ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2023-12-20
    Description: In the Earth sciences, a transition is currently occurring in multiple fields towards an integrated Earth system approach, with applications including numerical weather prediction, hydrological forecasting, climate impact studies, ocean dynamics estimation and monitoring, and carbon cycle monitoring. These approaches rely on coupled modeling techniques using Earth system models that account for an increased level of complexity of the processes and interactions between atmosphere, ocean, sea ice, and terrestrial surfaces. A crucial component of Earth system approaches is the development of coupled data assimilation of satellite observations to ensure consistent initialization at the interface between the different subsystems. Going towards strongly coupled data assimilation involving all Earth system components is a subject of active research. A lot of progress is being made in the ocean–atmosphere domain, but also over land. As atmospheric models now tend to address subkilometric scales, assimilating high spatial resolution satellite data in the land surface models used in atmospheric models is critical. This evolution is also challenging for hydrological modeling. This book gathers papers reporting research on various aspects of coupled data assimilation in Earth system models. It includes contributions presenting recent progress in ocean–atmosphere, land–atmosphere, and soil–vegetation data assimilation.
    Keywords: Q1-390 ; land data assimilation system ; land data assimilation ; rainfall-runoff simulation ; 4D-Var data assimilation ; total water storage ; accuracy ; ocean–atmosphere assimilation ; precipitation ; Earth system models ; numerical weather prediction ; fluorescence ; GRACE ; MCA analysis ; weakly coupled data assimilation ; GPM IMERG ; atmospheric models ; rainfall correction ; remote sensing ; microwave remote sensing ; SMAP ; land surface modeling ; bending angle ; floods soil moisture ; vegetation ; GPSRO ; WRF ; merged CMORPH ; land surface model ; temperature ; 4D-Var ; data assimilation ; data-driven methods ; GSI ; radio occultation data ; rainfall ; soil moisture ; sea level anomaly ; total cloud cover ; land surface models ; Mediterranean basin ; interpolation ; sea surface height ; drought ; TRMM 3B42 ; analog data assimilation ; ocean models ; bic Book Industry Communication::G Reference, information & interdisciplinary subjects::GP Research & information: general
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(10), (2020): E1842-E1850, doi:10.1175/BAMS-D-19-0263.1.
    Description: Process studies are designed to improve our understanding of poorly described physical processes that are central to the behavior of the climate system. They typically include coordinated efforts of intensive field campaigns in the atmosphere and/or ocean to collect a carefully planned set of in situ observations. Ideally the observational portion of a process study is paired with numerical modeling efforts that lead to better representation of a poorly simulated or previously neglected physical process in operational and research models. This article provides a framework of best practices to help guide scientists in carrying out more productive, collaborative, and successful process studies. Topics include the planning and implementation of a process study and the associated web of logistical challenges; the development of focused science goals and testable hypotheses; and the importance of assembling an integrated and compatible team with a diversity of social identity, gender, career stage, and scientific background. Guidelines are also provided for scientific data management, dissemination, and stewardship. Above all, developing trust and continual communication within the science team during the field campaign and analysis phase are key for process studies. We consider a successful process study as one that ultimately will improve our quantitative understanding of the mechanisms responsible for climate variability and enhance our ability to represent them in climate models.
    Description: We gratefully acknowledge U.S. CLIVAR for supporting the PSMI panel, as well as all the principal investigators that contributed to our PSMI panel webinars. JS was inspired by participation in the process studies funded by NASA NNH18ZDA001N-OSFC and NOAA NA17OAR4310257; GF was supported by base funds to NOAA/AOML’s Physical Oceanography Division; and HS was supported by NOAA NA19OAR4310376 and NA17OAR4310255.
    Description: 2021-04-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Subramanian, A. C., Balmaseda, M. A., Centurioni, L., Chattopadhyay, R., Cornuelle, B. D., DeMott, C., Flatau, M., Fujii, Y., Giglio, D., Gille, S. T., Hamill, T. M., Hendon, H., Hoteit, I., Kumar, A., Lee, J., Lucas, A. J., Mahadevan, A., Matsueda, M., Nam, S., Paturi, S., Penny, S. G., Rydbeck, A., Sun, R., Takaya, Y., Tandon, A., Todd, R. E., Vitart, F., Yuan, D., & Zhang, C. Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Frontiers in Marine Science, 6, (2019): 427, doi:10.3389/fmars.2019.00427.
    Description: Subseasonal-to-seasonal (S2S) forecasts have the potential to provide advance information about weather and climate events. The high heat capacity of water means that the subsurface ocean stores and re-releases heat (and other properties) and is an important source of information for S2S forecasts. However, the subsurface ocean is challenging to observe, because it cannot be measured by satellite. Subsurface ocean observing systems relevant for understanding, modeling, and forecasting on S2S timescales will continue to evolve with the improvement in technological capabilities. The community must focus on designing and implementing low-cost, high-value surface and subsurface ocean observations, and developing forecasting system capable of extracting their observation potential in forecast applications. S2S forecasts will benefit significantly from higher spatio-temporal resolution data in regions that are sources of predictability on these timescales (coastal, tropical, and polar regions). While ENSO has been a driving force for the design of the current observing system, the subseasonal time scales present new observational requirements. Advanced observation technologies such as autonomous surface and subsurface profiling devices as well as satellites that observe the ocean-atmosphere interface simultaneously can lead to breakthroughs in coupled data assimilation (CDA) and coupled initialization for S2S forecasts. These observational platforms should also be tested and evaluated in ocean observation sensitivity experiments with current and future generation CDA and S2S prediction systems. Investments in the new ocean observations as well as model and DA system developments can lead to substantial returns on cost savings from disaster mitigation as well as socio–economic decisions that use S2S forecast information.
