ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-03
    Description: Article Identifying early signs of Alzheimer’s disease is important when it comes to diagnosis and treatment. Here, the authors identify subtle memory retrieval deficits and associated brain glucose uptake impairments in very young mouse models of Alzheimer’s, prior to plaque development. Nature Communications doi: 10.1038/ncomms11761 Authors: V. Beglopoulos, J. Tulloch, A. D. Roe, S. Daumas, L. Ferrington, R. Watson, Z. Fan, B. T. Hyman, P. A. T. Kelly, F. Bard, R. G. M. Morris
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-08
    Description: Senile plaques accumulate over the course of decades in the brains of patients with Alzheimer's disease. A fundamental tenet of the amyloid hypothesis of Alzheimer's disease is that the deposition of amyloid-beta precedes and induces the neuronal abnormalities that underlie dementia. This idea has been challenged, however, by the suggestion that alterations in axonal trafficking and morphological abnormalities precede and lead to senile plaques. The role of microglia in accelerating or retarding these processes has been uncertain. To investigate the temporal relation between plaque formation and the changes in local neuritic architecture, we used longitudinal in vivo multiphoton microscopy to sequentially image young APPswe/PS1d9xYFP (B6C3-YFP) transgenic mice. Here we show that plaques form extraordinarily quickly, over 24 h. Within 1-2 days of a new plaque's appearance, microglia are activated and recruited to the site. Progressive neuritic changes ensue, leading to increasingly dysmorphic neurites over the next days to weeks. These data establish plaques as a critical mediator of neuritic pathology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264491/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264491/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer-Luehmann, Melanie -- Spires-Jones, Tara L -- Prada, Claudia -- Garcia-Alloza, Monica -- de Calignon, Alix -- Rozkalne, Anete -- Koenigsknecht-Talboo, Jessica -- Holtzman, David M -- Bacskai, Brian J -- Hyman, Bradley T -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-07/DK/NIDDK NIH HHS/ -- P30 DK056341-08/DK/NIDDK NIH HHS/ -- R01 AG008487/AG/NIA NIH HHS/ -- R01 AG008487-20/AG/NIA NIH HHS/ -- England -- Nature. 2008 Feb 7;451(7179):720-4. doi: 10.1038/nature06616.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18256671" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics/metabolism/*pathology ; Amyloid beta-Peptides/genetics/metabolism/*toxicity ; Animals ; Axons/metabolism ; *Disease Models, Animal ; Disease Progression ; Mice ; Mice, Transgenic ; Microglia/metabolism ; Neurites/metabolism/pathology ; Plaque, Amyloid/genetics/metabolism/*pathology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-03-03
    Description: Although senile plaques focally disrupt neuronal health, the functional response of astrocytes to Alzheimer's disease pathology is unknown. Using multiphoton fluorescence lifetime imaging microscopy in vivo, we quantitatively imaged astrocytic calcium homeostasis in a mouse model of Alzheimer's disease. Resting calcium was globally elevated in the astrocytic network, but was independent of proximity to individual plaques. Time-lapse imaging revealed that calcium transients in astrocytes were more frequent, synchronously coordinated across long distances, and uncoupled from neuronal activity. Furthermore, rare intercellular calcium waves were observed, but only in mice with amyloid-beta plaques, originating near plaques and spreading radially at least 200 micrometers. Thus, although neurotoxicity is observed near amyloid-beta deposits, there exists a more general astrocyte-based network response to focal pathology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884172/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884172/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuchibhotla, Kishore V -- Lattarulo, Carli R -- Hyman, Bradley T -- Bacskai, Brian J -- EB000768/EB/NIBIB NIH HHS/ -- F31 NS058075-02/NS/NINDS NIH HHS/ -- NS580752/NS/NINDS NIH HHS/ -- R01 AG008487/AG/NIA NIH HHS/ -- R01 AG008487-19/AG/NIA NIH HHS/ -- R01 EB000768/EB/NIBIB NIH HHS/ -- R01 EB000768-08/EB/NIBIB NIH HHS/ -- S10 RR025645/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1211-5. doi: 10.1126/science.1169096.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital, Department of Neurology/Alzheimer's Disease Research Laboratory, 114 16th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251629" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/pathology/*physiopathology ; Amyloid beta-Peptides/analysis ; Animals ; Astrocytes/metabolism/pathology/*physiology ; Calcium/*metabolism ; *Calcium Signaling ; Disease Models, Animal ; Homeostasis ; Humans ; Mice ; Mice, Transgenic ; Microscopy, Fluorescence, Multiphoton ; Neurons/pathology/physiology ; Plaque, Amyloid/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-03-21
