ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,103)
  • Springer  (677)
  • Copernicus Publications (EGU)  (284)
  • Cambridge University Press  (110)
  • American Meteorological Society
  • MDPI Publishing
  • Selbstverlag Fachbereich Geowissenschaften, FU Berlin
  • 2020-2022  (28)
  • 2010-2014  (797)
  • 1995-1999  (274)
  • 1955-1959  (4)
Collection
Publisher
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    Springer
    In:  In: Volcanic Debris Avalanches. , ed. by Roverato, M., Dufresne, A. and Procter, J. Springer, Cham, pp. 255-279, 25 pp. ISBN 978-3-030-57411-6
    Publication Date: 2021-01-19
    Description: Landslide deposits offshore many volcanic islands provide evidence of catastrophic lateral collapses. These deposits span a larger volume range than their continental equivalents, and can generate devastating tsunamis. All historical volcanic-island lateral collapses have occurred in arc settings, and have been characterised by rapid failure and efficient tsunami generation. The varied morphology of their deposits is influenced both by lithological properties and the nature of the substrate. Many deposits show evidence of extensive seafloor erosion and transformation into debris flows, and the propagation of frontally-confined sediment deformation beyond and beneath the primary deposit. Mobilised volumes can far exceed that of the initial failure, and accurate deposit interpretation requires internal geophysical imaging and sampling. Around intraplate ocean-island volcanoes, multi-unit turbidites suggest that lateral collapses may occur in discrete stages; although this would reduce their overall tsunamigenic potential, the volumes of individual stages of collapse remain very large. Numerical models of both landslide and tsunami processes in ocean-island settings are difficult to test, and the smaller collapses that typify island arcs are an important focus of research due to their higher global frequency, availability of direct failure and tsunami observations, and a need to better understand the signals of incipient collapse to develop approaches for tsunami hazard mitigation.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  In: Pattern Recognition. ICPR International Workshops and Challenges. , ed. by Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G. M., Mei, T., Bertini, M., Escalante, H. J. and Vezzani, R. Springer, Cham, pp. 398-413.
    Publication Date: 2021-08-02
    Description: Since the sunlight only penetrates a few hundred meters into the ocean, deep-diving robots have to bring their own light sources for imaging the deep sea, e.g., to inspect hydrothermal vent fields. Such co-moving light sources mounted not very far from a camera introduce uneven illumination and dynamic patterns on seafloor structures but also illuminate particles in the water column and create scattered light in the illuminated volume in front of the camera. In this scenario, a key challenge for forward-looking robots inspecting vertical structures in complex terrain is to identify free space (water) for navigation. At the same time, visual SLAM and 3D reconstruction algorithms should only map rigid structures, but not get distracted by apparent patterns in the water, which often resulted in very noisy maps or 3D models with many artefacts. Both challenges, free space detection, and clean mapping could benefit from pre-segmenting the images before maneuvering or 3D reconstruction. We derive a training scheme that exploits depth maps of a reconstructed 3D model of a black smoker field in 1400 m water depth, resulting in a carefully selected, ground-truthed data set of 1000 images. Using this set, we compare the advantages and drawbacks of a classical Markov Random Field-based segmentation solution (graph cut) and a deep learning-based scheme (U-Net) to finding free space in forward-looking cameras in the deep ocean.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: Pattern Recognition. ICPR International Workshops and Challenges. , ed. by Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G. M., Mei, T., Bertini, M., Escalante, H. J. and Vezzani, R. Springer, Cham, pp. 375-389.
    Publication Date: 2021-08-03
    Description: Nowadays underwater vision systems are being widely applied in ocean research. However, the largest portion of the ocean - the deep sea - still remains mostly unexplored. Only relatively few image sets have been taken from the deep sea due to the physical limitations caused by technical challenges and enormous costs. Deep sea images are very different from the images taken in shallow waters and this area did not get much attention from the community. The shortage of deep sea images and the corresponding ground truth data for evaluation and training is becoming a bottleneck for the development of underwater computer vision methods. Thus, this paper presents a physical model-based image simulation solution, which uses an in-air texture and depth information as inputs, to generate underwater image sequences taken by robots in deep ocean scenarios. Different from shallow water conditions, artificial illumination plays a vital role in deep sea image formation as it strongly affects the scene appearance. Our radiometric image formation model considers both attenuation and scattering effects with co-moving spotlights in the dark. By detailed analysis and evaluation of the underwater image formation model, we propose a 3D lookup table structure in combination with a novel rendering strategy to improve simulation performance. This enables us to integrate an interactive deep sea robotic vision simulation in the Unmanned Underwater Vehicles simulator. To inspire further deep sea vision research by the community, we release the source code of our deep sea image converter to the public (https://www.geomar.de/en/omv-research/robotic-imaging-simulator).
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  In: Pattern Recognition. ICPR International Workshops and Challenges. , ed. by Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G. M., Mei, T., Bertini, M., Escalante, H. J. and Vezzani, R. Springer, Cham, pp. 390-397, 8 pp.
    Publication Date: 2021-03-08
    Description: In deep water conditions, vision systems mounted on underwater robotic platforms require artificial light sources to illuminate the scene. The particular lighting configurations significantly influence the quality of the captured underwater images and can make their analysis much harder or easier. Nowadays, classical monolithic Xenon flashes are gradually being replaced by more flexible setups of multiple powerful LEDs. However, this raises the question of how to arrange these light sources, given different types of seawater and-depending-on different flying altitudes of the capture platforms. Hence, this paper presents a rendering based coarse-to-fine approach to optimize recent multi-light setups for underwater vehicles. It uses physical underwater light transport models and target ocean and mission parameters to simulate the underwater images as would be observed by a camera system with particular lighting setups. This paper proposes to systematically vary certain design parameters such as each LED’s orientation and analyses the rendered image properties (such as illuminated image area and light uniformity) to find optimal light configurations. We report first results on a real, ongoing AUV light design process for deep sea mission conditions.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-09
    Description: Remobilization of soil carbon as a result of permafrost degradation in the drainage basin of the major Siberian rivers combined with higher precipitation in a warming climate potentially increase the flux of terrestrial derived dissolved organic matter (tDOM) into the Arctic Ocean. The Laptev (LS) and East Siberian Seas (ESS) receive enormous amounts of tDOM-rich river water, which undergoes at least one freeze-melt cycle in the Siberian Arctic shelf seas. To better understand how freezing and melting affect the tDOM dynamics in the LS and ESS, we sampled sea ice, river and seawater for their dissolved organic carbon (DOC) concentration and the colored fraction of dissolved organic matter. The sampling took place in different seasons over a period of 9 years (2010–2019). Our results suggest that the main factor regulating the tDOM distribution in the LS and ESS is the mixing of marine waters with freshwater sources carrying different tDOM concentrations. Of particular importance in this context are the 211 km3 of meltwater from land-fast ice from the LS, containing ~ 0.3 Tg DOC, which in spring mixes with 245 km3 of river water from the peak spring discharge of the Lena River, carrying ~ 2.4 Tg DOC into the LS. During the ice-free season, tDOM transport on the shelves takes place in the surface mixed layer, with the direction of transport depending on the prevailing wind direction. In winter, about 1.2 Tg of brine-related DOC, which was expelled from the growing land-fast ice in the LS, is transported in the near-surface water layer into the Transpolar Drift Stream that flows from the Siberian Shelf toward Greenland. The actual water depth in which the tDOM-rich brines are transported, depends mainly on the density stratification of the LS and ESS in the preceding summer and the amount of ice produced in winter. We suspect that climate change in the Arctic will fundamentally alter the dynamics of tDOM transport in the Arctic marginal seas, which will also have consequences for the Arctic carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  In: Ecosystem collapse and climate change. , ed. by Canadell, J. G. and Jackson, R. B. Ecological studies, 241 . Springer, Cham, pp. 345-364, 20 pp. ISBN 978-3-030-71330-0
    Publication Date: 2021-07-29
    Description: Seagrass meadows deliver important ecosystem services such as nutrient cycling, enhanced biodiversity, and contribution to climate change mitigation and adaption through carbon sequestration and coastal protection. Seagrasses, however, are facing the impacts of ocean warming and marine heatwaves, which are altering their ecological structure and function. Shifts in species composition, mass mortality events, and loss of ecosystem complexity after sudden extreme climate events are increasingly common, weakening the ecosystem services they provide. In the west coast of Australia, Shark Bay holds between 0.7 and 2.4% of global seagrass extent (〉4300 km2), but in the austral summer of 2010/2011, the Ningaloo El Niño marine heatwave resulted in the collapse of ~1300 km2 of seagrass ecosystem extent. The loss of the seagrass canopy resulted in the erosion and the likely remineralization of ancient carbon stocks into 2–4 Tg CO2-eq over 6 years following seagrass loss, increasing emissions from land-use change in Australia by 4–8% per annum. Seagrass collapse at Shark Bay also impacted marine food webs, including dugongs, dolphins, cormorants, fish communities, and invertebrates. With increasing recurrence and intensity of marine heatwaves, seagrass resilience is being compromised, underlining the need to implement conservation strategies. Such strategies must precede irreversible climate change-driven tipping points in ecosystem functioning and collapse and result from synchronized efforts involving science, policy, and stakeholders. Management should aim to maintain or enhance the resilience of seagrasses, and using propagation material from heatwave-resistant meadows to restore impacted regions arises as a challenging but promising solution against climate change threats. Although scientific evidence points to severe impacts of extreme climate events on seagrass ecosystems, the occurrence of seagrass assemblages across the planet and the capacity of humans to modify the environment sheds some light on the capability of seagrasses to adapt to changing ecological niches.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 110 . pp. 1879-1881.
    Publication Date: 2021-09-23
    Description: Summary of Ilse Seibold's vita Ilse Seibold, née Usbeck, was born May 8, 1925 in Breslau, Silesia, and went to school in Halle/Saale during WW2. She started her studies of geology and paleontology at the University of Halle and at the Humboldt University in Berlin, and later at the University of Tübingen, where she received her doctorate as micropaleontologist in 1951 with Otto Schindewolf as her supervisor. She remained active as productive scientist over many decades. In 1952, she married Dr. Eugen Seibold, who in 1958 became professor at Kiel University, founded one of Europe's most important institutes for marine geology, and later became president of the German Science Foundation (DFG), and subsequently of the European Science Foundation (ESF). Being a scientist herself Ilse Seibold soon evolved to a deeply reflective insider of geological sciences. She followed her husband during his scientific career from his appointments in Tübingen, Bonn, Karlsruhe, Kiel, to Bonn and Strasbourg/Freiburg i.Br. She accompanied Eugen on his sabbatical leave at Scripps Institution of Oceanography in La Jolla, CA. She participated in countless international scientific meetings. Together with Eugen she published many papers that document her independence and autonomy as scientist. She gained deep insights into the origins of the geosciences and their historical evolution, up to the ideas of fine arts. We are happy that she documented in her publications a broad range of her scientific and distinguished-humane impressions.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-16
    Description: We describe and test a new model of biological marine silicate cycling, implemented in the Kiel Marine Biogeochemical Model version 3 (KMBM3), embedded in the University of Victoria Earth System Climate Model (UVic ESCM) version 2.9. This new model adds diatoms, which are a key component of the biological carbon pump, to an existing ecosystem model. This new model combines previously published parameterizations of a diatom functional type, opal production and export with a novel, temperature-dependent dissolution scheme. Modelled steady-state biogeochemical rates, carbon and nutrient distributions are similar to those found in previous model versions. The new model performs well against independent ocean biogeochemical indicators and captures the large-scale features of the marine silica cycle to a degree comparable to similar Earth system models. Furthermore, it is computationally efficient, allowing both fully coupled, long-timescale transient simulations and “offline” transport matrix spinups. We assess the fully coupled model against modern ocean observations, the historical record starting from 1960 and a business-as-usual atmospheric CO2 forcing to the year 2300. The model simulates a global decline in net primary production (NPP) of 1.4 % having occurred since the 1960s, with the strongest declines in the tropics, northern midlatitudes and Southern Ocean. The simulated global decline in NPP reverses after the year 2100 (forced by the extended RCP8.5 CO2 concentration scenario), and NPP returns to 98 % of the pre-industrial rate by 2300. This recovery is dominated by increasing primary production in the Southern Ocean, mostly by calcifying phytoplankton. Large increases in calcifying phytoplankton in the Southern Ocean offset a decline in the low latitudes, producing a global net calcite export in 2300 that varies only slightly from pre-industrial rates. Diatom distribution moves southward in our simulations, following the receding Antarctic ice front, but diatoms are outcompeted by calcifiers across most of their pre-industrial Southern Ocean habitat. Global opal export production thus drops to 75 % of its pre-industrial value by 2300. Model nutrients such as phosphate, silicate and nitrate build up along the Southern Ocean particle export pathway, but dissolved iron (for which ocean sources are held constant) increases in the upper ocean. This different behaviour of iron is attributed to a reduction of low-latitude NPP (and consequently, a reduction in both uptake and export and particle, including calcite scavenging), an increase in seawater temperatures (raising the solubility of particulate iron) and stratification that “traps” the iron near the surface. These results are meant to serve as a baseline for sensitivity assessments to be undertaken with this model in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer
    In:  In: Deep Oil Spills: Facts, Fate, and Effects. , ed. by Murawski, S. A., Ainsworth, C. H., Gilbert, S., Hollander, D. J., Paris, C. B., Schlüter, M. and Wetzel, D. L. Springer, Cham, Switzerland, pp. 139-154. ISBN 978-3-030-11604-0
    Publication Date: 2021-01-18
    Description: Deepwater spills pose a unique challenge for reliable predictions of oil transport and fate, since live oil spewing under very high hydrostatic pressure has characteristics remarkably distinct from oil spilling in shallow water. It is thus important to describe in detail the complex thermodynamic processes occurring in the near-field, meters above the wellhead, and the hydrodynamic processes in the far-field, up to kilometers away. However, these processes are typically modeled separately since they occur at different scales. Here we directly couple two oil prediction applications developed during the Deepwater Horizon blowout operating at different scales: the near-field Texas A&M Oilspill Calculator (TAMOC) and the far-field oil application of the Connectivity Modeling System (oil-CMS). To achieve this coupling, new oil-CMS modules were developed to read TAMOC output, which consists of the description of distinct oil droplet “types,” each of specific size and pseudo-component mixture that enters at a given mass flow rate, time, and position into the far field. These variables are transformed for use in the individual-based framework of CMS, where each droplet type fits into a droplet size distribution (DSD). Here we used 19 pseudo-components representing a large range of hydrocarbon compounds and their respective thermodynamic properties. Simulation results show that the dispersion pathway of the different droplet types varies significantly. Indeed, some droplet types remain suspended in the subsea over months, while others accumulate in the surface layers. In addition, the decay rate of oil pseudo-components significantly alters the dispersion, denoting the importance of more biodegradation and dissolution studies of chemically and naturally dispersed live oil at high pressure. This new modeling tool shows the potential for improved accuracy in predictions of oil partition in the water column and of advancing impact assessment and response during a deepwater spill.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    In:  In: Deep Oil Spills: Facts, Fate, and Effects. , ed. by Murawski, S. A., Ainsworth, C. H., Gilbert, S., Hollander, D. J., Paris, C. B., Schlüter, M. and Wetzel, D. L. Springer, Cham, Switzerland, pp. 25-42. ISBN 978-3-030-11604-0
    Publication Date: 2021-01-18
    Description: Petroleum is one of the most complex naturally occurring organic mixtures. The physical and chemical properties of petroleum in a reservoir depend on its molecular composition and the reservoir conditions (temperature, pressure). The composition of petroleum varies greatly, ranging from the simplest gas (methane), condensates, conventional crude oil to heavy oil and oil sands bitumen with complex molecules having molecular weights in excess of 1000 daltons (Da). The distribution of petroleum constituents in a reservoir largely depends on source facies (original organic material buried), age (evolution of organisms), depositional environment (dysoxic versus anoxic), maturity of the source rock (kerogen) at time of expulsion, primary/secondary migration, and in-reservoir alteration such as biodegradation, gas washing, water washing, segregation, and/or mixing from different oil charges. These geochemical aspects define the physical characteristics of a petroleum in the reservoir, including its density and viscosity. When the petroleum is released from the reservoir through an oil exploration accident like in the case of the Deepwater Horizon event, several processes are affecting the physical and chemical properties of the petroleum from the well head into the deep sea. A better understanding of these properties is crucial for the development of near-field oil spill models, oil droplet and gas bubble calculations, and partitioning behavior of oil components in the water. Section 3.1 introduces general aspects of the origin of petroleum, the impact of geochemical processes on the composition of a petroleum, and some molecular compositional and physicochemical background information of the Macondo well oil. Section 3.2 gives an overview over experimental determination of all relevant physicochemical properties of petroleum, especially of petroleum under reservoir conditions. Based on the phase equilibrium modeling using equations of state (EOS), a number of these properties can be predicted which is presented in Sect. 3.3 along with a comparison to experimental data obtained with methods described in Sect. 3.2.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences Discussions .
