ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,240)
  • Elsevier  (767)
  • Springer  (457)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • Blackwell Publishing Ltd
  • 2020-2023  (69)
  • 2005-2009  (979)
  • 1985-1989  (186)
  • 1950-1954  (6)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-12-22
    Description: This chapter aims at introducing the reader to general concepts about the main forcings of the Mediterranean Sea, in terms of exchanges through the Strait of Gibraltar, and air-sea exchanges of heat, freshwater, and momentum. These forcings are also responsible for the peculiar characteristics of Mediterranean water masses. Therefore, the chapter continues with giving a general explanation on water mass analysis, and then it describes the properties and vertical and horizontal distributions of the main Mediterranean water masses. To conclude, the reader is introduced to the use of other (biogeochemical, and chemical) tracers of water masses, with a focus on the Mediterranean Sea.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  In: World Atlas of Submarine Gas Hydrates in Continental Margins. , ed. by Mienert, J., Berndt, C. 〈https://orcid.org/0000-0001-5055-0180〉, Tréhu, A. M., Camerlenghi, A. and Liu, C. S. Springer, Cham, pp. 451-461.
    Publication Date: 2022-01-06
    Description: The Black Sea has undergone several limnic and marine stages due to fluctuations in the global sea level. The exchange of saline water from the Mediterranean Sea to the Black Sea through the Bosporus Strait was interrupted when the sea level dropped below the Bosporus sill. This induced limnic conditions, while marine conditions were established after the reconnection to saline Mediterranean seawater. Extended river fan systems developed during sea level low-stands, providing large amounts of organic material being buried by rapid sedimentation on the slopes of the Black Sea margins. The biogenic degradation of this material produces most of the methane gas expelled into the anoxic water column today. This largely happens by ubiquitous cold vents at ~700 m water depth (i.e. at the stability boundary of methane hydrates) and by mud volcanoes in ~2000 m water depth. A significant amount of gas is expected to accumulate in the sediment within the methane hydrate stability zone. However, bottom-simulating reflectors, the seismic indicator for gas hydrates, are not found everywhere along the margin. Recent analyses of the Danube and Dniepr fans have revealed a discontinuous gas hydrate formation in an area with no active seeps, while areas of active seepage located in the vicinity of BSR reflections held no gas hydrates. In addition, the ongoing diffusion of salt into the uppermost Black Sea sediment pore space since the last glacial maximum further reduces the volume of the gas hydrate stability zone. Estimates of the total amount of gas stored in gas hydrates therefore require a detailed structural analysis prior to regional- or basin-scale modelling attempts.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: World Atlas of Submarine Gas Hydrates in Continental Margins. , ed. by Mienert, J., Berndt, C. 〈https://orcid.org/0000-0001-5055-0180〉, Tréhu, A. M., Camerlenghi, A. and Liu, C. S. Springer, Cham, pp. 73-85.
    Publication Date: 2022-01-20
    Description: Marine electromagnetic methods provide useful and independent measures for the identification and quantification of submarine gas hydrates. The resistivity of seafloor sediments, drawn from area-wide electromagnetic data, mainly depends on the sediment porosity and the nature of the pore fluid. Gas hydrates and free gas are both electrically resistive. The replacement of saline water, thus conductive pore water with resistive gas hydrate or free gas, increases the sediment resistivity and can be used to provide accurate saturation estimates if the background lithology is known. While seismic methods are predominantly used to study the distribution of submarine gas hydrates, a growing number of global field studies have demonstrated that the joint interpretation of marine seismic and electromagnetic methods improves the evaluation of submarine gas hydrate targets. This article discusses the relationship between resistivity and free gas/gas hydrate saturation levels, how the resistivity of the sediment may be measured and summarizes the status and results of current and past field studies.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-25
    Description: Wildfires are natural or anthropogenic phenomena increasing at alarming rates globally due to land-use alterations, droughts, climatic warming, hunting and biological invasions. Whereas wildfire effects on terrestrial ecosystems are marked and relatively well-studied, ash depositions into aquatic ecosystems have often remained overlooked but have the potential to significantly impact bottom-up processes. This study assessed ash-water-phytoplankton biomass dynamics using six plant species [i.e., three natives (apple leaf Philenoptera violacea, Transvaal milk plum Englerophytum magalismontanum, quinine tree Rauvolfia caffra) and three aliens (lantana Lantana camara, gum Eucalyptus camaldulensis, guava Psidium guajava)] based on a six-week mesocosm experiment with different ash concentrations (1 and 2 g L-1). We assessed concentrations of chemical elements, i.e., N, P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn and B from ash collected, and we have observed significant differences among the species. High concentrations of P, K, Mn, Fe, Cu, Zn and B were recorded from Transvaal milk plum ash and low concentrations of P, K, Ca, Mg, Cu and Zn were recorded from apple leaf. An increase in phytoplankton biomass (using chlorophyll-a concentration as a proxy) for all treatments i.e., 1 and 2 g L-1 for all plant species ash was observed a week after, followed by decreases in the following weeks, with the exception of 2 g L-1 for lantana, gum and control. Silicate concentrations (i.e., used as a proxy for diatom abundance) showed increasing patterns among all ash treatments, with exception of controls. However, no clear patterns were observed between native and alien plant ash on both chl-a and silicate concentrations. We found that ash has notable effects on water chemistry, particularly nitrate, which increased throughout the weeks, whereas, pH and conductivity were high at low ash concentrations. The impacts of ash on water chemistry, chl-a and silicate concentrations vary with individual species and the amount of ash deposited into the system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-29
    Description: Every year, vast quantities of plastic debris arrive at the ocean surface. Nevertheless, our understanding of plastic movements is largely incomplete and many of the processes involved with the horizontal and vertical displacement of plastics in the ocean are still basically unknown. In this chapter we review the dynamics associated with the transport of plastics and other pollutants at oceanic fronts. Fronts had been historically defined as simple barriers to exchange, but here we show that the role of these structures in influencing the transport of plastics is more complex. The tools used to investigate the occurrence of frontal structures at various spatial scales are reviewed in detail, with a particular focus on their potential applications to the study of plastic pollution. Three selected case studies are presented to better describe the role of fronts in favoring or preventing plastic exchanges: the large-scale Antarctic Circumpolar Current, a Mediterranean mesoscale front, and the submesoscale fronts in the Gulf of Mexico. Lastly, some aspects related to the vertical subduction of plastic particles at oceanic fronts are discussed as one of the most promising frontiers for future research. The accumulation of floating debris at the sea surface is mainly affected by the horizontal components of frontal dynamics. At the same time, vertical components can be relevant for the export of neutrally buoyant particles from the surface into the deep sea. Based on these evidences, we propose that submesoscale processes can provide a fast and efficient route of plastic transport within the mixed layer, while mesoscale instabilities and associated vertical velocities might be the dominant mechanism to penetrate the deeper ocean on slower but broader scales. We conclude that given the ubiquitous presence of fronts in the world’s ocean, their contribution to the global plastic cycle is probably not negligible and the role of these processes in vertically displacing neutrally buoyant microplastics should be investigated in more detail.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-20
    Description: The Barents Sea, located close to the Arctic Ocean, is a petroleum province featuring an extensive occurrence of gas hydrates and shallow gas in compacted sediments. Glacial erosion and uplift have contributed to the migration of gas originating from deeper rocks to the shallow sediments of this region, resulting in hydrates with higher-order hydrocarbons in addition to methane. This article documents reported gas hydrate indications and major controls on hydrate stability in the Barents Sea.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Since global navigation satellite systems (GNSS) for determining the absolute geolocation do not reach into the ocean, underwater robots typically obtain a GNSS position at the water surface and then use a combination of different sensors for estimating their pose while diving, including inertial navigation, acoustic doppler velocity logs, ultra short baseline localization systems and pressure sensors. When re-navigating to the same seafloor location after several days, months or years, e.g. for coastal monitoring, the absolute uncertainty of such systems can be in the range of meters for shallow water, and tens of meters for deeper waters in practice. To enable absolute relocalization in marine data science applications that require absolute seafloor positions in the range of centimeter precision, in this contribution we suggest to equip the monitoring area with visual markers that can be detected reliably even in case they are partially overgrown or partially buried by sediment, which can happen quickly in coastal waters. Inspired by patterns successful in camera calibration, we create robust markers that exhibit features at different scales, in order to allow detection, identification and pose estimation from different cameras and various altitudes as visibility (and therefore the maximum possible survey altitude) in coastal waters can vary significantly across seasons, tides and weather. The low frequency content of the marker resembles a human-readable digit, in order to allow easy identification by scientists. We present early results including promising initial tests in coastal waters.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-02
    Description: While offshore groundwater has been utilized by coastal communities as far back as 1000 BC, only in the past 10 years has the global volume of fresh-to-brackish water hosted in offshore aquifers been truly appreciated. There are vast quantities (~300–500 × 103 km3) of offshore freshened groundwater sequestered in continental shelf sediments under water depths of less than 60 m within 110 km of the coastline. New marine geophysical methods now make it possible to map and quantify low salinity offshore groundwater bodies. To date, these offshore resources have not been developed. Offshore freshened groundwater could be produced if wells are located close to the shoreline and coastal desalination plants.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-11
    Description: Underwater images are challenging for correspondence search algorithms, which are traditionally designed based on images captured in air and under uniform illumination. In water however, medium interactions have a much higher impact on the light propagation. Absorption and scattering cause wavelength- and distance-dependent color distortion, blurring and contrast reductions. For deeper or turbid waters, artificial illumination is required that usually moves rigidly with the camera and thus increases the appearance differences of the same seafloor spot in different images. Correspondence search, e.g. using image features, is however a core task in underwater visual navigation employed in seafloor surveys and is also required for 3D reconstruction, image retrieval and object detection. For underwater images, it has to be robust against the challenging imaging conditions to avoid decreased accuracy or even failure of computer vision algorithms. However, explicitly taking underwater nuisances into account during the feature extraction and matching process is challenging. On the other hand, learned feature extraction models achieved high performance in many in-air problems in recent years. Hence we investigate, how such a learned robust feature model, D2Net, can be applied to the underwater environment and particularly look into the issue of cross domain transfer learning as a strategy to deal with the lack of annotated underwater training data.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-22
    Description: Phytoplankton form the base of the pelagic food web in inland waters. Unlike rooted plants with access to nutrients in the sediment, phytoplankton depend on the open water as their sole direct source of minerals. Phytoplankton comprise cyanobacteria and phylogenetically diverse eukaryotic algae that convert light energy and mineral nutrients into organic matter. Many species also exploit the elements and energy within dissolved organic compounds and particles produced in the catchment or within the water. Here, we describe the nutrient requirements of phytoplankton, their different modes of nutrition, the mechanisms they employ to acquire nutrients and the ecological consequences of their varying ability to exploit an often scarce and spatially and temporally variable resource. When nutrients are abundant, often as a result of human disruption of nutrient cycles, phytoplankton productivity, and often biomass, increases to the point that it causes a range of ecological consequences that reduce the value of the water resource for mankind.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-08-08
    Description: Fish food is an inevitable item in human consumption with healthy sourceof good quality proteins and fat. Aqua industry can help to improve food security,livelihoods for the poorest and to meet the world’s food demands. But producingmore seafood that is at affordable cost with rich nutrition is challenging for aquaindustry. Many factors affect the productivity of aqua industry; one such an impor-tant constraint is bacterial diseases. Hence, Aqua industry, a booming businesssector, immensely requires continued research with scientific and technical devel-opments, and innovations. Study of bacterialfish disease is one such thrust areawhich requires intense research to understand the causes and control bacterialdiseases infish. The appearance and development of afish disease is the result ofthe interaction among pathogen, host and environment. An insight into bacterialfishdiseases, clinical symptoms and treatment may help to manage the bacterial diseasesand so can make aqua industry a more profitablefield. This chapter deals withdifferent aspects of the most threatening bacterial diseases, occurring in farmedfishes and also in wildfishes, which are results infish loss and economic lossworldwide. A wide range of gram positive and gram-negative bacteria causingbacterial diseases, clinical symptoms, diagnosis, treatment, vaccines and the natureof water habitat are also discussed in this chapter.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-08-12
    Description: The Digital Earth project aimed for the integration of data science and Earth science. Here, we reflect on the main lessons learned that include the need for interdisciplinary collaboration, thinking out of the box, the concept of ‘thinking in workflows’ and models for the sustainable implementation of scientific software, data infrastructure and policies.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-08-12
    Description: Digital Earth is a project funded by the German Helmholtz Association with all centers of the research field Earth and Environment involved. The main goal of the Digital Earth project is to develop and bundle data science methods in extendable and maintainable scientific workflows that enable natural scientists in collaboration with data scientists to achieve a deeper understanding of the Earth system. This has been achieved by developing solutions for data analysis and exploration with visual and computational approaches with data obtained in a SMART monitoring approach and modeling studies, accompanied by a continuous evaluation of the collaboration processes. In this chapter, the history, setup, and focus of the Digital Earth project are described.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-08-17
