ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Conformation  (54)
  • American Association for the Advancement of Science (AAAS)  (54)
  • American Chemical Society (ACS)
  • American Meteorological Society (AMS)
  • 2005-2009  (54)
  • 1995-1999
  • 2007  (54)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (54)
  • American Chemical Society (ACS)
  • American Meteorological Society (AMS)
Years
  • 2005-2009  (54)
  • 1995-1999
Year
  • 1
    Publication Date: 2007-12-22
    Description: Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials. We elucidate the molecular origin of fibril material properties and show that the major contribution to their rigidity stems from a generic interbackbone hydrogen-bonding network that is modulated by variable side-chain interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knowles, Tuomas P -- Fitzpatrick, Anthony W -- Meehan, Sarah -- Mott, Helen R -- Vendruscolo, Michele -- Dobson, Christopher M -- Welland, Mark E -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1900-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nanoscience Centre, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0FF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18096801" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*chemistry ; Amyloid beta-Peptides/chemistry ; Chemistry, Physical ; Elasticity ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Insulin/chemistry ; Lactalbumin/chemistry ; Lactoglobulins/chemistry ; Microscopy, Atomic Force ; Models, Molecular ; Muramidase/chemistry ; Nanostructures/*chemistry ; Peptide Termination Factors ; Peptides/*chemistry ; Physicochemical Phenomena ; Prealbumin/chemistry ; Prions/chemistry ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry ; Surface Tension ; alpha-Crystallin B Chain/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-04-14
    Description: The pre-B cell receptor (pre-BCR) serves as a checkpoint in B cell development. In the 2.7 angstrom structure of a human pre-BCR Fab-like fragment, consisting of an antibody heavy chain (HC) paired with the surrogate light chain, the "unique regions" of VpreB and lambda5 replace the complementarity-determining region 3 (CDR3) loop of an antibody light chain and appear to "probe" the HC CDR3, potentially influencing the selection of the antibody repertoire. Biochemical analysis indicates that the pre-BCR is impaired in its ability to recognize antigen, which, together with electron microscopic visualization of a pre-BCR dimer, suggests ligand-independent oligomerization as the likely signaling mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bankovich, Alexander J -- Raunser, Stefan -- Juo, Z Sean -- Walz, Thomas -- Davis, Mark M -- Garcia, K Christopher -- T32 AI007290/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):291-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Complementarity Determining Regions/chemistry/physiology ; Crystallography, X-Ray ; Humans ; Immunoglobulin Heavy Chains/chemistry/physiology ; Immunoglobulin Light Chains/chemistry/physiology ; Immunoglobulin Light Chains, Surrogate ; Membrane Glycoproteins/*chemistry/physiology/ultrastructure ; Mice ; Models, Molecular ; Pre-B Cell Receptors ; Protein Conformation ; Receptors, Antigen, B-Cell/*chemistry/physiology/ultrastructure ; Recombinant Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-08-04
    Description: BtuCD is an adenosine triphosphate-binding cassette (ABC) transporter that translocates vitamin B12 from the periplasmic binding protein BtuF into the cytoplasm of Escherichia coli. The 2.6 angstrom crystal structure of a complex BtuCD-F reveals substantial conformational changes as compared with the previously reported structures of BtuCD and BtuF. The lobes of BtuF are spread apart, and B12 is displaced from the binding pocket. The transmembrane BtuC subunits reveal two distinct conformations, and the translocation pathway is closed to both sides of the membrane. Electron paramagnetic resonance spectra of spin-labeled cysteine mutants reconstituted in proteoliposomes are consistent with the conformation of BtuCD-F that was observed in the crystal structure. A comparison with BtuCD and the homologous HI1470/71 protein suggests that the structure of BtuCD-F may reflect a posttranslocation intermediate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hvorup, Rikki N -- Goetz, Birke A -- Niederer, Martina -- Hollenstein, Kaspar -- Perozo, Eduardo -- Locher, Kaspar P -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1387-90. Epub 2007 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, HPK D14.3, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673622" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry ; Amino Acid Sequence ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli ; Escherichia coli Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Periplasmic Binding Proteins/*chemistry ; Protein Binding ; Protein Conformation ; Recombinant Fusion Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-08-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):884-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702918" target="_blank"〉PubMed〈/a〉
    Keywords: Aldosterone/metabolism ; Animals ; Computer Simulation ; Crystallography, X-Ray ; Desoxycorticosterone/metabolism ; *Evolution, Molecular ; *Fishes ; Hydrocortisone/metabolism ; Models, Molecular ; Mutation ; Protein Conformation ; Receptors, Glucocorticoid/chemistry/*genetics/metabolism ; Receptors, Mineralocorticoid/chemistry/*genetics/metabolism ; Receptors, Steroid/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-01-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):456.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255491" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Cephalopoda/chemistry/genetics ; Crystallins/*chemistry/genetics ; Decapodiformes/*chemistry/genetics/physiology ; *Evolution, Molecular ; Lens, Crystalline/chemistry/physiology ; Protein Conformation ; Protein Folding ; Sequence Analysis, DNA ; *Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fitzgerald, Katherine A -- Golenbock, Douglas T -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1574-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA. kate.fitzgerald@umassmed.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569850" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Adaptor Proteins, Vesicular Transport/metabolism ; *Adjuvants, Immunologic ; Animals ; Crystallography, X-Ray ; Glycolipids/chemistry/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lipid A/*analogs & derivatives/chemistry/immunology/metabolism ; Lymphocyte Activation ; Lymphocyte Antigen 96/*chemistry/metabolism ; Mice ; Phosphates/metabolism ; Protein Conformation ; Receptors, Interleukin/metabolism ; Signal Transduction ; T-Lymphocytes/immunology ; Toll-Like Receptor 4/chemistry/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-12-01
    Description: How chaperone interactions affect protein folding pathways is a central problem in biology. With the use of optical tweezers and all-atom molecular dynamics simulations, we studied the effect of chaperone SecB on the folding and unfolding pathways of maltose binding protein (MBP) at the single-molecule level. In the absence of SecB, we find that the MBP polypeptide first collapses into a molten globulelike compacted state and then folds into a stable core structure onto which several alpha helices are finally wrapped. Interactions with SecB completely prevent stable tertiary contacts in the core structure but have no detectable effect on the folding of the external alpha helices. It appears that SecB only binds to the extended or molten globulelike structure and retains MBP in this latter state. Thus during MBP translocation, no energy is required to disrupt stable tertiary interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bechtluft, Philipp -- van Leeuwen, Ruud G H -- Tyreman, Matthew -- Tomkiewicz, Danuta -- Nouwen, Nico -- Tepper, Harald L -- Driessen, Arnold J M -- Tans, Sander J -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1458-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Groningen Bio-molecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Kerklaan 30, 9751 NN Haren, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18048690" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Computer Simulation ; Escherichia coli Proteins/*chemistry/metabolism ; Models, Molecular ; Optical Tweezers ; Periplasmic Binding Proteins/*chemistry/metabolism ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-04-14
