Skip to main content

Advertisement

Log in

The Global Biogeochemical Silicon Cycle

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon is one of the most important elements in the current age of the anthropocene. It has numerous industrial applications, and supports a high-tech multi-billion Euro industry. Silicon has a fascinating biological and geological cycle, interacting with other globally important biogeochemical cycles. In this review, we bring together both biological and geological aspects of the silicon cycle to provide a general, comprehensive review of the cycling of silicon in the environment. We hope this review will provide inspiration for researchers to study this fascinating element, as well as providing a background environmental context to those interested in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wollast R, Mackenzie FT (1983) The global cycle of silica. In: Aston SR (ed) Silicon geochemistry and biochemistry. Academic Press, San Diego, pp 39–76

    Google Scholar 

  2. Meybeck M-H (1994) Origin and variable composition of present day riverborne material. In: Council NR (ed) Material fluxes on the surface of the earth. Studies in Geophysics. National Academy Press, Washington D.C., pp 61–73

  3. Stumm W, Morgan JJ (1970) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley-Interscience, New York

    Google Scholar 

  4. Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    CAS  Google Scholar 

  5. Hartmann J, Jansen N, Dürr HH, Harashima A, Okuba K, Kempe S (2009) Predicting riverine dissolved silica fluxes to coastal zones from a hyperactive region and analysis of first-order controls. Int J Earth Sci. doi:10.1007/s00531-008-0381-5

    Google Scholar 

  6. Knoll MA, James WC (1987) Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time. Geology 15:1099–1102

    Article  Google Scholar 

  7. Ragueneau O, Schultes S, Bidle K, Claquin P, Moriceau B (2006) Si and C interactions in the world ocean: importance of ecological processes and implications for the role of diatoms in the biological pump. Glob Biogeochem Cycles 20:GB4S02. doi:10.1029/2006GB002688

    Article  CAS  Google Scholar 

  8. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16:GB1121. doi:10.1029/2002GB001894

    Article  CAS  Google Scholar 

  9. Struyf E, Conley DJ (2009) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7:88–94

    Article  Google Scholar 

  10. Street-Perrott AF, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Proc Land 33:1436–1457

    Article  CAS  Google Scholar 

  11. Tréguer P, Pondaven P (2000) Silica control of carbon dioxide. Nature 406:358–359

    Article  Google Scholar 

  12. Tréguer P, Nelson DM, van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379

    Article  Google Scholar 

  13. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric CO2. In: Houghton JT, Yihui D (eds) Climate change: the scientific basis. The contribution of WGI of the IPCC to the IPCC Third Assessment Report (TAR). Cambridge University Press, Cambridge, pp 183–237

    Google Scholar 

  14. Raven JA, Falkowski PG (1999) Oceanic sinks for atmospheric CO2. Plant Cell Environ 22:741–755

    Article  CAS  Google Scholar 

  15. Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 99–125

    Google Scholar 

  16. Harrison KG (2000) Role of increased marine silica input on paleo-pCO2 levels. Paleoceanography 15:292–298

    Article  Google Scholar 

  17. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    Article  CAS  Google Scholar 

  18. Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Mar Ecol Prog Ser 101:179–192

    Article  CAS  Google Scholar 

  19. Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob Biogeochem Cycles 19:GB 4S01. doi:10.1029/2005GB002606

    Article  CAS  Google Scholar 

  20. Officer CB, Ryther JH (1980) The possible importance of silicon in marine eutrophication. Mar Ecol Prog Ser 3:83–91

    Article  CAS  Google Scholar 

  21. Smayda TJ (1997) Bloom dynamics: physiology, behavior, trophic effects. Limnol Oceanogr 42:1132–1136

    Google Scholar 

  22. Sullivan MJ, Moncreiff CA (1990) Edaphic algae are an important component of salt march food webs: evidence from multiple stable isotope analyses. Mar Ecol Prog Ser 62:149–159

    Article  Google Scholar 

  23. Ryther JH (1969) Photosynthesis and fish production in the sea. The production of organic matter and its conversion to higher forms of life vary throughout the world ocean. Science 166:72–76

    Article  CAS  Google Scholar 

  24. Doering PH, Oviatt CA, Beatty LL, Banzon VF, Rice R, Kelly SP, Sullivan BK, Frithsen JB (1989) Structure and function in a model coastal ecosystem: silicon, the benthos and eutrophication. Mar Ecol Prog Ser 52:287–299

    Article  Google Scholar 

  25. Schelske CL, Stoermer EF, Conley DJ, Robbins JA, Glover R (1983) Early eutrophication in the lower Great Lakes: new evidence from biogenic silica in sediments. Science 222:320–322