    Description: The Digital Earth project aims at a strong interrelation between Data and Earth Science and a step-change in implementing data science methods within Earth science research. During the project, the progress of interdisciplinary collaboration and adoption of data science methods has been measured and assessed with the goal to trace the success of the project. This chapter provides the set-up of this evaluation and the results from two online questionnaires that were held after the start and before the end of the project.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-08-17
    Description: Diversity within marine microbiomes spans the three domains of life: microbial eukaryotes (i.e., protists), bacteria, and archaea. Although protists were the first microbes observed by microscopy, it took the advent of molecular techniques to begin to resolve their complex and reticulate evolutionary history. Symbioses between microbial entities have been key in this journey, and such interactions continue to shape the ecology of marine microbiomes. Nowadays, photosynthetic marine protists are appreciated for their activities as primary producers, rivalling land plant contributions in the global carbon cycle. Predatory protists are known for consuming prokaryotes and other protists, with some combining metabolisms into a mixotrophic lifestyle. Still, much must be learned about specific interactions and lifestyles, especially for uncultured groups recognized just by environmental sequences. With respect to the fate of protists in food webs, there are many paths to consider. Despite being in early stages of identifying interactions, whether mutualistic or death-inducing infections by parasites and viruses, knowledge is advancing rapidly via methods for interrogation in nature without culturing. Here, we review marine protists, their evolutionary histories, diversity, ecological roles, and lifestyles in all layers of the ocean, with reference to how views have shifted over time through extensive investigation.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-05
    Description: Quantification of phthalates or phthalic acid esters (PAEs) might be problematic due to matrix overlap, auto-self absorbance and background scattering noise by the plastic lab materials although plastics have been reported in the release of PAEs. These materials (ambient air, reagents bottles, sampling devices, and various analytical instruments), are ubiquitous in the laboratory environment, thereby making it more difficult to reliably analyze of trace concentration of PAEs. Thus, in the current study, a straight forward and reliable protocol has been established for the analysis of PAEs including control of blank contamination, and the experimental conditions such as extraction time and temperature were optimized. The mass of PAEs in blank tests of selected materials ranged from 3±0.7 to 35±6 ng for liquid-liquid extraction (LLE) and from 5±1.8 to 63±15 ng for solid-phase extraction (SPE). For both extraction methods, higher blank values were measured for dibutyl phthalate (DBP) (35±6 ng, 12±3 ng), and DEHP (63±12 ng, 23±5 ng) in LLE and SPE, respectively. Average recoveries of PAEs in LLE were 90-97% and obtained with successive aliquots of 2 mL, 1 mL, and 1 mL dichloromethane (DCM). For SPE, recoveries up to 86-90% were achieved with successive aliquots of 5, 3, and 2 mL DCM at a sample flow rate of 5 mL min -1 . Under the optimized conditions, the method quantification limits (MQL) for PAEs was 10-20 ng L -1 for LLE and 10-35 ng L -1 for SPE. Moreover, the dissolved concentrations of PAEs from LDPE measured by the LLE method ranged 〈 1.5 to 5.83 ng cm -2, and those measured by SPE ranged from 1.0to256ngL -1 , in seawater samples of Sharm Obhur. The method has lower MQL values for LLE and SPE than average reported values of 10-100 ng L -1 and 30-100 ng L -1 , respectively.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-11-01
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-12-02
    Description: A key requirement for geological CO2 storage is site integrity management and monitoring during operation through to the post decommissioning period. This paper focuses on monitoring deformation of the ground surface and seabed as a proxy for overall deformation in the reservoir and surrounding layers. The objective is to inform, based on deformation data, on how the reservoir is responding to CO2 injection and to ensure any issues with regard to storage integrity are rapidly detected. The magnitude and pattern of deformation at the surface reveals geomechanical/hydromechanical processes that occur in reservoir due to CO2 injection. We acquired deformation data from the In Salah CO2 injection site and from four additional study cases during the course of this study; one in the onshore UK, the other a combined campaign onshore Norway and offshore Germany, and the third in onshore Japan. Significant developments in measurement techniques, processing tools and interpretation algorithms were developed through this project. Models were then developed to simulate the observed data and to couple surface deformation to displacement in the subsurface. The results show millimeter-scale deformations in the subsurface have a signature at the surface that can be captured by the tools and workflows developed in this project. These deformations, particularly the patterns, are important factors to consider when monitoring a CO2 storage site.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-12-09
    Description: Data-driven science has turned into a fourth fundamental paradigm of performing research. Earth System Science, following a holistic approach in unraveling the complex network of processes and interactions shaping system Earth, particularly profits from embracing data-driven approaches next to observation and modeling. At the end, increasing digitalization of Earth sciences will lead to cultural transformation towards a Digital Earth Culture.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-12-19
    Description: A comprehensive study of the Earth system and its related processes requires a holistic examination and understanding of multidimensional data acquired with a large number of different sensors or produced by various models. To this end, the Digital Earth project developed a set of software solutions to study environmental data sets using visual approaches. In the following chapter, we present three data visualization products developed to deal with the challenges of the analysis and exploration of environmental data.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-12-19
    Description: Reliable data are the base of all scientific analyses, interpretations and conclusions. Evaluating data in a smart way speeds up the process of interpretation and conclusion and highlights where, when and how additionally acquired data in the field will support knowledge gain. An extended SMART monitoring concept is introduced which includes SMART sensors, DataFlows, MetaData and Sampling approaches and tools. In the course of the Digital Earth project, the meaning of SMART monitoring has significantly evolved. It stands for a combination of hard- and software tools enhancing the traditional monitoring approach where a SMART monitoring DataFlow is processed and analyzed sequentially on the way from the sensor to a repository into an integrated analysis approach. The measured values itself, its metadata, and the status of the sensor, and additional auxiliary data can be made available in real time and analyzed to enhance the sensor output concerning accuracy and precision. Although several parts of the four tools are known, technically feasible and sometimes applied in Earth science studies, there is a large discrepancy between knowledge and our derived ambitions and what is feasible and commonly done in the reality and in the field.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-09-27
    Description: Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake‐groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike‐and‐Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from 〈0.2 to 〉0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.
    Description: Article impact statement: The probability of cluster membership quantified using an algorithm should be validated against another probabilistic‐based classifier.
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.9 ; ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-01
    Description: Copper (Cu) is an essential element for plants and microorganisms and at larger concentrations a toxic pollutant. A number of factors controlling Cu dynamics have been reported, but information on quantitative relationships is scarce. We aimed to (i) quantitatively describe and predict soil Cu concentrations (CuAR) in aqua regia considering site‐specific effects and effects of pH, soil organic carbon (SOC) and cation exchange capacity (CEC), and (ii) study the suitability of mixed‐effects modelling and rule‐based models for the analysis of long‐term soil monitoring data. Thirteen uncontaminated long‐term monitoring soil profiles in southern Germany were analysed. Since there was no measurable trend of increasing CuAR concentrations with time in the respective depth ranges of the sites, data from different sampling dates were combined and horizon‐specific regression analyses including model simplifications were carried out for 10 horizons. Fixed‐ and mixed‐effects models with the site as a random effect were useful for the different horizons and significant contributions (either of main effects or interactions) of SOC, CEC and pH were present for 9, 8 and 7 horizons, respectively. Horizon‐specific rule‐based cubist models described the CuAR data similarly well. Validations of cubist models and mixed‐effects models for the CuAR concentrations in A horizons were successful for the given population after random splitting into calibration and validation samples, but not after independent validations with random splitting according to sites. Overall, site, CEC, SOC and pH provide important information for a description of CuAR concentrations using the different regression approaches. Highlights: Information on quantitative relationships for factors controlling Cu dynamics is scarce. Site, CEC, SOC and pH provide important information for a description of Cu concentrations. Validations of cubist models and mixed‐effects models for A horizons were successful for a closed population of sites.
    Description: Bavarian State Ministry of the Environment and Consumer Protection http://dx.doi.org/10.13039/501100010219
    Description: Ministry of Agriculture and Environment Mecklenburg‐Western Pomerania
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-04
    Description: Soil aeration is a critical factor for oxygen‐limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X‐ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-07-26
    Description: Application of farmyard manure (FYM) is common practice to improve physical and chemical properties of arable soil and crop yields. However, studies on effects of FYM application mainly focussed on topsoils, whereas subsoils have rarely been addressed so far. We, therefore, investigated the effects of 36‐year FYM application with different rates of annual organic carbon (OC) addition (0, 469, 938 and 1875 g C m−2 a−1) on OC contents of a Chernozem in 0–30 cm (topsoil) and 35–45 cm (subsoil) depth. We also investigated its effects on soil structure and hydraulic properties in subsoil. X‐ray computed tomography was used to analyse the response of the subsoil macropore system (≥19 μm) and the distribution of particulate organic matter (POM) to different FYM applications, which were related to contents in total OC (TOC) and water‐extractable OC (WEOC). We show that FYM‐C application of 469 g C m−2 a−1 caused increases in TOC and WEOC contents only in the topsoil, whereas rates of ≥938 g C m−2 a−1 were necessary for TOC enrichment also in the subsoil. At this depth, the subdivision of TOC into different OC sources shows that most of the increase was due to fresh POM, likely by the stimulation of root growth and bioturbation. The increase in subsoil TOC went along with increases in macroporosity and macropore connectivity. We neither observed increases in plant‐available water capacity nor in unsaturated hydraulic conductivity. In conclusion, only very high application of FYM over long periods can increase OC content of subsoil at our study site, but this increase is largely based on fresh, easily degradable POM and likely accompanied by high C losses when considering the discrepancy between OC addition rate by FYM and TOC response in soil. Highlights A new image processing procedure to distinguish fresh and decomposed POM. The increase of subsoil C stock based to a large extend on fresh, labile POM. Potential of arable subsoils for long‐term C storage by large FYM application rates is limited. The increase in TOC has no effect on hydraulic properties of the subsoil.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-01-19
    Description: Global population projections foresee the biggest increase to occur in Africa with most of the available uncultivated land to ensure food security remaining on the continent. Simultaneously, greenhouse gas emissions are expected to rise due to ongoing land use change, industrialisation, and transport amongst other reasons with Africa becoming a major emitter of greenhouse gases globally. However, distinct knowledge on greenhouse gas emissions sources and sinks as well as their variability remains largely unknown caused by its vast size and diversity and an according lack of observations across the continent. Thus, an environmental research infrastructure—as being setup in other regions—is more needed than ever. Here, we present the results of a design study that developed a blueprint for establishing such an environmental research infrastructure in Africa. The blueprint comprises an inventory of already existing observations, the spatial disaggregation of locations that will enable to reduce the uncertainty in climate forcing’s in Africa and globally as well as an overall estimated cost for such an endeavour of about 550 M€ over the next 30 years. We further highlight the importance of the development of an e-infrastructure, the necessity for capacity development and the inclusion of all stakeholders to ensure African ownership.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Climate Change. Elsevier, Amsterdam, The Netherlands, pp. 219-249. 3.ed. ISBN 978-0-12-821575-3
    Publication Date: 2022-01-06
    Description: The oceans' role in climate and climate change is manifold. The Ocean circulation transports large amounts of heat and freshwater on hemispheric space scales which have significant impacts on regional climate in the ocean itself but also noticeable consequences via atmospheric teleconnections on land. Due to the high heat capacity of seawater and the relatively slow ocean circulation, the oceans provide a significant “memory” for the climate system. Bodies of water that descend from the sea surface may reside in the ocean interior for decades and centuries, while preserving their temperature and salinity signature, before they surface again to interact with the overlying atmosphere. The residence time of water in the atmosphere is about ten days and the persistence of dynamical states of the atmospheric circulation may last up to a few weeks. Thus, on long time scales ocean dynamics becomes important for climate, which implies that climate variations and climate change can only partially be understood without consideration of ocean dynamics and the intricate ocean-atmosphere interaction. Since 1960 the heat uptake of the oceans has been 20 times larger than that of the atmosphere. Thus the oceans have been able to reduce the otherwise much more pronounced temperature rise in the atmospheric climate. Also, over the last 200 years the oceans have absorbed about half of the CO2 release into the atmosphere by human activities (fossil fuel combustion, de-forestation, cement production), thereby reducing the direct effect of greenhouse gases on atmospheric temperatures.This chapter aims to describe and explain fundamental principles of the ocean dynamics and gathers information about past, present and future states the world’s ocean and its role in climate change.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-01-07