    Publication Date: 2021-03-05
    Description: Nitrogen fixers, or diazotrophs, play a key role in the carbon and nitrogen cycle of the world oceans, but the controlling mechanisms are not comprehensively understood yet. The present study compares two paradigms on the ecological niche of diazotrophs in an Earth System Model (ESM). In our standard model configuration, which is representative for most of the state-of-the-art pelagic ecosystem models, diazotrophs take advantage of zooplankton featuring a lower food preference for diazotrophs than for ordinary phytoplankton. We compare this paradigm with the idea that diazotrophs are more competitive under oligotrophic conditions, characterized by low (dissolved, particulate, organic and inorganic) phosphorous availability. Both paradigms are supported by observational evidence and lead to a similar good agreement to the most recent and advanced observation-based nitrogen fixation estimate in our ESM framework. Further, we illustrate that the similarity between the two paradigms breaks in a RCP 8.5 anthropogenic emission scenario. We conclude that a more advanced understanding of the ecological niche of diazotrophs is mandatory for assessing the cycling of essential nutrients, especially under changing environmental conditions. Our results call for more in-situ measurements of cyanobacteria biomass if major controls of nitrogen fixation in the oceans are to be dissected.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-01-08
    Description: Landslide is one of the dangerous types of natural hazards. This phenomenon causes damages in many countries every year. A detailed landslide hazard assessment is necessary to reduce these damages. This research aims to map the landslide susceptibility zoning (LSZ) using the fuzzy logic method and GIS in the Sorkhab basin as a part of the Zagros fold and thrust belt (FTB), northwestern Iran. All slide types were recorded in fieldwork as landslide inventory. Based on the results, four types, i.e., debris slide, earth slide, and rock fall and complex of landslides, was identified in the region. Then, the effect of each landslide contributing factor including topographical elevation heights, slope classes, aspect classes, geological units, proximity to faults, land covers, rainfall classes, and proximity to streams was constructed in GIS and subsequently normalized using fuzzy membership functions. Finally, by combining all standardized layers using the fuzzy gamma operator, a final map of LSZ was produced. The results showed that a 0.9 fuzzy gamma operator has a high accuracy for the LSZ map in the study area. Besides, the accuracy of the LSZ map revealed a strong relationship (R2) between susceptibility classes, and landslide inventory was calculated using a scatter plot equal to 0.79. Hence, the method represented an appropriate accuracy in predicting the landslide susceptibility in the study area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-01-08
    Description: Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-02-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-04-09
    Description: The Last Glacial Maximum (LGM, ~ 21,000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models have been used to generate LGM simulations as part of the Palaeoclimate Modelling Intercomparison Project (PMIP) contribution to the Coupled Model Intercomparison Project (CMIP). Here we provide a preliminary analysis and evaluation of the results of these LGM experiments (PMIP4-CMIP6) and compare them with the previous generation of simulations (PMIP3-CMIP5). We show that the PMIP4-CMIP6 are globally less cold and less dry than the PMIP3-CMIP5 simulations, most probably because of the use of a more realistic specification of the northern hemisphere ice sheets in the latest simulations although changes in model configuration may also contribute to this. There are important differences in both atmospheric and ocean circulation between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large so, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land-sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the palaeoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. The spatial patterns of increased precipitation associated with changes in the jet streams are also poorly captured. However, changes in the tropics are more realistic, particularly the changes in tropical temperatures over the oceans. Although these results are preliminary in nature, because of the limited number of LGM simulations currently available, they nevertheless point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-01-08
    Description: The COVID-19 pandemic necessitates a change in conference formats for 2020. This shift offers a unique opportunity to address long-standing inequities in access and issues of sustainability associated with traditional conference formats, through testing online platforms. However, moving online is not a panacea for all of these concerns, particularly those arising from uneven distribution of access to the Internet and other technology. With conferences and events being forced to move online, this is a critical juncture to examine how online formats can be used to best effect and to reduce the inequities of in-person meetings. In this article, we highlight that a thoughtful and equitable move to online formats could vastly strengthen the global socio-ecological research community and foster cohesive and effective collaborations, with ecology and society being the ultimate beneficiaries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-01-08
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-10-14
    Description: This paper presents a novel data set of regional climate model simulations over Europe that significantly improves our ability to detect changes in weather extremes under low and moderate levels of global warming. The data set provides a unique and physically consistent data set, as it is derived from a large ensemble of regional climate model simulations. These simulations were driven by two global climate models from the international HAPPI consortium. The set consists of 100 × 10-year simulations and 25 × 10-year simulations, respectively. These large ensembles allow for regional climate change and weather extremes to be investigated with an improved signal-to-noise ratio compared to previous climate simulations. The changes in four climate indices for temperature targets of 1.5 °C and 2.0 °C global warming are quantified: number of days per year with daily mean near-surface apparent temperature of 〉 28 °C (ATG28); the yearly maximum 5-day sum of precipitation (RX5day); the daily precipitation intensity of the 50-yr return period (RI50yr); and the annual Consecutive Dry Days (CDD). This work shows that even for a small signal in projected global mean temperature, changes of extreme temperature and precipitation indices can be robustly estimated. For temperature related indices changes in percentiles can also be estimated with high confidence. Such data can form the basis for tailor-made climate information that can aid adaptive measures at a policy-relevant scales, indicating potential impacts at low levels of global warming at steps of 0.5 °C.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-01-08
    Description: The Bokanjac–Poličnik system, as a complex set of mutually interrelated Dinaric karst catchments and sub-catchments, is a highly vulnerable and limited groundwater source for the wider Zadar area in northern Dalmatia, Croatia. Based on hydrogeological, hydrochemical, and hydrological research, including the prediction of groundwater discharge by the end of the twenty-first century, a complex study was performed with the following main aims: (1) groundwater protection in the present state, (2) assessment of future groundwater protection, and (3) prediction of drinking water availability and quality under the predicted climate change conditions. Long-term prediction of changes in groundwater quantity, as well as investigations of trends in groundwater quality, will allow us to protect this essential natural resource with respect to possible negative trends. The results showed that a significant decrease in the quantity of available groundwater is possible and that extraction will have to be well planned because any decrease in the groundwater pressure in this area will cause a further decrease in quality, especially regarding the possibility of seawater intrusions into the aquifer. The results of this study were incorporated in sanitary protection zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-01-08
    Description: The Greenland Ice Sheet (GrIS) mass loss has been accelerating at a rate of about 20 ± 10 Gt/yr2 since the end of the 1990's, with around 60 % of this mass loss directly attributed to enhanced surface meltwater runoff. However, in the climate and glaciology communities, different approaches exist on how to model the different surface mass balance (SMB) components using: (1) complex physically-based climate models which are computationally expensive; (2) intermediate complexity energy balance models; (3) simple and fast positive degree day models which base their inferences on statistical principles and are computationally highly efficient. Additionally, many of these models compute the SMB components based on different spatial and temporal resolutions, with different forcing fields as well as different ice sheet topographies and extents, making inter-comparison difficult. In the GrIS SMB model intercomparison project (GrSMBMIP) we address these issues by forcing each model with the same data (i.e., the ERA-Interim reanalysis) except for two global models for which this forcing is limited to the oceanic conditions, and at the same time by interpolating all modelled results onto a common ice sheet mask at 1 km horizontal resolution for the common period 1980–2012. The SMB outputs from 13 models are then compared over the GrIS to (1) SMB estimates using a combination of gravimetric remote sensing data from GRACE and measured ice discharge, (2) ice cores, snow pits, in-situ SMB observations, and (3) remotely sensed bare ice extent from MODerate-resolution Imaging Spectroradiometer (MODIS). Our results reveal that the mean GrIS SMB of all 13 models has been positive between 1980 and 2012 with an average of 340 ± Gt/yr, but has decreased at an average rate of −7.3 Gt/yr2 (with a significance of 96 %), mainly driven by an increase of 8.0 Gt/yr2 (with a significance of 98 %) in meltwater runoff. Spatially, the largest spread among models can be found around the margins of the ice sheet, highlighting the need for accurate representation of the GrIS ablation zone extent and processes driving the surface melt. In addition, a higher density of in-situ SMB observations is required, especially in the south-east accumulation zone, where the model spread can reach 2 mWE/yr due to large discrepancies in modelled snowfall accumulation. Overall, polar regional climate models (RCMs) perform the best compared to observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of same order than RCMs with observations and remain then useful tools for long-term simulations. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best estimate of the present day SMB relative to observations, suggesting that biases are not systematic among models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Dynamics, 11 (2). pp. 447-468.
    Publication Date: 2021-01-08
    Description: It is virtually certain that the mean surface temperature of the Earth will continue to increase under realistic emission scenarios, yet comparatively little is known about future changes in climate variability. This study explores changes in climate variability over the large range of climates simulated by the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5/6) and the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3), including time slices of the Last Glacial Maximum, the mid-Holocene, and idealized experiments (1 % CO2 and abrupt4×CO2). These states encompass climates within a range of 12 ∘C in global mean temperature change. We examine climate variability from the perspectives of local interannual change, coherent climate modes, and through compositing extremes. The change in the interannual variability of precipitation is strongly dependent upon the local change in the total amount of precipitation. At the global scale, temperature variability is inversely related to mean temperature change on intra-seasonal to multidecadal timescales. This decrease is stronger over the oceans, while there is increased temperature variability over subtropical land areas (40∘ S–40∘ N) in warmer simulations. We systematically investigate changes in the standard deviation of modes of climate variability, including the North Atlantic Oscillation, the El Niño–Southern Oscillation, and the Southern Annular Mode, with global mean temperature change. While several climate modes do show consistent relationships (most notably the Atlantic Zonal Mode), no generalizable pattern emerges. By compositing extreme precipitation years across the ensemble, we demonstrate that the same large-scale modes influencing rainfall variability in Mediterranean climates persist throughout paleoclimate and future simulations. The robust nature of the response of climate variability, between cold and warm climates as well as across multiple timescales, suggests that observations and proxy reconstructions could provide a meaningful constraint on climate variability in future projections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Weather amd Climate Dynamics Discussion .