    Description: We report crystal structures of the 2.6-megadalton alpha6beta6 heterododecameric fatty acid synthase from Thermomyces lanuginosus at 3.1 angstrom resolution. The alpha and beta polypeptide chains form the six catalytic domains required for fatty acid synthesis and numerous expansion segments responsible for extensive intersubunit connections. Detailed views of all active sites provide insights into substrate specificities and catalytic mechanisms and reveal their unique characteristics, which are due to the integration into the multienzyme. The mode of acyl carrier protein attachment in the reaction chamber, together with the spatial distribution of active sites, suggests that iterative substrate shuttling is achieved by a relatively restricted circular motion of the carrier domain in the multifunctional enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenni, Simon -- Leibundgut, Marc -- Boehringer, Daniel -- Frick, Christian -- Mikolasek, Bohdan -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):254-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431175" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism ; Acetyltransferases/metabolism ; Acyl Carrier Protein/chemistry/metabolism/ultrastructure ; Acyltransferases/metabolism ; Amino Acid Sequence ; Ascomycota/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism ; Fatty Acid Synthases/*chemistry/metabolism ; Fungal Proteins/*chemistry/metabolism ; Hydro-Lyases/metabolism ; Models, Molecular ; Molecular Sequence Data ; NADP/chemistry ; Protein Conformation ; Protein Subunits/chemistry ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-04-21
    Description: We report the structures of three intermediates in the O2 activation and insertion reactions of an extradiol ring-cleaving dioxygenase. A crystal of Fe2+-containing homoprotocatechuate 2,3-dioxygenase was soaked in the slow substrate 4-nitrocatechol in a low O2 atmosphere. The x-ray crystal structure shows that three different intermediates reside in different subunits of a single homotetrameric enzyme molecule. One of these is the key substrate-alkylperoxo-Fe2+ intermediate, which has been predicted, but not structurally characterized, in an oxygenase. The intermediates define the major chemical steps of the dioxygenase mechanism and point to a general mechanistic strategy for the diverse 2-His-1-carboxylate enzyme family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720167/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720167/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kovaleva, Elena G -- Lipscomb, John D -- GM24689/GM/NIGMS NIH HHS/ -- R01 GM024689/GM/NIGMS NIH HHS/ -- R01 GM024689-27/GM/NIGMS NIH HHS/ -- R01 GM024689-28/GM/NIGMS NIH HHS/ -- R37 GM024689/GM/NIGMS NIH HHS/ -- R37 GM024689-26/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):453-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446402" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Brevibacterium/*enzymology ; Catalysis ; Catechols/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Dioxygenases/*chemistry/*metabolism ; Ferric Compounds/*chemistry/metabolism ; Ferrous Compounds/chemistry ; Ligands ; Models, Chemical ; Models, Molecular ; Oxygen/chemistry/metabolism ; Protein Conformation ; Protein Subunits/chemistry/metabolism ; Superoxides/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-08-19
    Description: In Gram-negative bacteria and eukaryotic organelles, beta-barrel proteins of the outer membrane protein 85-two-partner secretion B (Omp85-TpsB) superfamily are essential components of protein transport machineries. The TpsB transporter FhaC mediates the secretion of Bordetella pertussis filamentous hemagglutinin (FHA). We report the 3.15 A crystal structure of FhaC. The transporter comprises a 16-stranded beta barrel that is occluded by an N-terminal alpha helix and an extracellular loop and a periplasmic module composed of two aligned polypeptide-transport-associated (POTRA) domains. Functional data reveal that FHA binds to the POTRA 1 domain via its N-terminal domain and likely translocates the adhesin-repeated motifs in an extended hairpin conformation, with folding occurring at the cell surface. General features of the mechanism obtained here are likely to apply throughout the superfamily.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clantin, Bernard -- Delattre, Anne-Sophie -- Rucktooa, Prakash -- Saint, Nathalie -- Meli, Albano C -- Locht, Camille -- Jacob-Dubuisson, Francoise -- Villeret, Vincent -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):957-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UMR8161 CNRS, Institut de Biologie de Lille, Universite de Lille 1, Universite de Lille 2, 1 rue du Prof. Calmette, F-59021 Lille cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702945" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/chemistry/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Bordetella pertussis/*chemistry/metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/chemistry/metabolism ; Membrane Transport Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport ; Virulence Factors, Bordetella/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilmot, Carrie M -- R01 GM066569/GM/NIGMS NIH HHS/ -- R01 GM066569-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):379-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. wilmo004@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446378" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/enzymology ; Binding Sites ; Catalysis ; Crystallization ; Dioxygenases/chemistry/*metabolism ; Ferric Compounds/chemistry/metabolism ; Ferrous Compounds/*metabolism ; Hydrogen Peroxide/metabolism ; Molecular Conformation ; Oxidation-Reduction ; Oxidoreductases/chemistry/*metabolism ; Oxygen/*metabolism ; Protein Conformation ; Protons ; Spectrum Analysis, Raman ; Superoxides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-10-13
    Description: The catalytic (C) subunit of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is inhibited by two classes of regulatory subunits, RI and RII. The RII subunits are substrates as well as inhibitors and do not require adenosine triphosphate (ATP) to form holoenzyme, which distinguishes them from RI subunits. To understand the molecular basis for isoform diversity, we solved the crystal structure of an RIIalpha holoenzyme and compared it to the RIalpha holoenzyme. Unphosphorylated RIIalpha(90-400), a deletion mutant, undergoes major conformational changes as both of the cAMP-binding domains wrap around the C subunit's large lobe. The hallmark of this conformational reorganization is the helix switch in domain A. The C subunit is in an open conformation, and its carboxyl-terminal tail is disordered. This structure demonstrates the conserved and isoform-specific features of RI and RII and the importance of ATP, and also provides a new paradigm for designing isoform-specific activators or antagonists for PKA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036697/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036697/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jian -- Brown, Simon H J -- von Daake, Sventja -- Taylor, Susan S -- GM34921/GM/NIGMS NIH HHS/ -- R01 GM034921/GM/NIGMS NIH HHS/ -- R01 GM034921-23/GM/NIGMS NIH HHS/ -- T32-CA009524/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):274-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932298" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Animals ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit ; Cyclic AMP-Dependent Protein Kinase RIalpha Subunit ; Cyclic AMP-Dependent Protein Kinases/*chemistry/genetics/metabolism ; Holoenzymes/chemistry ; Hydrophobic and Hydrophilic Interactions ; Isoenzymes/chemistry ; Mice ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2007-09-01
    Description: DNA replication in archaea and in eukaryotes share many similarities. We report the structure of an archaeal origin recognition complex protein, ORC1, bound to an origin recognition box, a DNA sequence that is found in multiple copies at replication origins. DNA binding is mediated principally by a C-terminal winged helix domain that inserts deeply into the major and minor grooves, widening them both. However, additional DNA contacts are made with the N-terminal AAA+ domain, which inserts into the minor groove at a characteristic G-rich sequence, inducing a 35 degrees bend in the duplex and providing directionality to the binding site. Both contact regions also induce substantial unwinding of the DNA. The structure provides insight into the initial step in assembly of a replication origin and recruitment of minichromosome maintenance (MCM) helicase to that origin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaudier, Martin -- Schuwirth, Barbara S -- Westcott, Sarah L -- Wigley, Dale B -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1213-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Clare Hall Laboratories, London Research Institute, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761880" target="_blank"〉PubMed〈/a〉
    Keywords: Aeropyrum/*chemistry/metabolism ; Archaeal Proteins/*chemistry ; Binding Sites ; Crystallography, X-Ray ; DNA, Archaeal/*chemistry/metabolism ; Dimerization ; Models, Molecular ; Nucleic Acid Conformation ; Origin Recognition Complex/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Replication Origin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-02-03