    Description: Highlights • Continuous CH4 bioelectrosynthesis from CO2 demonstrated with 80% or higher Coulombic Efficiency • At pH values below 8 CH4 cathodic off-gas contains up to 85% CH4 • At pH above 8.5, production of acetate and then ethanol (up to 8 g L−1) was obtained • Coulombic efficiency remained above 80% • 16S sequencing showed proliferation of Clostridium, Methanosaeta, Methanobrevibacter and Methanobacterium spp at the cathode This study demonstrates the continuous conversion of CO2 to methane, acetate, and ethanol in a Microbial Electrosynthesis Cell (MESC) with a carbon felt biocathode. The MESC was inoculated with a mixed anaerobic microbial consortium and operated at a mesophilic temperature of 30 °C. In situ deposition of Ni and Fe was achieved by introducing 0.2 g L−1 of NiSO4 or FeSO4, respectively, into the cathode compartment influent stream. In response, a considerable improvement in MESC performance was observed with a current density of 6.4 mA cm−2 (per separator area) and a CH4 production of 0.83 L (LR d)−1 (R = cathode volume). Once Ni and Fe were removed from the influent solution, the performance remained unchanged. Electron dispersive spectroscopy confirmed Ni and Fe electrodeposition. A shift from CH4 to acetate and ethanol production with concentrations reaching 5 and 8 g L−1, respectively, was observed upon increasing the cathode compartment pH to 8.5–9.0. 16S rRNA gene sequencing showed significant changes in the bacterial population at the cathode with Clostridia representing almost two-thirds of the population. Methanosaeta, Methanobrevibacter, and Methanobacterium species dominated the archaeal community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-01-07
    Description: Rivers are viewed as major pathways of microplastic transport from terrestrial areas to marine ecosystems. However, there is paucity of knowledge on the dispersal pattern and transport of microplastics in river sediments. In this study, a three dimensional hydrodynamic and particle transport modelling framework was created to investigate the dispersal and transport processes of microplastic particles commonly present in the environment, namely, polyethylene (PE), polypropylene (PP), polyamide (PA), and polyethylene terephthalate (PET) in river sediments. The study outcomes confirmed that sedimental microplastics with lower density would have higher mobility. PE and PP are likely to be transported for a relatively longer distance, while PA and PET would likely accumulate close to source points. High water flow would transport more microplastics from source points, and high flow velocity in bottom water layer are suggested to facilitate the transport of sedimental microplastics. Considering the limited dispersal and transport, the study outcomes indicated that river sediments would act as a sink for microplastic pollutants instead of being a transport pathway. The patchiness associated with the hotspots of different plastic types is expected to provide valuable information for microplastic source tracking.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-01-07
    Description: Microbially catalyzed corrosion of metals is a substantial economic concern. Aerobic microbes primarily enhance Fe0 oxidation through indirect mechanisms and their impact appears to be limited compared to anaerobic microbes. Several anaerobic mechanisms are known to accelerate Fe0 oxidation. Microbes can consume H2 abiotically generated from the oxidation of Fe0. Microbial H2 removal makes continued Fe0 oxidation more thermodynamically favorable. Extracellular hydrogenases further accelerate Fe0 oxidation. Organic electron shuttles such as flavins, phenazines, and possibly humic substances may replace H2 as the electron carrier between Fe0 and cells. Direct Fe0-to-microbe electron transfer is also possible. Which of these anaerobic mechanisms predominates in model pure culture isolates is typically poorly documented because of a lack of functional genetic studies. Microbial mechanisms for Fe0 oxidation may also apply to some other metals. An ultimate goal of microbial metal corrosion research is to develop molecular tools to diagnose the occurrence, mechanisms, and rates of metal corrosion to guide the implementation of the most effective mitigation strategies. A systems biology approach that includes innovative isolation and characterization methods, as well as functional genomic investigations, will be required in order to identify the diagnostic features to be gleaned from meta-omic analysis of corroding materials. A better understanding of microbial metal corrosion mechanisms is expected to lead to new corrosion mitigation strategies. The understanding of the corrosion microbiome is clearly in its infancy, but interdisciplinary electrochemical, microbiological, and molecular tools are available to make rapid progress in this field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-01-07
    Description: Highlights: • Transcriptional response to hypoxia-reoxygenation was studied in an OMZ bivalve. • Anaerobic glycolysis and protein quality control pathways were transcriptionally upregulated in hypoxia. • Hypoxia elevated mRNA levels of UCP2 but had no effect on thiol-dependent antioxidants. • No impact of hypoxia-reoxygenation was found on aerobic marker enzymes. • Responses of an OMZ bivalve show parallels to other hypoxia-tolerant bivalves. Abstract: Benthic animals inhabiting the edges of marine oxygen minimum zones (OMZ) are exposed to unpredictable large fluctuations of oxygen levels. Sessile organisms including bivalves must depend on physiological adaptations to withstand these conditions. However, as habitats are rather inaccessible, physiological adaptations of the OMZ margin inhabitants to oxygen fluctuations are not well understood. We therefore investigated the transcriptional responses of selected key genes involved in energy metabolism and stress protection in a dominant benthic species of the northern edge of the Namibian OMZ, the nuculanid clam Lembulus bicuspidatus,. We exposed clams to normoxia (~5.8 ml O2 l−1), severe hypoxia (36 h at ~0.01 ml O2 l−1) and post-hypoxic recovery (24 h of normoxia following 36 h of severe hypoxia). Using newly identified gene sequences, we determined the transcriptional responses to hypoxia and reoxygenation of the mitochondrial aerobic energy metabolism (pyruvate dehydrogenase E1 complex, cytochrome c oxidase, citrate synthase, and adenine nucleotide translocator), anaerobic glycolysis (hexokinase (HK), phosphoenolpyruvate carboxykinase (PEPCK), phosphofructokinase, and aldolase), mitochondrial antioxidants (glutaredoxin, peroxiredoxin, and uncoupling protein UCP2) and stress protection mechanisms (a molecular chaperone HSP70 and a mitochondrial quality control protein MIEAP) in the gills and the labial palps of L. bicuspidatus. Exposure to severe hypoxia transcriptionally stimulated anaerobic glycolysis (including HK and PEPCK), antioxidant protection (UCP2), and quality control mechanisms (HSP70 and MIEAP) in the gills of L. bicuspidatus. Unlike UCP2, mRNA levels of the thiol-dependent mitochondrial antioxidants were not affected by hypoxia-reoxygenation stress. Transcript levels of marker genes for aerobic energy metabolism were not responsive to oxygen fluctuations in L. bicuspidatus. Our findings highlight the probable importance of anaerobic succinate production (via PEPCK) and mitochondrial and proteome quality control mechanisms in responses to oxygen fluctuations of the OMZ bivalve L. bicuspidatus. The reaction of L. bicuspidatus to oxygen fluctuations implies parallels to that of other hypoxia-tolerant bivalves, such as intertidal species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-01-07
    Description: Despite the growing concern of scyphozoan jellyfish blooms and their associated threats, there is an acute lack of baseline knowledge regarding the trophic ecology of scyphozoans in tropical waters where blooms of several species sometimes occur at once or successively. Therefore, this study was conducted from June 2010 to December 2011 in the Klang Strait (Malaysia) to elucidate the trophic ecology of eight sympatric species of scyphozoan that occurred in a conjoint mangrove-mudflat habitat. The species diet, trophic position and the relative contribution of primary producers to their nutrition were determined by integrating stomach content examination with stable isotope analysis. Scyphozoans in the Klang Strait are principally carnivores and can be grouped into three major trophic guilds: specialized copepod feeder, copepod and macrozooplankton feeder, and mixed plankton feeder. Bayesian mixing model of δ13C isotope values indicates that the scyphozoans mainly derived their basal carbon source from microphytobenthos and phytoplankton. Analysis of δ15N isotope values reveals that all species are positioned at the third trophic level after mixed zooplankton groups (second) and primary producers (first) in the food web. Scyphozoans thus represent an important trophic link coupling benthic and pelagic primary production to higher-level predators and humans, and are important carbon exporters from nearshore to neritic and offshore waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-01-07
    Description: Being integral primary producers in diverse ecosystems, microalgal genomes could be mined for ecological insights, but representative genome sequences are lacking for many phyla. We cultured and sequenced 107 microalgae species from 11 different phyla indigenous to varied geographies and climates. This collection was used to resolve genomic differences between saltwater and freshwater microalgae. Freshwater species showed domain-centric ontology enrichment for nuclear and nuclear membrane functions, while saltwater species were enriched in organellar and cellular membrane functions. Further, marine species contained significantly more viral families in their genomes (p = 8e–4). Sequences from Chlorovirus, Coccolithovirus, Pandoravirus, Marseillevirus, Tupanvirus, and other viruses were found integrated into the genomes of algal from marine environments. These viral-origin sequences were found to be expressed and code for a wide variety of functions. Together, this study comprehensively defines the expanse of protein-coding and viral elements in microalgal genomes and posits a unified adaptive strategy for algal halotolerance.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: video
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-01-07
    Description: A major highlight of restoration efforts is to improve the ecological structure and function of the natural ecosystem in the restored habitat. Assessment of restoration success is a crucial component of an optimal ecological management strategy. In studies to determine the restoration success of a transplanted seagrass habitat by assessing trophic recovery, we examined carbon and nitrogen stable isotope ratios of organic matter sources and macrobenthic assemblages in a transplanted eelgrass Zostera marina bed. The eelgrass bed was restored about 2 years after transplantation in a southern coastal bay of Korea, and consequently, the food web structure in the bed was compared with that in a natural reference site. Our results revealed no significant differences in isotopic values of both macrobenthic consumers and their putative food sources between the transplanted and natural seagrass beds. These isotopic similarities in florae and faunae in the two beds suggest a uniformity in food web structure formed by the diversity and availability of resources, and thereby suggest similarities in the resource–consumer relationship. Isotopic niche indices and high dietary overlaps of feeding guilds in the transplanted and natural beds further suggest the transplanted habitat provides similar ecological functions and ecosystem services to its natural counterpart. Collectively, our results suggest the eelgrass transplantation led to successful restoration of a common seagrass bed, with recovery of the functional properties of the food web structure. Finally, our findings support the idea that stable isotope measures can provide a better understanding of the functioning of restored ecosystems, and improve post-transplantation monitoring efforts for the future planning and managing of successful habitat restoration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-01-07
    Description: Micro- and nano-scale plastic particles in the environment result from their direct release and degradation of larger plastic debris. Relative to macro-sized plastics, these small particles are of special concern due to their potential impact on marine, freshwater, and terrestrial systems. While microplastic (MP) pollution has been widely studied in geographic regions globally, many questions remain about its origins. It is assumed that urban environments are the main contributors but systematic studies are lacking. The absence of standard methods to characterize and quantify MPs and smaller particles in environmental and biological matrices has hindered progress in understanding their geographic origins and sources, distribution, and impact. Hence, the development and standardization of methods is needed to establish the potential environmental and human health risks. In this study, we investigated stable carbon isotope ratio mass spectrometry (IRMS), attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy, and micro-Raman spectroscopy (μ-Raman) as complementary techniques for characterization of common plastics. Plastic items selected for comparative analysis included food packaging, containers, straws, and polymer pellets. The ability of IRMS to distinguish weathered samples was also investigated using the simulated weathering conditions of ultraviolet (UV) light and heat. Our IRMS results show a difference between the δ13C values for plant-derived and petroleum-based polymers. We also found differences between plastic items composed of the same polymer but from different countries, and between some recycled and nonrecycled plastics. Furthermore, increasing δ13C values were observed after exposure to UV light. The results of the three techniques, and their advantages and limitations, are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-01-07
    Description: Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) has become a well-established technique for the detection, size characterization and quantification of inorganic nanoparticles but its use for the analysis of micro- and nanoparticles composed of carbon has been scarce. Here, the analysis of a microplastic suspensions by ICP-MS operated in single particle mode using microsecond dwell times is comprehensively discussed. The detection of polystyrene microparticles down to 1.2 μm was achieved by monitoring the 13C isotope. Plastic microparticles of up to 5 μm were completely volatized and their components atomized, which allowed the detection of microplastics, their quantification using aqueous dissolved carbon standards, and the measurement of the size-distribution of the detected particles. Limits of detection of 100 particles per milliliter were achieved for an acquisition time of 5 min. The method developed was applied to the screening of microplastics in personal care products and released from food packagings. The chemical identity of the detected microplastics was confirmed by attenuated total reflectance Fourier-transform infrared spectroscopy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Elsevier
    In:  Current Opinion in Biotechnology, 67 . pp. 119-129.
    Publication Date: 2022-01-07
    Description: Favorable interspecies associations prevail in natural microbial assemblages. Some of these favorable associations are co-metabolic dependent partnerships in which extracellular electrons are exchanged between species. For such electron exchange to occur, the cells must exhibit electroactive interfaces and get involved in direct cell-to-cell contact (Direct Interspecies Electron Transfer/DIET) or use available conductive mineral grains from their environment (Conductive-particle-mediated Interspecies Electron Transfer/CIET). This review will highlight recent discoveries and knowledge gaps regarding DIET and CIET interspecies associations in artificial co-cultures and consortia from natural and man-made environments and emphasize approaches to validate DIET and CIET. Additionally, we acknowledge the initiation of a movement towards applying electric syntrophies in biotechnology, bioremediation and geoengineering for natural attenuation of toxic compounds. Next, we have highlighted the urgent research needs that must be met to develop such technologies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Elsevier
    In:  Physics of the Earth and Planetary Interiors, 312 . Art.Nr. 106660.