    Publication Date: 2020-12-09
    Description: European heat waves have increased during the two recent decades. Particularly 2015 and 2018 were characterized by a widespread area of cold North Atlantic sea surface temperatures (SSTs) in early summer as well as positive surface temperature anomalies across large parts of the European continent during later summer. The European heat wave of 2018 is further suggested to be induced by a quasi-stationary and high-amplified Rossby wave pattern associated with the so-called quasi-resonant amplification (QRA) mechanism. In this study, we evaluate the North Atlantic SST anomalies and the QRA theory as potential drivers for European heat waves for the first time in combination by using the ERA-5 reanalysis product. A composite and correlation study reveals that cold North Atlantic SST anomalies in early summer favour a more undulating jet stream and a preferred trough-ridge pattern in the North Atlantic–European sector. Further we found that cold North Atlantic SSTs promote a stronger double jet occurrence in this sector. Thus, favorite conditions for a QRA signature are evident together with a necessary preconditioning of a double jet. However, our wave analysis covering two-dimensional probability density distributions of phase speed and amplitude does not confirm a relationship between cold North Atlantic SSTs and the QRA theory, compositing cold SSTs, high double jet indices (DJIs) or both together. Instead, we can show that cold North Atlantic SST events enhance the dominance of transient waves. In the presence of a trough during cold North Atlantic events, we obtain a slow-down of the transient waves, but not necessarily an amplification or stationarity. The deceleration of the transient waves result in a longer duration of a trough over the North Atlantic accompanied by a ridge downstream over Europe, triggering European heat episodes. Although a given DJI preconditioning may also be subject to the onset of certain QRA events, our study found no general relation between cold North Atlantic SST events and the QRA diagnostics. Our study highlights the relevance of cold North Atlantic SSTs for the onset of high European temperatures by affecting travelling jet stream undulations (but without involving QRA in general). Further attention should be drawn not only to the influence of North Atlantic SST year-to-year variability, but also to the effect of the North Atlantic warming hole as a negative SST anomaly in the long term, which is projected to evolve through climate change.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-01-08
    Description: We examined small-scale distribution and feeding ecology of a non-native fish species, round goby (Neogobius melanostomus (Pallas, 1814)), in different habitats of a coastal lagoon situated in the south-western Baltic Sea. First observations of round goby in this lagoon were reported in 2011, 3 years before the current study was conducted, and information on this species’ basic ecology in different habitats is limited. We found that mainly juvenile round gobies are non-randomly distributed between habitats and that abundances potentially correlate positively with vegetation density and thus structural complexity of the environment. Abundances were highest in shallower, more densely vegetated habitats indicating that these areas might act as a refuge for small round gobies by possibly offering decreased predation risk and better feeding resources. Round goby diet composition was distinct for several length classes suggesting an ontogenetic diet shift concerning crustacean prey taxa between small (≤ 50 mm total length, feeding mainly on zooplankton) and medium individuals (51–100 mm, feeding mainly on benthic crustaceans) and another diet shift of increasing molluscivory with increasing body size across all length classes. Differences in round goby diet between habitats within the smallest length class might potentially be related to prey availability in the environment, which would point to an opportunistic feeding strategy. Here, we offer new insights into the basic ecology of round goby in littoral habitats, providing a better understanding of the ecological role of this invasive species in its non-native range, which might help to assess potential consequences for native fauna and ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-01-08
    Description: The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain the ice flow response to the individual global warming path. The model median for the observational period from 1992 to 2017 of the ice loss due to basal ice shelf melting is 10.2 mm, with a likely range between 5.2 and 21.3 mm. For the same period the Antarctic ice sheet lost mass equivalent to 7.4 mm of global sea level rise, with a standard deviation of 3.7 mm (Shepherd et al., 2018) including all processes, especially surface-mass-balance changes. For the unabated warming path, Representative Concentration Pathway 8.5 (RCP8.5), we obtain a median contribution of the Antarctic ice sheet to global mean sea level rise from basal ice shelf melting within the 21st century of 17 cm, with a likely range (66th percentile around the mean) between 9 and 36 cm and a very likely range (90th percentile around the mean) between 6 and 58 cm. For the RCP2.6 warming path, which will keep the global mean temperature below 2 ∘C of global warming and is thus consistent with the Paris Climate Agreement, the procedure yields a median of 13 cm of global mean sea level contribution. The likely range for the RCP2.6 scenario is between 7 and 24 cm, and the very likely range is between 4 and 37 cm. The structural uncertainties in the method do not allow for an interpretation of any higher uncertainty percentiles. We provide projections for the five Antarctic regions and for each model and each scenario separately. The rate of sea level contribution is highest under the RCP8.5 scenario. The maximum within the 21st century of the median value is 4 cm per decade, with a likely range between 2 and 9 cm per decade and a very likely range between 1 and 14 cm per decade.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-01-08
    Description: The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Measurement Techniques, 13 (7). pp. 3835-3853.
    Publication Date: 2021-01-08
    Description: Quantitative precipitation estimation with commercial microwave links (CMLs) is a technique developed to supplement weather radar and rain gauge observations. It is exploiting the relation between the attenuation of CML signal levels and the integrated rain rate along a CML path. The opportunistic nature of this method requires a sophisticated data processing using robust methods. In this study we focus on the processing step of rain event detection in the signal level time series of the CMLs, which we treat as a binary classification problem. This processing step is particularly challenging, because even when there is no rain, the signal level can show large fluctuations similar to that during rainy periods. False classifications can have a high impact on falsely estimated rainfall amounts. We analyze the performance of a convolutional neural network (CNN), which is trained to detect rainfall-specific attenuation patterns in CML signal levels, using data from 3904 CMLs in Germany. The CNN consists of a feature extraction and a classification part with, in total, 20 layers of neurons and 1.4×105 trainable parameters. With a structure inspired by the visual cortex of mammals, CNNs use local connections of neurons to recognize patterns independent of their location in the time series. We test the CNN's ability to recognize attenuation patterns from CMLs and time periods outside the training data. Our CNN is trained on 4 months of data from 800 randomly selected CMLs and validated on 2 different months of data, once for all CMLs and once for the 3104 CMLs not included in the training. No CMLs are excluded from the analysis. As a reference data set, we use the gauge-adjusted radar product RADOLAN-RW provided by the German meteorological service (DWD). The model predictions and the reference data are compared on an hourly basis. Model performance is compared to a state-of-the-art reference method, which uses the rolling standard deviation of the CML signal level time series as a detection criteria. Our results show that within the analyzed period of April to September 2018, the CNN generalizes well to the validation CMLs and time periods. A receiver operating characteristic (ROC) analysis shows that the CNN is outperforming the reference method, detecting on average 76 % of all rainy and 97 % of all nonrainy periods. From all periods with a reference rain rate larger than 0.6 mm h−1, more than 90 % was detected. We also show that the improved event detection leads to a significant reduction of falsely estimated rainfall by up to 51 %. At the same time, the quality of the correctly estimated rainfall is kept at the same level in regards to the Pearson correlation with the radar rainfall. In conclusion, we find that CNNs are a robust and promising tool to detect rainfall-induced attenuation patterns in CML signal levels from a large CML data set covering all of Germany.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-01-08
    Description: Rainfall is one of the most important environmental variables. However, it is a challenge to measure it accurately over space and time. During the last decade, commercial microwave links (CMLs), operated by mobile network providers, have proven to be an additional source of rainfall information to complement traditional rainfall measurements. In this study, we present the processing and evaluation of a German-wide data set of CMLs. This data set was acquired from around 4000 CMLs distributed across Germany with a temporal resolution of 1 min. The analysis period of 1 year spans from September 2017 to August 2018. We compare and adjust existing processing schemes on this large CML data set. For the crucial step of detecting rain events in the raw attenuation time series, we are able to reduce the amount of misclassification. This was achieved by using a new approach to determine the threshold, which separates a rolling window standard deviation of the CMLs' signal into wet and dry periods. For the compensation for wet antenna attenuation, we compare a time-dependent model with a rain-rate-dependent model and show that the rain-rate-dependent model performs better for our data set. We use RADOLAN-RW, a gridded gauge-adjusted hourly radar product from the German Meteorological Service (DWD) as a precipitation reference, from which we derive the path-averaged rain rates along each CML path. Our data processing is able to handle CML data across different landscapes and seasons very well. For hourly, monthly, and seasonal rainfall sums, we found good agreement between CML-derived rainfall and the reference, except for the winter season due to non-liquid precipitation. We discuss performance measures for different subset criteria, and we show that CML-derived rainfall maps are comparable to the reference. This analysis shows that opportunistic sensing with CMLs yields rainfall information with good agreement with gauge-adjusted radar data during periods without non-liquid precipitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-01-08
    Description: Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams are the major reasons for currently observed mass loss from Antarctica and are expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects – initMIP, LARMIP-2 and ISMIP6 – conducted with a range of ice sheet models, the projected 21st century sea level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1.4 to 4.0 cm of sea level equivalent in simulations in which ISMIP6 ocean forcing drives the PICO ocean box model where parameter tuning leads to a comparably low sub-shelf melt sensitivity and in which no surface forcing is applied. This is opposed to a likely range of 9.1 to 35.8 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity, even though both projects use forcing from climate models and melt rates are calibrated with previous oceanographic studies. Furthermore, using two initial states, one with a previous historic simulation from 1850 to 2014 and one starting from a steady state, we show that while differences between the ice sheet configurations in 2015 seem marginal at first sight, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by 5 % to 50 %. Hindcasting past ice sheet changes with numerical models would thus provide valuable tools to better constrain projections. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice dynamic response for future sea level projections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-06-19
    Description: Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Dynamics, 5 (2). pp. 383-397.
    Publication Date: 2018-03-15
    Description: The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-07-14
    Description: Marine habitats worldwide are increasingly pressurized by climate change, especially along the Antarctic Peninsula. Well-studied areas in front of rapidly retreating tidewater glaciers like Potter Cove are representative for similar coastal environments and, therefore, shed light on habitat formation and development on not only a local but also regional scale. The objective of this study was to provide insights into habitat distribution in Potter Cove, King George Island, Antarctica, and to evaluate the associated environmental processes. Furthermore, an assessment concerning the future development of the habitats is provided. To describe the seafloor habitats in Potter Cove, an acoustic seabed discrimination system (RoxAnn) was used in combination with underwater video images and sediment samples. Due to the absence of wave and current measurements in the study area, bed shear stress estimates served to delineate zones prone to sediment erosion. On the basis of the investigations, two habitat classes were identified in Potter Cove, namely soft-sediment and stone habitats that, besides influences from sediment supply and coastal morphology, are controlled by sediment erosion. A future expansion of the stone habitat is predicted if recent environmental change trends continue. Possible implications for the Potter Cove environment, and other coastal ecosystems under similar pressure, include changes in biomass and species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Springer
    In:  Journal of Chemical Ecology, 40 (3). pp. 218-219.
    Publication Date: 2018-01-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Springer
    In:  Journal of Chemical Ecology, 40 (3). pp. 225-226.
    Publication Date: 2018-01-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (3). pp. 833-842.
    Publication Date: 2017-05-09
    Description: In this study we present a comparative quantification of CaCO3 production rates by rhodolith-forming coralline red algal communities situated in high polar latitudes and assess which environmental parameters control these production rates. The present rhodoliths act as ecosystem engineers, and their carbonate skeletons provide an important ecological niche to a variety of benthic organisms. The settings are distributed along the coasts of the Svalbard archipelago, being Floskjeret (78◦180N) in Isfjorden, Krossfjorden (79◦080N) at the eastern coast of Haakon VII Land, Mosselbukta (79◦530N) at the eastern coast of Mosselhalvøya, and Nordkappbukta (80◦310N) at the northern coast of Nordaustlandet. All sites feature Arctic climate and strong seasonality.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Springer
    In:  In: The Prokaryotes. Springer, Berlin, pp. 439-512. ISBN 978-3-642-30196-4
    Publication Date: 2017-11-07
    Description: The family Rhodobacteraceae can be considered a paradigm of modern taxonomy of prokaryotes. Taking into account the number of species and genera that conforms the family, together with the knowledge about their abundance and vast global distribution, it surprises that most of them have been described relatively recent to our days. Two notable exceptions are Rhodonostoc capsulatum (Molisch, Die purpurbakterien nach neuen untersuchungen, vols i–vii. G. Fischer, Jena, pp 1–95, 1907) and Micrococcus denitrificans Beijerinck and Minkman (Zentbl Bakteriol, Parasitenkd, Infektionskr Hyg. Abt II 25:30–63, 1910), early basonyms of Rhodobacter capsulatus and Paracoccus denitrificans, respectively. The fact that so many descriptions within this family are recent means that some studies have been concomitant and pose a challenge not only for pure taxonomic studies but also for interpreting other studies in which a rapidly evolving nomenclature had to be used anyway. The metabolic and ecological diversity of the group adds further complexity. In spite of all these difficulties, the picture is far from being a chaos and it can be considered an exciting and important bacterial group to study. Rhodobacteraceae are, fundamentally, aquatic bacteria that frequently thrive in marine environments. They comprise mainly aerobic photo- and chemoheterotrophs but also purple non-sulfur bacteria which perform photosynthesis in anaerobic environments. They are deeply involved in sulfur and carbon biogeochemical cycling and symbiosis with aquatic micro- and macroorganisms. One hundred genera are currently recognized as members of the family although the Stappia group, Ahrensia, Agaricicola, and Rhodothalassium do not belong, phylogenetically, to the family. The 90 other genera are distributed in 5 phylogenetic groups (the Rhodobacter, the Paracoccus, the Rhodovulum, the Amaricoccus, and the Roseobacter clades) that might be considered a family on its own.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Springer
    In:  In: Bioluminescence: Fundamentals and Applications in Biotechnology. Advances in Biochemical Engineering-Biotechnology, 144 . Springer, Berlin, Germany, pp. 37-64. ISBN 978-3-662-43384-3
    Publication Date: 2020-08-03
    Description: Bacterial light production involves enzymes-luciferase, fatty acid reductase, and flavin reductase-and substrates-reduced flavin mononucleotide and long-chain fatty aldehyde-that are specific to bioluminescence in bacteria. The bacterial genes coding for these enzymes, luxA and luxB for the subunits of luciferase; luxC, luxD, and luxE for the components of the fatty acid reductase; and luxG for flavin reductase, are found as an operon in light-emitting bacteria, with the gene order, luxCDABEG. Over 30 species of marine and terrestrial bacteria, which cluster phylogenetically in Aliivibrio, Photobacterium, and Vibrio (Vibrionaceae), Shewanella (Shewanellaceae), and Photorhabdus (Enterobacteriaceae), carry lux operon genes. The luminescence operons of some of these bacteria also contain genes involved in the synthesis of riboflavin, ribEBHA, and in some species, regulatory genes luxI and luxR are associated with the lux operon. In well-studied cases, lux genes are coordinately expressed in a population density-responsive, self-inducing manner called quorum sensing. The evolutionary origins and physiological function of bioluminescence in bacteria are not well understood but are thought to relate to utilization of oxygen as a substrate in the luminescence reaction.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Springer
    In:  Helgoland Marine Research, 68 (2). pp. 341-356.