    Description: Quantum mechanical analysis of electron tunneling in nine thermally fluctuating cytochrome b562 derivatives reveals two distinct protein-mediated coupling limits. A structure-insensitive regime arises for redox partners coupled through dynamically averaged multiple-coupling pathways (in seven of the nine derivatives) where heme-edge coupling leads to the multiple-pathway regime. A structure-dependent limit governs redox partners coupled through a dominant pathway (in two of the nine derivatives) where axial-ligand coupling generates the single-pathway limit and slower rates. This two-regime paradigm provides a unified description of electron transfer rates in 26 ruthenium-modified heme and blue-copper proteins, as well as in numerous photosynthetic proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523119/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523119/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prytkova, Tatiana R -- Kurnikov, Igor V -- Beratan, David N -- R01 GM048043/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):622-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Chemistry and Biochemistry, Duke University, Durham, NC 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272715" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Physical ; Computer Simulation ; Cytochrome b Group/*chemistry/*metabolism ; Cytochromes c/chemistry ; *Electron Transport ; Histidine/chemistry ; Hydrogen Bonding ; Ligands ; Mathematics ; Models, Chemical ; Models, Molecular ; Oxidation-Reduction ; Physicochemical Phenomena ; Protein Conformation ; Protein Folding ; Ruthenium
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-09-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Georgescu, Roxana E -- O'Donnell, Mike -- GM38839/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1181-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of DNA Replication, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761872" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Aeropyrum/*chemistry/metabolism ; Archaeal Proteins/*chemistry/metabolism ; Binding Sites ; DNA, Archaeal/*chemistry/metabolism ; Dimerization ; Models, Molecular ; Nucleic Acid Conformation ; Origin Recognition Complex/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Replication Origin ; Sulfolobus solfataricus/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-10
    Description: Prions are lethal mammalian pathogens composed of aggregated conformational isomers of a host-encoded glycoprotein and which appear to lack nucleic acids. Their unique biology, allied with the public-health risks posed by prion zoonoses such as bovine spongiform encephalopathy, has focused much attention on the molecular basis of prion propagation and the "species barrier" that controls cross-species transmission. Both are intimately linked to understanding how multiple prion "strains" are encoded by a protein-only agent. The underlying mechanisms are clearly of much wider importance, and analogous protein-based inheritance mechanisms are recognized in yeast and fungi. Recent advances suggest that prions themselves are not directly neurotoxic, but rather their propagation involves production of toxic species, which may be uncoupled from infectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collinge, John -- Clarke, Anthony R -- MC_U123160656/Medical Research Council/United Kingdom -- MC_U123192748/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):930-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK. j.collinge@prion.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991853" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Chemistry ; Humans ; Models, Biological ; PrPC Proteins/chemistry/isolation & purification/metabolism ; PrPSc Proteins/*chemistry/isolation & purification/metabolism/*pathogenicity ; Prion Diseases/*metabolism/*transmission ; Prions/*chemistry/isolation & purification/*pathogenicity ; Protein Conformation ; Protein Folding ; Recombinant Proteins/chemistry ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2007-08-11
    Description: Tricyclic antidepressants exert their pharmacological effect-inhibiting the reuptake of serotonin, norepinephrine, and dopamine-by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zheng -- Zhen, Juan -- Karpowich, Nathan K -- Goetz, Regina M -- Law, Christopher J -- Reith, Maarten E A -- Wang, Da-Neng -- DA013261/DA/NIDA NIH HHS/ -- DA019676/DA/NIDA NIH HHS/ -- GM075026/GM/NIGMS NIH HHS/ -- GM075936/GM/NIGMS NIH HHS/ -- R01 DA013261/DA/NIDA NIH HHS/ -- R01 DA019676/DA/NIDA NIH HHS/ -- R01 DK053973/DK/NIDDK NIH HHS/ -- R21 DK060841/DK/NIDDK NIH HHS/ -- R21 GM075936/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 7;317(5843):1390-3. Epub 2007 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690258" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antidepressive Agents, Tricyclic/chemistry/*metabolism ; Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Caenorhabditis elegans Proteins/chemistry/metabolism ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Desipramine/chemistry/*metabolism ; Dopamine/chemistry/metabolism ; Dopamine Uptake Inhibitors/chemistry/metabolism ; Drosophila Proteins/chemistry/metabolism ; Humans ; Leucine/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Uptake Inhibitors/chemistry/*metabolism ; Norepinephrine/chemistry/metabolism ; Norepinephrine Plasma Membrane Transport Proteins/antagonists & ; inhibitors/chemistry/metabolism ; Plasma Membrane Neurotransmitter Transport Proteins/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Sequence Homology, Amino Acid ; Serotonin/chemistry/metabolism ; Serotonin Uptake Inhibitors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2007-12-08
    Description: Many bacterial pathogens have long, slender pili through which they adhere to host cells. The crystal structure of the major pilin subunit from the Gram-positive human pathogen Streptococcus pyogenes at 2.2 angstroms resolution reveals an extended structure comprising two all-beta domains. The molecules associate in columns through the crystal, with each carboxyl terminus adjacent to a conserved lysine of the next molecule. This lysine forms the isopeptide bonds that link the subunits in native pili, validating the relevance of the crystal assembly. Each subunit contains two lysine-asparagine isopeptide bonds generated by an intramolecular reaction, and we find evidence for similar isopeptide bonds in other cell surface proteins of Gram-positive bacteria. The present structure explains the strength and stability of such Gram-positive pili and could facilitate vaccine development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Hae Joo -- Coulibaly, Fasseli -- Clow, Fiona -- Proft, Thomas -- Baker, Edward N -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1625-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063798" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Asparagine/chemistry ; Chemistry, Physical ; Crystallography, X-Ray ; Fimbriae Proteins/*chemistry ; Fimbriae, Bacterial/*chemistry/ultrastructure ; Hydrogen Bonding ; Lysine/chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Streptococcus pyogenes/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ranganathan, Rama -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1253-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Green Center for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. rama.ranganathan@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18033872" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/chemistry/metabolism ; Adrenergic beta-Antagonists/chemistry/metabolism/pharmacology ; Bacteriophage T4/enzymology ; Binding Sites ; Cell Membrane/chemistry/metabolism ; Immunoglobulin Fab Fragments/metabolism ; Ligands ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Adrenergic, beta-2/*chemistry/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2007-04-14
    Description: In the multifunctional fungal fatty acid synthase (FAS), the acyl carrier protein (ACP) domain shuttles reaction intermediates covalently attached to its prosthetic phosphopantetheine group between the different enzymatic centers of the reaction cycle. Here, we report the structure of the Saccharomyces cerevisiae FAS determined at 3.1 angstrom resolution with its ACP stalled at the active site of ketoacyl synthase. The ACP contacts the base of the reaction chamber through conserved, charge-complementary surfaces, which optimally position the ACP toward the catalytic cleft of ketoacyl synthase. The conformation of the prosthetic group suggests a switchblade mechanism for acyl chain delivery to the active site of the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leibundgut, Marc -- Jenni, Simon -- Frick, Christian -- Ban, Nenad -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):288-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431182" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/*chemistry/metabolism ; Acyltransferases/metabolism ; Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Fatty Acid Synthases/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2007-05-19