    Publication Date: 2022-01-07
    Description: Highlights • A total of 1455 crustal events in Santorini-Amorgos zone have been relocated. • The seismogenic layer along the zone is found to be 12.5 km thick. • Expected moment magnitude of future earthquakes is in the range of 6.3 to 7.2. • High Vp/Vs ratios in northern part of Santorini caldera indicate the presence of melt. • Upward migrating fluids exist at areas with vertical earthquake clusters. The Santorini-Amorgos zone is located in the central part of the Hellenic volcanic arc and is hosting eight large faults as well as Kolumbo and Santorini volcanic centers. The largest earthquake (Mw ~ 7.1) in the southern Aegean during the 20th century also occurred in this area on 9 July 1956. A total of 1868 crustal events were recorded by temporary networks during September 2002 to July 2004 and October 2005 to March 2007, and also by the permanent network from 2011 to 2019. We relocated 1455 of these events by using HypoDD and revealed clusters of earthquakes beneath Kolumbo, Anydros graben, and Santorini-Amorgos ridge. Only the faults in the SW of Anydros, SE of Ios, and along the south coast of Amorgos were delineated by the relocated events. Nearly vertical clusters were observed beneath the island of Anydros, south of Amorgos, and in NE end of Amorgos fault, indicating possible pathways of upward migrating fluids. The seismogenic layer thickness calculated based on the depth distribution of the relocated events was 12.5 km. We combined this thickness with geometrical properties of the faults to calculate the expected moment magnitude of future earthquakes, resulting in a range of 6.3–7.2. In an effort to map the distribution of fluids, the Vp/Vs ratio distribution was estimated by utilizing the event-station travel time data along with crack density, fluid saturation, and Poisson's ratio. The petrophysical parameters observed in the northern part of the Santorini caldera suggest the existence of melt, while those observed in Anydros and in the NE of Amorgos fault support the suggestion of upward migrating fluids in these areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-01-07
    Description: The Santorini-Amorgos zone is an area rich in microseismicity at the center of the Hellenic volcanic arc. The microseismicity of the zone is distributed along the Santorini-Amorgos ridge and Kolumbo submarine volcano. In this study, we utilized crustal events that were recorded by temporary networks during September 2002 to July 2004 and October 2005 to March 2007, and also by the permanent network from 2011 to 2020. These events were inverted for their moment tensors by using P-wave polarities as well as SV/P and SH/P amplitude ratios, yielding 74 well-constrained moment tensor solutions. Most of these moment tensors have significant CLVD and isotropic components that are positively correlated to each other (R2 = 0.68). Tensile faulting due to high pore pressure is considered as the most likely cause of the observed non-DC components. The positive and negative non-DC components observed in Kolumbo may be generated by the opening and closing of cracks beneath the shallow (6–7 km) magma chamber due to a steady migration of magmatic fluids from the deep reservoir into the chamber. In Anydros, most of the microearthquakes have positive non-DC components associated with the opening of cracks. It is possible that the extensional deformation and high pore fluid pressure in the area opens subvertical cracks that become pathways for upward migrating fluids. The upward migration of magmatic fluids in an extensional regime such as the Santorini-Amorgos zone can also be viewed as an indication of emerging volcanic activity in this area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-01-07
    Description: Chemical pollutants, such as pesticides, often leach into aquatic environments and impact non-target organisms. Marine invertebrates have complex life cycles with multiple life-history stages. Exposure to pesticides during one life-history stage potentially influences subsequent stages; a process known as a carry-over effect. Here, we investigated carry-over effects on the jellyfish Aurelia coerulea. We exposed polyps to individual and combined concentrations of atrazine (2.5 μg/L) and chlorpyrifos (0.04 μg/L) for four weeks, after which they were induced to strobilate. The resultant ephyrae were then redistributed and exposed to either the same conditions as their parent-polyps or to filtered seawater to track potential carry-over effects. The percentage of deformities, ephyrae size, pulsation and respiration rates, as well as the metabolic profile of the ephyrae, were measured. We detected a subtle carry-over effect in two metabolites, acetoacetate and glycerophosphocholine, which are precursors of the neurotransmitter acetylcholine, important for energy metabolism and osmoregulation of the ephyrae. Although these carry-over effects were not reflected in the other response variables in the short-term, a persistent reduction of these two metabolites could have negative physiological consequences on A. coerulea jellyfish in the long-term. Our results highlight the importance of considering more than one life-history stage in ecotoxicology, and measuring a range of variables with different sensitivities to detect sub-lethal effects caused by anthropogenic stressors. Furthermore, since we identified few effects when using pesticides concentrations corresponding to Australian water quality guidelines, we suggest that future studies consider concentrations detected in the environment, which are higher than the water quality guidelines, to obtain a more realistic scenario by possible risk from pesticide exposure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-01-07
    Description: The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing the responses of species and populations to environmental change is challenging in such areas for which ecological modelling can constitute a helpful approach. In the present work, a DEB-IBM model (Dynamic Energy Budget – Individual-Based Model) was generated to simulate and predict population dynamics in an endemic and common benthic species of shallow marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model relies on a dynamic energy budget model (DEB) developed at the individual level. Upscaled to an individual-based population model (IBM), it then enables to model population dynamics through time as a result of individual physiological responses to environmental variations. The model was successfully built for a reference site to simulate the response of populations to variations in food resources and temperature. Then, it was implemented to model population dynamics at other sites and for the different IPCC climate change scenarios RCP 2.6 and 8.5. Under present-day conditions, models predict a more determinant effect of food resources on population densities, and on juvenile densities in particular, relative to temperature. In contrast, simulations predict a sharp decline in population densities under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of water warming leading to the extinction of most vulnerable populations after a 30-year simulation time due to high mortality levels associated with peaks of high temperatures. Such a dynamic model is here applied for the first time to a Southern Ocean benthic and brooding species and offers interesting prospects for Antarctic and sub-Antarctic biodiversity research. It could constitute a useful tool to support conservation studies in these remote regions where access and bio-monitoring represent challenging issues.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-01-07
    Description: Methane generation from seagrass contributes to green-house gases emissions but can also be a potential controlled biogas source. Understanding the natural fluctuations of emissions and the biotic and abiotic factors underlying such variations is essential. In this work, CH4 emission from beach-cast seagrass from the High-Adriatic coast was analysed. Biochemical methane potential (BMP) tests were used to evaluate CH4 generation at different temperatures (30 °C and 35 °C) and salinity levels (from 0‰ to 35‰), consistent with the typical observed environmental conditions. The changes in the microorganism community composition were investigated by means of amplicon metagenomics sequencing. The results underlined a specific CH4 emission in the range of 0.90–1.37 NmL CH4/g Volatile Solids (VS) d at 35 °C and 0.36–0.50 NmL CH4/g VS d at 30 °C. The most intense methane generation was observed at intermediate salinity levels of 18‰ at 35 °C and 9‰ at 30 °C. The total seasonal emission from the investigated beach-cast seagrass was estimated as 0.1399 mmol CH4/m2g. The microbial community analysis highlighted that Rhodobacteraceae was the most abundant family, coherently with its abundance in the marine environment. Low salinity (0–9‰) samples showed a prevalence of carbohydrate–degrading Ruminococcaceae, while the carbohydrate-fermenting Petrotogaceae were more abundant in high salinity (18–35‰) samples. The total lack of an important functional class was not noticed in any salinity level, except for sulphate-reducing bacteria, which were virtually absent when salinity was 0‰. The present study allows a better understanding of the environmental conditions resulting in a higher methanogenic potential and an enhanced comprehension of the bacterial communities associated to this process. The obtained information can be of help for designing efficient systems for producing methane from seagrass wrack, as well as for selecting the most appropriate managing route among the currently available technologies (such as on-site environmental preservation, composting, anaerobic digestion).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-01-07
    Description: Transdisciplinary research is a promising approach to address sustainability challenges arising from global environmental change, as it is characterized by an iterative process that brings together actors from multiple academic fields and diverse sectors of society to engage in mutual learning with the intent to co-produce new knowledge. We present a conceptual model to guide the implementation of environmental transdisciplinary work, which we consider a “science with society” (SWS) approach, providing suggested activities to conduct throughout a seven-step process. We used a survey with 168 respondents involved in environmental transdisciplinary work worldwide to evaluate the relative importance of these activities and the skills and characteristics required to implement them successfully, with attention to how responses differed according to the gender, geographic location, and positionality of the respondents. Flexibility and collaborative spirit were the most frequently valued skills in SWS, though non-researchers tended to prioritize attributes like humility, trust, and patience over flexibility. We also explored the relative significance of barriers to successful SWS, finding insufficient time and unequal power dynamics were the two most significant barriers to successful SWS. Together with case studies of respondents’ most successful SWS projects, we create a toolbox of 20 best practices that can be used to overcome barriers and increase the societal and scientific impacts of SWS projects. Project success was perceived to be significantly higher where there was medium to high policy impact, and projects initiated by practitioners/other stakeholders had a larger proportion of high policy impact compared to projects initiated by researchers only. Communicating project results to academic audiences occurred more frequently than communicating results to practitioners or the public, despite this being ranked less important overall. We discuss how these results point to three recommendations for future SWS: 1) balancing diverse perspectives through careful partnership formation and design; 2) promoting communication, learning, and reflexivity (i.e., questioning assumptions, beliefs, and practices) to overcome conflict and power asymmetries; and 3) increasing policy impact for joint science and society benefits. Our study highlights the benefits of diversity in SWS - both in the types of people and knowledge included as well as the methods used - and the potential benefits of this approach for addressing the increasingly complex challenges arising from global environmental change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-01-07
    Description: The Quaternary history of the Atlantic Canadian inner shelf shares some similarities with the North Sea and northern United States of America (US) Atlantic coast, with the influence of large-scale glaciation and subsequent sea level transgression being the main drivers of seafloor morphology, sedimentology, and uppermost stratigraphy. The geology of the inner shelf, generally confined to 100 m water depth for this study, is an important constraint on the development of offshore renewables, in particular wind energy. Offshore wind has seen rapid growth, particularly in Europe and Asia, where the industry has now experienced decades of production. In the US, one small-scale production farm and many hundreds of MW are in the production pipeline. In contrast, offshore wind in Canada, despite onshore installed wind capacity that ranks highly globally, lacks any operating turbines and there are no plans for development in the wind resource-rich Atlantic Canadian region. In this study, the geological constraints on offshore wind in Atlantic Canada are explored. Generally, the available offshore wind resource is high, and thus the main geophysical constraint on the development of offshore wind energy converters is the inner shelf geology. Several sites with available high-resolution geophysical data are selected for in-depth analysis and comparison with production and planned offshore wind farm sites found elsewhere. In general, a lack of sufficiently thick Quaternary sedimentation—necessary for the most common bottom-fixed foundations for wind turbines—will make developing offshore wind in Atlantic Canada challenging when compared with North Sea and US Atlantic Coast locations. A few locations may be suitable geologically, such as Sable Island Bank in Nova Scotia (thick package of sands), Northumberland Strait between Prince Edward Island and Nova Scotia (shallow firm seabed and sandbanks), Baie des Chaleurs in New Brunswick/Québec (thick, low relief fine sediments), and St. George's Bay, Newfoundland (shallow, postglacially modified moraine). Highlights • Glaciated shelves in Atlantic Canada present distinct challenges for offshore wind foundations. • Few analogies exist between Atlantic Canadian shelf sites and offshore wind sites elsewhere. • Piles—typical offshore wind foundations—require thick sediments, rare in Atlantic Canada. • Thin sand/cobble blankets over bedrock are ubiquitous but thick sand banks/mud basins exist. • The inner shelf seabed geology is variable and historically data collection has focused elsewhere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-01-07
    Description: The occurrence of neurotoxicity caused by xenobiotics such as pesticides (dichlorodiphenyltrichloroethane, organophosphates, pyrethroids, etc.) or metals (mercury, lead, aluminum, arsenic, etc.) is a growing concern around the world, particularly in vulnerable populations with difficulties on both detection and symptoms treatment, due to low economic status, remote access, poor infrastructure, and low educational level, among others features. Despite the numerous molecular markers and questionnaires/clinical evaluations, studying neurotoxicity and its effects on cognition in these populations faces problems with samples collection and processing, and information accuracy. Assessing cognitive changes caused by neurotoxicity, especially those that are subtle in the initial stages, is fundamentally challenging. Finding accurate, non-invasive, and low-cost strategies to detect the first signals of brain injury has the potential to support an accelerated development of the research with these populations. Saliva emerges as an ideal pool of biomarkers (with interleukins and neural damage-related proteins, among others) and potential alternative diagnostic fluid to molecularly investigate neurotoxicity. As a source of numerous neurological biomarkers, saliva has several advantages compared to blood, such as easier storage, requires less manipulation, and the procedure is cheaper, safer and well accepted by patients compared with drawing blood. Regarding cognitive dysfunction, neuropsychological batteries represent, with their friendly interface, a feasible and accurate method to evaluate the eventual cognitive deficits associated with neurotoxicity in people from diverse cultural and educational backgrounds. The association of these two tools, saliva and neuropsychological batteries, to cover the molecular and cognitive aspects of neurotoxicity in vulnerable populations, could potentially increase the prevalence of early intervention and successful treatment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-01-07
    Description: The reaction surface area of hydrate (RSAH) inherently controls the reaction rate of hydrate dissociation in the pore spaces, which further affects the gas production behaviour of the hydrate-bearing sediments. The objective of this work is to measure and describe the RSAH evolution during MH dissociation and analyse its implications for gas production. The CT images obtained from different dissociation stages showed the RSAH decreased slowly in the early stage of dissociation and rapidly in the later stage. By considering the pore structure features of sediment, a fractal method was proposed to predict the relationship between RSAH and hydrate saturation, which showed better agreement with the CT experimental results than that of Yousif's model. Further hydrate production numerical simulations embedded with different RSAH predictions indicated that the hydrate production process was significantly influenced by the variations in RSAH. The simulated gas production rate based on the fractal model was lower than that of Yousif's model, the far-field pressure drop in the fractal model was slower, and the advance of the dissociation front and the transfer of the pressure field in Yousif's model was faster than that of the fractal model. Highlights • The changes in hydrate reaction surface area during hydrate dissociation are experimentally measured and analysed. • A fractal model considering the pore structure characteristics of porous media is proposed and experimentally validated. • A comparison of the hydrate dissociation rate predicted by the proposed fractal model and by Yousif’s model is made. • Implications of reaction surface evolution during the hydrate dissociation for hydrate productions are modeled.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Elsevier
    In:  IFAC-PapersOnLine, 54 (16). pp. 320-326.
    Publication Date: 2022-01-10
    Description: Adaptive sampling and situational awareness for autonomous underwater vehicles (AUVs) is a major improvement in ocean research. By only sampling the feature of interest in a feature-relevant domain instead of a covering a whole area expensive ship time can be saved and at the same time a more comprehensive data set can be obtained. A classical marine example where adaptive sampling is useful is sampling of boundary layers such as the thermocline because the boundary layer thickness is very small compared to the depth of the water column. These boundary layers play an important role in many ocean related disciplines such as marine biology, physical oceanography and underwater acoustics. In this paper an unscented Kalman filter (UKF) based extremum seeking control (ESC) approach is presented to detect and track such boundary layers. Simulation results for different use cases are presented to show its effectiveness.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Springer
    In:  Human-Environment Interactions
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/book
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-09-26
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-04-01
    Description: We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy. The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi‐analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log‐transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type‐curve analysis and determine their sensitivity. This procedure, implemented in welltestpy, is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open‐source software package welltestpy.
    Description: Article impact statement: We present a workflow to infer parameters of subsurface heterogeneity from pumping test data exemplified at two sites using welltestpy.
    Description: German Federal Environmental Foundation (DBU) http://dx.doi.org/10.13039/100007636
    Keywords: ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-04-01
    Description: In designed experiments, different sources of variability and an adequate scale of measurement need to be considered, but not all approaches in common usage are equally valid. In order to elucidate the importance of sources of variability and choice of scale, we conducted an experiment where the effects of biochar and slurry applications on soil properties related to soil fertility were studied for different designs: (a) for a field‐scale sampling design with either a model soil (without natural variability) as an internal control or with composited soils, (b) for a design with a focus on amendment variabilities, and (c) for three individual field‐scale designs with true field replication and a combined analysis representative of the population of loess‐derived soils. Three silty loam sites in Germany were sampled and the soil macroaggregates were crushed. For each design, six treatments (0, 0.15 and 0.30 g slurry‐N kg−1 with and without 30 g biochar kg−1) were applied before incubating the units under constant soil moisture conditions for 78 days. CO2 fluxes were monitored and soils were analysed for macroaggregate yields and associated organic carbon (C). Mixed‐effects models were used to describe the effects. For all soil properties, results for the loess sites differed with respect to significant contributions of fixed effects for at least one site, suggesting the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils to be made and showed that site:slurry:biochar and site:slurry interactions were not negligible for macroaggregate yields. The use of a model soil as an internal control enabled observation of variabilities other than those related to soils or amendments. Experiments incorporating natural variability in soils or amendments resulted in partially different outcomes, indicating the need to include all important sources of variability. Highlights Effects of biochar and slurry applications were studied for different designs and mixed‐effects models were used to describe the effects. Including an internal control allowed observation of, e.g., methodological and analytical variabilities. The results suggested the need for a general inclusion of different sites. Analysis using a multilevel model allowed generalizations for loess soils. The results indicated the need to include all important sources of variability.