    Publication Date: 2020-07-30
    Description: Fertilization depends on distribution and aggregation patterns of sea urchins which influence gamete contact time and may potentially enhance their vulnerability to ocean acidification. In this study, we conducted fertilization experiments to assess the effects of selected pH scenarios on fertilization success of Strongylocentrotus droebachiensis, from Spitsbergen, Arctic. Acidification was achieved by aerating seawater with different CO2 partial pressures to represent pre-industrial and present conditions (measured ~180–425 µatm) and future acidification scenarios (~550–800, ~1,300, ~2,000 µatm). Fertilization success was defined as the proportion of successful/unsuccessful fertilizations per treatment; eggs were classified according to features of their fertilization envelope (FE), hyaline layer (HL) and achievement of cellular division. The diagnostic findings of specific pathological aberrations were described in detail. We additionally measured intracellular pH changes in unfertilized eggs exposed for 1 h to selected acidification treatments using BCECF/AM. We conclude that (a) acidified conditions increase the proportion of eggs that failed fertilization, (b) acidification may increase the risk of polyspermy due to failures in the FE formation supported by the occasional observation of multiple sperms in the perivitelline space and (c) irregular formation of the embryo may arise due to impaired formation of the HL. The decrease in fertilization success could be also related to the observed changes in intracellular pH at pCO2 ~ 1,000 μatm or higher.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-09-23
    Description: The 5th International Workshop on Modeling the Ocean (IWMO http://www.uib.no/en/IWMO2013/-58927/iwmo-2013-bergen-norway) was held in June 17–20, in Bergen, Norway. The historic city of Bergen is the gateway to the fjords and a center for oceanic research. The workshop was hosted by the University of Bergen and also sponsored by the Research Council of Norway. Approximately 80 researchers worldwide participated in the workshop. Professor Mellor, Princeton University, gave the keynote lecture. The 5th IWMO meeting in Bergen was the first IWMO held in Europe, followed on the footsteps of previous meetings, IWMO-2009 in Taipei, Taiwan (Oey et al. 2010a, b), IWMO-2010 in Norfolk, USA (Ezer et al. 2011), IWMO-2011 in Qingdao, China (Oey et al. 2013a), and IWMO-2012 in Yokohama, Japan (Oey et al. 2013b). The participants presented approximately 60 oral talks and 20 posters, covering a wide range of ocean modeling and data analysis topics, as described below. In the spirit of promoting young s ...
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-09-23
    Description: Linking lower and higher trophic levels requires special focus on the essential role played by mid-trophic levels, i.e., the zooplankton. One of the most relevant pieces of information regarding zooplankton in terms of flux of energy lies in its size structure. In this study, an extensive data set of size measurements is presented, covering parts of the western European continental shelf and slope, from the Galician coast to the Ushant front, during the springs from 2005 to 2012. Zooplankton size spectra were estimated using measurements carried out in situ with the Laser Optical Plankton Counter (LOPC) and with an image analysis of WP2 net samples (200 μm mesh size) performed following the ZooScan methodology. The LOPC counts and sizes particles within 100–2000 μm of spherical equivalent diameter (ESD), whereas the WP2/ZooScan allows for counting, sizing and identification of zooplankton from ~ 400 μm ESD. The difference between the LOPC (all particles) and the WP2/ZooScan (zooplankton only) was assumed to provide the size distribution of non-living particles, whose descriptors were related to a set of explanatory variables (including physical, biological and geographic descriptors). A statistical correction based on these explanatory variables was further applied to the LOPC size distribution in order to remove the non-living particles part, and therefore estimate the size distribution of zooplankton. This extensive data set provides relevant information about the zooplankton size distribution variability, productivity and trophic transfer efficiency in the pelagic ecosystem of the Bay of Biscay at a regional and interannual scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-09-21
    Description: The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Springer
    In:  [Paper] In: Modelling and Knowledge Management applications: Systems and Domains (MoKMaSD), 02.09.2014, Grenoble, France . Software Engineering and Formal Methods ; pp. 276-293 .
    Publication Date: 2015-02-17
    Description: Ecosystems and their biodiversity have to be protected and preserved as sources of services and goods. The human population controls and modifies ecosystems to improve its health conditions and welfare. The consequences of human activities should be carefully monitored and ecosystems should be managed to protect all of the species and preserve their functioning. The development of strategies for ecosystem management benefits from the use of computational techniques to model the dynamics of species that interact with their abiotic and biotic environment. Life scientists and computer scientists need to work together to define and analyse ecosystem models. However, there is a multifaceted gap between the approaches used in life science and those used in computer science. Such gap is both cultural and technical, and results in a number of challenges. In this paper we identify these challenges and provide technical and cultural proposals for solving them.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-02-19
    Description: Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In situ relationships between liquid-and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determining particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions, and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP〉 HAP〉 CFAP (4.5% CO3)〉 CFAP (3.4% CO3)〉 CFAP (2.2% CO3)〉 FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the coastal sediments analyzed, which supports the hypothesis of apatite formation by an OCP precursor mechanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-03-12
    Description: Dedicated to the memory of our colleague Klaus Hochheim, who tragically lost his life in the Arctic expedition in September 2013. A distinct, subsurface density front along the eastern St. Anna Trough in the northern Kara Sea is inferred from hydrographic observations in 1996 and 2008–2010. Direct velocity measurements show a persistent northward subsurface current (~ 18 cm s−1) along the St. Anna Trough eastern flank. This sheared flow, carrying the outflow from the Barents and Kara seas to the Arctic Ocean, is also evident from shipboard observations as well as from geostrophic velocities and numerical model simulations. Although we cannot substantiate our conclusions by direct observation-based estimates of mixing rates in the area, we hypothesize that the enhanced vertical mixing along the St. Anna Trough eastern flank favors the upward heat loss from the intermediate warm Atlantic water layer. Modeling results support this hypothesis. The upward heat flux inferred from hydrographic data and model simulations is of O(30–100) W m−2. The region of lowered sea ice thickness and concentration seen both in sea ice remote sensing observations and model simulations marks the Atlantic water pathway in the St. Anna Trough and adjacent Nansen Basin continental margin. In fact, the sea ice shows a delayed freeze-up onset during fall and a reduction in the sea ice thickness during winter. This is consistent with our results on the enhanced Atlantic water heat loss along the Atlantic water pathway in the St. Anna Trough.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-03-13
    Description: Following the launch of ESA's Soil Moisture and Ocean Salinity (SMOS) mission, it has been shown that brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) are sensitive to sea ice properties. In the first demonstration study, sea ice thickness up to 50 cm has been derived using a semi-empirical algorithm with constant tie-points. Here, we introduce a novel iterative retrieval algorithm that is based on a thermodynamic sea ice model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within the SMOS spatial resolution are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. This new algorithm has been used for the continuous operational production of a SMOS-based sea ice thickness data set from 2010 on. The data set is compared to and validated with estimates from assimilation systems, remote sensing data, and airborne electromagnetic sounding data. The comparisons show that the new retrieval algorithm has a considerably better agreement with the validation data and delivers a more realistic Arctic-wide ice thickness distribution than the algorithm used in the previous study (Kaleschke et al., 2012).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-04-21
    Description: Subfossil Cladocera were sampled and examined from the surface sediments of 35 thermokarst lakes along a temperature gradient crossing the tree line in the Anabar-river basin in northwestern Yakutia, northeastern Siberia. The lakes were distributed through three environmental zones: typical tundra, southern tundra and forest tundra. All lakes were situated within the continuous permafrost zone. Our investigation showed that the cladoceran communities in the lakes of the Anabar region are diverse and abundant, as reflected by taxonomic richness, and high diversity and evenness indices (H = 1.89 ± 0.51; I = 0.8 ± 0.18). CONISS cluster analysis indicated that the cladoceran communities in the three ecological zones (typical tundra, southern tundra and forest-tundra) differed in their taxonomic composition and structure. Differences in the cladoceran assemblages were related to limnological features and geographical position, vegetation type, climate and water chemistry. The constrained redundancy analysis indicated that TJuly, water depth and both sulphate (SO4 2−) and silica (Si4+) concentrations significantly (p ≤ 0.05) explained variance in the cladoceran assemblage. TJuly featured the highest percentage (17.4 %) of explained variance in the distribution of subfossil Cladocera. One of the most significant changes in the structure of the cladoceran communities in the investigated transect was the replacement of closely related species along the latitudinal and vegetation gradient. The results demonstrate the potential for a regional cladoceran-based temperature model for the Arctic regions of Russia, and for and Yakutia in particular.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-04-23
    Description: A large monothalamous foraminiferan, Toxisarcon taimyr sp. nov., has been isolated from the benthic samples from the Kara Sea inner shelf near the mouth of Yenisey river estuary, at a depth of 50–100 m. In its overall morphology, the new species closely resembles T. synsuicidica, one of the two species of Toxisarcon described to date. It possesses a large irregularly shaped cell body, covered by a thin layer of a fibrous organic coating. Numerous reticulopodia typically extend from all over the cell surface; the species is very motile and rapidly changes cell shape. Long and thick reticulopodial bundles form in the direction of movement. In the phylogenetic tree based on partial small-subunit ribosomal DNA (SSU rDNA) sequences, T. taimyr branches together with the two other known species of Toxisarcon within the clade C of monothalamous foraminifera.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-05-28
    Description: The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 μg m−2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 μg m−2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 μg m−3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 \textpm 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Springer
    In:  In: Landslide Science for a Safer Geoenvironment. Springer, Heidelberg, Germany, pp. 549-555. ISBN 978-3-319-04995-3
    Publication Date: 2015-09-24
    Description: Submarine slope failures of various types and sizes are common along the tectonic and seismically active Ligurian margin, northwestern Mediterranean Sea, primarily because of seismicity up to ~M6, rapid sediment deposition in the Var fluvial system, and steepness of the continental slope (average 11°). We present geophysical, sedimentological and geotechnical results of two distinct slides in water depth 〉1,500 m: one located on the flank of the Upper Var Valley called Western Slide (WS), another located at the base of continental slope called Eastern Slide (ES). WS is a superficial slide characterized by a slope angle of ~4.6° and shallow scar (~30 m) whereas ES is a deep-seated slide with a lower slope angle (~3°) and deep scar (~100 m). Both areas mainly comprise clayey silt with intermediate plasticity, low water content (30–75 %) and underconsolidation to strong overconsolidation. Upslope undeformed sediments have low undrained shear strength (0–20 kPa) increasing gradually with depth, whereas an abrupt increase in strength up to 200 kPa occurs at a depth of ~3.6 m in the headwall of WS and ~1.0 m in the headwall of ES. These boundaries are interpreted as earlier failure planes that have been covered by hemipelagite or talus from upslope after landslide emplacement. Infinite slope stability analyses indicate both sites are stable under static conditions; however, slope failure may occur in undrained earthquake condition. Peak earthquake acceleration from 0.09 g on WS and 0.12 g on ES, i.e. M5–5.3 earthquakes on the spot, would be required to induce slope instability. Different failure styles include rapid sedimentation on steep canyon flanks with undercutting causing superficial slides in the west and an earthquake on the adjacent Marcel fault to trigger a deep-seated slide in the east.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 10 (2). pp. 811-824.
    Publication Date: 2015-11-20
    Description: An earth system model of intermediate complexity (CLIMate and BiosphERe – CLIMBER-2) and a land surface model (JSBACH), which dynamically represent vegetation, are used to simulate natural fire dynamics through the last 8000 yr. Output variables of the fire model (burned area and fire carbon emissions) are used to compare model results with sediment-based charcoal reconstructions. Several approaches for processing model output are also tested. Charcoal data are reported in Z-scores with a base period of 8000–200 BP in order to exclude the strong anthropogenic forcing of fire during the last two centuries. The model–data comparison reveals a robust correspondence in fire activity for most regions considered, while for a few regions, such as Europe, simulated and observed fire histories show different trends. The difference between modelled and observed fire activity may be due to the absence of anthropogenic forcing (e.g. human ignitions and suppression) in the model simulations, and also due to limitations inherent to modelling fire dynamics. The use of spatial averaging (or Z-score processing) of model output did not change the directions of the trends. However, Z-score-transformed model output resulted in higher rank correlations with the charcoal Z-scores in most regions. Therefore, while both metrics are useful, processing model output as Z-scores is preferable to areal averaging when comparing model results to transformed charcoal records.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Springer
    In:  , ed. by Harff, J., Meschede, M., Petersen, S. and Thiede, J. Springer, Amsterdam, The Netherlands, - pp. ISBN 978-94-007-6644-0 (online)
    Publication Date: 2016-12-06
    Description: This Encyclopedia comprises the current knowledge in marine geosciences whereby not only basic but also applied and technical sciences are covered. Through this concept a broad scale of users in the field of marine sciences and techniques is addressed, from students and scholars in academia to engineers and decision makers in industry and politics. Globally growing demand of energy and mineral resources, reliable future projection of climate processes and the protection of coasts to mitigate the threats of disasters and hazards require a comprehensive understanding of the structure, ongoing processes and genesis of the marine geosphere. Beyond the “classical” research fields in marine geology in current time more general concepts have been evolved integrating marine geophysics, hydrography, marine biology, climatology and ecology. As an umbrella the term “marine geosciences” has been broadly accepted for this new complex field of research and the solutions of practical tasks in the marine realm.
    Type: Book , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (24). pp. 7269-7274.