    Description: The Neurospora crassa photoreceptor Vivid tunes blue-light responses and modulates gating of the circadian clock. Crystal structures of dark-state and light-state Vivid reveal a light, oxygen, or voltage Per-Arnt-Sim domain with an unusual N-terminal cap region and a loop insertion that accommodates the flavin cofactor. Photoinduced formation of a cystein-flavin adduct drives flavin protonation to induce an N-terminal conformational change. A cysteine-to-serine substitution remote from the flavin adenine dinucleotide binding site decouples conformational switching from the flavin photocycle and prevents Vivid from sending signals in Neurospora. Key elements of this activation mechanism are conserved by other photosensors such as White Collar-1, ZEITLUPE, ENVOY, and flavin-binding, kelch repeat, F-BOX 1 (FKF1).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682417/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682417/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoltowski, Brian D -- Schwerdtfeger, Carsten -- Widom, Joanne -- Loros, Jennifer J -- Bilwes, Alexandrine M -- Dunlap, Jay C -- Crane, Brian R -- GM079879-01/GM/NIGMS NIH HHS/ -- MH44651/MH/NIMH NIH HHS/ -- P01 GM068087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R01 GM034985-24/GM/NIGMS NIH HHS/ -- R37GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 May 18;316(5827):1054-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510367" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Amino Acid Substitution ; Binding Sites ; Crystallography, X-Ray ; Darkness ; Dimerization ; Flavin-Adenine Dinucleotide/chemistry ; Fungal Proteins/*chemistry/genetics/metabolism ; Light ; Molecular Sequence Data ; Mutagenesis ; Neurospora crassa/*chemistry ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-09-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nies, Dietrich H -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1695-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle/Saale, Germany. d.nies@mikrobiologie.uni-halle.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17885121" target="_blank"〉PubMed〈/a〉
    Keywords: Escherichia coli/metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Homeostasis ; Membrane Transport Proteins/chemistry/*metabolism ; Protein Conformation ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-03-10
    Description: Peptidoglycan glycosyltransferases (GTs) catalyze the polymerization step of cell-wall biosynthesis, are membrane-bound, and are highly conserved across all bacteria. Long considered the "holy grail" of antibiotic research, they represent an essential and easily accessible drug target for antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus. We have determined the 2.8 angstrom structure of a bifunctional cell-wall cross-linking enzyme, including its transpeptidase and GT domains, both unliganded and complexed with the substrate analog moenomycin. The peptidoglycan GTs adopt a fold distinct from those of other GT classes. The structures give insight into critical features of the catalytic mechanism and key interactions required for enzyme inhibition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lovering, Andrew L -- de Castro, Liza H -- Lim, Daniel -- Strynadka, Natalie C J -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1402-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, and Center for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347437" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Aminoacyltransferases/*chemistry/metabolism ; Anti-Bacterial Agents/chemistry/metabolism ; Apoenzymes/chemistry ; Binding Sites ; Carbohydrate Conformation ; Carbohydrate Sequence ; Catalytic Domain ; Cell Wall/*metabolism ; Crystallography, X-Ray ; Enzyme Inhibitors/chemistry/metabolism/pharmacology ; Glycosylation ; Models, Molecular ; Molecular Sequence Data ; Multienzyme Complexes/chemistry/metabolism ; Oligosaccharides/chemistry/metabolism/pharmacology ; Penicillin-Binding Proteins/*chemistry/metabolism ; Peptidoglycan/*biosynthesis ; Peptidoglycan Glycosyltransferase/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Staphylococcus aureus/*enzymology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-25
    Description: YiiP is a membrane transporter that catalyzes Zn2+/H+ exchange across the inner membrane of Escherichia coli. Mammalian homologs of YiiP play critical roles in zinc homeostasis and cell signaling. Here, we report the x-ray structure of YiiP in complex with zinc at 3.8 angstrom resolution. YiiP is a homodimer held together in a parallel orientation through four Zn2+ ions at the interface of the cytoplasmic domains, whereas the two transmembrane domains swing out to yield a Y-shaped structure. In each protomer, the cytoplasmic domain adopts a metallochaperone-like protein fold; the transmembrane domain features a bundle of six transmembrane helices and a tetrahedral Zn2+ binding site located in a cavity that is open to both the membrane outer leaflet and the periplasm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Min -- Fu, Dax -- R01 GM065137/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1746-8. Epub 2007 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717154" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Sequence Alignment ; Zinc/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-09-18
    Description: Membrane attack is important for mammalian immune defense against invading microorganisms and infected host cells. Proteins of the complement membrane attack complex (MAC) and the protein perforin share a common MACPF domain that is responsible for membrane insertion and pore formation. We determined the crystal structure of the MACPF domain of complement component C8alpha at 2.5 angstrom resolution and show that it is structurally homologous to the bacterial, pore-forming, cholesterol-dependent cytolysins. The structure displays two regions that (in the bacterial cytolysins) refold into transmembrane beta hairpins, forming the lining of a barrel pore. Local hydrophobicity explains why C8alpha is the first complement protein to insert into the membrane. The size of the MACPF domain is consistent with known C9 pore sizes. These data imply that these mammalian and bacterial cytolytic proteins share a common mechanism of membrane insertion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hadders, Michael A -- Beringer, Dennis X -- Gros, Piet -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1552-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/immunology/metabolism ; Complement C8/*chemistry/immunology/*metabolism ; Complement Membrane Attack Complex/*chemistry/immunology/*metabolism ; Crystallography, X-Ray ; Cytotoxins/chemistry/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Perforin ; Pore Forming Cytotoxic Proteins/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; *Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-06-16
    Description: Endotoxic lipopolysaccharide (LPS) with potent immunostimulatory activity is recognized by the receptor complex of MD-2 and Toll-like receptor 4. Crystal structures of human MD-2 and its complex with the antiendotoxic tetra-acylated lipid A core of LPS have been determined at 2.0 and 2.2 angstrom resolutions, respectively. MD-2 shows a deep hydrophobic cavity sandwiched by two beta sheets, in which four acyl chains of the ligand are fully confined. The phosphorylated glucosamine moieties are located at the entrance to the cavity. These structures suggest that MD-2 plays a principal role in endotoxin recognition and provide a basis for antiseptic drug development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohto, Umeharu -- Fukase, Koichi -- Miyake, Kensuke -- Satow, Yoshinori -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1632-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17569869" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Fatty Acids/chemistry ; Glycolipids/*chemistry/metabolism ; Glycosylation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lipid A/*analogs & derivatives/chemistry/metabolism ; Lymphocyte Antigen 96/*chemistry/metabolism ; Models, Molecular ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2007-08-11
    Description: Na+/H+ antiporters are central to cellular salt and pH homeostasis. The structure of Escherichia coli NhaA was recently determined, but its mechanisms of transport and pH regulation remain elusive. We performed molecular dynamics simulations of NhaA that, with existing experimental data, enabled us to propose an atomically detailed model of antiporter function. Three conserved aspartates are key to our proposed mechanism: Asp164 (D164) is the Na+-binding site, D163 controls the alternating accessibility of this binding site to the cytoplasm or periplasm, and D133 is crucial for pH regulation. Consistent with experimental stoichiometry, two protons are required to transport a single Na+ ion: D163 protonates to reveal the Na+-binding site to the periplasm, and subsequent protonation of D164 releases Na+. Additional mutagenesis experiments further validated the model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arkin, Isaiah T -- Xu, Huafeng -- Jensen, Morten O -- Arbely, Eyal -- Bennett, Estelle R -- Bowers, Kevin J -- Chow, Edmond -- Dror, Ron O -- Eastwood, Michael P -- Flitman-Tene, Ravenna -- Gregersen, Brent A -- Klepeis, John L -- Kolossvary, Istvan -- Shan, Yibing -- Shaw, David E -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):799-803.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690293" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/metabolism ; Binding Sites ; Computer Simulation ; Crystallization ; Cytoplasm/metabolism ; Escherichia coli/growth & development/*metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Ion Transport ; *Models, Biological ; Models, Molecular ; Mutagenesis ; Periplasm/metabolism ; Protein Conformation ; Protein Structure, Secondary ; *Protons ; Sodium/*metabolism ; Sodium-Hydrogen Antiporter/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007-04-07