    Description: AS was funded by NOAA Climate Variability and Prediction Program (NA14OAR4310276) and the NSF Earth System Modeling Program (OCE1419306). CD was funded by NA16OAR4310094. SG and DG were funded by NASA awards NNX14AO78G and 80NSSC19K0059. DY was supported by NSFC (91858204, 41720104008, and 41421005).
    Keywords: Subseasonal ; Seasonal ; Predictions ; Air-sea interaction ; Satellite ; Argo ; Gliders ; Drifters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-01
    Description: Artificial neural networks (ANNs) applied to nonlinear wave ensemble averaging are developed and studied for Gulf of Mexico simulations. It is an approach that expands the conservative arithmetic ensemble mean (EM) from the NCEP Global Wave Ensemble Forecast System (GWES) to a nonlinear mapping that better captures the differences among the ensemble members and reduces the systematic and scatter errors of the forecasts. The ANNs have the 20 members of the GWES as input, and outputs are trained using observations from six buoys. The variables selected for the study are the 10-m wind speed (U10), significant wave height (Hs), and peak period (Tp) for the year of 2016. ANNs were built with one hidden layer using a hyperbolic tangent basis function. Several architectures with 12 different combinations of neurons, eight different filtering windows (time domain), and 100 seeds for the random initialization were studied and constructed for specific forecast days from 0 to 10. The results show that a small number of neurons are sufficient to reduce the bias, while 35–50 neurons produce the greatest reduction in both the scatter and systematic errors. The main advantage of the methodology using ANNs is not on short-range forecasts but at longer forecast ranges beyond 4 days. The nonlinear ensemble averaging using ANNs was able to improve the correlation coefficient on forecast day 10 from 0.39 to 0.61 for U10, from 0.50 to 0.76 for Hs, and from 0.38 to 0.63 for Tp, representing a gain of five forecast days when compared to the EM currently implemented.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-01
    Description: The error characteristics of surface waves and winds produced by ensemble forecasts issued by the National Centers for Environmental Prediction are analyzed as a function of forecast range and severity. Eight error metrics are compared, separating the scatter component of the error from the systematic bias. Ensemble forecasts of extreme winds and extreme waves are compared to deterministic forecasts for long lead times, up to 10 days. A total of 29 metocean buoys is used to assess 1 year of forecasts (2016). The Global Wave Ensemble Forecast System (GWES) performs 10-day forecasts four times per day, with a spatial resolution of 0.5° and a temporal resolution of 3 h, using a 20-member ensemble plus a control member (deterministic) forecast. The largest errors in GWES, beyond forecast day 3, are found to be associated with winds above 14 m s−1 and waves above 5 m. Extreme percentiles after the day-8 forecast reach 30% of underestimation for both 10-m-height wind (U10) and significant wave height (Hs). The comparison of probabilistic wave forecasts with deterministic runs shows an impressive improvement of predictability on the scatter component of the errors. The error for surface winds drops from 5 m s−1 in the deterministic runs, associated with extreme events at longer forecast ranges, to values around 3 m s−1 using the ensemble approach. As a result, GWES waves are better predicted, with a reduction in error from 2 m to less than 1.5 m for Hs. Nevertheless, under extreme conditions, critical systematic and scatter errors are identified beyond the day-6 and day-3 forecasts, respectively.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-20
    Description: Capsule Summary We provide guidance to help foster effective strategies for coordinating more collaborative and successful process-oriented field campaigns that are ultimately aimed towards application and improvement of climate models.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-12-01
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-04-02
    Description: This study extends recent ocean reanalysis comparisons to explore improvements to several next-generation products, the Simple Ocean Data Assimilation, version 3 (SODA3); the Estimating the Circulation and Climate of the Ocean, version 4, release 3 (ECCO4r3); and the Ocean Reanalysis System 5 (ORAS5), during their 23-yr period of overlap (1993–2015). The three reanalyses share similar historical hydrographic data, but the forcings, forward models, estimation algorithms, and bias correction methods are different. The study begins by comparing the reanalyses to independent analyses of historical SST, heat, and salt content, as well as examining the analysis-minus-observation misfits. While the misfits are generally small, they still reveal some systematic biases that are not present in the reference Hadley Center EN4 objective analysis. We next explore global trends in temperature averaged into three depth intervals: 0–300, 300–1000, and 1000–2000 m. We find considerable similarity in the spatial structure of the trends and their distribution among different ocean basins; however, the trends in global averages do differ by 30%–40%, which implies an equivalent level of disagreement in net surface heating rates. ECCO4r3 is distinct in having quite weak warming trends while ORAS5 has stronger trends that are noticeable in the deeper layers. To examine the performance of the reanalyses in the Arctic we explore representation of Atlantic Water variability on the Atlantic side of the Arctic and upper-halocline freshwater storage on the Pacific side of the Arctic. These comparisons are encouraging for the application of ocean reanalyses to track ocean climate variability and change at high northern latitudes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-30
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...