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-04-01
    Description: Temperate forest soils are often considered as an important sink for atmospheric carbon (C), thereby buffering anthropogenic CO2 emissions. However, the effect of tree species composition on the magnitude of this sink is unclear. We resampled a tree species common garden experiment (six sites) a decade after initial sampling to evaluate whether forest floor (FF) and topsoil organic carbon (Corg) and total nitrogen (Nt) stocks changed in dependence of tree species (Norway spruce—Picea abies L., European beech—Fagus sylvatica L., pedunculate oak—Quercus robur L., sycamore maple—Acer pseudoplatanus L., European ash—Fraxinus excelsior L. and small‐leaved lime—Tilia cordata L.). Two groups of species were identified in terms of Corg and Nt distribution: (1) Spruce with high Corg and Nt stocks in the FF developed as a mor humus layer which tended to have smaller Corg and Nt stocks and a wider Corg:Nt ratio in the mineral topsoil, and (2) the broadleaved species, of which ash and maple distinguished most clearly from spruce by very low Corg and Nt stocks in the FF developed as mull humus layer, had greater Corg and Nt stocks, and narrow Corg:Nt ratios in the mineral topsoil. Over 11 years, FF Corg and Nt stocks increased most under spruce, while small decreases in bulk mineral soil (esp. in 0–15 cm and 0–30 cm depth) Corg and Nt stocks dominated irrespective of species. Observed decadal changes were associated with site‐related and tree species‐mediated soil properties in a way that hinted towards short‐term accumulation and mineralisation dynamics of easily available organic substances. We found no indication for Corg stabilisation. However, results indicated increasing Nt stabilisation with increasing biomass of burrowing earthworms, which were highest under ash, lime and maple and lowest under spruce. Highlights We studied if tree species differences in topsoil Corg and Nt stocks substantiate after a decade. The study is unique in its repeated soil sampling in a multisite common garden experiment. Forest floors increased under spruce, but topsoil stocks decreased irrespective of species. Changes were of short‐term nature. Nitrogen was most stable under arbuscular mycorrhizal species.
    Description: Deutsche Forschungsgemeinschaff (DFG)
    Keywords: ddc:551.9 ; ddc:631.41
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-09-30
    Description: In recent years, German cities were heavily impacted by pluvial flooding and related damage is projected to increase due to climate change and urbanisation. It is important to ask how to improve urban pluvial flood risk management. To understand the current state of property level adaptation, a survey was conducted in four municipalities that had recently been impacted by pluvial flooding. A hybrid framework based on the Protection Motivation Theory (PMT) and the Protection Action Decision Model (PADM) was used to investigate drivers of adaptive behaviour through both descriptive and regression analyses. Descriptive statistics revealed that participants tended to instal more low‐ and medium‐cost measures than high‐cost measures. Regression analyses showed that coping appraisal increased protection motivation, but that the adaptive behaviour also depends on framing factors, particularly homeownership. We further found that, while threat appraisal solely affects protection motivation and responsibility appraisal affects solely maladaptive thinking, coping appraisal affects both. Our results indicate that PMT is a solid starting point to study adaptive behaviours in the context of pluvial flooding, but we need to go beyond that by, for instance, considering factors of the PADM, such as responsibility, ownership, or respondent age, to fully understand this complex decision‐making process.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.489 ; ddc:363.34
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-01-07
    Description: The Q10 temperature coefficient, which is widely used in scientific literature, is a measure of the temperature sensitivity of chemical reaction rates or biological processes. However, the conclusions drawn from applying this coefficient to experimental data obtained from biological processes are not universal. In many biological processes, Q10 values are often discordant with the results predicted by the Arrhenius law. The hypothesis tested in the present study is that this problem arises mainly from the fact that the Q10 coefficient is defined by the ratio between rates described by exponential laws instead of power laws. Considering this hypothesis and the need to review the mathematical laws and models currently used to describe rates and Q10 coefficients, we propose a model beyond the usual Arrhenius theory or exponential decay law herein. The proposed mathematical model is based on the theory of deformed exponential functions, with the ordinary Q10 model representing the conventional exponential function. Therefore, all results following the standard model remain valid. Moreover, we include a Q10 free open-source code, written in Python, and compatible with Windows, Linux and macOS platforms. The validation of the proposed model and confirmation of the given hypothesis were performed based on the following temperature-dependent biological processes: soil organic carbon (SOC) decomposition (which is essential to forecast the impact of climate change on terrestrial ecosystems); the metabolism of Arctic zooplankton; physiological processes of the respiratory and cardiovascular systems; rate of oxygen consumption in mitochondria of the eurythermal killifish Fundulus heteroclitus, and leaf respiration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-01-07
    Description: Since 2010, the Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors the earth emission at L-Band. It provides the longest time series of Sea Surface Salinity (SSS) from space over the global ocean. However, the SSS retrieval at high latitudes is a challenge because of the low sensitivity L-Band radiometric measurements to SSS in cold waters and to the contamination of SMOS measurements by the vicinity of continents, of sea ice and of Radio Frequency Interferences. In this paper, we assess the quality of weekly SSS fields derived from swath-ordered instantaneous SMOS SSS (so called Level 2) distributed by the European Space Agency. These products are filtered according to new criteria. We use the pseudo-dielectric constant retrieved from SMOS brightness temperatures to filter SSS pixels polluted by sea ice. We identify that the dielectric constant model and the sea surface temperature auxiliary parameter used as prior information in the SMOS SSS retrieval induce significant systematic errors at low temperatures. We propose a novel empirical correction to mitigate those sources of errors at high latitudes. Comparisons with in-situ measurements ranging from 1 to 11 m depths spotlight huge vertical stratification in fresh regions. This emphasizes the need to consider in-situ salinity as close as possible to the sea surface when validating L-band radiometric SSS which are representative of the first top centimeter. SSS Standard deviation of differences (STDD) between weekly SMOS SSS and in-situ near surface salinity significantly decrease after applying the SSS correction, from 1.46 pss to 1.28 pss. The correlation between new SMOS SSS and in-situ near surface salinity reaches 0.94. SMOS estimates better capture SSS variability in the Arctic Ocean in comparison to TOPAZ reanalysis (STDD between TOPAZ and in-situ SSS = 1.86 pss), particularly in river plumes with very large SSS spatial gradients.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-01-07
    Description: It is a good method to utilize the grain size distribution curves and cumulative frequency curves of marine or river sediments to estimate the hydrodynamic conditions, transportation processes and sedimentary environment. However, researchers can only rely on Excel or Grapher to plot the curves one by one at the present day. The manual plotting procedures are complicated, and calculating the truncation points is time-consuming. To solve the aforementioned problems, we have developed a software tool to plot cumulative frequency curves and calculate the values of truncation points automatically. The software has the ability to plot curves of hundreds of samples accurately and rapidly, promoting researchers to analyze transport mechanisms and hydrodynamic environments. And it is convenient to apply the software to compare the processes of transportation and deposition between different samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-01-07
    Description: The exhumation of peridotite rocks in oceanic transform zones passes by the rheological transition between the ductile and brittle deformation until the complete emplacement in the oceanic lithosphere. The São Pedro and São Paulo Archipelago (SPSPA), in the Equatorial Atlantic, records the deformational products of ductile, brittle and the rocks/fluid interaction generating specific structures in each domain. The deformational stages are related to the transpressional and transtensional geodynamics of São Paulo Transform Fault. Firstly, during transpression, exhumation occurs associated with the ductile domain causing intense mylonitization in temperatures between ~700° and 800 °C, defined by olivine and orthopyroxene recrystallization. The interaction with fluids initially originated from the mantle generates amphibole and oxide-rich layers marking the passage to a semi-brittle deformation. The continuation of peridotite exhumation, associated with an NW-SE shortening and transpressional led to a higher availability of hydrothermal fluids. As a consequence, four serpentinization episodes are recorded, which are associated with semi-brittle to brittle transition under temperatures between 300° and 400 °C. Finally, the complete exhumation and establishment of brittle mechanisms led to carbonatation phase near the surface, with temperatures ranging from 300° to 150 °C. The active NW-SE tectonic stress generated E-W strike-slip faults that were filled by carbonates recording the final exhumation stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Elsevier
    In:  Environmental Technology & Innovation, 17 . Art.-Nr.: 100567.
    Publication Date: 2022-01-07
    Description: The present state of constantly increasing plastic pollution is the major concern of scientific researchers. The conventional techniques applied (i.e., burning and landfilling) to get plastic degraded from the environment are inadequate due to harmful byproducts and limited to its recycling. In this review, we have recapitulated recent biotechnological approaches, including synthetic microbial consortia, systems biology tools, and genetic engineering techniques which can pave the path towards the plastic bioremediation and degradation. Moreover, potential plastic degrader microbes and their degradation pathways are also summarized. Lastly, this review focuses on enhancing the understanding of the degradation ability of microorganisms using contemporary biotechnological tools.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-01-07
    Description: Atmospheric deposition of aerosols to the ocean provides an important pathway for the supply of vital micronutrients, including trace metals. These trace metals are essential for phytoplankton growth, and therefore their delivery to marine ecosystems can strongly influence the ocean carbon cycle. The solubility of trace metals in aerosols is a key parameter to better constrain their potential impact on phytoplankton growth. To date, a wide range of experimental approaches and nomenclature have been used to define aerosol trace metal solubility, making data comparison between studies difficult. Here we investigate and discuss several laboratory leaching protocols to determine the solubility of key trace metals in aerosol samples, namely iron, cobalt, manganese, copper, lead, vanadium, titanium and aluminium. Commonly used techniques and tools are also considered such as enrichment factor calculations and air mass back-trajectory projections and recommendations are given for aerosol field sampling, laboratory processing (including leaching and digestion) and analytical measurements. Finally, a simple 3-step leaching protocol combining commonly used protocols is proposed to operationally define trace metal solubility in aerosols. The need for standard guidelines and protocols to study the biogeochemical impact of atmospheric trace metal deposition to the ocean has been increasingly emphasised by both the atmospheric and oceanographic communities. This lack of standardisation currently limits our understanding and ability to predict ocean and climate interactions under changing environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-01-07
    Description: Highlights • Regional brain iron concentrations are heterogenous. • Regional distribution of iron is most consistent with ferritin mRNA expression. • SEC-ICP-MS reveals the protein masses that cytosolic iron is associated with. • More than 50 % of cytosolic iron is associated with ferritin. Iron is essential for brain development and health where its redox properties are used for a number of neurological processes. However, iron is also a major driver of oxidative stress if not properly controlled. Brain iron distribution is highly compartmentalised and regulated by a number of proteins and small biomolecules. Here, we examine heterogeneity in regional iron levels in 10 anatomical structures from seven post-mortem human brains with no apparent neuropathology. Putamen contained the highest levels, and most case-to-case variability, of iron compared with the other regions examined. Partitioning of iron between cytosolic and membrane-bound iron was generally consistent in each region, with a slightly higher proportion (55 %) in the ‘insoluble’ phase. We expand on this using the Allen Human Brain Atlas to examine patterns between iron levels and transcriptomic expression of iron regulatory proteins and using quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry to assess regional differences in the molecular masses to which cytosolic iron predominantly binds. Approximately 60 % was associated with ferritin, equating to approximately 25 % of total tissue iron essentially in storage. This study is the first of its kind in human brain tissue, providing a valuable resource and new insight for iron biologists and neuroscientists, alike.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-01-07
    Description: The aim of this study was to investigate the syntrophic methanogenesis from the perspective of energy transfer and competition. Effects of redox materials and redox potential on direct interspecies electron transfer (DIET) were examined through thermodynamic analysis based on the energy distribution principle. Types of redox materials could affect the efficiency of DIET via changing the total energy supply of the syntrophic methanogenesis. Decreasing system redox potential could facilitate DIET through increasing the total available energy. The competition between hydrogenotrophic methanogens and DIET methanogens might be the reason for the low proportion of the DIET pathway in the syntrophic methanogenesis. A facilitation mechanism of DIET was proposed based on the energy distribution. Providing sufficient electrons, inhibiting hydrogenotrophic methanogens and adding more competitive redox couples to avoid hydrogen generation might be beneficial for the facilitation of DIET.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-01-07
    Description: Highlights • NH4NO3, Tris-HCl, and NH4CH3COO are optimal buffers for use in SEC-ICP-MS metalloprotein analyses. • Optimal range of buffer concentration is 50–200 mM in SEC-ICP-MS. • 100 mM concentration reduces both protein column interactions and ICP-MS maintenance. • Dextran-based columns are best suited for the analysis of apo-copper proteins. The correct identification of the metalloproteins present in human tissues and fluids is essential to our understanding of the cellular mechanisms underpinning a host of health disorders. Separation and analysis of biological samples are typically done via size exclusion chromatography hyphenated with inductively coupled plasma-mass spectrometry (SEC-ICP-MS). Although this technique can be extremely effective in identification of potential metalloproteins, the choice of mobile phase may have a marked effect on results, results by adversely affecting metal-protein bonds of the metalloproteins of interest. To assess the choice of mobile phase on SEC-ICP-MS resolution and the resulting metalloproteome pattern, we analysed several different sample types (brain homogenate; Cu/Zn-superoxide dismutase (SOD1); a molecular weight standard mix containing ferritin (Ft), ceruloplasmin (Cp), cytochrome c (CytC), vitamin B12 (B12) and thyroglobulin (Tg) using six different mobile phase conditions (200 mM, pH 7.5 solutions of ammonium salts nitrate, acetate, and sulfate; HEPES, MOPS and Tris-HCl). Our findings suggest that ammonium nitrate, ammonium acetate and Tris-HCl are optimal choices for the mobile phase, with the specific choice being dependent on both the number of samples and method of detection that is hyphenated with separation. Furthermore, we found that MOPS, HEPES and ammonium sulfate mobile phases all caused significant changes to peak resolution, retention time and overall profile shape. MOPS and HEPES, in particular, produced additional Fe peaks that were not detected with any of the other mobile phases that were investigated. As well as this, MOPS and HEPES both caused significant concentration dependent matrix suppression of the internal standard.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-01-07
    Description: Symbiotic relationships range from parasitic to mutualistic, yet all endosymbionts face similar challenges, including evasion of host immunity. Many symbiotic organisms have evolved similar mechanisms to face these challenges, including manipulation of the host's transforming growth factor-beta (TGFβ) pathway. Here we investigate the TGFβ pathway in scelaractinian corals which are dependent on symbioses with dinoflagellates from the family Symbiodiniaceae. Using the Caribbean coral, Orbicella faveolata, we explore the effects of enhancement and inhibition of the TGFβ pathway on host gene expression. Following transcriptomic analyses, we demonstrated limited effects of pathway manipulation in absence of immune stimulation. However, manipulation of the TGFβ pathway significantly affects the subsequent ability of host corals to mount an immune response. Enhancement of the TGFβ pathway eliminates transcriptomic signatures of host coral immune response, while inhibition of the pathway maintains the response. This is, to our knowledge, the first evidence of an immunomodulatory role for TGFβ in a scelaractinian coral. These findings suggest variation in TGFβ signaling may have implications in the face of increasing disease prevelance. Our results suggest that the TGFβ pathway can modulate tradeoffs between symbiosis and immunity. Further study of links between symbiosis, TGFβ, and immunity is needed to better understand the ecological implications of these findings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-01-07