    Description: Kinesin-1 is a two-headed molecular motor that walks along microtubules, with each step gated by adenosine triphosphate (ATP) binding. Existing models for the gating mechanism propose a role for the microtubule lattice. We show that unpolymerized tubulin binds to kinesin-1, causing tubulin-activated release of adenosine diphosphate (ADP). With no added nucleotide, each kinesin-1 dimer binds one tubulin heterodimer. In adenylyl-imidodiphosphate (AMP-PNP), a nonhydrolyzable ATP analog, each kinesin-1 dimer binds two tubulin heterodimers. The data reveal an ATP gate that operates independently of the microtubule lattice, by ATP-dependent release of a steric or allosteric block on the tubulin binding site of the tethered kinesin-ADP head.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504013/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504013/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, Maria C -- Drummond, Douglas R -- Kain, Susan -- Hoeng, Julia -- Amos, Linda -- Cross, Robert A -- G0200542/Medical Research Council/United Kingdom -- G0200542(63814)/Medical Research Council/United Kingdom -- MC_U105184313/Medical Research Council/United Kingdom -- U.1051.04.002(78842)/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):120-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Motors Group, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412962" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*metabolism ; Adenylyl Imidodiphosphate/metabolism ; Animals ; Binding Sites ; Dimerization ; Kinesin/chemistry/*metabolism ; Microtubules/*metabolism ; Models, Biological ; Molecular Motor Proteins/*metabolism ; Neurospora ; Protein Conformation ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Schizosaccharomyces ; Tubulin/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2007-11-10
    Description: DNA polymerase eta (Pol eta) is a eukaryotic lesion bypass polymerase that helps organisms to survive exposure to ultraviolet (UV) radiation, and tumor cells to gain resistance against cisplatin-based chemotherapy. It allows cells to replicate across cross-link lesions such as 1,2-d(GpG) cisplatin adducts (Pt-GG) and UV-induced cis-syn thymine dimers. We present structural and biochemical analysis of how Pol eta copies Pt-GG-containing DNA. The damaged DNA is bound in an open DNA binding rim. Nucleotidyl transfer requires the DNA to rotate into an active conformation, driven by hydrogen bonding of the templating base to the dNTP. For the 3'dG of the Pt-GG, this step is accomplished by a Watson-Crick base pair to dCTP and is biochemically efficient and accurate. In contrast, bypass of the 5'dG of the Pt-GG is less efficient and promiscuous for dCTP and dATP as a result of the presence of the rigid Pt cross-link. Our analysis reveals the set of structural features that enable Pol eta to replicate across strongly distorting DNA lesions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alt, Aaron -- Lammens, Katja -- Chiocchini, Claudia -- Lammens, Alfred -- Pieck, J Carsten -- Kuch, David -- Hopfner, Karl-Peter -- Carell, Thomas -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):967-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Munich Center for Integrated Protein Science (CiPS), Ludwig Maximilians University, D-81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991862" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/metabolism/*pharmacology ; Base Pairing ; Binding Sites ; Cisplatin/analogs & derivatives/chemistry/metabolism/*pharmacology ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Adducts/chemistry/*metabolism ; *DNA Damage ; DNA Replication ; DNA-Directed DNA Polymerase/chemistry/genetics/*metabolism ; Deoxycytosine Nucleotides/chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; Mutagenesis, Site-Directed ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Tertiary ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2007-08-19
    Description: Integral beta-barrel proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. The machine that assembles these proteins contains an integral membrane protein, called YaeT in Escherichia coli, which has one or more polypeptide transport-associated (POTRA) domains. The crystal structure of a periplasmic fragment of YaeT reveals the POTRA domain fold and suggests a model for how POTRA domains can bind different peptide sequences, as required for a machine that handles numerous beta-barrel protein precursors. Analysis of POTRA domain deletions shows which are essential and provides a view of the spatial organization of this assembly machine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Seokhee -- Malinverni, Juliana C -- Sliz, Piotr -- Silhavy, Thomas J -- Harrison, Stephen C -- Kahne, Daniel -- GM34821/GM/NIGMS NIH HHS/ -- GM66174/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702946" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipoproteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seringhaus, Michael -- Gerstein, Mark -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):40-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204626" target="_blank"〉PubMed〈/a〉
    Keywords: Bibliometrics ; Chemical Phenomena ; *Chemistry ; Crystallography ; Molecular Structure ; *Nobel Prize ; Protein Conformation ; PubMed
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2007-12-15
    Description: PIK3CA, one of the two most frequently mutated oncogenes in human tumors, codes for p110alpha, the catalytic subunit of a phosphatidylinositol 3-kinase, isoform alpha (PI3Kalpha, p110alpha/p85). Here, we report a 3.0 angstrom resolution structure of a complex between p110alpha and a polypeptide containing the p110alpha-binding domains of p85alpha, a protein required for its enzymatic activity. The structure shows that many of the mutations occur at residues lying at the interfaces between p110alpha and p85alpha or between the kinase domain of p110alpha and other domains within the catalytic subunit. Disruptions of these interactions are likely to affect the regulation of kinase activity by p85 or the catalytic activity of the enzyme, respectively. In addition to providing new insights about the structure of PI3Kalpha, these results suggest specific mechanisms for the effect of oncogenic mutations in p110alpha and p85alpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chuan-Hsiang -- Mandelker, Diana -- Schmidt-Kittler, Oleg -- Samuels, Yardena -- Velculescu, Victor E -- Kinzler, Kenneth W -- Vogelstein, Bert -- Gabelli, Sandra B -- Amzel, L Mario -- CA 43460/CA/NCI NIH HHS/ -- GM 07184/GM/NIGMS NIH HHS/ -- GM066895/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1744-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079394" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Phosphatidylinositol 3-Kinases/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2007-12-08
    Description: Regulated intramembrane proteolysis by members of the site-2 protease (S2P) family is an important signaling mechanism conserved from bacteria to humans. Here we report the crystal structure of the transmembrane core domain of an S2P metalloprotease from Methanocaldococcus jannaschii. The protease consists of six transmembrane segments, with the catalytic zinc atom coordinated by two histidine residues and one aspartate residue approximately 14 angstroms into the lipid membrane surface. The protease exhibits two distinct conformations in the crystals. In the closed conformation, the active site is surrounded by transmembrane helices and is impermeable to substrate peptide; water molecules gain access to zinc through a polar, central channel that opens to the cytosolic side. In the open conformation, transmembrane helices alpha1 and alpha6 separate from each other by 10 to 12 angstroms, exposing the active site to substrate entry. The structure reveals how zinc embedded in an integral membrane protein can catalyze peptide cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Liang -- Yan, Hanchi -- Wu, Zhuoru -- Yan, Nieng -- Wang, Zhe -- Jeffrey, Philip D -- Shi, Yigong -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1608-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063795" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Membrane Proteins/*chemistry/metabolism ; Metalloendopeptidases/*chemistry/metabolism ; Methanococcus/*enzymology ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Water ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2007-06-30
    Description: Leukotrienes are proinflammatory products of arachidonic acid oxidation by 5-lipoxygenase that have been shown to be involved in respiratory and cardiovascular diseases. The integral membrane protein FLAP is essential for leukotriene biosynthesis. We describe the x-ray crystal structures of human FLAP in complex with two leukotriene biosynthesis inhibitors at 4.0 and 4.2 angstrom resolution, respectively. The structures show that inhibitors bind in membrane-embedded pockets of FLAP, which suggests how these inhibitors prevent arachidonic acid from binding to FLAP and subsequently being transferred to 5-lipoxygenase, thereby preventing leukotriene biosynthesis. This structural information provides a platform for the development of therapeutics for respiratory and cardiovascular diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferguson, Andrew D -- McKeever, Brian M -- Xu, Shihua -- Wisniewski, Douglas -- Miller, Douglas K -- Yamin, Ting-Ting -- Spencer, Robert H -- Chu, Lin -- Ujjainwalla, Feroze -- Cunningham, Barry R -- Evans, Jilly F -- Becker, Joseph W -- New York, N.Y. -- Science. 2007 Jul 27;317(5837):510-2. Epub 2007 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600184" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Lipoxygenase-Activating Proteins ; Arachidonate 5-Lipoxygenase/metabolism ; Arachidonic Acid/metabolism ; Binding Sites ; Carrier Proteins/antagonists & inhibitors/*chemistry/genetics/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Cytosol/chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; Indoles/*chemistry/metabolism/pharmacology ; Membrane Proteins/antagonists & inhibitors/*chemistry/genetics/metabolism ; Models, Molecular ; Mutagenesis ; Nuclear Envelope/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Quinolines/*chemistry/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2007-10-27