    Description: The gamma-secretase complex plays a role in Alzheimer's disease and cancer progression. The development of clinically useful inhibitors, however, is complicated by the role of the gamma-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different gamma-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B gamma-secretase in a mouse Alzheimer's disease model led to improvements of Alzheimer's disease-relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total gamma-secretase activity in the human brain, and thus specific targeting of Aph1B-containing gamma-secretase complexes may help generate less toxic therapies for Alzheimer's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2740474/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2740474/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Serneels, Lutgarde -- Van Biervliet, Jerome -- Craessaerts, Katleen -- Dejaegere, Tim -- Horre, Katrien -- Van Houtvin, Tine -- Esselmann, Hermann -- Paul, Sabine -- Schafer, Martin K -- Berezovska, Oksana -- Hyman, Bradley T -- Sprangers, Ben -- Sciot, Raf -- Moons, Lieve -- Jucker, Mathias -- Yang, Zhixiang -- May, Patrick C -- Karran, Eric -- Wiltfang, Jens -- D'Hooge, Rudi -- De Strooper, Bart -- AG 13579/AG/NIA NIH HHS/ -- AG026593/AG/NIA NIH HHS/ -- P01 AG015379/AG/NIA NIH HHS/ -- P01 AG015379-110009/AG/NIA NIH HHS/ -- P01AG015379/AG/NIA NIH HHS/ -- R01 AG026593/AG/NIA NIH HHS/ -- R01 AG026593-01A1/AG/NIA NIH HHS/ -- R01AG026593/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2009 May 1;324(5927):639-42. doi: 10.1126/science.1171176. Epub 2009 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department for Molecular and Developmental Genetics, VIB, KULeuven, Herestraat 49, 3000 Leuven, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299585" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/*metabolism ; Amyloid Precursor Protein Secretases/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Amyloid beta-Peptides/analysis/chemistry/*metabolism ; Amyloid beta-Protein Precursor/metabolism ; Animals ; Brain/*metabolism ; Disease Models, Animal ; Endopeptidases/chemistry/genetics/*metabolism ; Female ; Humans ; Maze Learning ; Membrane Proteins/metabolism ; Memory ; Mice ; Neurons/metabolism ; Peptide Fragments/analysis/metabolism ; Peptide Hydrolases/metabolism ; Presenilin-1/chemistry/genetics/metabolism ; Protein Subunits/chemistry/metabolism ; Receptor, Notch1/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-06-26
    Description: The sirtuins are members of the histone deacetylase family of proteins that participate in a variety of cellular functions and play a role in aging. We identified a potent inhibitor of sirtuin 2 (SIRT2) and found that inhibition of SIRT2 rescued alpha-synuclein toxicity and modified inclusion morphology in a cellular model of Parkinson's disease. Genetic inhibition of SIRT2 via small interfering RNA similarly rescued alpha-synuclein toxicity. Furthermore, the inhibitors protected against dopaminergic cell death both in vitro and in a Drosophila model of Parkinson's disease. The results suggest a link between neurodegeneration and aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Outeiro, Tiago Fleming -- Kontopoulos, Eirene -- Altmann, Stephen M -- Kufareva, Irina -- Strathearn, Katherine E -- Amore, Allison M -- Volk, Catherine B -- Maxwell, Michele M -- Rochet, Jean-Christophe -- McLean, Pamela J -- Young, Anne B -- Abagyan, Ruben -- Feany, Mel B -- Hyman, Bradley T -- Kazantsev, Aleksey G -- 5P50-NS38372A-06/NS/NINDS NIH HHS/ -- R01-NS049221/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 27;317(5837):516-9. Epub 2007 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Alzheimer's Research Unit, MGH, Harvard Medical School, CNY 114, 16th Street, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588900" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Animals, Genetically Modified ; Cell Death/drug effects ; Cell Line, Tumor ; Cells, Cultured ; Disease Models, Animal ; Dopamine/physiology ; Dose-Response Relationship, Drug ; Drosophila melanogaster ; Furans/*pharmacology ; Humans ; Models, Molecular ; Neurons/cytology/drug effects ; Parkinson Disease/*drug therapy/metabolism/pathology/*physiopathology ; Protein Conformation ; Quinolines/*pharmacology ; RNA, Small Interfering/genetics ; Rats ; Sirtuin 1 ; Sirtuin 2 ; Sirtuins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Transfection ; Tubulin/metabolism ; alpha-Synuclein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-21
    Description: Soluble beta-amyloid (Abeta) oligomers impair synaptic plasticity and cause synaptic loss associated with Alzheimer's disease (AD). We report that murine PirB (paired immunoglobulin-like receptor B) and its human ortholog LilrB2 (leukocyte immunoglobulin-like receptor B2), present in human brain, are receptors for Abeta oligomers, with nanomolar affinity. The first two extracellular immunoglobulin (Ig) domains of PirB and LilrB2 mediate this interaction, leading to enhanced cofilin signaling, also seen in human AD brains. In mice, the deleterious effect of Abeta oligomers on hippocampal long-term potentiation required PirB, and in a transgenic model of AD, PirB not only contributed to memory deficits present in adult mice, but also mediated loss of synaptic plasticity in juvenile visual cortex. These findings imply that LilrB2 contributes to human AD neuropathology and suggest therapeutic uses of blocking LilrB2 function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Taeho -- Vidal, George S -- Djurisic, Maja -- William, Christopher M -- Birnbaum, Michael E -- Garcia, K Christopher -- Hyman, Bradley T -- Shatz, Carla J -- 5P50AG005134/AG/NIA NIH HHS/ -- 5R01AG041507/AG/NIA NIH HHS/ -- 5T32EY020485/EY/NEI NIH HHS/ -- EY02858/EY/NEI NIH HHS/ -- K08 NS069811/NS/NINDS NIH HHS/ -- K08NS069811/NS/NINDS NIH HHS/ -- NS069375/NS/NINDS NIH HHS/ -- R01 AG041507/AG/NIA NIH HHS/ -- R01 EY002858/EY/NEI NIH HHS/ -- R01 MH071666/MH/NIMH NIH HHS/ -- T32 EY020485/EY/NEI NIH HHS/ -- T32 MH020016/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1399-404. doi: 10.1126/science.1242077.