    Description: Highlights • Microplastics act as anthropogenic vectors of trace metals in freshwaters. • Adsorption capacity of microplastics is enhanced by biofilms but is not strong as natural substrates. • Biofilms alter the adsorption kinetics and mechanisms of trace metals onto microplastics. • Microplastics enhance exchange rates of trace metals between water and solid materials. • Anthropogenic substrate is necessary in evaluation of migration and fate of trace metals. Microplastics (MPs) are ubiquitous in freshwater environments, and represent an emerging anthropogenic vector for contaminants, such as trace metals. In this study, virgin expanded polystyrene (PS) particles were placed in a eutrophic urban lake and a reservoir serving as the resource of domestic water for 4 weeks, to develop biofilms on the surface. For comparison, natural adsorbents in the form of suspended particles and surficial sediment were also sampled from these waterbodies. The trace metal adsorption properties of anthropogenic (virgin and biofilm covered microplastics) and natural substrates were investigated and compared via batch adsorption experiments. The adsorption isotherms fitted the Langmuir model, revealed that biofilms could enhance the trace metal adsorption capacity of MPs. However, natural substrates still had a greater adsorption capacity. Biofilms also alter the adsorption kinetics of trace metals onto MPs. The process of adsorption onto virgin MPs was dominated by intraparticle diffusion, whereas film diffusion governed adsorption onto biofilm covered microplastics and natural substrates. The trace metal adsorption of all the substrates was significantly dependent on pH and ionic strength. The adsorption mechanisms were further analyzed by SEM-EDS and FT-IR. The enhancement of adsorption was mainly attributed to complexation with functional groups contained in the biofilms, including carboxyl, amino, and phenyl-OH. Collectively, biofilm development intensifies the role of MPs in the migration and fate of trace metals in freshwater, since it does not give MPs an edge over natural substrates in adsorption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-01-07
    Description: Highlights • New insights of CH4 and CO2 hydrates are explored using MD strategy. • The bubble evolution appears to be important over dissociation process. • RDF, MSD, AOP, and diffusion coefficient can be used to examine hydrate stability. • The most stable structure of CH4 and CO2 molecules in the gas hydrate is found. • A promising match is noticed between the MD and literature findings. A comprehensive knowledge and precise estimation of the dynamic, structural, and thermodynamic characteristics of hydrates are needed to assess the stability of gas hydrates. Thermodynamic model and experimental studies can be utilized to compute the physical and dynamic properties of hydrate structures. The use of molecular dynamic (MD) simulation is a well-established approach in gas hydrate studies at the atomic level where the properties of interest are obtained from the numerical solution of Newtonian equations. The present work uses MD simulations by employing the constant temperature-constant pressure (NPT), constant temperature-constant volume (NVT) conditions, and the consistent valence force field (CVFF) to monitor the stability and decomposition of methane and carbon dioxide gas hydrates with different compositions. The effects of temperature and composition on the hydrate stability are investigated. In this study, we also compute the radial distribution function, mean square displacement, diffusion coefficient, lattice parameter, potential energy, dissociation enthalpy as well as the density of methane and carbon dioxide under various thermodynamic and process conditions. The formation of methane and carbon dioxide bubbles is studied to investigate bubble evolution during hydrate dissociation. The sizes of methane and carbon dioxide bubbles are not the same due to different solubility conditions of methane and carbon dioxide in liquid water. In addition, the influences of pressure and temperature on the lattice parameter and density of clathrate hydrates are discussed. The obtained results are consistent with previous theoretical and experimental findings, implying that the methodology followed in this work is reliable. The most stable arrangement of methane and carbon dioxide molecules in the gas hydrate is found. The insights/findings of this study might be useful to further understand detailed transport phenomena (e.g., molecular interactions, gas production rate, carbon dioxide replacement, and carbon dioxide capture) involved in the process of carbon dioxide injection into gas hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-01-07
    Description: Deep-ocean islands have long been associated with the generation of oceanic eddies in their wakes. However, their interaction with incoming eddies has seldom been considered. This study focuses on the characterization of background and locally generated mesoscale eddies in the Cabo Verde archipelago between 2003 and 2014. Special attention is given to the interaction of incoming eddies with the bathymetry of the islands, along with their impacts on the local generation of eddies. Island-induced wind-shear effects are also considered. In addition, some examples of the biological response to background and locally generated eddies are discussed. This is achieved by combining remote-sensing satellite observations for wind, sea surface height, and chlorophyll-a (Chla) surface concentrations. The results show that the interaction between incoming background eddies and the archipelago is a recurrent phenomenon, which results in eddy deflection, splitting, merging, intensification, and termination (sorted by highest to lowest number of occurrences). Local island-induced disturbances are also significant, mainly due to atmospheric effects. Such processes result in the generation of island-induced eddies and in wind-mediated eddy intensification and confinement, more often observed in the leeward group. Nonetheless, it is strongly suggested that many of the locally generated eddies are a direct product or by-product of the interaction of background eddies with the islands. With respect to the biological realm, a locally generated cyclonic eddy is observed to originate a pronounced phytoplankton bloom in the vicinity of the tallest island. Nonetheless, background eddies generated off the African coast are often associated with enhanced Chla concentrations when they intersect the archipelago. Such observations challenge the idea that local biological productivity in deep oceanic islands is exclusively driven by island-induced mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-01-07
    Description: In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-04-07
    Description: In times of accelerating climate change, species are challenged to respond to rapidly shifting environmental settings. Yet, faunal distribution and composition are still scarcely known for remote and little explored seas, where observations are limited in number and mostly refer to local scales. Here, we present the first comprehensive study on Eurasian-Arctic macrobenthos that aims to unravel the relative influence of distinct spatial scales and environmental factors in determining their large-scale distribution and composition patterns. To consider the spatial structure of benthic distribution patterns in response to environmental forcing, we applied Moran’s eigenvector mapping (MEM) on a large dataset of 341 samples from the Barents, Kara and Laptev Seas taken between 1991 and 2014, with a total of 403 macrobenthic taxa (species or genera) that were present in ≥ 10 samples. MEM analysis revealed three spatial scales describing patterns within or beyond single seas (broad: ≥ 400 km, meso: 100–400 km, and small: ≤ 100 km). Each scale is associated with a characteristic benthic fauna and environmental drivers (broad: apparent oxygen utilization and phosphate, meso: distance-to-shoreline and temperature, small: organic carbon flux and distance-to-shoreline). Our results suggest that different environmental factors determine the variation of Eurasian-Arctic benthic community composition within the spatial scales considered and highlight the importance of considering the diverse spatial structure of species communities in marine ecosystems. This multiple-scale approach facilitates an enhanced understanding of the impact of climate-driven environmental changes that is necessary for developing appropriate management strategies for the conservation and sustainable utilization of Arctic marine systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-31
    Description: One of the best-known greenhouse gases, CO2, has been increasing in the last decade of about 1.7%. To overcome the well-known global problems related to this gas, researchers of all over the world are working very hard in order to develop any strategies to seriously solve this issue. In this chapter, the authors focus their attention on one of the possible solutions to the problem: bacteria that are CO2 capture cells which have carried out this task since ancient times. In our work we make an excursus on all the biochemical processes of CO2 capture carried out by bacteria, ending with a detailed comparison of the most studied enzymes. One of the alternatives will be to genetically modify the organisms known to date to speed up their conversion process.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-10-05
    Description: Silicon is one of the most important elements in the current age of the anthropocene. It has numerous industrial applications, and supports a high-tech multi-billion Euro industry. Silicon has a fascinating biological and geological cycle, interacting with other globally important biogeochemical cycles. In this review, we bring together both biological and geological aspects of the silicon cycle to provide a general, comprehensive review of the cycling of silicon in the environment. We hope this review will provide inspiration for researchers to study this fascinating element, as well as providing a background environmental context to those interested in silicon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Elsevier
    In:  Advances in Parasitology, 68 . pp. 111-137.
    Publication Date: 2020-04-23
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-07-15
    Description: Chemical disparities at the interface between subducting oceanic crustal rocks and the harzburgitic mantle lead to the formation of reaction zones in the mantle above the subducting slabs composed of hybrid rocks that may carry exotic trace-element patterns and isotopic signatures. Subsequent burial of these metasomatised rocks as part of the progressively subducted slab could deliver trace elements and volatiles to the source region of arc magma. A natural laboratory to study reactions at the slab–mantle interface maybe found in exhumed high-pressure mélanges, where sedimentary, mafic and ultramafic lithologies are juxtaposed and metamorphosed at high-P/T conditions. A mélange zone of that type is found in northern Syros, where metasomatic reaction zones (“blackwalls”) formed on a metre scale at the contact of metasedimentary blueschists and serpentinite. Five different zones within such a contact display the assemblages (I) glaucophane+garnet+phengite+epidote, (II) glaucophane+epidote+chlorite, (III) chlorite+epidote+omphacite±albite (IV) chlorite±titanite±rutile±apatite and (V) serpentine+chromite. Accessory phases, such as apatite, allanite, rutile, titanite, tourmaline, zircon and monazite are abundant in zones II to IV. The observed succession of assemblages together with whole-rock major and trace-element compositions reflect the two dominant processes that are thought to have operated along the lithological contact: (A) diffusion of chemical components driven by the compositional contrast of the juxtaposed rocks, and (B) flux of hydrous fluids along the contact, which depleted (e.g., LILE, SiO2) or enriched (e.g., B, LREE) certain elements in various zones. Thermodynamic modelling is able to closely predict the succession of mineral assemblages as they are expected from diffusion of Mg and Ca across the contact zone. Employed to various P–T conditions and different juxtaposed rock types, this type of modelling could be used to access and evaluate larger portions of the subduction system. Our results support existing models that suggest that mixing and redistribution of major and trace elements in subduction zones may be related to the formation of hybrid rocks in mélange zones
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-03-09
    Description: Prompted by recent data analyses suggesting that the flux of particulate organic carbon sinking into deep waters is determined by fluxes of mineral ballasts, we undertook a study of the relationships among organic matter (OM), calcium carbonate, opal, lithogenic material, and excess aluminum fluxes as part of the MedFlux project. We measured fluxes of particulate components during Spring and Summer of 2003, and Spring of 2005, using a swimmer-excluding sediment trap design capable of measuring fluxes both in a time-series (TS) mode and in a configuration for obtaining particle settling velocity (SV) profiles. On the basis of these studies, we suggest that distinct OM–ballast associations observed in particles sinking at a depth of ∼200 m imply that the mechanistic basis of the organic matter–ballast association is set in the upper water column above the Twilight Zone, and that the importance of different ballast types follows the seasonal succession of phytoplankton. As in other studies, carbonate appears to enhance the flux of organic matter over opal. Particles must be at least half organic matter before their settling velocity is affected by ballast concentration. This lack of change in ballast composition with SV in particles with 〈40% OM content suggests that particle SV reaches a maximum because of the increasing importance of inertial drag. Relative amounts of OM and opal decrease with depth due to decomposition and dissolution; carbonates and lithogenic material contribute about the same amount to total mass, or increase slightly, throughout the water column. The high proportion of excess Al cannot be explained by its incorporation into diatom opal or reverse weathering, so Al is most likely adsorbed to particulate oxides. On shorter time scales, dust appears to increase particle flux through its role in aggregation rather than by nutrient inputs enhancing productivity. We suggest that the role of dust as a catalyst in particle formation may be a central mechanism in flux formation in this region, particularly when zooplankton fecal pellet production is low.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-03-09
    Description: Dissolved and particulate metals (Ag, Cd, Co, Cu, Ni, and Zn) and nutrients (PO4, NO3, and H4SiO4) were measured in Todos Santos Bay (TSB) in August 2005. Two sources producing local gradients were identified: one from a dredge discharge area (DDA) and another south of the port and a creek. The average concentrations of dissolved Cd and Zn (1.3 and 15.6 nM, respectively) were higher by one order of magnitude than the surrounding Pacific waters, even during upwelling, and it is attributed to the presence of a widespread and long-lasting red tide coupled with some degree of local pollution. A clear spatial gradient (10 to 6 pM), from coast to offshore, of dissolved Ag was evident, indicating the influence of anthropogenic inputs. The particulate fraction of all metals, except Cu, showed a factor of ~3 decrease in concentrations from the DDA to the interior of the bay. The metal distributions were related to the bay’s circulation by means of a numerical model that shows a basically surface-wind-driven offshore current with subsurface compensation currents toward the coast. Additionally, the model shows strong vertical currents over the DDA. Principal component analysis revealed three possible processes that could be influencing the metal concentrations within TSB: anthropogenic inputs (Cd, Ag, and Co), biological proceses (NO3, Zn, and Cu), and upwelling and mixing (PO4, H4SiO4, Cd, and Ni). The most striking finding of this study was the extremely high Cd concentrations, which have been only reported in highly contaminated areas. As there was a strong red tide, it is hypothesized that the dinoflagellates are assimilating the Cd, which is rapidly remineralized and being concentrated on the stratified surface layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-03-09
    Description: Distributions of dissolved vitamin B12 and total dissolved Co were measured to gain an understanding of the cycling of these interdependent micronutrients in six marine settings including; an upwelling location, a semi-enclosed bay, two urban coastal systems, and two open ocean locations. Along the coast of Baja California, Mexico, concentrations of B12 and dissolved Co varied from 0.2 to 11 pM and 180 to 990 pM, respectively. At a nearby upwelling station, vitamin B12 and Co concentrations ranged from 0.3 to 7.0 pM and 22 to 145 pM, and concentrations did not correlate with upwelling intensity. Concentrations of B12 were highest within Todos Santos Bay, a semi-enclosed bay off the coast of Baja California, Mexico, during a dinoflagellate bloom, ranging from 2 to 61 pM, while Co concentrations varied between 61 and 194 pM. In the anthropogenically impacted Long Island Sound, NY, U.S.A., B12 levels were between 0.1 and 23 pM and Co concentrations varied from 60 to 1900 pM. However, anthropogenic inputs were not evident in B12 levels in the San Pedro Basin, located outside Los Angeles, Ca, U.S.A., where concentrations of B12 were 0.2–1.8 pM, approximating observed open ocean B12 concentrations. In the Southern Ocean and North Atlantic Ocean, B12 levels were 0.4–4 pM and 0.2–2 pM, respectively. Total Co concentrations in the Southern Ocean and North Atlantic tended to be low; measuring 26–59 pM and 15–80 pM, respectively. These low Co concentrations may limit B12 synthesis and its availability to B12-requiring phytoplankton because the total dissolved Co pool is not necessarily entirely bioavailable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Springer
    In:  Archivum Immunologiae et Therapiae Experimentalis, 57 (6). pp. 393-407.