    Description: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583103/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583103/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cherezov, Vadim -- Rosenbaum, Daniel M -- Hanson, Michael A -- Rasmussen, Soren G F -- Thian, Foon Sun -- Kobilka, Tong Sun -- Choi, Hee-Jung -- Kuhn, Peter -- Weis, William I -- Kobilka, Brian K -- Stevens, Raymond C -- F32 GM082028/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P50 GM062411/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-04/GM/NIGMS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 GM075811/GM/NIGMS NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-030001/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1258-65. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962520" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T4/enzymology ; Binding Sites ; Cell Membrane/chemistry/metabolism ; Cholesterol/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Ligands ; Models, Molecular ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Adrenergic, beta-2/*chemistry/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2007-11-03
    Description: Quinoxalinedione compounds such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are the most commonly used alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. However, we find that in the presence of transmembrane AMPA receptor regulatory proteins (TARPs), which are AMPA receptor auxiliary subunits, CNQX acts as a partial agonist. CNQX induced small depolarizing currents in neurons of the central nervous system, and reconstitution of this agonist activity required coexpression of TARPs. A crystal structure of CNQX bound to the TARP-less AMPA receptor ligand-binding domain showed that, although CNQX induces partial domain closure, this movement is not transduced into linker separation, suggesting that TARPs may increase agonist efficacy by strengthening the coupling between domain closure and channel opening. Our results demonstrate that the presence of an auxiliary subunit can determine whether a compound functions as an agonist or antagonist.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menuz, Karen -- Stroud, Robert M -- Nicoll, Roger A -- Hays, Franklin A -- GM078754/GM/NIGMS NIH HHS/ -- P50 GM73210/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):815-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975069" target="_blank"〉PubMed〈/a〉
    Keywords: 6-Cyano-7-nitroquinoxaline-2,3-dione/chemistry/*pharmacology ; Animals ; Benzodiazepines/pharmacology ; Binding, Competitive ; Cell Line ; Cerebellum/cytology ; Crystallography, X-Ray ; *Drug Partial Agonism ; Hippocampus/cytology ; Humans ; In Vitro Techniques ; Interneurons/drug effects ; Mice ; Models, Molecular ; Patch-Clamp Techniques ; Protein Conformation ; Protein Subunits/*physiology ; Pyramidal Cells/drug effects/metabolism ; Quinoxalines/pharmacology ; Receptors, AMPA/*agonists/*antagonists & inhibitors ; Structure-Activity Relationship ; Synaptic Transmission/drug effects ; Trichlormethiazide/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2007-12-01
    Description: Anaerobic CO dehydrogenases catalyze the reversible oxidation of CO to CO2 at a complex Ni-, Fe-, and S-containing metal center called cluster C. We report crystal structures of CO dehydrogenase II from Carboxydothermus hydrogenoformans in three different states. In a reduced state, exogenous CO2 supplied in solution is bound and reductively activated by cluster C. In the intermediate structure, CO2 acts as a bridging ligand between Ni and the asymmetrically coordinated Fe, where it completes the square-planar coordination of the Ni ion. It replaces a water/hydroxo ligand bound to the Fe ion in the other two states. The structures define the mechanism of CO oxidation and CO2 reduction at the Ni-Fe site of cluster C.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeoung, Jae-Hun -- Dobbek, Holger -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1461-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratorium Proteinkristallographie and Forschungszentrum fur Bio-Makromolekule, Universitat Bayreuth, D-95440 Bayreuth, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18048691" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Oxidoreductases/chemistry/isolation & purification/*metabolism ; Anaerobiosis ; Binding Sites ; Carbon Dioxide/*metabolism ; Carbon Monoxide/metabolism ; Crystallization ; Crystallography, X-Ray ; Iron/chemistry/metabolism ; Ligands ; Multienzyme Complexes/chemistry/isolation & purification/*metabolism ; Nickel/chemistry/metabolism ; Peptococcaceae/*enzymology ; Protein Conformation ; Recombinant Proteins/chemistry/isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2007-04-21
    Description: Iron-peroxide intermediates are central in the reaction cycle of many iron-containing biomolecules. We trapped iron(III)-(hydro)peroxo species in crystals of superoxide reductase (SOR), a nonheme mononuclear iron enzyme that scavenges superoxide radicals. X-ray diffraction data at 1.95 angstrom resolution and Raman spectra recorded in crystallo revealed iron-(hydro)peroxo intermediates with the (hydro)peroxo group bound end-on. The dynamic SOR active site promotes the formation of transient hydrogen bond networks, which presumably assist the cleavage of the iron-oxygen bond in order to release the reaction product, hydrogen peroxide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katona, Gergely -- Carpentier, Philippe -- Niviere, Vincent -- Amara, Patricia -- Adam, Virgile -- Ohana, Jeremy -- Tsanov, Nikolay -- Bourgeois, Dominique -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):449-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologie Structurale (IBS) Jean-Pierre Ebel, Commissariat a l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Universite Joseph Fourier, 41 rue Jules Horowitz, F-38027 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446401" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Deltaproteobacteria/*enzymology ; Ferric Compounds/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/*chemistry/metabolism ; Iron/*chemistry ; Ligands ; Models, Chemical ; Models, Molecular ; Oxidation-Reduction ; Oxidoreductases/*chemistry/*metabolism ; Oxygen/chemistry ; Peroxides/*chemistry ; Protein Conformation ; Protons ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Youle, Richard J -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):776-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. youler@ninds.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289967" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/*metabolism ; BH3 Interacting Domain Death Agonist Protein/*metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/*metabolism ; Mice ; Mitochondria/metabolism ; Models, Biological ; Permeability ; Protein Conformation ; Protein Structure, Secondary ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-bcl-2/chemistry/*metabolism ; bcl-2-Associated X Protein/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grady, Eileen F -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):605-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCSF Center for the Neurobiology of Digestive Disease, University of California, San Francisco, CA 94143, USA. gradye@surgery.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272707" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/chemistry/*metabolism ; Binding Sites ; Carbachol/pharmacology ; Clathrin/metabolism ; Diacylglycerol Kinase/metabolism ; Diglycerides/metabolism ; Phosphatidic Acids/metabolism ; Phosphorylation ; Protein Binding ; Protein Conformation ; Receptor, Muscarinic M1/*metabolism ; Receptors, G-Protein-Coupled/metabolism ; Second Messenger Systems ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kennedy, Donald -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):721.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690264" target="_blank"〉PubMed〈/a〉
    Keywords: Biochemistry/history ; History, 20th Century ; History, 21st Century ; Periodicals as Topic/history ; Protein Conformation ; Science ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2007-02-10