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA. tkim808@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24052308" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*physiopathology ; Amyloid beta-Peptides/*metabolism/pharmacology ; Animals ; Disease Models, Animal ; Female ; HEK293 Cells ; Hippocampus/physiopathology ; Humans ; Long-Term Potentiation ; Male ; Membrane Glycoproteins/genetics/*physiology ; Mice ; Mice, Transgenic ; *Neuronal Plasticity ; Peptide Fragments/*metabolism/pharmacology ; Receptors, Immunologic/genetics/*physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1984-09-14
    Description: Examination of temporal lobe structures from Alzheimer patients reveals a specific cellular pattern of pathology of the subiculum of the hippocampal formation and layers II and IV of the entorhinal cortex. The affected cells are precisely those that interconnect the hippocampal formation with the association cortices, basal forebrain, thalamus, and hypothalamus, structures crucial to memory. This focal pattern of pathology isolates the hippocampal formation from much of its input and output and probably contributes to the memory disorder in Alzheimer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hyman, B T -- Van Hoesen, G W -- Damasio, A R -- Barnes, C L -- IF 32EY 05720/EY/NEI NIH HHS/ -- NS 14944/NS/NINDS NIH HHS/ -- P0I NS 19632/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1984 Sep 14;225(4667):1168-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6474172" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Alzheimer Disease/*pathology ; Hippocampus/*pathology ; Humans ; Middle Aged ; Neurons/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-04-02
    Description: Studies of post-mortem tissue have shown that the location of fibrillar tau deposits, called neurofibrillary tangles (NFT), matches closely with regions of massive neuronal death, severe cytological abnormalities, and markers of caspase activation and apoptosis, leading to the idea that tangles cause neurodegeneration in Alzheimer's disease and tau-related frontotemporal dementia. However, using in vivo multiphoton imaging to observe tangles and activation of executioner caspases in living tau transgenic mice (Tg4510 strain), we find the opposite: caspase activation occurs first, and precedes tangle formation by hours to days. New tangles form within a day. After a new tangle forms, the neuron remains alive and caspase activity seems to be suppressed. Similarly, introduction of wild-type 4-repeat tau (tau-4R) into wild-type animals triggered caspase activation, tau truncation and tau aggregation. Adeno-associated virus-mediated expression of a construct mimicking caspase-cleaved tau into wild-type mice led to the appearance of intracellular aggregates, tangle-related conformational- and phospho-epitopes, and the recruitment of full-length endogenous tau to the aggregates. On the basis of these data, we propose a new model in which caspase activation cleaves tau to initiate tangle formation, then truncated tau recruits normal tau to misfold and form tangles. Because tangle-bearing neurons are long-lived, we suggest that tangles are 'off pathway' to acute neuronal death. Soluble tau species, rather than fibrillar tau, may be the critical toxic moiety underlying neurodegeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091360/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091360/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Calignon, Alix -- Fox, Leora M -- Pitstick, Rose -- Carlson, George A -- Bacskai, Brian J -- Spires-Jones, Tara L -- Hyman, Bradley T -- AG 026249/AG/NIA NIH HHS/ -- AG08487/AG/NIA NIH HHS/ -- K99 AG033670/AG/NIA NIH HHS/ -- K99 AG033670-01A1/AG/NIA NIH HHS/ -- R01 AG008487/AG/NIA NIH HHS/ -- R01 AG008487-18/AG/NIA NIH HHS/ -- R01 AG026249/AG/NIA NIH HHS/ -- R01 AG026249-01/AG/NIA NIH HHS/ -- England -- Nature. 2010 Apr 22;464(7292):1201-4. doi: 10.1038/nature08890. Epub 2010 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Alzheimer's Disease Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20357768" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism/pathology ; Caspases/*metabolism ; Cell Death ; Enzyme Activation ; Humans ; Mice ; Mice, Transgenic ; Neurofibrillary Tangles/chemistry/enzymology/*metabolism/pathology ; Neurons/enzymology/metabolism/pathology ; Protein Processing, Post-Translational ; Solubility ; Time Factors ; tau Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2003-05-23
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...