    Publication Date: 2021-04-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Springer
    In:  In: Remote Sensing of the African Seas. , ed. by Barale, V. and Gade, M. Springer, Dordrecht, Netherlands, pp. 205-231. ISBN 978-94-017-8007-0
    Publication Date: 2015-03-05
    Description: Oceanic eddies having scales from several hundred meters to several hundred kilometers are ubiquitous phenomena in the World’s ocean. This became evident only after they could be observed from satellites and space shuttles. Here we present several images taken in different spectral bands which show signatures of eddies of different spatial scales in sea areas around Africa. In particular, we present a series of satellite images showing the propagation of a small-scale cyclonic (cold) eddy generated at Cap-Vert at the coast of Senegal into the open ocean. We show that this small-scale eddy transported nutrients from the Senegal upwelling region westward into the oligotrophic North Atlantic thus giving rise to enhanced chlorophyll-a concentration there. Since eddies are also areas of high fish population, knowledge of their position and properties is of great importance for fishery.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-01-15
    Description: Satellite observations of microwave brightness temperatures between 19 GHz and 85 GHz are the main data sources for operational sea-ice monitoring and retrieval of ice concentrations. However, microwave brightness temperatures depend on the emissivity of snow and ice, which is subject to pronounced seasonal variations and shows significant hemispheric contrasts. These mainly arise from differences in the rate and strength of snow metamorphism and melt. We here use the thermodynamic snow model SNTHERM forced by European Re-Analysis (ERA) interim data and the Microwave Emission Model of Layered Snowpacks (MEMLS), to calculate the sea-ice surface emissivity and to identify the contribution of regional patterns in atmospheric conditions to its variability in the Arctic and Antarctic. The computed emissivities reveal a pronounced seasonal cycle with large regional variability. The emissivity variability increases from winter to early summer and is more pronounced in the Antarctic. In the pre-melt period (January–May, July–November) the standard deviations in surface microwave emissivity due to diurnal, regional and inter-annual variability of atmospheric forcing reach up to Δε = 0.034, 0.043, and 0.097 for 19 GHz, 37 GHz and 85 GHz channels, respectively. Between 2000 and 2009, small but significant positive emissivity trends were observed in the Weddell Sea during November and December as well as in Fram Strait during February, potentially related to earlier melt onset in these regions. The obtained results contribute to a better understanding of the uncertainty and variability of sea-ice concentration and snow-depth retrievals in regions of high sea-ice concentrations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-01-18
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-02-01
    Description: The main migrations of the Polar front (PF) during the last 300 ka were identified using planktic foraminiferal census data and derived from them sea surface paleotemperature (SST) estimates in two synchronized AMK-4438 and M23414 cores recovered directly beneath the main stream of the North Atlantic Current (NAC) south of Iceland. During the summer seasons, the cold waters adjacent to the PF did not reach the studied sites. These waters occurred here only during the winter seasons of MIS 2, 6, and 8. The northern part of the study area was influenced by the arctic waters more often than its southern part. During MIS 8 and 6 isotherms in the North Atlantic had mainly the subzonal orientation, while during MIS 2-4 they had the submeridional orientation. During the interglacials, the PF was located northward and westward from the study area. During MIS 7, the front was presumably situated closer to the study area in comparison with its modern position, and the isotherms were oriented mainly subzonal. For the MIS 5e period, we observed the most distant retreat of PF from the investigated area in the western and northwestern direction in relation to the anomalous deflection of the NAC to the north-west (intensification of the Irminger current) and the predominance of the submeridional orientation of the isotherms in the study area. During MIS 1, as well as MIS 7, the isotherms in the study area had mainly the subzonal orientation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Springer
    In:  In: STRATI 2013 : First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy. , ed. by Rocha, R., Pais, J., Kullberg, J. C. and Finney, S. Springer, Zürich, Switzerland, pp. 1309-1313. ISBN 978-3-319-04364-7
    Publication Date: 2015-04-28
    Description: Three bottom sediment cores (140–190 cm long) taken from Isfjorden, West Spitsbergen, were analysed for pollen and spores with the main aim of elucidating the local pattern of pollen and spore succession in order to establish age control and define the stratigraphy of marine sediments. Isfjorden bottom sediments consist of greyish-green silty pelite with gruss, detritus, and pebble inclusions. The upper 25 cm are water-saturated and nonplastic. In spite of extremely low concentrations, and the predominance of reworked pre-Quaternary microfossils, the marine pollen spectra appear quite similar to those known from radiocarbon-dated lake sediments and peat exposures on the coasts of neighbouring Billefjorden, Van Mijenfjorden, and Hornsundfjorden, provided that long-distance transported pollen of conifers, tree birches, and spores of ferns are eliminated from marine pollen spectra compositions. The correlation of pollen zones (PZ) established in fjord sediments with those known from peat and lake sections enables the pollen-based stratigraphy of Isfjorden bottom sediments to be established and further reconstruction to be made of the major stages of the late Holocene terrestrial vegetation history of West Spitsbergen. The oldest pollen records date back to about 2.8–3 ka. They characterize the lowermost silty pelite layer (intervals 180–150 cm in core 11 and 190–60 cm in core 14 from the southwestern part of the fjord). At this time, moss–cereal–sedge fens and heather bogs in the coastal areas coexisted with rocky tundra vegetation at higher elevations. A marked increase in the content of Salix sp., Betula sect. Nanae-type, and Ericales pollen is recorded in the upper part of the pelite layer in cores 11 and 14. Similar spectra dominate core 9 from the northeastern inner part of the fjord. The percentage of green moss spores is extremely low. This type of spectra is suggestive of a warmer-than-present climate in West Spitsbergen. The upper water-saturated layer of all three cores contains pollen assemblages that are very similar to those identified in the Isfjorden surface sediment samples. Therefore, they have been likely accumulated during the last 2000 years. These uppermost pollen assemblages show a sharp increase in sedge pollen. This suggests the expansion of coastal fens, which can be attributed to an increase in the amount of precipitation. Extremely low pollen concentrations in Isfjorden bottom sediments possibly reflect very high accumulation rates during the time of silty pelite layer sedimentation.
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-04-23
    Description: Lake Mogilnoe (Kildin Island, the Barents Sea) is a marine stratified lake, a refuge for landlocked populations of marine organisms. Unlike other known marine lakes from polar areas, which communicate with the sea by water percolation at the surface, Mogilnoe has a subterranean connection with the sea like tropical and subtropical anchialine lakes. Similarly to some other marine lakes, Mogilnoe has traditionally been considered to be biologically isolated from the sea and subject to little change. We review the current status of the physical features, zooplankton and benthos of Mogilnoe and trace changes that have occurred in the lake since the start of observations in 1894. The anaerobic bottom water layer has expanded by 100 %, while the upper freshwater layer has diminished by 40 %. The species diversity of zooplankton and macrobenthos has halved. The occurrence of Atlantic cod likens Mogilnoe to some other Arctic marine lakes while the presence of large flocks of sea anemones, scyphomedusae and suberitid sponges makes it similar to tropical anchialine lakes. Lake Mogilnoe is not entirely biologically isolated; accidental introduction of species from the sea does occur. We argue that the idealised model of an isolated steady-state ecosystem can be applied to a marine lake with caution. A model of fluctuating abiotic environment and partial biological isolation portrays the real situation better.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Springer
    In:  In: STRATI 2013 : First International Congress on Stratigraphy At the Cutting Edge of Stratigraphy. Springer, Zürich, Switzerland, pp. 1321-1325. ISBN 978-3-319-04363-0
    Publication Date: 2015-04-29
    Description: Two sediment cores retrieved from the southern Lomonosov Ridge (LR) in 2007 (core ALR07-26C from the top of the ridge, water depth 1359 m, and core ALR07-15C from the base of Geophysicists’ Spur, water depth 2500 m) were investigated for lithology (wt % 〉 63 μm, terrigenous lithic grains 〉500 μm) and microfossils. Prominent peaks of coarse-grained material in ALR07-26C represented largely by quartz and clastic rocks are regarded as inputs of ice and, especially, iceberg-rafted debris (IRD) of Eurasian origin. In accordance with previously obtained evidence from age-constrained cores from the central LR, the highest peak 4 is correlated with the MIS 6–5 boundary and the disintegration of the Saalian ice sheet. The three younger IRD peaks are provisionally correlated with the MIS 5–4, MIS 4–3, and MIS 2–1 boundaries, respectively. Small peaks of coarse-grained material in ALR07-15C dominated by various rocks in contrast represent local material transported by downslope slides mixed with some IRD. No calcareous microfossils occur in the cores, but only agglutinated benthic foraminifers are found. In ALR07-26C, they correlate with IRD-rich layers, which correspond to glacial terminations with more open-sea ice conditions and, probably, higher productivity in the sea-ice marginal zone. The Cyclammina-dominated assemblage in ALR07-26C below IRD peak 4 supports the proposed age estimate for this peak (MIS 6–5), as similar foraminiferal assemblages in other LR cores are recorded in sediments of MIS 7–9 and older. Younger assemblages show a transition from a Recurvoides-dominated assemblage in the early Late Pleistocene to a more “oligotrophic” recent assemblage with a predominance of Reophax and Rhabdammina.
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-10-24
    Description: Epibenthos communities play an important role in the marine ecosystems of the Weddell Sea. Information on the factors controlling their structure and distribution are, however, still rare. In particular, the interactions between environmental factors and biotic assemblages are not fully understood. Nachtigaller Hill, a newly discovered seabed structure on the over-deepened shelf of the northwest Weddell Sea (Southern Ocean), offers a unique site to study these interactions in a high-latitude Antarctic setting. Based on high-resolution bathymetry and georeferenced biological data, the effect of the terrain and related environmental parameters on the epibenthos was assessed. At Nachtigaller Hill, both geomorphological and biological data showed complex distribution patterns, reflecting local processes such as iceberg scouring and locally amplified bottom currents. This variability was also generally reflected in the variable epibenthos distribution patterns although statistical analyses did not show strong correlations between the selected environmental parameters and species abundances. By analysing the interactions between environmental and biological patterns, this study provides crucial information towards a better understanding of the factors and processes that drive epibenthos communities on the shelves of the Weddell Sea and probably also on other Antarctic shelves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Springer
    In:  Doklady Biological Sciences, 458 (1). pp. 286-288.
    Publication Date: 2015-04-27
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2016-09-14
    Description: Mediterranean Outflow Water (MOW) is thought to be a key contributor to the strength and stability of Atlantic Meridional Overturning Circulation (AMOC), but the future of Mediterranean-Atlantic water exchange is uncertain. It is chiefly dependent on the difference between Mediterranean and Atlantic temperature and salinity characteristics, and as a semi-enclosed basin, the Mediterranean is particularly vulnerable to future changes in climate and water usage. Certainly, there is strong geologic evidence that the Mediterranean underwent dramatic salinity and sea-level fluctuations in the past. Here, we use a fully coupled atmosphere–ocean General Circulation Model to examine the impact of changes in Mediterranean-Atlantic exchange on global ocean circulation and climate. Our results suggest that MOW strengthens and possibly stabilises the AMOC not through any contribution towards NADW formation, but by delivering relatively warm, saline water to southbound Atlantic currents below 800 m. However, we find almost no climate signal associated with changes in Mediterranean-Atlantic flow strength. Mediterranean salinity, on the other hand, controls MOW buoyancy in the Atlantic and therefore affects its interaction with the shallow-intermediate circulation patterns that govern surface climate. Changing Mediterranean salinity by a factor of two reorganises shallow North Atlantic circulation, resulting in regional climate anomalies in the North Atlantic, Labrador and Greenland-Iceland-Norwegian Seas of ±4 °C or more. Although such major variations in salinity are believed to have occurred in the past, they are unlikely to occur in the near future. However, our work does suggest that changes in the Mediterranean’s hydrological balance can impact global-scale climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-05-23
    Description: Seafloormethane emission from the Quepos Slide on the submarine segment of the Costa Rica fore-arc margin was estimated by extrapolating flux measurements from individual seeps to the total area covered by bacterial mats. This approach is based on the combination of detailed mapping to determine the abundance of seeps and the application of a numerical model to estimate the amount of benthic methane fluxes. Model results suggest that the majority of the studied seeps transport rather limited amount of methane (on average: *177 lmol cm-2 a-1) into the water column due to moderate upward advection, allowing for intense anaerobic oxidation of methane (AOM; on average: 53 % of the methane flux is consumed). Depth-integrated AOM rates (56–1,538 lmol CH4 cm-2 a-1) are comparable with values reported from other active seep sites. The overall amount of dissolved methane released into the water column from the entire area covered by bacterial mats on the Quepos Slide is estimated to be about 0.28 9 106 mol a-1. This conservative estimate which relies on rather accurate determinations of seafloor methane fluxes emphasizes the potential importance of submarine slides as sites of natural methane seepage; however, at present the global extent of methane seepage from submarine slides is largely unknown.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-09-23
    Description: The surface sediments of two mud mounds (‘‘Mound 11’’ and ‘‘Mound 12’’) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded d18Ocarbonate values ranging between 34.0 and 37.7 % Vienna standard mean ocean water (VSMOW) and d13Ccarbonate values from -52.2 to -14.2 % Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The d18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (d18Oporefluid = 0 % VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (d18Oporefluid &5 %) in Mound 11. A positive correlation between d13Ccarbonate and d18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (d13Cporefluid &0 %) and (2) bicarbonate which formed during the AOM (d13Cporefluid &-70 %). Furthermore, the d18Oporefluid composition, with values up to ?4.7 % Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boronenriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (d13CCH4 = -38 %). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-09
    Description: Larval fish growth and survival depends not only on prey quantity, but also on prey quality. To investigate effects of prey fatty acid concentration on larval herring growth, we collected different prey organisms and larval herring (Clupea harengus L.) in the Kiel Canal during the spring season of 2009. Along with biotic background data, we analysed fatty acids both in prey organisms and in the larvae and used biochemically derived growth rates of the larvae as the response variable. Larval herring reached their highest RNA/DNA derived growth rates only at high docosahexaenoic acid (DHA) concentration. When the ratio of copepodids to lesser quality cirriped nauplii was low, larval growth and larval DHA concentration were both significantly negatively affected. This was true even as prey abundance was increasing. This finding indicates that even in mixed, natural feeding conditions, growth variations are associated with DHA availability in larval fish.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Springer
    In:  In: Ocean-Atmosphere Interactions of Gases and Particles. , ed. by Liss, P. and Johnson, M. T. Springer Earth System Sciences . Springer, Berlin, Germany, pp. 113-169. ISBN 978-3-642-25642-4
    Publication Date: 2019-09-23