    Description: Glycoprotein G of the vesicular stomatitis virus triggers membrane fusion via a low pH-induced structural rearrangement. Despite the equilibrium between the pre- and postfusion states, the structure of the prefusion form, determined to 3.0 angstrom resolution, shows that the fusogenic transition entails an extensive structural reorganization of G. Comparison with the structure of the postfusion form suggests a pathway for the conformational change. In the prefusion form, G has the shape of a tripod with the fusion loops exposed, which point toward the viral membrane, and with the antigenic sites located at the distal end of the molecule. A large number of G glycoproteins, perhaps organized as in the crystals, act cooperatively to induce membrane merging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roche, Stephane -- Rey, Felix A -- Gaudin, Yves -- Bressanelli, Stephane -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):843-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Unite Mixte de Recherche (UMR) 2472, Institut National de la Recherche Agronomique (INRA), UMR 1157, Institut Federatif de Recherche 115, Laboratoire de Virologie Moleculaire et Structurale, 91198, Gif sur Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289996" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallization ; Crystallography, X-Ray ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Membrane Fusion ; Membrane Glycoproteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Vesicular stomatitis Indiana virus/*chemistry ; Viral Envelope Proteins/*chemistry ; Viral Fusion Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2007-10-06
    Description: The nuclear pore complex regulates cargo transport between the cytoplasm and the nucleus. We set out to correlate the governing biochemical interactions to the nanoscopic responses of the phenylalanineglycine (FG)-rich nucleoporin domains, which are involved in attenuating or promoting cargo translocation. We found that binding interactions with the transport receptor karyopherin-beta1 caused the FG domains of the human nucleoporin Nup153 to collapse into compact molecular conformations. This effect was reversed by the action of Ran guanosine triphosphate, which returned the FG domains into a polymer brush-like, entropic barrier conformation. Similar effects were observed in Xenopus oocyte nuclei in situ. Thus, the reversible collapse of the FG domains may play an important role in regulating nucleocytoplasmic transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Roderick Y H -- Fahrenkrog, Birthe -- Koser, Joachim -- Schwarz-Herion, Kyrill -- Deng, Jie -- Aebi, Ueli -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):640-3. Epub 2007 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉M. E. Muller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland. roderick.lim@unibas.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916694" target="_blank"〉PubMed〈/a〉
    Keywords: *Active Transport, Cell Nucleus ; Amino Acid Motifs ; Animals ; Glycine/chemistry ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Microscopy, Immunoelectron ; Nuclear Pore/chemistry/*metabolism ; Nuclear Pore Complex Proteins/*chemistry/*metabolism ; Phenylalanine/chemistry ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Xenopus laevis ; beta Karyopherins/*metabolism ; ran GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2007-11-10
    Description: An unexpected biochemical strategy for chain initiation is described for the loading module of the polyketide synthase of curacin A, an anticancer lead derived from the marine cyanobacterium Lyngbya majuscula. A central GCN5-related N-acetyltransferase (GNAT) domain bears bifunctional decarboxylase/S-acetyltransferase activity, both unprecedented for the GNAT superfamily. A CurA loading tridomain, consisting of an adaptor domain, the GNAT domain, and an acyl carrier protein, was assessed biochemically, revealing that a domain showing homology to GNAT (GNAT(L)) catalyzes (i) decarboxylation of malonyl-coenzyme A (malonyl-CoA) to acetyl-CoA and (ii) direct S-acetyl transfer from acetyl-CoA to load an adjacent acyl carrier protein domain (ACP(L)). Moreover, the N-terminal adapter domain was shown to facilitate acetyl-group transfer. Crystal structures of GNAT(L) were solved at 1.95 angstroms (ligand-free form) and 2.75 angstroms (acyl-CoA complex), showing distinct substrate tunnels for acyl-CoA and holo-ACP(L) binding. Modeling and site-directed mutagenesis experiments demonstrated that histidine-389 and threonine-355, at the convergence of the CoA and ACP tunnels, participate in malonyl-CoA decarboxylation but not in acetyl-group transfer. Decarboxylation precedes acetyl-group transfer, leading to acetyl-ACP(L) as the key curacin A starter unit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Liangcai -- Geders, Todd W -- Wang, Bo -- Gerwick, William H -- Hakansson, Kristina -- Smith, Janet L -- Sherman, David H -- DK42303/DK/NIDDK NIH HHS/ -- GM076477/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):970-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991863" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Acetyltransferases/*chemistry/*metabolism ; Acyl Carrier Protein/chemistry/metabolism ; Amino Acid Sequence ; Carboxy-Lyases/chemistry/metabolism ; Crystallography, X-Ray ; Cyanobacteria/*enzymology/genetics ; Cyclopropanes/*metabolism ; Decarboxylation ; Malonyl Coenzyme A/metabolism ; Models, Molecular ; Molecular Sequence Data ; Polyketide Synthases/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Thiazoles/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2007-10-20
    Description: Nonhomologous end joining (NHEJ) is a critical DNA double-strand break (DSB) repair pathway required to maintain genome stability. Many prokaryotes possess a minimalist NHEJ apparatus required to repair DSBs during stationary phase, composed of two conserved core proteins, Ku and ligase D (LigD). The crystal structure of Mycobacterium tuberculosis polymerase domain of LigD mediating the synapsis of two noncomplementary DNA ends revealed a variety of interactions, including microhomology base pairing, mismatched and flipped-out bases, and 3' termini forming hairpin-like ends. Biochemical and biophysical studies confirmed that polymerase-induced end synapsis also occurs in solution. We propose that this DNA synaptic structure reflects an intermediate bridging stage of the NHEJ process, before end processing and ligation, with both the polymerase and the DNA sequence playing pivotal roles in determining the sequential order of synapsis and remodeling before end joining.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brissett, Nigel C -- Pitcher, Robert S -- Juarez, Raquel -- Picher, Angel J -- Green, Andrew J -- Dafforn, Timothy R -- Fox, Gavin C -- Blanco, Luis -- Doherty, Aidan J -- BB/D522746/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G120/738/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):456-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947582" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Crystallography, X-Ray ; DNA Ligases/*chemistry/genetics/metabolism ; *DNA Repair ; DNA, Bacterial/*chemistry/metabolism ; Dimerization ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mycobacterium tuberculosis/*chemistry/enzymology/genetics/metabolism ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2007-10-27
    Description: The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenbaum, Daniel M -- Cherezov, Vadim -- Hanson, Michael A -- Rasmussen, Soren G F -- Thian, Foon Sun -- Kobilka, Tong Sun -- Choi, Hee-Jung -- Yao, Xiao-Jie -- Weis, William I -- Stevens, Raymond C -- Kobilka, Brian K -- F32 GM082028/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM62411/GM/NIGMS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R21 GM075811/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1266-73. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962519" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/chemistry/metabolism ; Adrenergic beta-Antagonists/chemistry/metabolism ; Amino Acid Sequence ; Bacteriophage T4/enzymology ; Binding Sites ; Cell Line ; Cell Membrane/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2007-04-07
    Description: Although highly homologous, the spliceosomal hPrp31 and the nucleolar Nop56 and Nop58 (Nop56/58) proteins recognize different ribonucleoprotein (RNP) particles. hPrp31 interacts with complexes containing the 15.5K protein and U4 or U4atac small nuclear RNA (snRNA), whereas Nop56/58 associate with 15.5K-box C/D small nucleolar RNA complexes. We present structural and biochemical analyses of hPrp31-15.5K-U4 snRNA complexes that show how the conserved Nop domain in hPrp31 maintains high RNP binding selectivity despite relaxed RNA sequence requirements. The Nop domain is a genuine RNP binding module, exhibiting RNA and protein binding surfaces. Yeast two-hybrid analyses suggest a link between retinitis pigmentosa and an aberrant hPrp31-hPrp6 interaction that blocks U4/U6-U5 tri-snRNP formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Sunbin -- Li, Ping -- Dybkov, Olexandr -- Nottrott, Stephanie -- Hartmuth, Klaus -- Luhrmann, Reinhard -- Carlomagno, Teresa -- Wahl, Markus C -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):115-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung Zellulare Biochemie, Max-Planck-Institut fur Biophysikalische Chemie, Am Fassberg 11, D-37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Carrier Proteins/chemistry/metabolism ; Eye Proteins/*chemistry/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Small Nuclear/*chemistry/*metabolism ; RNA-Binding Proteins ; Retinitis Pigmentosa/genetics ; Ribonucleoprotein, U4-U6 Small Nuclear/*chemistry/*metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2007-12-22