    Article  CAS  Google Scholar 

  26. Bates SS, de Freitas ASW, Milley JE, Pocklington R, Quilliam MA, Smith JC, Worms J (1991) Controls on domoic acid production by the diatom Nitzschia pungens f. multiseries in culture: nutrients and irradiance. Can J Fish Aquat Sci 48:1136–1144

    CAS  Google Scholar 

  27. Bienfang PK, Harrison PJ, Quarmby LM (1982) Sinking rates response to depletion of nitrate, phosphate and silicate in four marine diatoms. Mar Biol 67:295–302

    Article  CAS  Google Scholar 

  28. Van Bennekom AJ, Salomons W (1981) Pathways of nutrients and organic matter from land to ocean through rivers. In: Martin J-M, Burton JD, Eisma D (eds) River inputs to ocean systems. United Nations, New York, pp 33–51

    Google Scholar 

  29. Humborg C, Ittekot V, Cociasu A, Von Bodungen B (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386:385–388

    Article  CAS  Google Scholar 

  30. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329

    Article  CAS  Google Scholar 

  31. Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402

    Article  CAS  Google Scholar 

  32. Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758

    Article  CAS  Google Scholar 

  33. Drees LR, Wilding LP, Smeck NE, Sankayi AL (1989) Silica in soils: quartz and disordered silica polymorphs. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America Book Series, Madison, pp 913–974

    Google Scholar 

  34. Matichenkov VV, Snyder GH (1996) The mobile silicon compounds in some South Florida soils. Eurasian Soil Sci 12:1165–1180

    Google Scholar 

  35. Jones LHP, Handreck KA (1963) Effects of iron and aluminium oxides on silica in solutions of soils. Nature 198:852–853

    Article  CAS  Google Scholar 

  36. Jones LHP, Handreck KA (1967) Silica in soils, plants and animals. Adv Agron 19:107–149

    Article  CAS  Google Scholar 

  37. Bruun Hansen HC, Raben-Lange B, Raulund-Rasmussen K, Borggaard OK (1994) Monosilicate adsorption by ferrihydrite and goethite at pH 3–6. Soil Sci 158:40–46

    Article  Google Scholar 

  38. Pokrovski GS, Schott J, Farges F, Hazemann J-L (2003) Iron(III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochim Cosmochim Acta 67:3559–3573

    Article  CAS  Google Scholar 

  39. Morris RC, Fletcher AB (1987) Increased solubility of quartz following ferrous-ferric iron reactions. Nature 330:558–561

    Article  CAS  Google Scholar 

  40. Dove PM (1995) Kinetic and thermodynamic controls on silica reactivity in weathering environments. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Reviews in Mineralogy 31, Mineralogical Society of America, Washington D.C, USA, pp 235–290

  41. Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64:3275–3281

    Article  CAS  Google Scholar 

  42. Neal C, Neal M, Reynolds B, Maberly SC, May L, Ferrier RC, Smith J, Parker JE (2005) Silicon concentrations in UK surface waters. J Hydrol 304:75–93

    Article  CAS  Google Scholar 

  43. Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Studies in Plant Science 8, 17–39. Elsevier, Amsterdam

  44. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  Google Scholar 

  45. Sangster AG, Hodson MJ (1986) Silica in higher plants. In: Evered D, O’Connor M (eds) Silicon Biochemistry, 90–107. Ciba Foundation Symposium, John Wiley, Chichester, UK

  46. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, San Diego

    Google Scholar 

  47. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    Article  CAS  Google Scholar 

  48. Epstein E (1999) Silicon. Annu Rev Plant Biol 50:641–664

    Article  CAS  Google Scholar 

  49. Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52:385–396

    Article  CAS  Google Scholar 

  50. Clarke J (2003) The occurrence and significance of biogenic opal in the regolith. Earth Sci Rev 60:175–194

    Article  CAS  Google Scholar 

  51. Gol’eva AA (1999) The application of phytolith analysis for solving problems of soil genesis and evolution. Eurasian Soil Sci 32:884–891

    Google Scholar 

  52. Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20:GB3023. doi:10.1029/2006GB002690

    Article  CAS  Google Scholar 

  53. Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951

    Article  CAS  Google Scholar 

  54. Loucaides S, Van Capellen P, Behrends T (2008) Dissolution of biogenic silica from land to ocean: role of salinity and pH. Limnol Oceanogr 53:1614–1621

    CAS  Google Scholar 

  55. Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    Article  CAS  Google Scholar 

  56. Struyf E, Van Damme S, Gribsholt B, Bal K, Beauchard O, Middelburg JJ, Meire P (2007) Phragmites australis and silica cycling in tidal wetlands. Aquat Bot 87:134–140