    Description: Understanding and quantifying ocean–atmosphere exchanges of the long-lived greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important for understanding the global biogeochemical cycles of carbon and nitrogen in the context of ongoing global climate change. In this chapter we summarise our current state of knowledge regarding the oceanic distributions, formation and consumption pathways, and oceanic uptake and emissions of CO2, N2O and CH4, with a particular emphasis on the upper ocean. We specifically consider the role of the ocean in regulating the tropospheric content of these important radiative gases in a world in which their tropospheric content is rapidly increasing and estimate the impact of global change on their present and future oceanic uptake and/or emission. Finally, we evaluate the various uncertainties associated with the most commonly used methods for estimating uptake and emission and identify future research needs.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-09-13
    Description: In analysis of climate variability or change it is often of interest how the spatial structure in modes of variability in two datasets differ from each other, e.g. between past and future climate or between models and observations. Often such analysis is based on Empirical Orthogonal Function (EOF) analysis or other simple indices of large-scale spatial structures. The present analysis lays out a concept on how two datasets of multivariate climate variability can be compared against each other on basis of EOF analysis and how the differences in the multivariate spatial structure between the two datasets can be quantified in terms of explained variance in the leading spatial patterns. It is also illustrated how the patterns of largest differences between the two datasets can be defined and interpreted. We illustrate this method on the basis of several well-defined artificial examples and by comparing our approach with examples of climate change studies from the literature. These literature examples include analysis of changes in the modes of variability under climate change for the sea level pressure (SLP) of the North Atlantic and Europe, the SLP of the Southern Hemisphere, the surface temperature of the Northern Hemisphere, the sea surface temperature of the North Pacific and for precipitation in the tropical Indo-Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-09-23
    Description: Recent studies show that mid-latitude SST variations over the Kuroshio-Oyashio Extension influence the atmospheric circulation. However, the impact of variations in SST in the Gulf Stream region on the atmosphere has been less studied. Understanding the atmospheric response to such variability can improve the climate predictability in the North Atlantic Sector. Here we use a relatively high resolution (∼1°) Atmospheric General Circulation Model to investigate the mechanisms linking observed 5-year low-pass filtered SST variability in the Gulf Stream region and atmospheric variability, with focus on precipitation. Our results indicate that up to 70 % of local convective precipitation variability on these timescales can be explained by Gulf Stream SST variations. In this region, SST and convective precipitation are strongly correlated in both summer (r = 0.73) and winter (r = 0.55). A sensitivity experiment with a prescribed local warm SST anomaly in the Gulf Stream region confirms that local SST drives most of the precipitation variability over the Gulf Stream. Increased evaporation connected to the anomalous warm SST plays a crucial role in both seasons. In summer there is an enhanced local SLP minimum, a concentrated band of low level convergence, deep upward motion and enhanced precipitation. In winter we also get enhanced precipitation, but a direct connection to deep vertical upward motion is not found. Nearly all of the anomalous precipitation in winter is connected to passing atmospheric fronts. In summer the connection between precipitation and atmospheric fronts is weaker, but still important.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-09-23
    Description: Subduction zones of continental, transitional, and oceanic settings, relative to the nature of the overriding plate, are compared in terms of trace element compositions of mafic to intermediate arc rocks, in order to evaluate the relationship between subduction parameters and the presence of subduction fluids. The continental Chilean Southern Volcanic Zone (SVZ) and the transitional to oceanic Central American Volcanic Arc (CAVA) show increasing degrees of melting with increasing involvement of slab fluids, as is typical for hydrous flux melting beneath arc volcanoes. At the SVZ, the central segment with the thinnest continental crust/lithosphere erupted the highest-degree melts from the most depleted sources, similar to the oceanic-like Nicaraguan segment of the CAVA. The northern part of the SVZ, located on the thickest continental crust/lithosphere, exhibits features more similar to Costa Rica situated on the Caribbean Large Igneous Province, with lower degrees of melting from more enriched source materials. The composition of the slab fluids is characteristic for each arc system, with a particularly pronounced enrichment in Pb at the SVZ and in Ba at the CAVA. A direct compositional relationship between the arc rocks and the corresponding marine sediments that are subducted at the trenches clearly shows that the compositional signature of the lavas erupted in the different arcs carries an inherited signal from the subducted sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-09-23
    Description: The variability of the East Asian summer monsoon (EASM) is studied using a partially coupled climate model (PCCM) in which the ocean component is driven by observed monthly mean wind stress anomalies added to the monthly mean wind stress climatology from a fully coupled control run. The thermodynamic coupling between the atmospheric and oceanic components is the same as in the fully coupled model and, in particular, sea surface temperature (SST) is a fully prognostic variable. The results show that the PCCM simulates the observed SST variability remarkably well in the tropical and North Pacific and Indian Oceans. Analysis of the rainfall-SST and rainfall-SST tendency correlation shows that the PCCM exhibits local air-sea coupling as in the fully coupled model and closer to what is seen in observations than is found in an atmospheric model driven by observed SST. An ensemble of experiments using the PCCM is analysed using a multivariate EOF analysis to identify the two major modes of variability of the EASM. The PCCM simulates the spatial pattern of the first two modes seen in the ERA40 reanalysis as well as part of the variability of the first principal component (correlation up to 0.5 for the model ensemble mean). Different from previous studies, the link between the first principal component and ENSO in the previous winter is found to be robust for the ensemble mean throughout the whole period of 1958–2001. Individual ensemble members nevertheless show the breakdown in the relationship before the 1980’s as seen in the observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-05-23
    Description: Melt inclusions in olivine Fo83–72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6–8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (〈1 wt %) from primitive basaltic melt (average SiO2 = 49 wt %, MgO = 7.6 wt %, H2O = 6 wt %) as it ascended to the surface from the depth of about 14 km. The crystallization occurred at increasing liquidus temperature from 1,050 to 1,090 °C in the pressure range from 400 to 50 MPa and was induced by release of mixed H2O–CO2 fluid from the melt at decreasing pressure. Matrix glass compositions fall at the high-Si end of the melt inclusion trend and represent the final stage of melt crystallization during and after eruption. The bulk compositions of erupted Cerro Negro magmas (tephras and lavas) range from high- to low-MgO (3–10 wt %) basalts, which form a compositional array crossing the trend of melt inclusions so that virtually no rock from Cerro Negro has composition akin to true melt represented by the inclusions. The variations of the bulk magma (rocks) and melt (melt inclusions) compositions can be generated in a dyke connecting a deep primitive magma reservoir with the Cerro Negro edifice. While the melt inclusions represent the compositional trend of instantaneous melts along the magma pathway at decreasing pressure and H2O content, occurrence of low-Mg to high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 103 (7). pp. 1747-1764.
    Publication Date: 2017-05-23
    Description: Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes (M * 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated *1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25–30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than *100 to 120° C along the plate boundary. The downdip limit of the stick–slip behaviour collocates with relative low temperatures of *150 to 200° C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-09-23
    Description: Llaima and Villarrica are two of the most active volcanoes in the Chilean Southern Volcanic Zone and presently show contrasting types of activity. Llaima is a closed vent edifice with fumarolic activity, while Villarrica has an open vent with a lava lake, continuous degassing and tremor activity. This study is focused on characterizing the relationships between volcanic and seismic activity in the months before and after the 2010 M8.8 Maule earthquake, which was located in NNW direction from the volcanoes. Time series for tremors, long-period and volcano-tectonic events were obtained from the catalogue of the Volcanic Observatory of the Southern Andes (OVDAS) and from the SFB 574 temporary volcanic network. An increase in the amount of tremor activity, long-period events and degassing rates was observed at Villarrica weeks before the mainshock and continued at a high level also after it. This increase in activity is interpreted to be caused by enhanced magma influx at depth and may be unrelated to the Maule event. In Llaima, an increase in the volcano-tectonic activity was observed directly after the earthquake. The simultaneous post-earthquake activity at both volcanoes is consistent with a structural adjustment response. Since this enhanced activity lasted for more than a year, we suggest that it is related to a medium-term change in the static stress. Thus, the Maule earthquake may have affected both volcanoes, but did not trigger eruptions, from which we assume that none of the volcanoes were in a critical state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-09-23
    Description: Here we present the first systematic investigation of volatile geochemistry along the Southern Volcanic Zone (SVZ) of Chile. Holocene olivine-hosted melt inclusions in the most mafic tephras sampled from 16 volcanoes along the volcanic front of the SVZ between 33°S and 43°S were analysed for pre-eruptive sulphur, chlorine, and major element contents. These results are combined with trace element compositions of the host whole rocks. The highest fractionation-corrected gas contents occur in the least-degassed melt inclusions from small monogenetic cones of Los Hornitos, Cabeza de Vaca, and Apagado from both the transitional and the southern-central SVZ, reaching ~3,000 μg/g S and 1,400 μg/g Cl, while the lowest abundances of ~1,100 μg/g S and ~600 μg/g Cl were found in the central SVZ at Volcán Lonquimay, Volcán Llaima, and Volcán Villarrica. Chlorine co-varies with trace element indicators for the degree of melting and/or source enrichment, such that the lowest Cl contents are found in high-degree melts from the most depleted mantle sources. The size of the volcanic edifices correlates inversely with Cl abundances in the melt. This could reflect more extensive degassing during ascent through the complex magma plumbing systems beneath the stratovolcanoes or greater dilution during larger degrees of melting of more depleted sources, or a combination of these factors. Compared to other subduction zones, the SVZ melt inclusions exhibit Cl and S abundances in the same range as most of those from the Central American and those from the Marianas arcs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2016-09-13
    Description: There is evidence that the observed changes in winter North Atlantic Oscillation (NAO) drive a significant portion of Atlantic Multi Decadal Variability (AMV). However, whether the observed decadal NAO changes can be forced by the ocean is controversial. There is also evidence that artificially imposed multi-decadal stratospheric changes can impact the troposphere in winter. But the origins of such stratospheric changes are still unclear, especially in early to mid winter, where the radiative ozone-impact is negligible. Here we show, through observational analysis and atmospheric model experiments, that large-scale Atlantic warming associated with AMV drives high-latitude precursory stratospheric warming in early to mid winter that propagates downward resulting in a negative tropospheric NAO in late winter. The mechanism involves stratosphere/troposphere dynamical coupling, and can be simulated to a large extent, but only with a stratosphere resolving model (i.e., high-top). Further analysis shows that this precursory stratospheric response can be explained by the shift of the daily extremes toward more major stratospheric warming events. This shift cannot be simulated with the atmospheric (low-top) model configuration that poorly resolves the stratosphere and implements a sponge layer in upper model levels. While the potential role of the stratosphere in multi-decadal NAO and Atlantic meridional overturning circulation changes has been recognised, our results show that the stratosphere is an essential element of extra-tropical atmospheric response to ocean variability. Our findings suggest that the use of stratosphere resolving models should improve the simulation, prediction, and projection of extra-tropical climate, and lead to a better understanding of natural and anthropogenic climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-09-23
    Description: The continental shelf and slope of southern Central Chile have been subject to a number of international as well as Chilean research campaigns over the last 30 years. This work summarizes the geologic setting of the southern Central Chilean Continental shelf (33°S–43°S) using recently published geophysical, seismological, sedimentological and bio-geochemical data. Additionally, unpublished data such as reflection seismic profiles, swath bathymetry and observations on biota that allow further insights into the evolution of this continental platform are integrated. The outcome is an overview of the current knowledge about the geology of the southern Central Chilean shelf and upper slope. We observe both patches of reduced as well as high recent sedimentation on the shelf and upper slope, due to local redistribution of fluvial input, mainly governed by bottom currents and submarine canyons and highly productive upwelling zones. Shelf basins show highly variable thickness of Oligocene-Quaternary sedimentary units that are dissected by the marine continuations of upper plate faults known from land. Seismic velocity studies indicate that a paleo-accretionary complex that is sandwiched between the present, relatively small active accretionary prism and the continental crust forms the bulk of the continental margin of southern Central Chile.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Springer
    In:  International Journal of Earth Sciences, 103 (7). pp. 1801-1815.
    Publication Date: 2019-09-23
    Description: Methane (CH4) concentrations and CH4 stable carbon isotopic composition (d13CCH4 ) were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500 nmol L-1. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by d13CCH4 values between -50 and -62 % Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6 years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (4). pp. 929-944.
    Publication Date: 2016-06-09
    Description: The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural environments, a uniform response of the entire coccolithophore community has not been documented so far. Moreover, previous palaeo-studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system, and only few studies focus on the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and decreasing carbonate ion concentration, we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a north–south transect in the North Atlantic were analysed. During the Holocene, mean weight (and therefore calcification) of Noelaerhabdaceae (Emiliania huxleyi and Gephyrocapsa) coccoliths decreased at the Azores (Geofar KF 16) from around 7 to 6 pg, but increased at the Rockall Plateau (ODP site 980) from around 6 to 8 pg, and at the Vøring Plateau (MD08-3192) from 7 to 10 pg. The amplitude of average weight variability is within the range of glacial–interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are not only partly due to variations in the coccolithophore assemblage but also an effect of a change in calcification and/or morphotype variability within single species. Our results indicate that there is no single key factor responsible for the observed changes in coccolith weight. A major increase in coccolith weight occurs during a slight decrease in carbonate ion concentration in the late Holocene at the Rockall Plateau and Vøring Plateau. Here, more favourable productivity conditions apparently lead to an increase in coccolith weight, either due to the capability of coccolithophore species, especially E. huxleyi, to adapt to decreasing carbonate ion concentration or due to a shift towards heavier calcifying morphotypes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 10 . pp. 123-136.