    Description: The guanine nucleotide exchange factor p63RhoGEF is an effector of the heterotrimeric guanine nucleotide-binding protein (G protein) Galphaq and thereby links Galphaq-coupled receptors (GPCRs) to the activation of the small-molecular-weight G protein RhoA. We determined the crystal structure of the Galphaq-p63RhoGEF-RhoA complex, detailing the interactions of Galphaq with the Dbl and pleckstrin homology (DH and PH) domains of p63RhoGEF. These interactions involve the effector-binding site and the C-terminal region of Galphaq and appear to relieve autoinhibition of the catalytic DH domain by the PH domain. Trio, Duet, and p63RhoGEF are shown to constitute a family of Galphaq effectors that appear to activate RhoA both in vitro and in intact cells. We propose that this structure represents the crux of an ancient signal transduction pathway that is expected to be important in an array of physiological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutz, Susanne -- Shankaranarayanan, Aruna -- Coco, Cassandra -- Ridilla, Marc -- Nance, Mark R -- Vettel, Christiane -- Baltus, Doris -- Evelyn, Chris R -- Neubig, Richard R -- Wieland, Thomas -- Tesmer, John J G -- HL071818/HL/NHLBI NIH HHS/ -- HL086865/HL/NHLBI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1923-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18096806" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; rhoA GTP-Binding Protein/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hackney, David D -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):58-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. ddh@andrew.cmu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412943" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*metabolism ; Dimerization ; Kinesin/chemistry/*metabolism ; Microtubules/*metabolism ; Models, Biological ; Molecular Motor Proteins/chemistry/*metabolism ; Protein Conformation ; Tubulin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2007-02-10
    Description: Cells use transcription-coupled repair (TCR) to efficiently eliminate DNA lesions such as ultraviolet light-induced cyclobutane pyrimidine dimers (CPDs). Here we present the structure-based mechanism for the first step in eukaryotic TCR, CPD-induced stalling of RNA polymerase (Pol) II. A CPD in the transcribed strand slowly passes a translocation barrier and enters the polymerase active site. The CPD 5'-thymine then directs uridine misincorporation into messenger RNA, which blocks translocation. Artificial replacement of the uridine by adenosine enables CPD bypass; thus, Pol II stalling requires CPD-directed misincorporation. In the stalled complex, the lesion is inaccessible, and the polymerase conformation is unchanged. This is consistent with nonallosteric recruitment of repair factors and excision of a lesion-containing DNA fragment in the presence of Pol II.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brueckner, Florian -- Hennecke, Ulrich -- Carell, Thomas -- Cramer, Patrick -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):859-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17290000" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *DNA Damage ; *DNA Repair ; Models, Genetic ; Protein Conformation ; Pyrimidine Dimers/*metabolism ; RNA Polymerase II/chemistry/*metabolism ; RNA, Messenger/metabolism ; Saccharomyces cerevisiae/enzymology/*genetics ; Templates, Genetic ; *Transcription, Genetic ; Uridine/metabolism ; Uridine Triphosphate/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuldiner, Shimon -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):748-51; author reply 748-51.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690276" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry ; Crystallography, X-Ray ; Dimerization ; Escherichia coli Proteins/*chemistry ; Evolution, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2007-08-19
    Description: The structural mechanisms by which proteins have evolved new functions are known only indirectly. We report x-ray crystal structures of a resurrected ancestral protein-the approximately 450 million-year-old precursor of vertebrate glucocorticoid (GR) and mineralocorticoid (MR) receptors. Using structural, phylogenetic, and functional analysis, we identify the specific set of historical mutations that recapitulate the evolution of GR's hormone specificity from an MR-like ancestor. These substitutions repositioned crucial residues to create new receptor-ligand and intraprotein contacts. Strong epistatic interactions occur because one substitution changes the conformational position of another site. "Permissive" mutations-substitutions of no immediate consequence, which stabilize specific elements of the protein and allow it to tolerate subsequent function-switching changes-played a major role in determining GR's evolutionary trajectory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519897/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519897/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ortlund, Eric A -- Bridgham, Jamie T -- Redinbo, Matthew R -- Thornton, Joseph W -- F32-GM074398/GM/NIGMS NIH HHS/ -- R01 GM081592/GM/NIGMS NIH HHS/ -- R01 GM081592-01/GM/NIGMS NIH HHS/ -- R01 GM081592-02/GM/NIGMS NIH HHS/ -- R01-DK622229/DK/NIDDK NIH HHS/ -- R01-GM081592/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1544-8. Epub 2007 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702911" target="_blank"〉PubMed〈/a〉
    Keywords: Aldosterone/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Crystallography, X-Ray ; Epistasis, Genetic ; *Evolution, Molecular ; Humans ; Hydrocortisone/metabolism ; Ligands ; Likelihood Functions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phylogeny ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Glucocorticoid/*chemistry/*genetics/metabolism ; Receptors, Mineralocorticoid/*chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2007-06-26
    Description: The sirtuins are members of the histone deacetylase family of proteins that participate in a variety of cellular functions and play a role in aging. We identified a potent inhibitor of sirtuin 2 (SIRT2) and found that inhibition of SIRT2 rescued alpha-synuclein toxicity and modified inclusion morphology in a cellular model of Parkinson's disease. Genetic inhibition of SIRT2 via small interfering RNA similarly rescued alpha-synuclein toxicity. Furthermore, the inhibitors protected against dopaminergic cell death both in vitro and in a Drosophila model of Parkinson's disease. The results suggest a link between neurodegeneration and aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Outeiro, Tiago Fleming -- Kontopoulos, Eirene -- Altmann, Stephen M -- Kufareva, Irina -- Strathearn, Katherine E -- Amore, Allison M -- Volk, Catherine B -- Maxwell, Michele M -- Rochet, Jean-Christophe -- McLean, Pamela J -- Young, Anne B -- Abagyan, Ruben -- Feany, Mel B -- Hyman, Bradley T -- Kazantsev, Aleksey G -- 5P50-NS38372A-06/NS/NINDS NIH HHS/ -- R01-NS049221/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 27;317(5837):516-9. Epub 2007 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Alzheimer's Research Unit, MGH, Harvard Medical School, CNY 114, 16th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588900" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Animals, Genetically Modified ; Cell Death/drug effects ; Cell Line, Tumor ; Cells, Cultured ; Disease Models, Animal ; Dopamine/physiology ; Dose-Response Relationship, Drug ; Drosophila melanogaster ; Furans/*pharmacology ; Humans ; Models, Molecular ; Neurons/cytology/drug effects ; Parkinson Disease/*drug therapy/metabolism/pathology/*physiopathology ; Protein Conformation ; Quinolines/*pharmacology ; RNA, Small Interfering/genetics ; Rats ; Sirtuin 1 ; Sirtuin 2 ; Sirtuins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Transfection ; Tubulin/metabolism ; alpha-Synuclein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-07-21
    Description: The biological cell is equipped with a variety of molecular machines that perform complex mechanical tasks such as cell division or intracellular transport. One can envision employing these biological motors in artificial environments. We review the progress that has been made in using motor proteins for powering or manipulating nanoscale components. In particular, kinesin and myosin biomotors that move along linear biofilaments have been widely explored as active components. Currently realized applications are merely proof-of-principle demonstrations. Yet, the sheer availability of an entire ready-to-use toolbox of nanosized biological motors is a great opportunity that calls for exploration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Heuvel, Martin G L -- Dekker, Cees -- New York, N.Y. -- Science. 2007 Jul 20;317(5836):333-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17641191" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Adenosine Triphosphate/metabolism ; Flagella/physiology ; Kinesin/chemistry/metabolism ; Microtubules/metabolism ; *Molecular Motor Proteins/chemistry/metabolism ; Myosins/chemistry/metabolism ; Nanostructures ; *Nanotechnology/methods/trends ; Protein Conformation ; Proton-Translocating ATPases/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...