    Publication Date: 2017-10-11
    Description: The complement system has long been known to be a major element of innate immunity. Traditionally, it was regarded as the first line of defense against invading pathogens, leading to opsonization and phagocytosis or the direct lysis of microbes. However, from the second half of the twentieth century on, it became clear that complement is also intimately involved in the induction and “fine tuning” of adaptive B- and T-cell responses as well as lineage commitment. This growing recognition of the complement system’s multifunctional role in immunity is consistent with the recent paradigm that complement is also necessary for the successful contraction of an adaptive immune response. This review aims at giving a condensed overview of complement’s rise from a simple innate stop-and-go system to an essential and efficient participant in general immune homeostasis and acquired immunity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-03-09
    Description: Jamaica Bay, NY, is a highly urbanized estuary within the boroughs of New York City conspicuously lacking published information on dissolved trace metal concentrations. The current study examines the distribution and cycling of trace metals in that embayment with data gathered during cruises in November 2004, April 2005, and June 2006. Most of the metal distributions (Fe, Zn, Co, Ag, Cu, Pb, Ni) in the water column are explained by the input of substantial volumes of treated wastewater effluent. However, several lines of evidence suggest that submarine groundwater discharge (SGD) is also an important source of dissolved Fe, Zn, Co, Ni, and isotopically distinct stable Pb ratios (206Pb, 207Pb, 208Pb) in the Bay. Conversely, the recirculated seawater component of SGD is an apparent sink for dissolved Mo. This study provides the first measurements of dissolved trace metals in the Jamaica Bay water column and subterranean estuary and provides evidence for trace metal input due to SGD.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-12
    Description: The Gakkel Ridge in the Arctic Ocean with its adjacent Nansen and Amundsen Basins is a key region for the study of mantle melting and crustal generation at ultraslow spreading rates. We use free-air gravity anomalies in combination with seismic reflection and wide-angle data to compute 2-D crustal models for the Nansen and Amundsen Basins in the Arctic Ocean. Despite the permanent pack-ice cover two geophysical transects cross both entire basins. This means that the complete basin geometry of the world’s slowest spreading system can be analysed in detail for the first time. Applying standard densities for the sediments and oceanic crystalline crust, the gravity models reveal an unexpected heterogeneous mantle with densities of 3.30 × 103, 3.20 × 103 and 3.10 × 103 kg/m3 near the Gakkel Ridge. We interpret that the upper mantle heterogeneity mainly results from serpentinisation and thermal effects. The thickness of the oceanic crust is highly variable throughout both transects. Crustal thickness of less than 1 km dominates in the oldest parts of both basins, increasing to a maximum value of 6 km near the Gakkel Ridge. Along-axis heat flow is highly variable and heat flow amplitudes resemble those observed at fast or intermediate spreading ridges. Unexpectedly, high heat flow along the Amundsen transect exceeds predicted values from global cooling curves by more than 100%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-06-07
    Description: Live-collected samples of four common reefbuilding coral genera (Acropora, Pocillopora, Goniastrea, Porites) from subtidal and intertidal settings of Heron Reef, Great Barrier Reef, show extensive early marine diagenesis where parts of the coralla less than 3 years old contain abundant macro- and microborings and aragonite, high-Mg calcite, low-Mg calcite, and brucite cements. Many types of cement are associated directly with microendoliths and endobionts that inhabit parts of the corallum recently abandoned by coral polyps. The occurrence of cements that generally do not precipitate in normal shallow seawater (e.g., brucite, low-Mg calcite) highlights the importance of microenvironments in coral diagenesis. Cements precipitated in microenvironments may not reXect ambient seawater chemistry. Hence, geochemical sampling of these cements will contaminate trace-element and stable-isotope inventories used for palaeoclimate and dating analysis. Thus, great care must be taken in vetting samples for both bulk and microanalysis of geochemistry. Visual inspection using scanning electron microscopy may be required for vetting in many cases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-10-06
    Description: Analysis of ten- and four-year datasets for the large, shallow, subtropical, and eutrophic Lakes Okeechobee (USA) and Taihu (China), respectively, suggest that resource-ratio explanations for cyanobacteria dominance may not apply to these two lakes. Datasets were examined to identify relationships between nutrient ratios [total nitrogen (TN):total phosphorus (TP) and ammonium (NH4+):oxidized N (NOx)] and phytoplankton community structure (as proportions of cyanobacteria and diatoms to total phytoplankton biomass). Datasets were pooled by sampling month, averaged lake-wide, and analyzed with linear regression. In Okeechobee, the cyanobacteria proportion increased and the diatom proportion decreased with increasing TN:TP. In Taihu, cyanobacteria decreased with increasing TN:TP, but the opposite trend observed for diatoms was marginally significant. Okeechobee cyanobacteria increased and diatoms decreased with increasing NH4+:NOx, but no significant relationships between phytoplankton and NH4+:NOx were observed in Taihu. Both lakes had significant relationships between phytoplankton community structure and total nutrients, but these relationships were the opposite of those expected. Relationships between phytoplankton community structure and water quality parameters from the previous month resulted in improved relationships, suggesting a predictive capability. Statistical analysis of the entire datasets (not pooled) supported these and additional relationships with other parameters, including temperature and water clarity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-08-22
    Description: The dissolution of in-situ generated methane hydrate in undersaturated, synthetic seawater (S = 35) was investigated in a series of laboratory-based experiments at P-/T-conditions within the hydrate stability field. A controlled flow field was generated across the smooth hydrate surface to test if, in addition to thermodynamic variables, the dissolution rate is influenced by changing hydrodynamic conditions. The dissolution rate was found to be strongly dependent on the friction velocity, showing that hydrate dissolution in undersaturated seawater is a diffusion-controlled process. The experimental data was used to obtain diffusional mass transfer coefficients kd, which were found to correlate linearly with the friction velocity, u★. The resulting kd/u★-correlation allows predicting the flux of methane from natural gas hydrate exposures at the sediment/seawater interface into the bulk water for a variety of natural P, T and flow conditions. It also is a tool for estimating the rate of hydrate regrowth at locations where natural hydrate outcrops at the seafloor persist in contact with undersaturated seawater
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 73 . pp. 2645-2659.
    Publication Date: 2017-09-27
    Description: Nd concentration and isotope data have been obtained for the Canada, Amundsen, and Makarov Basins of the Arctic Ocean. A pattern of high Nd concentrations (up to 58 pM) at shallow depths is seen throughout the Arctic, and is distinct from that generally seen in other oceans where surface waters are relatively depleted. A range of isotopic variations across the Arctic and within individual depth profiles reflects the different sources of waters. The dominant source of water, and so Nd, is the Atlantic Ocean, with lesser contributions from the Pacific and Arctic Rivers. Radiogenic isotope Nd signatures (up to epsilon(Nd) = -6.5) can be traced in Pacific water flowing into the Canada Basin. Waters from rivers draining older terrains provide very unradiogenic Nd (down to epsilon(Nd) = -14.2) that can be traced in surface waters across much of the Eurasian Basin. A distinct feature of the Arctic is the general influence of the shelves on the Nd concentrations of waters flowing into the basins, either from the Pacific across the Chukchi Sea, or from across the extensive Siberian shelves. Water-shelf interaction results in an increase in Nd concentration without significant changes in salinity in essentially all waters in the Arctic, through processes that are not yet well understood. In estuarine regions other processes modify the Nd signal of freshwater components supplied into the Arctic Basin, and possibly also contribute to sedimentary Nd that may be subsequently involved in sediment-water interactions. Mixing relationships indicate that in estuaries, Nd is removed from major river waters to different degrees. Deep waters in the Arctic are higher in Nd than the inflowing Atlantic waters, apparently through enrichments of waters on the shelves that are involved in ventilating the deep basins. These enrichments generally have not resulted in major shifts in the isotopic compositions of the deep waters in the Makarov Basin (epsilon(Nd) similar to -10.5), but have created distinctive Nd isotope signatures that were found near the margin of the Canada Basin (with epsilon(Nd) similar to -9.0). The deep waters of the Amundsen Basin are also distinct from the Atlantic waters (with epsilon(Nd) = -12.3), indicating that there has been limited inflow from the adjacent Makarov Basin through the Lomonosov Ridge. (C) 2009 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-09-23
    Description: δ18O values of nine tropical–subtropical planktonic foraminiferal species with different preferential habitat depths collected from 62 core–top samples along an east–west transect across the tropical Atlantic/Caribbean were used to test the applicability of interspecific δ18O gradients for reconstructions of tropical upper ocean stratification. In general, the δ18O difference (Δδ18O) between intermediate- and shallow-dwelling species decreases, and Δδ18O between deep and intermediate dwellers increases with increasing thermocline depth towards the west. The statistical significance of regional differences in Δδ18O highlights Δδ18O between the intermediate dwellers (in particular Globorotalia scitula and Globorotalia tumida) and the shallow dweller Globigerinoides ruber pink, as well as Δδ18O between the deep dwellers Globorotalia crassaformis or Globorotalia truncatulinoides dextral and intermediate dwellers as most sensitive to changes in tropical Atlantic thermocline depth. Based on the observed regional variations in interspecific Δδ18O, we propose a multispecies stratification index “STRAtrop” = (δ18Ointermediate − δ18Oshallow) / (δ18Odeep − δ18Oshallow) for the tropical ocean. Statistically significant differences in STRAtrop values between the E-Atlantic and the Caribbean suggest that this index may be a useful tool to monitor variations in tropical upper ocean stratification in the geological record.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-09-19
    Description: The published mean δ34S values of ore-related pyrites from orogenic gold deposits of the Eastern Goldfields Province, Yilgarn Craton lie between −4‰ and +4‰. As for orogenic gold deposits worldwide, most deposits have positive means and a restricted range of δ34S values, but some have negative means and wider ranges of δ34S values. Wall-rock carbonation and back-mixing of similar-source fluids with different fluid pathways can explain some of the more negative δ34S signatures. However, structural setting appears to be the most important factor controlling ore-fluid oxidation state and hence the distribution of δ34S values in gold-related pyrites. Shear-hosted deposits appear to have experienced fluid-dominated processes such as phase separation, whereas stockwork, vein-hosted or disseminated deposits formed under conditions of greater rock buffering. At Victory-Defiance, in particular, negative δ34S values are more common in gently dipping dilational structures, compared to more compressional steeply dipping structures. It appears most likely that fluid-pressure fluctuations during fault-valve cycles establish different fluid-flow regimes in structures with different orientations. Rapid fluid-pressure fluctuations in dilational structures during seismic activity can cause partitioning of reduced gas phases from the ore fluid during extreme phase separation and hence are an effective method of ore-fluid oxidation, leading to large, local fluctuations in oxidation state. It is thus not necessary to invoke mixing with oxidised magmatic fluids to explain δ34S signatures indicative of oxidation. In any case, available, robust geochronology in the Eastern Goldfields Province does not support the direct involvement of oxidised magmatic fluids from adjacent granitic intrusions in orogenic gold genesis. Thus, negative mean δ34S values and large variations in δ34S values of ore-related pyrites in world-class orogenic gold deposits are interpreted to result from multiple mechanisms of gold precipitation from a single, ubiquitous ore fluid in varying structural settings, rather than from the involvement of oxidised ore fluids from a different source. Such signatures are indicative, but not diagnostic, of anomalously large orogenic gold systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-08-09
    Description: The construction of S-wave velocity models of marine sediments down to hundreds of meters below the seafloor is important in a number of disciplines. One of the most significant trends in marine geophysics is to use interface waves to estimate shallow shear velocities which play an important role in determining the shallow crustal structure. In marine settings, the waves trapped near the fluid-solid interface are called Scholte waves, and this is the subject of the study. In 1998, there were experiments on the Ninetyeast Ridge (Central Indian Ocean) to study the shallow seismic structure at the drilled site. The data were acquired by both ocean bottom seismometer and ocean bottom hydrophone. A new type of seafloor implosion sources has been used in this experiment, which successfully excited fast and high frequency (> 500 Hz) body waves and slow, intermediate frequency (〈 20 Hz) Scholte waves. The fundamental and first higher mode Scholte waves have both been excited by the implosion source. Here, the Scholte waves are investigated with a full waveform modeling and a group velocity inversion approach. Shear wave velocities for the uppermost layers of the region are inferred and results from the different methods are compared. We find that the full waveform modeling is important to understand the intrinsic attenuation of the Scholte waves between 1 and 20 Hz. The modeling shows that the S-wave velocity varies from 195 to 350 m/s in the first 16 m of the uppermost layer. Depths levels of high S-wave impedance contrasts compare well to the layer depth derived from a P-wave analysis as well as from drilling data. As expected, the P- to S-wave velocity ratio is very high in the uppermost 16 m of the seafloor and the Poisson ratio is nearly 0.5. Depth levels of high S-wave impedance contrasts are comparable to the layer depth derived from drilling data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-09-23