    Publication Date: 2014-06-04
    Description: Four sediment cores from the central and northern Greenland Sea basin, a crucial area for the renewal of North Atlantic deep water, were analyzed for planktic foraminiferal fauna, planktic and benthic stable oxygen and carbon isotopes as well as ice-rafted debris to reconstruct the environmental variability in the last 23 kyr. During the Last Glacial Maximum, the Greenland Sea was dominated by cold and sea-ice bearing surface water masses. Meltwater discharges from the surrounding ice sheets affected the area during the deglaciation, influencing the water mass circulation. During the Younger Dryas interval the last major freshwater event occurred in the region. The onset of the Holocene interglacial was marked by an increase in the advection of Atlantic Water and a rise in sea surface temperatures (SST). Although the thermal maximum was not reached simultaneously across the basin, benthic isotope data indicate that the rate of overturning circulation reached a maximum in the central Greenland Sea around 7 ka. After 6–5 ka a SST cooling and increasing sea-ice cover is noted. Conditions during this so-called "Neoglacial" cooling, however, changed after 3 ka, probably due to enhanced sea-ice expansion, which limited the deep convection. As a result, a well stratified upper water column amplified the warming of the subsurface waters in the central Greenland Sea, which were fed by increased inflow of Atlantic Water from the eastern Nordic Seas. Our data reveal that the Holocene oceanographic conditions in the Greenland Sea did not develop uniformly. These variations were a response to a complex interplay between the Atlantic and Polar water masses, the rate of sea-ice formation and melting and its effect on vertical convection intensity during times of Northern Hemisphere insolation changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-09-23
    Description: We investigate the respective role of variations in subpolar deep water formation and Nordic Seas overflows for the decadal to multidecadal variability of the Atlantic meridional overturning circulation (AMOC). This is partly done by analysing long (order of 1000 years) control simulations with five coupled climate models. For all models, the maximum influence of variations in subpolar deep water formation is found at about 45° N, while the maximum influence of variations in Nordic Seas overflows is rather found at 55 to 60° N. Regarding the two overflow branches, the influence of variations in the Denmark Strait overflow is, for all models, substantially larger than that of variations in the overflow across the Iceland–Scotland Ridge. The latter might, however, be underestimated, as the models in general do not realistically simulate the flow path of the Iceland–Scotland overflow water south of the Iceland–Scotland Ridge. The influence of variations in subpolar deep water formation is, on multimodel average, larger than that of variations in the Denmark Strait overflow. This is true both at 45° N, where the maximum standard deviation of decadal to multidecadal AMOC variability is located for all but one model, and at the more classical latitude of 30° N. At 30° N, variations in subpolar deep water formation and Denmark Strait overflow explain, on multimodel average, about half and one-third respectively of the decadal to multidecadal AMOC variance. Apart from analysing multimodel control simulations, we have performed sensitivity experiments with one of the models, in which we suppress the variability of either subpolar deep water formation or Nordic Seas overflows. The sensitivity experiments indicate that variations in subpolar deep water formation and Nordic Seas overflows are not completely independent. We further conclude from these experiments that the decadal to multidecadal AMOC variability north of about 50° N is mainly related to variations in Nordic Seas overflows. At 45° N and south of this latitude, variations in both subpolar deep water formation and Nordic Seas overflows contribute to the AMOC variability, with neither of the processes being very dominant compared to the other.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-09-23
    Description: Methyl iodide (CH3I}, bromoform (CHBr3) and dibromomethane (CH2Br2), which are produced naturally in the oceans, take part in ozone chemistry both in the troposphere and the stratosphere. The significance of oceanic upwelling regions for emissions of these trace gases in the global context is still uncertain although they have been identified as important source regions. To better quantify the role of upwelling areas in current and future climate, this paper analyzes major factors that influenced halocarbon emissions from the tropical North East Atlantic including the Mauritanian upwelling during the DRIVE expedition. Diel and regional variability of oceanic and atmospheric CH3I, CHBr3 and CH2Br2 was determined along with biological and meteorological parameters at six 24 h-stations. Low oceanic concentrations of CH3I from 0.1–5.4 pmol L-1 were equally distributed throughout the investigation area. CHBr3 of 1.0–42.4 pmol L-1 and CH2Br2 of 1.0–9.4 pmol L-1 were measured with maximum concentrations close to the Mauritanian coast. Atmospheric mixing rations of CH3I of up to 3.3, CHBr3 to 8.9 and CH2Br2 to 3.1 ppt above the upwelling and 1.8, 12.8, respectively 2.2 ppt at a Cape Verdean coast were detected during the campaign. While diel variability in CH3I emissions could be mainly ascribed to oceanic non-biological production, no main driver was identified for its emissions in the entire study region. In contrast, oceanic bromocarbons resulted from biogenic sources which were identified as regional drivers of their sea-to-air fluxes. The diel impact of wind speed on bromocarbon emissions increased with decreasing distance to the coast. The height of the marine atmospheric boundary layer (MABL) was determined as an additional factor influencing halocarbon emissions. Oceanic and atmospheric halocarbons correlated well in the study region and in combination with high oceanic CH3I, CHBr3 and CH2Br2 concentrations, local hot spots of atmospheric halocarbons could solely be explained by marine sources. This conclusion is in contrast with previous studies that hypothesized the occurrence of elevated atmospheric halocarbons over the eastern tropical Atlantic mainly originating from the West-African continent.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-09-23
    Description: Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic plankton diversity. Diversity, however, may affect functions such as primary production and their sensitivity to environmental changes. Here we use a global ocean ecosystem model that explicitly resolves phytoplankton diversity by defining subtypes within four phytoplankton functional types (PFTs). We investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical mixing causes diversity and primary-production changes that turn out to be largely independent of the number of coexisting phytoplankton subtypes. The way diversity is represented in the model provides a small number of niches with respect to nutrient use in accordance with the PFTs defined in the model. Increasing the number of phytoplankton subtypes increases the resolution within the niches. Diversity effects such as niche complementarity operate between, but not within PFTs, and are constrained by the variety of traits and trade-offs resolved in the model. The number and nature of the niches formulated in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-11-20
    Description: In a recent study it was illustrated that the El Nino Southern Oscillation (ENSO) mode can exist in the absence of any ocean dynamics. This oscillating mode exists just due to the interaction between atmospheric heat fluxes and ocean heat capacity. The primary purpose of this study is to further explore these atmospheric Slab Ocean ENSO dynamics and therefore the role of positive atmospheric feedbacks in model simulations and observations. The positive solar radiation feedback to sea surface temperature (SST), due to reduced cloud cover for anomalous warm SSTs, is the main positive feedback in the Slab Ocean El Nino dynamics. The strength of this positive cloud feedback is strongly related to the strength of the equatorial cold tongue. The combination of positive latent and sensible heat fluxes to the west and negative ones to the east of positive anomalies leads to the westward propagation of the SST anomalies, which allows for oscillating behavior with a preferred period of 6-7 years. Several indications are found that parts of these dynamics are indeed observed and simulated in other atmospheric or coupled general circulation models (AGCMs or CGCMs). The CMIP3 AGCM-slab ensemble of 13 different AGCM simulations shows unstable ocean-atmosphere interactions along the equatorial Pacific related to stronger cold tongues. In observations and in the CMIP3 and CMIP5 CGCM model ensemble the strength and sign of the cloud feedback is a function of the strength of the cold tongue. In summary, this indicates that the Slab Ocean El Nino dynamics are indeed a characteristic of the equatorial Pacific climate that is only dominant or significantly contributing to the ENSO dynamics if the SST cold tongue is sufficiently strong. In the observations this is only the case during strong La Nina conditions. The presence of the Slab Ocean ENSO atmospheric feedbacks in observations and CGCM model simulations implies that the family of physical ENSO modes does have another member, which is entirely driven by atmospheric processes and does not need to have the same spatial pattern nor the same time scales as the main ENSO dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-09-23
    Description: Sediments of Lake Van, Turkey, preserve one of the most complete records of continental climate change in the Near East since the Middle Pleistocene. We used seismic reflection profiles to infer past changes in lake level and discuss potential causes related to changes in climate, volcanism, and regional tectonics since the formation of the lake ca. 600 ka ago. Lake Van's water level ranged by as much as 600 m during the past 600 ka. Five major lowstands occurred, at 600, 365-340, 290-230, 150-130 and 30-14 ka. During Stage A, between about 600 and 230 ka, lake level changed dramatically, by hundreds of meters, but phases of low and high stands were separated by long time intervals. Changes in the lake level were more frequent during the past 230 ka, but less dramatic, on the order of a few tens of meters. We identified period B1 as a time of stepwise transgressions between 230 and 150 ka, followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise during period B2, until 30 ka. During the past 30 ka, a regression and a final transgression occurred, each lasting about 15 ka. The major lowstand periods in Lake Van occurred during glacial periods, suggesting climatic control on water level changes (i.e. greatly reduced precipitation led to lower lake levels). Although climate forcing was the dominant cause for dramatic water level changes in Lake Van, volcanic and tectonic forcing factors may have contributed as well. For instance, the number of distinct tephra layers, some several meters thick, increases dramatically in the uppermost 100 m of the sediment record (i.e. the past 230 ka), an interval that coincides largely with low-magnitude lake level fluctuations. Tectonic activity, highlighted by extensional and/or compressional faults across the basin margins, probably also affected the lake level of Lake Van in the past.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-09-23
    Description: In this paper, we constrain the input and output fluxes of H2O, Cl and S into the southern-central Chilean subduction zone (31°S–46°S). We determine the input flux by calculating the amounts of water, chlorine and sulfur that are carried into the subduction zone in subducted sediments, igneous crust and hydrated lithospheric mantle. The applied models take into account that latitudinal variations in the subducting Nazca plate impact the crustal porosity and the degree of upper mantle serpentinization and thus water storage in the crust and mantle. In another step, we constrain the output fluxes of the subduction zone both to the subcontinental lithospheric mantle and to the atmosphere–geosphere–ocean by the combined use of gas flux determinations at the volcanic arc, volume calculations of volcanic rocks and the combination of mineralogical and geothermal models of the subduction zone. The calculations indicate that about 68 Tg/m/Ma of water enters the subduction zone, as averaged over its total length of 1,480 km. The volcanic output on the other hand accounts for 2 Tg/m/Ma or 3 % of that input. We presume that a large fraction of the volatiles that are captured within the subducting sediments (which accounts for roughly one-third of the input) are cycled back into the ocean through the forearc. This assumption is however questioned by the present lack of evidence for major venting systems of the submarine forearc. The largest part of the water that is carried into the subduction zone in the crust and hydrated mantle (accounting for two-thirds of the input) appears to be transported beyond the volcanic arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-09-23
    Description: After more than a decade of multidisciplinary studies of the Central American subduction zone mainly in the framework of two large research programmes, the US MARGINS program and the German Collaborative Research Center SFB 574, we here review and interpret the data pertinent to quantify the cycling of mineral-bound volatiles (H2O, CO2, Cl, S) through this subduction system. For input-flux calculations, we divide the Middle America Trench into four segments differing in convergence rate and slab lithological profiles, use the latest evidence for mantle serpentinization of the Cocos slab approaching the trench, and for the first time explicitly include subduction erosion of forearc basement. Resulting input fluxes are 40–62 (53) Tg/Ma/m H2O, 7.8–11.4 (9.3) Tg/Ma/m CO2, 1.3–1.9 (1.6) Tg/Ma/m Cl, and 1.3–2.1 (1.6) Tg/Ma/m S (bracketed are mean values for entire trench length). Output by cold seeps on the forearc amounts to 0.625–1.25 Tg/Ma/m H2O partly derived from the slab sediments as determined by geochemical analyses of fluids and carbonates. The major volatile output occurs at the Central American volcanic arc that is divided into ten arc segments by dextral strike-slip tectonics. Based on volcanic edifice and widespread tephra volumes as well as calculated parental magma masses needed to form observed evolved compositions, we determine long-term (105 years) average magma and K2O fluxes for each of the ten segments as 32–242 (106) Tg/Ma/m magma and 0.28–2.91 (1.38) Tg/Ma/m K2O (bracketed are mean values for entire Central American volcanic arc length). Volatile/K2O concentration ratios derived from melt inclusion analyses and petrologic modelling then allow to calculate volatile fluxes as 1.02–14.3 (6.2) Tg/Ma/m H2O, 0.02–0.45 (0.17) Tg/Ma/m CO2, and 0.07–0.34 (0.22) Tg/Ma/m Cl. The same approach yields long-term sulfur fluxes of 0.12–1.08 (0.54) Tg/Ma/m while present-day open-vent SO2-flux monitoring yields 0.06–2.37 (0.83) Tg/Ma/m S. Input–output comparisons show that the arc water fluxes only account for up to 40 % of the input even if we include an “invisible” plutonic component constrained by crustal growth. With 20–30 % of the H2O input transferred into the deeper mantle as suggested by petrologic modeling, there remains a deficiency of, say, 30–40 % in the water budget. At least some of this water is transferred into two upper-plate regions of low seismic velocity and electrical resistivity whose sizes vary along arc: one region widely envelopes the melt ascent paths from slab top to arc and the other extends obliquely from the slab below the forearc to below the arc. Whether these reservoirs are transient or steady remains unknown.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-05-23
    Description: Two consecutive summer upwelling events, each lasting for less than 24 h, were surveyed in high temporal and vertical resolution close to the Boknis Eck time-series station (BE) in the western Belt Sea (Baltic Sea) in summer 2010 with an autonomous glider. Driven only by moderate offshore winds both events resulted in more than 5 K cooling of surface waters, while only for the second event were significant irreversible changes in the vertical stratification observed. Generalizing the glider survey observations with hourly wind data from nearby meteorological stations, it is found that upwelling in the BE area occurs for wind directions between 190 to 260° and wind speed exceeding 4 m s−1. Based on these thresholds the wind-induced summer (June to September) upwelling conditions in the BE area for the period 1982 to 2012 are reconstructed. On average about 18 days of upwelling favourable wind conditions are found for the four summer months, with significant interannual variability ranging from 7.7 days (2006) to more than 28 days (1985). By aligning upwelling favourable wind conditions with the monthly BE surveys it is found that extreme anomalies in BE surveys follow extended periods of upwelling favourable winds.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-09-23
    Description: The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968–2007 to 1968–2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Springer
    In:  Estuaries and Coasts, 37 . pp. 279-298.
    Publication Date: 2016-12-22
    Description: Estuarine turbidity maxima (ETM) play an impor- tant role in zooplankton and larval fish productivity in many estuaries. Yet in many of these systems, little is known about the food web that supports this secondary production. To see if phytoplankton have the potential to be a component of the ETM food web in the Chesapeake Bay estuary a series of cruises were carried out to determine the biomass distribution and floral composition of phytoplankton in and around the ETM during the winter and spring using fluorometry, high- performance liquid chromatography (HPLC), and microscopy. Two distinct phytoplankton communities were observed along the salinity gradient. In lower salinity waters, biomass was low and the community was composed mostly of diatoms, while in more saline waters biomass was high and the community was composed mostly of mixotrophic dinoflagellates, which were often concentrated in a thin layer below the pycnocline. Phytoplankton biomass was always low in the ETM, but high concentrations of phytoplankton pigment degradation products and cellular remains were often observed suggesting that this was an area of high phytoplankton mortality and/or an area where phytoplankton derived particulate organic matter was being trapped. These results, along with a box model analysis, suggest that under certain hydrodynamic conditions phyto- plankton derived organic matter can be trapped in ETM and potentially play a role in fueling secondary production.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (16). pp. 4459-4476.
    Publication Date: 2019-09-23
    Description: Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg yr(-1). On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-09-23
    Description: In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 10 (2). pp. 607-622.
