterministic convection scheme show smaller errors of about half the size at early forecast times and an estimate of intrinsic predictability that is about 10% longer, confirming the overconfidence of deterministic convection schemes.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-01-01
    Description: A framework for conceptual understanding of slow, convectively coupled disturbances is developed and applied to several canonical tropical problems, including the water vapor content of an atmosphere in radiative–convective equilibrium, the relationship between convective precipitation and column water vapor, Walker-like circulations, self-aggregation of convection, and the Madden–Julian oscillation. The framework is a synthesis of previous work that developed four key approximations: boundary layer energy quasi equilibrium, conservation of free-tropospheric moist and dry static energies, and the weak temperature gradient approximation. It is demonstrated that essential features of slow, convectively coupled processes can be understood without reference to complex turbulent and microphysical processes, even though accounting for such complexity is essential to quantitatively accurate modeling. In particular, we demonstrate that the robust relationship between column water vapor and precipitation observed over tropical oceans does not necessarily imply direct sensitivity of convection to free-tropospheric moisture. We also show that to destabilize the radiative–convective equilibrium state, feedbacks between radiation and clouds and water vapor must be sufficiently strong relative to the gross moist stability.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-03-01
    Description: Zonal jets in a barotropic setup emerge out of homogeneous turbulence through a flow-forming instability of the homogeneous turbulent state (zonostrophic instability), which occurs as the turbulence intensity increases. This has been demonstrated using the statistical state dynamics (SSD) framework with a closure at second order. Furthermore, it was shown that for small supercriticality the flow-forming instability follows Ginzburg–Landau (G–L) dynamics. Here, the SSD framework is used to study the equilibration of this flow-forming instability for small supercriticality. First, we compare the predictions of the weakly nonlinear G–L dynamics to the fully nonlinear SSD dynamics closed at second order for a wide range of parameters. A new branch of jet equilibria is revealed that is not contiguously connected with the G–L branch. This new branch at weak supercriticalities involves jets with larger amplitude compared to the ones of the G–L branch. Furthermore, this new branch continues even for subcritical values with respect to the linear flow-forming instability. Thus, a new nonlinear flow-forming instability out of homogeneous turbulence is revealed. Second, we investigate how both the linear flow-forming instability and the novel nonlinear flow-forming instability are equilibrated. We identify the physical processes underlying the jet equilibration as well as the types of eddies that contribute in each process. Third, we propose a modification of the diffusion coefficient of the G–L dynamics that is able to capture the evolution of weak jets at scales other than the marginal scale (side-band instabilities) for the linear flow-forming instability.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...