    Description: The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assessment is performed using the two-sample Kolmogorov-Smirnov statistical test. To demonstrate the assessment procedure, it is applied to three different models of the Agulhas region. The test can either be performed using crossing positions of one-dimensional sections in order to test model performance in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quantities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their confidence levels is the same as the ordering based on the qualitative analysis, which suggests that the method is suited for model validation. Only one of the three models, a 1/10 degree two-way nested regional ocean model, might have skill in the Agulhas region. The other two models, a 1/2 degree global model and a 1/8 degree assimilative model, might have skill only on some sections in the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-09-27
    Description: We critically evaluate the applicability of Ca-isotope ratios in planktonic foraminifers as proxy for past sea surface temperatures (SST) and isotope composition of paleo-seawater (δ44Casw) reconstructions. Previous studies have shown discrepancies regarding the temperature sensitivity of Ca isotope fractionation in foraminifers of more than one order of magnitude. We present new data from the planktonic foraminifer species Orbulina universa, Globigerinoides sacculifer and Neogloboquadrina pachyderma (sinistral) from culture experiments, multinet deployments and coretop samples. Specimens of G. sacculifer cultured at low salinities (33–34.5) show predominantly no major temperature dependent Ca isotope fractionation, in contrast to previous individuals cultured at higher salinities of 34.5–36. The new data of O. universa are consistent with previously published results, revealing a small but significant temperature sensitivity. Calcium isotope fractionation in tests of N. pachyderma shows a significant variation with temperature, which is not uniform over the total investigated temperature range (−1.6 °C to +10 °C), possibly reflecting the influence of additional controlling factors besides temperature. Controlled dissolution experiments in the laboratory indicate that the Ca-isotope composition of G. sacculifer and N. pachyderma is relatively insensitive to partial dissolution of their tests. Calcium isotope ratios in the planktonic foraminifers G. sacculifer and N. pachyderma (s) reveal a complex Ca isotope fractionation behaviour, which is not yet fully understood. Additional validation studies are crucial to enhance the basic understanding of the calcium isotope systematics in planktic foraminifer shells, and the potential for applying Ca-isotope ratios as proxies for seawater temperature and the oceanic Ca budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 73 . pp. 3218-3233.
    Publication Date: 2017-09-27
    Description: The first isotopic compositions of dissolved hafnium in seawater from across the Arctic Ocean are reported. Most samples from the four sub-basins of the Arctic Ocean have values within error of an average of epsilon(Hf) = +0.8. Combined Hf-Nd isotope compositions do not fall on the well-established positive correlation for mantle and crustal rocks. Instead, Arctic waters have Hf that is more radiogenic than that typically found in rocks with similar Nd isotope compositions, a feature previously found in ferromanganese crusts and waters from the Pacific Ocean. Arctic seawater samples generally fall on the lower part of the ferromanganese crust array, reflecting influences of inputs from Arctic rivers and interactions of shelf waters with underlying sediments. Arctic rivers have much higher Hf concentrations (7-30 pM) than Arctic seawater (0.36-4.2 pM). Water from the Mackenzie River has the least radiogenic Hf, with epsilon(Hf) = -7.1 +/- 1.7, and plots furthest away from the ferromanganese crust array, while waters from the Ob, Yenisey, and Lena Rivers have values that are indistinguishable from most Arctic waters. In the Amundsen, Makarov, and Canada basins, Hf concentrations are highest at the surface and lowest in the deeper waters, reflecting the influences of riverine inputs and of waters that have flowed over the extensive Siberian continental shelves and have Nd and Hf characteristics that reflect water-sediment interactions. This is in contrast to the relatively low near surface Hf concentrations reported for locations elsewhere. The Pacific water layer in the Canada Basin exhibits the highest value of epsilon(Hf) = +6.8 +/- 1.8, reflecting the Hf isotopic composition of waters entering the Arctic from the Pacific Ocean. Mixing relationships indicate that a substantial fraction of the Hf in the Mackenzie River is lost during estuarine mixing; the behaviour of Hf from other rivers is less constrained. (C) 2009 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 56 (13-14). pp. 796-817.
    Publication Date: 2020-08-05
    Description: Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ∼100 to ∼400 m on proceeding downslope from ∼600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ∼35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (〈−1 °C), salty (〉34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (−1.9 °C; 34.79) and approaching 1.5 m s−1 at descent angles as large as ∼60° relative to the isobaths. Such events were most common during November–May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real, may reflect the influence of the large iceberg C-19 over Drygalski Trough until its departure in mid-May 2003, when there was a marked decrease in the coldest, saltiest gravity current adjacent to Drygalski Trough. Northward transport of cold, saline, recently ventilated Antarctic Bottom Water observed in March 2004 off Cape Adare was ∼1.7 Sv, including ∼0.4 Sv of High Salinity Shelf Water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-10-04
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-02-09
    Description: Pressure solution is one of the main deformation mechanisms for lithify and stress release in the rocks from shallow subduction zones. We observed temperature-dependent pressure solution development in naturally deformed shale in Shimanto accretionary complex in southwest Japan. The pressure solution develops with shear-dominated or co-axial-dominated deformation. We evaluated apparent activation energy by applying the constitutive equation of pressure solution creep to the temperature-dependent relations. The activation energy of each deformation type was estimated as 18 kJ mol− 1 for shear-dominated and 45 kJ mol− 1 for co-axial-dominated shale. The energies enable us to speculate rate-limiting processes of pressure solution i.e. dissolution, diffusion and precipitation, by comparing the energies obtained in this study with energies had been measured by experiments. The lower activation energy estimated here was similar with that of diffusion. The similarity indicates that possible rate-limiting process of shale deformation in shallow subduction zone would be diffusion. The difference of energy between deformation types can be explained by distinctive grain boundary structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 288 (3-4). pp. 399-407.
    Publication Date: 2017-02-09
    Description: Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 73 (13). A285-A285.
    Publication Date: 2012-07-05
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-08-04
    Description: Detailed exploration with remotely operated and autonomous deep submergence vehicles has revealed, at 9 degrees 33'S, the presence of the southernmost active hydrothermal field known so far on the Mid-Atlantic Ridge. The size of the hydrothermal field, which we have named "Lilliput", is about 1000 m x 250 m. It lies in a water depth of 1500 m on a ridge segment (Segment A3) with considerably thickened crust of 11 km. Four relatively small diffuse vent sites occur on a large young (estimated 〈100 years old) lava flow, partly covering the flow with hydrothermal Fe-oxide/hydroxide sediments. Based on homogeneous major element compositions of ca. 25 lava samples, this flow covers an area of at least 5 km x 0.6 km. The lava flow erupted from a series of parallel fissures at the western edge of the flow and a volcanic ridge consisting of up to 30 m high pillow mounds. The volcanic ridge probably represents the surface expression of an underlying dike which fed the flow. Several drained lava pond structures were observed within the flow but only one shows hydrothermal activity. The hydrothermal venting and precipitation of abundant Fe-oxyhydroxides appear to be related to the young diking and eruption event and the four different hydrothermally active sites of the Lilliput field lie along and almost equidistant from the eastern flank of the supposed dike. Although a hydrothermal plume some 500 m above the seafloor was found in two consecutive years (2005 and 2006), no high-temperature venting associated with Lilliput has been found. in agreement with findings at other ridges with thick crust such as Reykjanes. High magma supply rate and frequent diking and eruption events may lead to hot hydrothermal vents being rare in slow-spreading segments with thick crust whereas diffuse venting is abundant. Interestingly, the fauna at the Lilliput vents largely consists of small and apparently juvenile mussels (Bathymodiolus sp.) and did not show any signs of growth during the four years of continuing observations possibly reflecting pulsing hydrothermal activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-12-07
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Springer
    In:  In: High Performance Computing in Science and Engineering '08. Springer, Heidelberg, pp. 471-477613. ISBN 978-3-540-88301-2
    Publication Date: 2019-09-23
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Springer
    In:  In: Target Pattern Recognition in Innate Immunity. Advances in Experimental Medicine and Biology, 653 . Springer, Heidelberg, pp. 35-47. ISBN 978-1-4419-0900-8
    Publication Date: 2013-02-18
    Description: NOD-like receptors (NLRs) exert pivotal roles in innate immunity as sensors of exogenous or endogenous cellular danger signals. The NLR protein family has a characteristic domain architecture comprising a central nucleotide binding and oligomerization domain (NOD), an N-terminal effector binding domain and C-terminal leucine-rich repeats (LRRs). Mutations in NLR genes are genetically associated with a number of chronic inflammatory diseases of barrier organs. In this chapter, we focus on the influence of NLR regulation and function in the complex pathophysiology of mucosal homeostasis. The understanding of NLR biology may guide our future understanding of how the interaction between the human genome and the metagenome of transient and resident microbiota precipitates into chronic inflammatory disorders, such as Crohn's disease or atopy.
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Elsevier
    In:  Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 153A (2). S59-S59.
    Publication Date: 2020-08-04
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 56 (6). pp. 926-938.
    Publication Date: 2016-11-01
    Description: Labrador Sea convection was most intense and reached the greatest depths in the early 1990s, followed by weaker, shallower, and more variable convection after 1995. The Simple Ocean Data Assimilation (SODA) version 2.0.2/2.0.4 assimilation model is used to explore convective activity in the North Atlantic Ocean for the period from 1992 to 2007. Hydrographic conditions, which are relatively well observed during this period, are used to compare modeled and observed winter mixed-layer depths and water mass anomalies in relation to Deep Western Boundary Current transports and meridional overturning circulation (MOC) changes at the exit of the subpolar basin. The assimilation differs markedly from local observations in the March mixed-layer depth, which represents deep convection and water mass transformation. However, mean MOC rates at the exit of the subpolar gyre, forced by stratification in the mid-latitudes, are similar to estimates based on observations and show no significant decrease during the 1992–2007 period. SODA reproduces the deep Labrador Sea Water formation in the western North Atlantic without any clear indication of significant formation in the Irminger Sea while the lighter upper Labrador Sea Water density range is reached in the Irminger Sea in the 1990s, in agreement with existing assumptions of deep convection in the Irminger Sea and also supported by computed lag correlations with the Labrador Sea. Deep Water transformation mainly takes place in the eastern North Atlantic. The introduction of CFC-11 into the SODA model as a tracer reproduces the mean and multiyear variations of observed distributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-08-08
    Description: Nicaragua comprises seven historically active volcanoes (Cosigüina, San Cristobal, Telica, Cerro Negro, Momotombo, Masaya, and Concepcion), five of which are in a state of continuous degassing. Published measurements of the atmospheric dispersion of continuous emissions from Nicaraguan volcanoes, the chemical and aerosol microphysical modifications of the released gases and aerosols, and related acid deposition and impacts on the environment cover only short periods of time. We applied a three-dimensional atmosphere-chemistry/aerosol numerical model over Central America focussing on Nicaraguan volcanic emissions for month long simulation periods during the dry and wet seasons of 2003. The model is able to reproduce observed monthly precipitation and wind speed throughout the year 2003. Model results for near surface SO2 concentrations and SO2 dry deposition fluxes around Masaya volcano are in very good agreement with field measurements. During the dry season, oxidation of SO2 to sulphate plays only a minor role downwind of the Nicaraguan volcanoes and over the Pacific Ocean, whereas SO2 released from Arenal and Poas in Costa Rica is oxidised to sulphate much faster and closer to the volcanoes due to higher humidity and cloud water availability. During the wet season, more variable wind conditions lead to reduced dispersion of SO2 over the Pacific Ocean and increased dispersion inland. The availability of liquid water in the atmosphere favours sulphate formation close to the Nicaraguan volcanoes via aqueous phase oxidation and represents another limitation for the dispersion of SO2. Strong precipitation removes sulphate quickly from the atmosphere by wet deposition. Atmospheric SO2 concentrations and in particular dry deposition close to the volcanoes show a pronounced diurnal cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...