    Publication Date: 2014-06-02
    Description: Late Miocene tectonic changes in Mediterranean–Atlantic connectivity and climatic changes caused Mediterranean salinity to fluctuate dramatically, including a ten-fold increase and near-freshening. Recent proxy- and model-based evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96–5.33 Ma), highly saline and highly fresh Mediterranean water flowed into the North Atlantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, sensitivity-type experiments with a fully coupled ocean–atmosphere general circulation model, we investigate the potential of these various MSC MOW scenarios to impact global-scale climate. The simulations suggest that although the effect remains relatively small, MOW had a greater influence on North Atlantic Ocean circulation and climate than it does today. We also find that depending on the presence, strength and salinity of MOW, the MSC could have been capable of cooling mid–high northern latitudes by a few degrees, with the greatest cooling taking place in the Labrador, Greenland–Iceland–Norwegian and Barents seas. With hypersaline MOW, a component of North Atlantic Deep Water formation shifts to the Mediterranean, strengthening the Atlantic Meridional Overturning Circulation (AMOC) south of 35° N by 1.5–6 Sv. With hyposaline MOW, AMOC completely shuts down, inducing a bipolar climate anomaly with strong cooling in the north (mainly −1 to −3 °C, but up to −8 °C) and weaker warming in the south (up to +0.5 to +2.7 °C). These simulations identify key target regions and climate variables for future proxy reconstructions to provide the best and most robust test cases for (a) assessing Messinian model performance, (b) evaluating Mediterranean–Atlantic connectivity during the MSC and (c) establishing whether or not the MSC could ever have affected global-scale climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-09
    Description: Most of the short-lived biogenic and anthropogenic chemical species that are emitted into the atmosphere break down efficiently by reaction with OH and do not reach the stratosphere. Here we show the existence of a pronounced minimum in the tropospheric column of ozone over the West Pacific, the main source region for stratospheric air, and suggest a corresponding minimum of the tropospheric column of OH. This has the potential to amplify the impact of surface emissions on the stratospheric composition compared to the impact when assuming globally uniform OH conditions. Specifically, the role of emissions of biogenic halogenated species for the stratospheric halogen budget and the role of increasing emissions of SO2 in Southeast Asia or from minor volcanic eruptions for the increasing stratospheric aerosol loading need to be reassessed in light of these findings. This is also important since climate change will further modify OH abundances and emissions of halogenated species. Our study is based on ozone sonde measurements carried out during the TransBrom cruise with the RV Sonne roughly along 140-150 degrees E in October 2009 and corroborating ozone and OH measurements from satellites, aircraft campaigns and FTIR instruments. Model calculations with the GEOS-Chem Chemistry and Transport Model (CTM) and the ATLAS CTM are used to simulate the tropospheric OH distribution over the West Pacific and the transport pathways to the stratosphere. The potential effect of the OH minimum on species transported into the stratosphere is shown via modeling the transport and chemistry of CH2Br2 and SO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Springer
    In:  Journal of Ocean University of China, 13 (4). pp. 677-682.
    Publication Date: 2018-05-04
    Description: Silvetia babingtonii is a potentially economic brown alga for sources of food and high-value added utilization. So far, sporeling nursery and field cultivation has not been successful. The lack of knowledge on development and life cycle of this alga hinder the development of techniques for the sporeings and cultivation. In this study, internal structure of oogonium and antherium of S. babingtonii was observed with hematoxylin and eosin staining and through microscope. Meanwhile, early development from zygotes to juvenile sporelings was studied at 20 degrees C under 60-100 mu mol photons m(-2) s(-1). Zygotes germinated and divided into thallus and rhizoid cells. The larger thallus cells further divided and developed into juvenile sporelings; while the smaller rhizoid cells divided and elongated into rhizoid hairs. These findings documented the life cycle of S. babingtonii and provided fundamental knowledge for sporeling nursery in the near future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-04-23
    Description: It has been proposed that increasing levels of pCO(2) in the surface ocean will lead to more partitioning of the organic carbon fixed by marine primary production into the dissolved rather than the particulate fraction. This process may result in enhanced accumulation of dissolved organic carbon (DOC) in the surface ocean and/or concurrent accumulation of transparent exopolymer particles (TEPs), with important implications for the functioning of the marine carbon cycle. We investigated this in shipboard bioassay experiments that considered the effect of four different pCO(2) scenarios (ambient, 550, 750 and 1000 mu atm) on unamended natural phytoplankton communities from a range of locations in the northwest European shelf seas. The environmental settings, in terms of nutrient availability, phytoplankton community structure and growth conditions, varied considerably between locations. We did not observe any strong or consistent effect of pCO(2) on DOC production. There was a significant but highly variable effect of pCO(2) on the production of TEPs. In three of the five experiments, variation of TEP production between pCO(2) treatments was caused by the effect of pCO(2) on phytoplankton growth rather than a direct effect on TEP production. In one of the five experiments, there was evidence of enhanced TEP production at high pCO(2) (twice as much production over the 96 h incubation period in the 750 mu atm treatment compared with the ambient treatment) independent of indirect effects, as hypothesised by previous studies. Our results suggest that the environmental setting of experiments (community structure, nutrient availability and occurrence of phytoplankton growth) is a key factor determining the TEP response to pCO(2) perturbations.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-04-23
    Description: Four carbonate system variables were measured in surface waters during a cruise aimed at investigating ocean acidification impacts traversing northwestern European shelf seas in the summer of 2011. High-resolution surface water data were collected for partial pressure of carbon dioxide (pCO2; using two independent instruments) and pH using the total pH scale (pHT), in addition to discrete measurements of total alkalinity and dissolved inorganic carbon. We thus overdetermined the carbonate system (four measured variables, two degrees of freedom), which allowed us to evaluate the level of agreement between the variables on a cruise whose main aim was not intercomparison, and thus where conditions were more representative of normal working conditions. Calculations of carbonate system variables from other measurements generally compared well with direct observations of the same variables (Pearson's correlation coefficient always greater than or equal to 0.94; mean residuals were similar to the respective accuracies of the measurements). We therefore conclude that four of the independent data sets of carbonate chemistry variables were of high quality. A diurnal cycle with a maximum amplitude of 41 μatm was observed in the difference between the pCO2 values obtained by the two independent analytical pCO2 systems, and this was partly attributed to irregular seawater flows to the equilibrator and partly to biological activity inside the seawater supply and one of the equilibrators. We discuss how these issues can be addressed to improve carbonate chemistry data quality on future research cruises.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-10-20
    Description: Nitrate (NO3-) is the major nutrient responsible for coastal eutrophication worldwide and its production is related to intensive food production and fossil-fuel combustion. In the Baltic Sea NO3- inputs have increased 4-fold over recent decades and now remain constantly high. NO3- source identification is therefore an important consideration in environmental management strategies. In this study focusing on the Baltic Sea, we used a method to estimate the proportional contributions of NO3- from atmospheric deposition, N-2 fixation, and runoff from pristine soils as well as from agricultural land. Our approach combines data on the dual isotopes of NO3- (delta N-15-NO3- and delta O-18-NO3-) in winter surface waters with a Bayesian isotope mixing model (Stable Isotope Analysis in R, SIAR). Based on data gathered from 47 sampling locations over the entire Baltic Sea, the majority of the NO3- in the southern Baltic was shown to derive from runoff from agricultural land (33-100 %), whereas in the northern Baltic, i.e. the Gulf of Bothnia, NO3- originates from nitrification in pristine soils (34-100 %). Atmospheric deposition accounts for only a small percentage of NO3- levels in the Baltic Sea, except for contributions from northern rivers, where the levels of atmospheric NO3- are higher. An additional important source in the central Baltic Sea is N-2 fixation by diazotrophs, which contributes 49-65% of the overall NO3- pool at this site. The results obtained with this method are in good agreement with source estimates based upon delta N-15 values in sediments and a three-dimensional ecosystem model, ERGOM. We suggest that this approach can be easily modified to determine NO3- sources in other marginal seas or larger near-coastal areas where NO3- is abundant in winter surface waters when fractionation processes are minor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Springer
    In:  In: The Prokaryotes: Other major lineages of Bacteria and Archaea. , ed. by Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, S. and Thompson, F. Springer, Berlin, Germany, pp. 501-514. 4. ed. ISBN 978-3-642-38921-4
    Publication Date: 2019-10-09
    Description: Since the discovery of the green sulfur bacteria and the first description by Larsen (1952), this group of bacteria has gained much interest because of a number of highly interesting features. These include the unique structures of the photosynthetic apparatus and the presence of small organelles, the chlorosomes, which act as light-harvesting antenna. Chlorosomes are very powerful light receptors that can capture minute amounts of light and enable the green sulfur bacteria to perform photosynthesis and to grow at very low-light intensities. This has important ecological consequences, because the efficient light harvesting determines the ecological niche of these bacteria at the lowermost part of stratified environments, where the least of light is available. Furthermore, the strict dependency on photosynthesis to provide energy for growth and the obligate phototrophy of the green sulfur bacteria together with their characteristic sulfur metabolism has provoked much interest in their physiology, ecology, and genomics. The oxidation of sulfide as the outmost important photosynthetic electron donor of the green sulfur bacteria involves the deposition of elemental sulfur globules outside the cells and separates the process of sulfide oxidation to sulfate clearly into two steps. In the phylogenetic-based taxonomy, the green sulfur bacteria are treated as family Chlorobiaceae with the genera Chlorobium, Chlorobaculum, Prosthecochloris, and Chloroherpeton.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Springer
    In:  In: The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. , ed. by Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, S. and Thompson, F. Springer, Berlin, Germany, pp. 301-306. 4. ed. ISBN 978-3-642-30196-4
    Publication Date: 2019-10-09
    Description: The Kiloniellaceae family is represented currently by a single genus Kiloniella with the species Kiloniella laminariae as type species. Kiloniella laminariae was isolated from the marine macroalga Saccharina latissima (former Laminaria saccharina) obtained from the Baltic Sea. The bacterium is a mesophilic, typical marine bacterium. It is a chemoheterotrophic aerobic bacterium with the potential of denitrification. Growth optima are at 25 °C, pH 5.5, and 3 % NaCl. The distinguished phylogenetic position separates Kiloniella from other alphaproteobacterial orders. The 16S rRNA gene sequence revealed a distant relationship to species of several orders of the Alphaproteobacteria with less than 91 % sequence similarity. This gives rise to the recognition of Kiloniella as a representative of a new order of the Alphaproteobacteria, the Kiloniellales. Phylogenetic analyses revealed a distinct cluster of Kiloniella with an uncharacterized bacterium (isolate KOPRI 13522) from hydrothermal plumes. This cluster forms a larger group together with the distantly related Terasakiella pusilla (88.4 % sequence similarity of the 16S rRNA gene) and the Thalassospira species (88.9–90.2 % sequence similarity). These genera are supposed to form separate families within the Kiloniellales.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-09-23
    Description: A multi-model analysis of Atlantic multidecadal variability is performed with the following aims: to investigate the similarities to observations; to assess the strength and relative importance of the different elements of the mechanism proposed by Delworth et al. (J Clim 6:1993–2011, 1993) (hereafter D93) among coupled general circulation models (CGCMs); and to relate model differences to mean systematic error. The analysis is performed with long control simulations from ten CGCMs, with lengths ranging between 500 and 3600 years. In most models the variations of sea surface temperature (SST) averaged over North Atlantic show considerable power on multidecadal time scales, but with different periodicity. The SST variations are largest in the mid-latitude region, consistent with the short instrumental record. Despite large differences in model configurations, we find quite some consistency among the models in terms of processes. In eight of the ten models the mid-latitude SST variations are significantly correlated with fluctuations in the Atlantic meridional overturning circulation (AMOC), suggesting a link to northward heat transport changes. Consistent with this link, the three models with the weakest AMOC have the largest cold SST bias in the North Atlantic. There is no linear relationship on decadal timescales between AMOC and North Atlantic Oscillation in the models. Analysis of the key elements of the D93 mechanisms revealed the following: Most models present strong evidence that high-latitude winter mixing precede AMOC changes. However, the regions of wintertime convection differ among models. In most models salinity-induced density anomalies in the convective region tend to lead AMOC, while temperature-induced density anomalies lead AMOC only in one model. However, analysis shows that salinity may play an overly important role in most models, because of cold temperature biases in their relevant convective regions. In most models subpolar gyre variations tend to lead AMOC changes, and this relation is strong in more than half of the models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-01-21
    Description: No published information is available on the foraging ecology and choice of feeding habitat of New Zealand’s rarest breeding bird: the New Zealand Fairy Tern (NZFT) Sternula nereis davisae. To address this gap, we conducted an assessment of the largest remaining breeding population at Mangawhai Harbour, Northland, New Zealand, during the chick-rearing period of the 2010/2011 breeding season. We combined visual tracking of birds with prey surveys and stable isotope analyses, and we present the first quantitative assessment of NZFT foraging. We recorded 405 foraging dives that show NZFT foraging habitat includes the water edges, shallow channels, and pools on the tidal flats of mangrove-lined (Avicennia marina var. resinifera) parts of the estuary; tidal pools on mud- and sandflats in the mid-estuary and lower harbour; the shallow margins of the dredged main channel in the lower harbour; the oxbow lagoons on the sand spit; and coastal shallows. Our study identifies the mangrove-lined highly tidal and shallow mid-estuary and the lagoon on the sand spit as foraging hotspots for the Mangawhai breeding population of the NZFT. The prey survey employed a seine-net sampling method at identified NZFT foraging sites and yielded 4,367 prey-sized fish of 11 species, two of which had not previously been reported in Mangawhai Harbour, as well as numerous shrimps. The most abundant fish were gobies of the genus Favonigobius. Our stable isotope results highlight gobies as the most important prey for NZFT chick rearing, also indicating that flounder Rhombosolea sp. contribute to NZFT diet. We raise the possibility that shrimps may also constitute a substantial diet component for NZFT, potentially providing up to 21% of diet mass for adult birds. While our results provide a first basis to understanding the feeding ecology of NZFT during their breeding season in order to facilitate conservation planning, further research is required to address inter-annual variation and to identify key foraging grounds for this Critically Endangered bird at other breeding sites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...