    Article  CAS  Google Scholar 

  57. Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142:29–35

    Article  CAS  Google Scholar 

  58. Paasche E (1980) Silicon content of 5 marine plankton diatom species measured with a rapid filter method. Limnol Oceanogr 25:474–480

    Article  CAS  Google Scholar 

  59. Rabosky DL, Sorhannus U (2009) Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457:183–186

    Article  CAS  Google Scholar 

  60. Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332

    Article  CAS  Google Scholar 

  61. Hinsinger P, Barros ONF, Benedetti MF, Novack Y, Callot G (2001) Plant-induced weathering of a basaltic rock: experimental evidence. Geochim Cosmochim Acta 65:137–152

    Article  CAS  Google Scholar 

  62. Kelly EF, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. Biogeochemistry 42:21–53

    Article  Google Scholar 

  63. Hilley GE, Porder S (2008) A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales. Proc Natl Acad Sci USA 105:16855–16859

    Article  CAS  Google Scholar 

  64. Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42:774–777

    Article  CAS  Google Scholar 

  65. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731

    Article  CAS  Google Scholar 

  66. Markewitz D, Richter DD (1998) The bio in aluminium and silicon biogeochemistry. Biogeochemistry 42:235–252

    Article  CAS  Google Scholar 

  67. Pokrovsky OS, Schott J, Kudryavtzev DI, Dupré B (2005) Basalt weathering in Central Siberia under permafrost conditions. Geochim Cosmochim Acta 69:5659–5680

    Article  CAS  Google Scholar 

  68. Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecol Bull 35:469–476

    CAS  Google Scholar 

  69. Saccone L, Conley DJ, Likens GE, Bailey SW, Buso DC, Johnson CE (2008) Factors that control the range and variability of amorphous silica in soils in the Hubbard Brook Experimental Forest. Soil Sci Soc Am J 72:1637–1644

    Article  CAS  Google Scholar 

  70. Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science 260:521–523

    Article  CAS  Google Scholar 

  71. Meunier J-D, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27:835–838

    Article  CAS  Google Scholar 

  72. Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127:71–79

    Article  CAS  Google Scholar 

  73. Fulweiler RW, Nixon SW (2005) Terrestrial vegetation and the seasonal cycle of dissolved silica in the southern New England coastal river. Biogeochemistry 74:115–130

    Article  Google Scholar 

  74. Wilding LP, Drees LR (1974) Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clay Miner 22:295–306

    Article  CAS  Google Scholar 

  75. Meunier J-D (2003) Le rôle des plantes dans le transfert du silicium à la surface des continents. CR Geosci 335:1199–1206

    Article  CAS  Google Scholar 

  76. McCarthy TS, McIver JR, Cairncross B, Ellery WN, Ellery K (1989) The inorganic geochemistry of peat from the Maunachira channel swamp system, Okavango Delta, Botswana. Geochim Cosmochim Acta 53:1077–1089

    Article  CAS  Google Scholar 

  77. Carnelli AL, Madella M, Theurillat J-P (2001) Biogenic silica production in selected alpine plant species and plant communities. Ann Bot-London 87:425–434

    Article  CAS  Google Scholar 

  78. Struyf E, Dausse A, Van Damme S, Bal K, Gribsholt B, Boschker HTS, Middelburg JJ, Meire P (2006) Tidal marshes and biogenic silica recycling at the land-sea interface. Limnol Oceanogr 51:838–846

    Article  CAS  Google Scholar 

  79. Humborg C, Smedberg E, Blomqvist S, Mörth C-M, Brink J, Rahm L, Danielsson Å, Sahlberg J (2004) Nutrient variations in boreal, and subartic Swedish rivers: landscape control of land-sea fluxes. Limnol Oceanogr 49:1871–1883

    Article  CAS  Google Scholar 

  80. Zakharova EA, Pokrovsky OS, Dupré B, Gaillardet J, Efimova LE (2007) Chemical weathering of silicate rocks in Karelia region and Kola peninsula, NW Russia: assessing the effect of rock composition, wetlands and vegetation. Chem Geol 242:255–277

    Article  CAS  Google Scholar 

  81. Conley DJ, Likens GE, Buso DC, Saccone L, Bailey SW, Johnson CE (2008) Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Glob Chang Biol 14:2548–2554

    Google Scholar 

  82. Raymond PA, Cole JJ (2003) Increase in the export of alkalinity from North America’s largest river. Science 301:88–91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Struyf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struyf, E., Smis, A., Van Damme, S. et al. The Global Biogeochemical Silicon Cycle. Silicon 1, 207–213 (2009). https://doi.org/10.1007/s12633-010-9035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-010-9035-x

Keywords

Navigation